Fix mdoc(7)/man(7) mix up.
[netbsd-mini2440.git] / lib / libc / db / btree / bt_split.c
blobaf8de1cb1c78f1981aff401598a51e56f1f319a3
1 /* $NetBSD: bt_split.c,v 1.18 2009/02/12 06:41:40 lukem Exp $ */
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: bt_split.c,v 1.18 2009/02/12 06:41:40 lukem Exp $");
42 #include "namespace.h"
43 #include <sys/types.h>
45 #include <assert.h>
46 #include <limits.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
51 #include <db.h>
52 #include "btree.h"
54 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
55 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
56 static int bt_preserve(BTREE *, pgno_t);
57 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
58 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
59 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
60 static recno_t rec_total(PAGE *);
62 #ifdef STATISTICS
63 unsigned long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
64 #endif
67 * __BT_SPLIT -- Split the tree.
69 * Parameters:
70 * t: tree
71 * sp: page to split
72 * key: key to insert
73 * data: data to insert
74 * flags: BIGKEY/BIGDATA flags
75 * ilen: insert length
76 * skip: index to leave open
78 * Returns:
79 * RET_ERROR, RET_SUCCESS
81 int
82 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
83 size_t ilen, uint32_t argskip)
85 BINTERNAL *bi = NULL; /* pacify gcc */
86 BLEAF *bl = NULL, *tbl; /* pacify gcc */
87 DBT a, b;
88 EPGNO *parent;
89 PAGE *h, *l, *r, *lchild, *rchild;
90 indx_t nxtindex;
91 uint16_t skip;
92 uint32_t n, nbytes, nksize = 0; /* pacify gcc */
93 int parentsplit;
94 char *dest;
97 * Split the page into two pages, l and r. The split routines return
98 * a pointer to the page into which the key should be inserted and with
99 * skip set to the offset which should be used. Additionally, l and r
100 * are pinned.
102 skip = argskip;
103 h = sp->pgno == P_ROOT ?
104 bt_root(t, sp, &l, &r, &skip, ilen) :
105 bt_page(t, sp, &l, &r, &skip, ilen);
106 if (h == NULL)
107 return (RET_ERROR);
110 * Insert the new key/data pair into the leaf page. (Key inserts
111 * always cause a leaf page to split first.)
113 _DBFIT(ilen, indx_t);
114 h->upper -= (indx_t)ilen;
115 h->linp[skip] = h->upper;
116 dest = (char *)(void *)h + h->upper;
117 if (F_ISSET(t, R_RECNO))
118 WR_RLEAF(dest, data, flags);
119 else
120 WR_BLEAF(dest, key, data, flags);
122 /* If the root page was split, make it look right. */
123 if (sp->pgno == P_ROOT &&
124 (F_ISSET(t, R_RECNO) ?
125 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
126 goto err2;
129 * Now we walk the parent page stack -- a LIFO stack of the pages that
130 * were traversed when we searched for the page that split. Each stack
131 * entry is a page number and a page index offset. The offset is for
132 * the page traversed on the search. We've just split a page, so we
133 * have to insert a new key into the parent page.
135 * If the insert into the parent page causes it to split, may have to
136 * continue splitting all the way up the tree. We stop if the root
137 * splits or the page inserted into didn't have to split to hold the
138 * new key. Some algorithms replace the key for the old page as well
139 * as the new page. We don't, as there's no reason to believe that the
140 * first key on the old page is any better than the key we have, and,
141 * in the case of a key being placed at index 0 causing the split, the
142 * key is unavailable.
144 * There are a maximum of 5 pages pinned at any time. We keep the left
145 * and right pages pinned while working on the parent. The 5 are the
146 * two children, left parent and right parent (when the parent splits)
147 * and the root page or the overflow key page when calling bt_preserve.
148 * This code must make sure that all pins are released other than the
149 * root page or overflow page which is unlocked elsewhere.
