Fix memory barrier in a debug function
[netbsd-mini2440.git] / dist / ntp / ntpd / refclock_irig.c
blob378ae2673baf083e0f7b848ec67d473fbe4671ac
1 /* $NetBSD: refclock_irig.c,v 1.3 2006/06/11 19:34:12 kardel Exp $ */
3 /*
4 * refclock_irig - audio IRIG-B/E demodulator/decoder
5 */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
10 #if defined(REFCLOCK) && defined(CLOCK_IRIG)
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
18 #include <stdio.h>
19 #include <ctype.h>
20 #include <math.h>
21 #ifdef HAVE_SYS_IOCTL_H
22 #include <sys/ioctl.h>
23 #endif /* HAVE_SYS_IOCTL_H */
25 #include "audio.h"
28 * Audio IRIG-B/E demodulator/decoder
30 * This driver receives, demodulates and decodes IRIG-B/E signals when
31 * connected to the audio codec /dev/audio. The IRIG signal format is an
32 * amplitude-modulated carrier with pulse-width modulated data bits. For
33 * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
34 * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
35 * driver automatically recognizes which format is in use.
37 * The program processes 8000-Hz mu-law companded samples using separate
38 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
39 * detector and automatic threshold corrector. Cycle crossings relative
40 * to the corrected slice level determine the width of each pulse and
41 * its value - zero, one or position identifier. The data encode 20 BCD
42 * digits which determine the second, minute, hour and day of the year
43 * and sometimes the year and synchronization condition. The comb filter
44 * exponentially averages the corresponding samples of successive baud
45 * intervals in order to reliably identify the reference carrier cycle.
46 * A type-II phase-lock loop (PLL) performs additional integration and
47 * interpolation to accurately determine the zero crossing of that
48 * cycle, which determines the reference timestamp. A pulse-width
49 * discriminator demodulates the data pulses, which are then encoded as
50 * the BCD digits of the timecode.
52 * The timecode and reference timestamp are updated once each second
53 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
54 * saved for later processing. At poll intervals of 64 s, the saved
55 * samples are processed by a trimmed-mean filter and used to update the
56 * system clock.
58 * An automatic gain control feature provides protection against
59 * overdriven or underdriven input signal amplitudes. It is designed to
60 * maintain adequate demodulator signal amplitude while avoiding
61 * occasional noise spikes. In order to assure reliable capture, the
62 * decompanded input signal amplitude must be greater than 100 units and
63 * the codec sample frequency error less than 250 PPM (.025 percent).
65 * The program performs a number of error checks to protect against
66 * overdriven or underdriven input signal levels, incorrect signal
67 * format or improper hardware configuration. Specifically, if any of
68 * the following errors occur for a time measurement, the data are
69 * rejected.
71 * o The peak carrier amplitude is less than DRPOUT (100). This usually
72 * means dead IRIG signal source, broken cable or wrong input port.
74 * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
75 * usually means broken codec hardware or wrong codec configuration.
77 * o The modulation index is less than MODMIN (0.5). This usually means
78 * overdriven IRIG signal or wrong IRIG format.
80 * o A frame synchronization error has occurred. This usually means
81 * wrong IRIG signal format or the IRIG signal source has lost
82 * synchronization (signature control).
84 * o A data decoding error has occurred. This usually means wrong IRIG
85 * signal format.
87 * o The current second of the day is not exactly one greater than the
88 * previous one. This usually means a very noisy IRIG signal or
89 * insufficient CPU resources.
91 * o An audio codec error (overrun) occurred. This usually means
92 * insufficient CPU resources, as sometimes happens with Sun SPARC
93 * IPCs when doing something useful.
95 * Note that additional checks are done elsewhere in the reference clock
96 * interface routines.
98 * Debugging aids
100 * The timecode format used for debugging and data recording includes
101 * data helpful in diagnosing problems with the IRIG signal and codec
102 * connections. With debugging enabled (-d on the ntpd command line),
103 * the driver produces one line for each timecode in the following
104 * format:
106 * 00 1 98 23 19:26:52 721 143 0.694 20 0.1 66.5 3094572411.00027
108 * The most recent line is also written to the clockstats file at 64-s
109 * intervals.
