1 /* $NetBSD: gdtoaimp.h,v 1.6 2007/02/03 16:44:02 christos Exp $ */
3 /****************************************************************
5 The author of this software is David M. Gay.
7 Copyright (C) 1998-2000 by Lucent Technologies
10 Permission to use, copy, modify, and distribute this software and
11 its documentation for any purpose and without fee is hereby
12 granted, provided that the above copyright notice appear in all
13 copies and that both that the copyright notice and this
14 permission notice and warranty disclaimer appear in supporting
15 documentation, and that the name of Lucent or any of its entities
16 not be used in advertising or publicity pertaining to
17 distribution of the software without specific, written prior
20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
29 ****************************************************************/
31 /* This is a variation on dtoa.c that converts arbitary binary
32 floating-point formats to and from decimal notation. It uses
33 double-precision arithmetic internally, so there are still
34 various #ifdefs that adapt the calculations to the native
35 double-precision arithmetic (any of IEEE, VAX D_floating,
36 or IBM mainframe arithmetic).
38 Please send bug reports to David M. Gay (dmg at acm dot org,
39 with " at " changed at "@" and " dot " changed to ".").
42 /* On a machine with IEEE extended-precision registers, it is
43 * necessary to specify double-precision (53-bit) rounding precision
44 * before invoking strtod or dtoa. If the machine uses (the equivalent
45 * of) Intel 80x87 arithmetic, the call
46 * _control87(PC_53, MCW_PC);
47 * does this with many compilers. Whether this or another call is
48 * appropriate depends on the compiler; for this to work, it may be
49 * necessary to #include "float.h" or another system-dependent header
53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
55 * This strtod returns a nearest machine number to the input decimal
56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
57 * broken by the IEEE round-even rule. Otherwise ties are broken by
58 * biased rounding (add half and chop).
60 * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
65 * 1. We only require IEEE, IBM, or VAX double-precision
66 * arithmetic (not IEEE double-extended).
67 * 2. We get by with floating-point arithmetic in a case that
68 * Clinger missed -- when we're computing d * 10^n
69 * for a small integer d and the integer n is not too
70 * much larger than 22 (the maximum integer k for which
71 * we can represent 10^k exactly), we may be able to
72 * compute (d*10^k) * 10^(e-k) with just one roundoff.
73 * 3. Rather than a bit-at-a-time adjustment of the binary
74 * result in the hard case, we use floating-point
75 * arithmetic to determine the adjustment to within
76 * one bit; only in really hard cases do we need to
77 * compute a second residual.
78 * 4. Because of 3., we don't need a large table of powers of 10
79 * for ten-to-e (just some small tables, e.g. of 10^k
84 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
85 * significant byte has the lowest address.
86 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
87 * significant byte has the lowest address.
88 * #define Long int on machines with 32-bit ints and 64-bit longs.
89 * #define Sudden_Underflow for IEEE-format machines without gradual
90 * underflow (i.e., that flush to zero on underflow).
91 * #define IBM for IBM mainframe-style floating-point arithmetic.
92 * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 * #define No_leftright to omit left-right logic in fast floating-point
94 * computation of dtoa.
95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 * that use extended-precision instructions to compute rounded
98 * products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding.
100 * #define Inaccurate_Divide for IEEE-format with correctly rounded
101 * products but inaccurate quotients, e.g., for Intel i860.
102 * #define NO_LONG_LONG on machines that do not have a "long long"
103 * integer type (of >= 64 bits). On such machines, you can
104 * #define Just_16 to store 16 bits per 32-bit Long when doing
105 * high-precision integer arithmetic. Whether this speeds things
106 * up or slows things down depends on the machine and the number
107 * being converted. If long long is available and the name is
108 * something other than "long long", #define Llong to be the name,
109 * and if "unsigned Llong" does not work as an unsigned version of
110 * Llong, #define #ULLong to be the corresponding unsigned type.
111 * #define KR_headers for old-style C function headers.
112 * #define Bad_float_h if your system lacks a float.h or if it does not
113 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
114 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
115 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
116 * if memory is available and otherwise does something you deem
117 * appropriate. If MALLOC is undefined, malloc will be invoked
118 * directly -- and assumed always to succeed.
119 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120 * memory allocations from a private pool of memory when possible.
121 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
122 * unless #defined to be a different length. This default length
123 * suffices to get rid of MALLOC calls except for unusual cases,
124 * such as decimal-to-binary conversion of a very long string of
125 * digits. When converting IEEE double precision values, the
126 * longest string gdtoa can return is about 751 bytes long. For
127 * conversions by strtod of strings of 800 digits and all gdtoa
128 * conversions of IEEE doubles in single-threaded executions with
129 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
130 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
131 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
132 * Infinity and NaN (case insensitively).