151 while ((parent = BT_POP(t)) != NULL) {
152 lchild = l;
153 rchild = r;
155 /* Get the parent page. */
156 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
157 goto err2;
160 * The new key goes ONE AFTER the index, because the split
161 * was to the right.
163 skip = parent->index + 1;
166 * Calculate the space needed on the parent page.
168 * Prefix trees: space hack when inserting into BINTERNAL
169 * pages. Retain only what's needed to distinguish between
170 * the new entry and the LAST entry on the page to its left.
171 * If the keys compare equal, retain the entire key. Note,
172 * we don't touch overflow keys, and the entire key must be
173 * retained for the next-to-left most key on the leftmost
174 * page of each level, or the search will fail. Applicable
175 * ONLY to internal pages that have leaf pages as children.
176 * Further reduction of the key between pairs of internal
177 * pages loses too much information.
179 switch (rchild->flags & P_TYPE) {
180 case P_BINTERNAL:
181 bi = GETBINTERNAL(rchild, 0);
182 nbytes = NBINTERNAL(bi->ksize);
183 break;
184 case P_BLEAF:
185 bl = GETBLEAF(rchild, 0);
186 nbytes = NBINTERNAL(bl->ksize);
187 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
188 (h->prevpg != P_INVALID || skip > 1)) {
189 size_t temp;
190 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
191 a.size = tbl->ksize;
192 a.data = tbl->bytes;
193 b.size = bl->ksize;
194 b.data = bl->bytes;
195 temp = t->bt_pfx(&a, &b);
196 _DBFIT(temp, uint32_t);
197 nksize = (uint32_t)temp;
198 n = NBINTERNAL(nksize);
199 if (n < nbytes) {
200 #ifdef STATISTICS
201 bt_pfxsaved += nbytes - n;
202 #endif
203 nbytes = n;
204 } else
205 nksize = 0;
206 } else
207 nksize = 0;
208 break;
209 case P_RINTERNAL:
210 case P_RLEAF:
211 nbytes = NRINTERNAL;
212 break;
213 default:
214 abort();
217 /* Split the parent page if necessary or shift the indices. */
218 if ((uint32_t)h->upper - (uint32_t)h->lower < nbytes + sizeof(indx_t)) {
219 sp = h;
220 h = h->pgno == P_ROOT ?
221 bt_root(t, h, &l, &r, &skip, nbytes) :
222 bt_page(t, h, &l, &r, &skip, nbytes);
223 if (h == NULL)
224 goto err1;
225 parentsplit = 1;
226 } else {
227 if (skip < (nxtindex = NEXTINDEX(h)))
228 memmove(h->linp + skip + 1, h->linp + skip,
229 (nxtindex - skip) * sizeof(indx_t));
230 h->lower += sizeof(indx_t);
231 parentsplit = 0;
234 /* Insert the key into the parent page. */
235 switch (rchild->flags & P_TYPE) {
236 case P_BINTERNAL:
237 h->linp[skip] = h->upper -= nbytes;
238 dest = (char *)(void *)h + h->linp[skip];
239 memmove(dest, bi, nbytes);
240 ((BINTERNAL *)(void *)dest)->pgno = rchild->pgno;
241 break;
242 case P_BLEAF:
243 h->linp[skip] = h->upper -= nbytes;
244 dest = (char *)(void *)h + h->linp[skip];
245 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
246 rchild->pgno, bl->flags & P_BIGKEY);
247 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
248 if (bl->flags & P_BIGKEY &&
249 bt_preserve(t, *(pgno_t *)(void *)bl->bytes) ==
250 RET_ERROR)
251 goto err1;
252 break;
253 case P_RINTERNAL:
255 * Update the left page count. If split
256 * added at index 0, fix the correct page.
258 if (skip > 0)
259 dest = (char *)(void *)h + h->linp[skip - 1];
260 else
261 dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
262 ((RINTERNAL *)(void *)dest)->nrecs = rec_total(lchild);
263 ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
265 /* Update the right page count. */
266 h->linp[skip] = h->upper -= nbytes;
267 dest = (char *)(void *)h + h->linp[skip];
268 ((RINTERNAL *)(void *)dest)->nrecs = rec_total(rchild);
269 ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
270 break;
271 case P_RLEAF:
273 * Update the left page count. If split
274 * added at index 0, fix the correct page.
276 if (skip > 0)
277 dest = (char *)(void *)h + h->linp[skip - 1];
278 else
279 dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
280 ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(lchild);
281 ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
283 /* Update the right page count. */
284 h->linp[skip] = h->upper -= nbytes;
285 dest = (char *)(void *)h + h->linp[skip];
286 ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(rchild);
287 ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
288 break;
289 default:
290 abort();
293 /* Unpin the held pages. */
294 if (!parentsplit) {
295 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
296 break;
299 /* If the root page was split, make it look right. */
300 if (sp->pgno == P_ROOT &&
301 (F_ISSET(t, R_RECNO) ?
302 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
303 goto err1;
305 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
306 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
309 /* Unpin the held pages. */
310 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
311 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
313 /* Clear any pages left on the stack. */
314 return (RET_SUCCESS);
317 * If something fails in the above loop we were already walking back
318 * up the tree and the tree is now inconsistent. Nothing much we can
319 * do about it but release any memory we're holding.
321 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
322 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
324 err2: mpool_put(t->bt_mp, l, 0);
325 mpool_put(t->bt_mp, r, 0);
326 __dbpanic(t->bt_dbp);
327 return (RET_ERROR);
331 * BT_PAGE -- Split a non-root page of a btree.
333 * Parameters:
334 * t: tree
335 * h: root page
336 * lp: pointer to left page pointer
337 * rp: pointer to right page pointer
338 * skip: pointer to index to leave open
339 * ilen: insert length
341 * Returns:
342 * Pointer to page in which to insert or NULL on error.
344 static PAGE *
345 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
347 PAGE *l, *r, *tp;
348 pgno_t npg;
350 #ifdef STATISTICS
351 ++bt_split;
352 #endif
353 /* Put the new right page for the split into place. */
354 if ((r = __bt_new(t, &npg)) == NULL)
355 return (NULL);
356 r->pgno = npg;
357 r->lower = BTDATAOFF;
358 r->upper = t->bt_psize;
359 r->nextpg = h->nextpg;
360 r->prevpg = h->pgno;
361 r->flags = h->flags & P_TYPE;
364 * If we're splitting the last page on a level because we're appending
365 * a key to it (skip is NEXTINDEX()), it's likely that the data is
366 * sorted. Adding an empty page on the side of the level is less work
367 * and can push the fill factor much higher than normal. If we're
368 * wrong it's no big deal, we'll just do the split the right way next
369 * time. It may look like it's equally easy to do a similar hack for
370 * reverse sorted data, that is, split the tree left, but it's not.
371 * Don't even try.
373 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
374 #ifdef STATISTICS
375 ++bt_sortsplit;
376 #endif
377 h->nextpg = r->pgno;
378 r->lower = BTDATAOFF + sizeof(indx_t);
379 *skip = 0;
380 *lp = h;
381 *rp = r;
382 return (r);
385 /* Put the new left page for the split into place. */
386 if ((l = calloc(1, t->bt_psize)) == NULL) {
387 mpool_put(t->bt_mp, r, 0);
388 return (NULL);
390 #ifdef PURIFY
391 memset(l, 0xff, t->bt_psize);
392 #endif
393 l->pgno = h->pgno;
394 l->nextpg = r->pgno;
395 l->prevpg = h->prevpg;
396 l->lower = BTDATAOFF;
397 l->upper = t->bt_psize;
398 l->flags = h->flags & P_TYPE;
400 /* Fix up the previous pointer of the page after the split page. */
401 if (h->nextpg != P_INVALID) {
402 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
403 free(l);
404 /* XXX mpool_free(t->bt_mp, r->pgno); */
405 return (NULL);
407 tp->prevpg = r->pgno;
408 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
412 * Split right. The key/data pairs aren't sorted in the btree page so
413 * it's simpler to copy the data from the split page onto two new pages
414 * instead of copying half the data to the right page and compacting
415 * the left page in place. Since the left page can't change, we have
416 * to swap the original and the allocated left page after the split.