133 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134 * strtodg also accepts (case insensitively) strings of the form
135 * NaN(x), where x is a string of hexadecimal digits and spaces;
136 * if there is only one string of hexadecimal digits, it is taken
137 * for the fraction bits of the resulting NaN; if there are two or
138 * more strings of hexadecimal digits, each string is assigned
139 * to the next available sequence of 32-bit words of fractions
140 * bits (starting with the most significant), right-aligned in
142 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
143 * multiple threads. In this case, you must provide (or suitably
144 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
145 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
146 * in pow5mult, ensures lazy evaluation of only one copy of high
147 * powers of 5; omitting this lock would introduce a small
148 * probability of wasting memory, but would otherwise be harmless.)
149 * You must also invoke freedtoa(s) to free the value s returned by
150 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
151 * #define IMPRECISE_INEXACT if you do not care about the setting of
152 * the STRTOG_Inexact bits in the special case of doing IEEE double
153 * precision conversions (which could also be done by the strtog in
155 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
156 * floating-point constants.
157 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
159 * #define NO_STRING_H to use private versions of memcpy.
160 * On some K&R systems, it may also be necessary to
161 * #define DECLARE_SIZE_T in this case.
162 * #define YES_ALIAS to permit aliasing certain double values with
163 * arrays of ULongs. This leads to slightly better code with
164 * some compilers and was always used prior to 19990916, but it
165 * is not strictly legal and can cause trouble with aggressively
166 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
167 * #define USE_LOCALE to use the current locale's decimal_point value.
170 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
173 #define Short int16_t
174 #define UShort uint16_t
176 #define ULong uint32_t
177 #define LLong int64_t
178 #define ULLong uint64_t
182 #define MULTIPLE_THREADS
186 #ifndef GDTOAIMP_H_INCLUDED
187 #define GDTOAIMP_H_INCLUDED
193 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
206 extern Char
*MALLOC
ANSI((size_t));
208 #define MALLOC malloc
212 #undef Avoid_Underflow
213 #ifdef IEEE_BIG_ENDIAN
216 #ifdef IEEE_LITTLE_ENDIAN
225 #define DBL_MAX_10_EXP 308
226 #define DBL_MAX_EXP 1024
228 #define DBL_MAX 1.7976931348623157e+308
233 #define DBL_MAX_10_EXP 75
234 #define DBL_MAX_EXP 63
236 #define DBL_MAX 7.2370055773322621e+75
241 #define DBL_MAX_10_EXP 38
242 #define DBL_MAX_EXP 127
244 #define DBL_MAX 1.7014118346046923e+38
249 #define LONG_MAX 2147483647
252 #else /* ifndef Bad_float_h */
254 #endif /* Bad_float_h */
257 #define Scale_Bit 0x10
275 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
276 Exactly one of IEEE_LITTLE_ENDIAN
, IEEE_BIG_ENDIAN
, VAX
, or IBM should be defined
.
279 typedef union { double d
; ULong L
[2]; } U
;
283 #ifdef IEEE_LITTLE_ENDIAN
284 #define word0(x) ((ULong *)&x)[1]
285 #define word1(x) ((ULong *)&x)[0]
287 #define word0(x) ((ULong *)&x)[0]
288 #define word1(x) ((ULong *)&x)[1]
290 #else /* !YES_ALIAS */
291 #ifdef IEEE_LITTLE_ENDIAN
292 #define word0(x) ( /* LINTED */ (U*)&x)->L[1]
293 #define word1(x) ( /* LINTED */ (U*)&x)->L[0]
295 #define word0(x) ( /* LINTED */ (U*)&x)->L[0]
296 #define word1(x) ( /* LINTED */ (U*)&x)->L[1]
298 #define dval(x) ( /* LINTED */ (U*)&x)->d
299 #endif /* YES_ALIAS */
301 /* The following definition of Storeinc is appropriate for MIPS processors.