418 tp = bt_psplit(t, h, l, r, skip, ilen);
420 /* Move the new left page onto the old left page. */
421 memmove(h, l, t->bt_psize);
422 if (tp == l)
423 tp = h;
424 free(l);
426 *lp = h;
427 *rp = r;
428 return (tp);
432 * BT_ROOT -- Split the root page of a btree.
434 * Parameters:
435 * t: tree
436 * h: root page
437 * lp: pointer to left page pointer
438 * rp: pointer to right page pointer
439 * skip: pointer to index to leave open
440 * ilen: insert length
442 * Returns:
443 * Pointer to page in which to insert or NULL on error.
445 static PAGE *
446 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
448 PAGE *l, *r, *tp;
449 pgno_t lnpg, rnpg;
451 #ifdef STATISTICS
452 ++bt_split;
453 ++bt_rootsplit;
454 #endif
455 /* Put the new left and right pages for the split into place. */
456 if ((l = __bt_new(t, &lnpg)) == NULL ||
457 (r = __bt_new(t, &rnpg)) == NULL)
458 return (NULL);
459 l->pgno = lnpg;
460 r->pgno = rnpg;
461 l->nextpg = r->pgno;
462 r->prevpg = l->pgno;
463 l->prevpg = r->nextpg = P_INVALID;
464 l->lower = r->lower = BTDATAOFF;
465 l->upper = r->upper = t->bt_psize;
466 l->flags = r->flags = h->flags & P_TYPE;
468 /* Split the root page. */
469 tp = bt_psplit(t, h, l, r, skip, ilen);
471 *lp = l;
472 *rp = r;
473 return (tp);
477 * BT_RROOT -- Fix up the recno root page after it has been split.
479 * Parameters:
480 * t: tree
481 * h: root page
482 * l: left page
483 * r: right page
485 * Returns:
486 * RET_ERROR, RET_SUCCESS
488 static int
489 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
491 char *dest;
492 uint32_t sz;
493 size_t temp;
495 temp = t->bt_psize - NRINTERNAL;
496 _DBFIT(temp, uint32_t);
497 sz = (uint32_t)temp;
499 /* Insert the left and right keys, set the header information. */
500 _DBFIT(sz, indx_t);
501 h->linp[0] = h->upper = (indx_t)sz;
502 dest = (char *)(void *)h + h->upper;
503 WR_RINTERNAL(dest,
504 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
506 h->linp[1] = h->upper -= NRINTERNAL;
507 dest = (char *)(void *)h + h->upper;
508 WR_RINTERNAL(dest,
509 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
511 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
513 /* Unpin the root page, set to recno internal page. */
514 h->flags &= ~P_TYPE;
515 h->flags |= P_RINTERNAL;
516 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
518 return (RET_SUCCESS);
522 * BT_BROOT -- Fix up the btree root page after it has been split.
524 * Parameters:
525 * t: tree
526 * h: root page
527 * l: left page
528 * r: right page
530 * Returns:
531 * RET_ERROR, RET_SUCCESS
533 static int
534 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
536 BINTERNAL *bi = NULL; /* pacify gcc */
537 BLEAF *bl;
538 uint32_t nbytes;
539 char *dest;
542 * If the root page was a leaf page, change it into an internal page.
543 * We copy the key we split on (but not the key's data, in the case of
544 * a leaf page) to the new root page.
546 * The btree comparison code guarantees that the left-most key on any
547 * level of the tree is never used, so it doesn't need to be filled in.
549 nbytes = NBINTERNAL(0);
550 h->linp[0] = h->upper = t->bt_psize - nbytes;
551 dest = (char *)(void *)h + h->upper;
552 WR_BINTERNAL(dest, 0, l->pgno, 0);
554 switch (h->flags & P_TYPE) {
555 case P_BLEAF:
556 bl = GETBLEAF(r, 0);
557 nbytes = NBINTERNAL(bl->ksize);
558 h->linp[1] = h->upper -= nbytes;
559 dest = (char *)(void *)h + h->upper;
560 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
561 memmove(dest, bl->bytes, bl->ksize);
564 * If the key is on an overflow page, mark the overflow chain
565 * so it isn't deleted when the leaf copy of the key is deleted.
567 if (bl->flags & P_BIGKEY &&
568 bt_preserve(t, *(pgno_t *)(void *)bl->bytes) == RET_ERROR)
569 return (RET_ERROR);
570 break;
571 case P_BINTERNAL:
572 bi = GETBINTERNAL(r, 0);
573 nbytes = NBINTERNAL(bi->ksize);
574 h->linp[1] = h->upper -= nbytes;
575 dest = (char *)(void *)h + h->upper;
576 memmove(dest, bi, nbytes);
577 ((BINTERNAL *)(void *)dest)->pgno = r->pgno;
578 break;
579 default:
580 abort();
583 /* There are two keys on the page. */
584 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
586 /* Unpin the root page, set to btree internal page. */
587 h->flags &= ~P_TYPE;
588 h->flags |= P_BINTERNAL;
589 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
591 return (RET_SUCCESS);
595 * BT_PSPLIT -- Do the real work of splitting the page.
597 * Parameters:
598 * t: tree
599 * h: page to be split
600 * l: page to put lower half of data
601 * r: page to put upper half of data
602 * pskip: pointer to index to leave open
603 * ilen: insert length
605 * Returns:
606 * Pointer to page in which to insert.
608 static PAGE *
609 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
611 BINTERNAL *bi;
612 BLEAF *bl;
613 CURSOR *c;
614 RLEAF *rl;
615 PAGE *rval;
616 void *src = NULL; /* pacify gcc */
617 indx_t full, half, nxt, off, skip, top, used;
618 uint32_t nbytes;
619 size_t temp;
620 int bigkeycnt, isbigkey;
623 * Split the data to the left and right pages. Leave the skip index
624 * open. Additionally, make some effort not to split on an overflow
625 * key. This makes internal page processing faster and can save
626 * space as overflow keys used by internal pages are never deleted.
628 bigkeycnt = 0;
629 skip = *pskip;
630 temp = t->bt_psize - BTDATAOFF;
631 _DBFIT(temp, indx_t);
632 full = (indx_t)temp;
633 half = full / 2;
634 used = 0;
635 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
636 if (skip == off) {
637 _DBFIT(ilen, uint32_t);
638 nbytes = (uint32_t)ilen;
639 isbigkey = 0; /* XXX: not really known. */
640 } else
641 switch (h->flags & P_TYPE) {
642 case P_BINTERNAL:
643 src = bi = GETBINTERNAL(h, nxt);
644 nbytes = NBINTERNAL(bi->ksize);
645 isbigkey = bi->flags & P_BIGKEY;
646 break;
647 case P_BLEAF:
648 src = bl = GETBLEAF(h, nxt);
649 nbytes = NBLEAF(bl);
650 isbigkey = bl->flags & P_BIGKEY;
651 break;
652 case P_RINTERNAL:
653 src = GETRINTERNAL(h, nxt);
654 nbytes = NRINTERNAL;
655 isbigkey = 0;
656 break;
657 case P_RLEAF:
658 src = rl = GETRLEAF(h, nxt);
659 nbytes = NRLEAF(rl);
660 isbigkey = 0;
661 break;
662 default:
663 abort();
667 * If the key/data pairs are substantial fractions of the max
668 * possible size for the page, it's possible to get situations
669 * where we decide to try and copy too much onto the left page.
670 * Make sure that doesn't happen.