302 * An alternative that might be better on some machines is
303 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
305 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
306 #define Storeinc(a,b,c) \
307 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
308 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
311 #define Storeinc(a,b,c) \
312 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
313 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
317 /* #define P DBL_MANT_DIG */
318 /* Ten_pmax = floor(P*log(2)/log(5)) */
319 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
320 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
321 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
325 #define Exp_shift1 20
326 #define Exp_msk1 0x100000
327 #define Exp_msk11 0x100000
328 #define Exp_mask 0x7ff00000
332 #define Exp_1 0x3ff00000
333 #define Exp_11 0x3ff00000
335 #define Frac_mask 0xfffff
336 #define Frac_mask1 0xfffff
339 #define Bndry_mask 0xfffff
340 #define Bndry_mask1 0xfffff
342 #define Sign_bit 0x80000000
351 #define Flt_Rounds FLT_ROUNDS
355 #endif /*Flt_Rounds*/
357 #else /* ifndef IEEE_Arith */
358 #undef Sudden_Underflow
359 #define Sudden_Underflow
364 #define Exp_shift1 24
365 #define Exp_msk1 0x1000000
366 #define Exp_msk11 0x1000000
367 #define Exp_mask 0x7f000000
370 #define Exp_1 0x41000000
371 #define Exp_11 0x41000000
372 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
373 #define Frac_mask 0xffffff
374 #define Frac_mask1 0xffffff
377 #define Bndry_mask 0xefffff
378 #define Bndry_mask1 0xffffff
380 #define Sign_bit 0x80000000
382 #define Tiny0 0x100000
391 #define Exp_msk1 0x80
392 #define Exp_msk11 0x800000
393 #define Exp_mask 0x7f80
396 #define Exp_1 0x40800000
397 #define Exp_11 0x4080
399 #define Frac_mask 0x7fffff
400 #define Frac_mask1 0xffff007f
403 #define Bndry_mask 0xffff007f
404 #define Bndry_mask1 0xffff007f
406 #define Sign_bit 0x8000
412 #endif /* IBM, VAX */
413 #endif /* IEEE_Arith */
420 #define rounded_product(a,b) a = rnd_prod(a, b)
421 #define rounded_quotient(a,b) a = rnd_quot(a, b)
423 extern double rnd_prod(), rnd_quot();
425 extern double rnd_prod(double, double), rnd_quot(double, double);
428 #define rounded_product(a,b) a *= b
429 #define rounded_quotient(a,b) a /= b
432 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
433 #define Big1 0xffffffff
445 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
446 * This makes some inner loops simpler and sometimes saves work
447 * during multiplications, but it often seems to make things slightly
448 * slower. Hence the default is now to store 32 bits per Long.
451 #else /* long long available */
453 #define Llong long long
456 #define ULLong unsigned Llong
458 #endif /* NO_LONG_LONG */
464 #define ALL_ON 0xffffffff
469 #define ALL_ON 0xffff
472 #ifndef MULTIPLE_THREADS
473 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
474 #define FREE_DTOA_LOCK(n) /*nothing*/
476 #include "reentrant.h"
478 extern mutex_t __gdtoa_locks
[2];
480 #define ACQUIRE_DTOA_LOCK(n) \
483 mutex_lock(&__gdtoa_locks[n]); \
484 } while (/* CONSTCOND */ 0)
485 #define FREE_DTOA_LOCK(n) \
488 mutex_unlock(&__gdtoa_locks[n]); \
489 } while (/* CONSTCOND */ 0)
492 #define Kmax (sizeof(size_t) << 3)
497 int k
, maxwds
, sign
, wds
;
501 typedef struct Bigint Bigint
;
504 #ifdef DECLARE_SIZE_T
505 typedef unsigned int size_t;
507 extern void memcpy_D2A
ANSI((void*, const void*, size_t));
508 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
509 #else /* !NO_STRING_H */
510 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
511 #endif /* NO_STRING_H */
513 #define Balloc __Balloc_D2A
514 #define Bfree __Bfree_D2A
515 #define ULtoQ __ULtoQ_D2A
516 #define ULtof __ULtof_D2A
517 #define ULtod __ULtod_D2A
518 #define ULtodd __ULtodd_D2A
519 #define ULtox __ULtox_D2A
520 #define ULtoxL __ULtoxL_D2A
521 #define any_on __any_on_D2A
522 #define b2d __b2d_D2A
523 #define bigtens __bigtens_D2A
524 #define cmp __cmp_D2A
525 #define copybits __copybits_D2A
526 #define d2b __d2b_D2A
527 #define decrement __decrement_D2A
528 #define diff __diff_D2A