672 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
673 nxt == top - 1) {
674 --off;
675 break;
678 /* Copy the key/data pair, if not the skipped index. */
679 if (skip != off) {
680 ++nxt;
682 l->linp[off] = l->upper -= nbytes;
683 memmove((char *)(void *)l + l->upper, src, nbytes);
686 temp = nbytes + sizeof(indx_t);
687 _DBFIT(temp, indx_t);
688 used += (indx_t)temp;
689 if (used >= half) {
690 if (!isbigkey || bigkeycnt == 3)
691 break;
692 else
693 ++bigkeycnt;
698 * Off is the last offset that's valid for the left page.
699 * Nxt is the first offset to be placed on the right page.
701 temp = (off + 1) * sizeof(indx_t);
702 _DBFIT(temp, indx_t);
703 l->lower += (indx_t)temp;
706 * If splitting the page that the cursor was on, the cursor has to be
707 * adjusted to point to the same record as before the split. If the
708 * cursor is at or past the skipped slot, the cursor is incremented by
709 * one. If the cursor is on the right page, it is decremented by the
710 * number of records split to the left page.
712 c = &t->bt_cursor;
713 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
714 if (c->pg.index >= skip)
715 ++c->pg.index;
716 if (c->pg.index < nxt) /* Left page. */
717 c->pg.pgno = l->pgno;
718 else { /* Right page. */
719 c->pg.pgno = r->pgno;
720 c->pg.index -= nxt;
725 * If the skipped index was on the left page, just return that page.
726 * Otherwise, adjust the skip index to reflect the new position on
727 * the right page.
729 if (skip <= off) {
730 skip = MAX_PAGE_OFFSET;
731 rval = l;
732 } else {
733 rval = r;
734 *pskip -= nxt;
737 for (off = 0; nxt < top; ++off) {
738 if (skip == nxt) {
739 ++off;
740 skip = MAX_PAGE_OFFSET;
742 switch (h->flags & P_TYPE) {
743 case P_BINTERNAL:
744 src = bi = GETBINTERNAL(h, nxt);
745 nbytes = NBINTERNAL(bi->ksize);
746 break;
747 case P_BLEAF:
748 src = bl = GETBLEAF(h, nxt);
749 nbytes = NBLEAF(bl);
750 break;
751 case P_RINTERNAL:
752 src = GETRINTERNAL(h, nxt);
753 nbytes = NRINTERNAL;
754 break;
755 case P_RLEAF:
756 src = rl = GETRLEAF(h, nxt);
757 nbytes = NRLEAF(rl);
758 break;
759 default:
760 abort();
762 ++nxt;
763 r->linp[off] = r->upper -= nbytes;
764 memmove((char *)(void *)r + r->upper, src, nbytes);
766 temp = off * sizeof(indx_t);
767 _DBFIT(temp, indx_t);
768 r->lower += (indx_t)temp;
770 /* If the key is being appended to the page, adjust the index. */
771 if (skip == top)
772 r->lower += sizeof(indx_t);
774 return (rval);
778 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
780 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
781 * record that references them gets deleted. Chains pointed to by internal
782 * pages never get deleted. This routine marks a chain as pointed to by an
783 * internal page.
785 * Parameters:
786 * t: tree
787 * pg: page number of first page in the chain.
789 * Returns:
790 * RET_SUCCESS, RET_ERROR.
792 static int
793 bt_preserve(BTREE *t, pgno_t pg)
795 PAGE *h;
797 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
798 return (RET_ERROR);
799 h->flags |= P_PRESERVE;
800 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
801 return (RET_SUCCESS);
805 * REC_TOTAL -- Return the number of recno entries below a page.
807 * Parameters:
808 * h: page
810 * Returns:
811 * The number of recno entries below a page.
813 * XXX
814 * These values could be set by the bt_psplit routine. The problem is that the
815 * entry has to be popped off of the stack etc. or the values have to be passed
816 * all the way back to bt_split/bt_rroot and it's not very clean.
818 static recno_t
819 rec_total(PAGE *h)
821 recno_t recs;
822 indx_t nxt, top;
824 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
825 recs += GETRINTERNAL(h, nxt)->nrecs;
826 return (recs);