529 #define dtoa_result __dtoa_result_D2A
530 #define g__fmt __g__fmt_D2A
531 #define gethex __gethex_D2A
532 #define hexdig __hexdig_D2A
533 #define hexdig_init_D2A __hexdig_init_D2A
534 #define hexnan __hexnan_D2A
535 #define hi0bits __hi0bits_D2A
536 #define hi0bits_D2A __hi0bits_D2A
537 #define i2b __i2b_D2A
538 #define increment __increment_D2A
539 #define lo0bits __lo0bits_D2A
540 #define lshift __lshift_D2A
541 #define match __match_D2A
542 #define mult __mult_D2A
543 #define multadd __multadd_D2A
544 #define nrv_alloc __nrv_alloc_D2A
545 #define pow5mult __pow5mult_D2A
546 #define quorem __quorem_D2A
547 #define ratio __ratio_D2A
548 #define rshift __rshift_D2A
549 #define rv_alloc __rv_alloc_D2A
550 #define s2b __s2b_D2A
551 #define set_ones __set_ones_D2A
552 #define strcp __strcp_D2A
553 #define strcp_D2A __strcp_D2A
554 #define strtoIg __strtoIg_D2A
555 #define sum __sum_D2A
556 #define tens __tens_D2A
557 #define tinytens __tinytens_D2A
558 #define tinytens __tinytens_D2A
559 #define trailz __trailz_D2A
560 #define ulp __ulp_D2A
562 extern char *dtoa_result
;
563 extern CONST
double bigtens
[], tens
[], tinytens
[];
564 extern unsigned char hexdig
[];
566 extern Bigint
*Balloc
ANSI((int));
567 extern void Bfree
ANSI((Bigint
*));
568 extern void ULtof
ANSI((ULong
*, ULong
*, Long
, int));
569 extern void ULtod
ANSI((ULong
*, ULong
*, Long
, int));
570 extern void ULtodd
ANSI((ULong
*, ULong
*, Long
, int));
571 extern void ULtoQ
ANSI((ULong
*, ULong
*, Long
, int));
572 extern void ULtox
ANSI((UShort
*, ULong
*, Long
, int));
573 extern void ULtoxL
ANSI((ULong
*, ULong
*, Long
, int));
574 extern ULong any_on
ANSI((Bigint
*, int));
575 extern double b2d
ANSI((Bigint
*, int*));
576 extern int cmp
ANSI((Bigint
*, Bigint
*));
577 extern void copybits
ANSI((ULong
*, int, Bigint
*));
578 extern Bigint
*d2b
ANSI((double, int*, int*));
579 extern int decrement
ANSI((Bigint
*));
580 extern Bigint
*diff
ANSI((Bigint
*, Bigint
*));
581 extern char *dtoa
ANSI((double d
, int mode
, int ndigits
,
582 int *decpt
, int *sign
, char **rve
));
583 extern char *g__fmt
ANSI((char*, char*, char*, int, ULong
));
584 extern int gethex
ANSI((CONST
char**, CONST FPI
*, Long
*, Bigint
**, int));
585 extern void hexdig_init_D2A(Void
);
586 extern int hexnan
ANSI((CONST
char**, CONST FPI
*, ULong
*));
587 extern int hi0bits_D2A
ANSI((ULong
));
588 extern Bigint
*i2b
ANSI((int));
589 extern Bigint
*increment
ANSI((Bigint
*));
590 extern int lo0bits
ANSI((ULong
*));
591 extern Bigint
*lshift
ANSI((Bigint
*, int));
592 extern int match
ANSI((CONST
char**, CONST
char*));
593 extern Bigint
*mult
ANSI((Bigint
*, Bigint
*));
594 extern Bigint
*multadd
ANSI((Bigint
*, int, int));
595 extern char *nrv_alloc
ANSI((CONST
char*, char **, size_t));
596 extern Bigint
*pow5mult
ANSI((Bigint
*, int));
597 extern int quorem
ANSI((Bigint
*, Bigint
*));
598 extern double ratio
ANSI((Bigint
*, Bigint
*));
599 extern void rshift
ANSI((Bigint
*, int));
600 extern char *rv_alloc
ANSI((size_t));
601 extern Bigint
*s2b
ANSI((CONST
char*, int, int, ULong
));
602 extern Bigint
*set_ones
ANSI((Bigint
*, int));
603 extern char *strcp
ANSI((char*, const char*));
604 extern int strtoIg
ANSI((CONST
char*, char**, FPI
*, Long
*, Bigint
**, int*));
605 extern double strtod
ANSI((const char *s00
, char **se
));
606 extern Bigint
*sum
ANSI((Bigint
*, Bigint
*));
607 extern int trailz
ANSI((CONST Bigint
*));
608 extern double ulp
ANSI((double));
614 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
615 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
616 * respectively), but now are determined by compiling and running
617 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
618 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
619 * and -DNAN_WORD1=... values if necessary. This should still work.
620 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
623 #ifdef IEEE_BIG_ENDIAN
627 #define NAN_WORD0 d_QNAN0
630 #define NAN_WORD1 d_QNAN1
636 #define NAN_WORD0 d_QNAN1
639 #define NAN_WORD1 d_QNAN0
647 #ifdef Sudden_Underflow
653 #endif /* GDTOAIMP_H_INCLUDED */