111 * The first field contains the error flags in hex, where the hex bits
112 * are interpreted as below. This is followed by the IRIG status
113 * indicator, year of century, day of year and time of day. The status
114 * indicator and year are not produced by some IRIG devices. Following
115 * these fields are the signal amplitude (0-8100), codec gain (0-255),
116 * modulation index (0-1), time constant (2-20), carrier phase error
117 * (us) and carrier frequency error (PPM). The last field is the on-time
118 * timestamp in NTP format.
120 * The fraction part of the on-time timestamp is a good indicator of how
121 * well the driver is doing. Once upon a time, an UltrSPARC 30 and
122 * Solaris 2.7 kept the clock within a few tens of microseconds relative
123 * to the IRIG-B signal. Accuracy with IRIG-E was about ten times worse.
124 * Unfortunately, Sun broke the 2.7 audio driver in 2.8, which has a 10-
125 * ms sawtooth modulation. The driver attempts to remove the modulation
126 * by some clever estimation techniques which mostly work. With the
127 * "mixerctl -o" command before starting the daemon, the jitter is down
128 * to about 100 microseconds. Your experience may vary.
130 * Unlike other drivers, which can have multiple instantiations, this
131 * one supports only one. It does not seem likely that more than one
132 * audio codec would be useful in a single machine. More than one would
133 * probably chew up too much CPU time anyway.
135 * Fudge factors
137 * Fudge flag4 causes the dubugging output described above to be
138 * recorded in the clockstats file. Fudge flag2 selects the audio input
139 * port, where 0 is the mike port (default) and 1 is the line-in port.
140 * It does not seem useful to select the compact disc player port. Fudge
141 * flag3 enables audio monitoring of the input signal. For this purpose,
142 * the monitor gain is set to a default value. Fudgetime2 is used as a
143 * frequency vernier for broken codec sample frequency.
146 * Interface definitions
148 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
149 #define PRECISION (-17) /* precision assumed (about 10 us) */
150 #define REFID "IRIG" /* reference ID */
151 #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
152 #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
153 #define SECOND 8000 /* nominal sample rate (Hz) */
154 #define BAUD 80 /* samples per baud interval */
155 #define OFFSET 128 /* companded sample offset */
156 #define SIZE 256 /* decompanding table size */
157 #define CYCLE 8 /* samples per carrier cycle */
158 #define SUBFLD 10 /* bits per subfield */
159 #define FIELD 10 /* subfields per field */
160 #define MINTC 2 /* min PLL time constant */
161 #define MAXTC 20 /* max PLL time constant max */
162 #define MAXAMP 6000. /* maximum signal level */
163 #define MAXCLP 100 /* max clips above reference per s */
164 #define DRPOUT 100. /* dropout signal level */
165 #define MODMIN 0.5 /* minimum modulation index */
166 #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
167 #define PI 3.1415926535 /* the real thing */
168 #ifdef IRIG_SUCKS
169 #define WIGGLE 11 /* wiggle filter length */
170 #endif /* IRIG_SUCKS */
173 * Experimentally determined filter delays
175 #define IRIG_B .0019 /* IRIG-B filter delay */
176 #define IRIG_E .0019 /* IRIG-E filter delay */
179 * Data bit definitions
181 #define BIT0 0 /* zero */
182 #define BIT1 1 /* one */
183 #define BITP 2 /* position identifier */
186 * Error flags (up->errflg)
188 #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
189 #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
190 #define IRIG_ERR_MOD 0x04 /* low modulation index */
191 #define IRIG_ERR_SYNCH 0x08 /* frame synch error */
192 #define IRIG_ERR_DECODE 0x10 /* frame decoding error */
193 #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
194 #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
195 #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
198 * IRIG unit control structure
200 struct irigunit {
201 u_char timecode[21]; /* timecode string */
202 l_fp timestamp; /* audio sample timestamp */
203 l_fp tick; /* audio sample increment */
204 double integ[BAUD]; /* baud integrator */
205 double phase, freq; /* logical clock phase and frequency */
206 double zxing; /* phase detector integrator */
207 double yxing; /* cycle phase */
208 double exing; /* envelope phase */
209 double modndx; /* modulation index */
210 double irig_b; /* IRIG-B signal amplitude */
211 double irig_e; /* IRIG-E signal amplitude */
212 int errflg; /* error flags */
214 * Audio codec variables
216 double comp[SIZE]; /* decompanding table */
217 int port; /* codec port */
218 int gain; /* codec gain */
219 int mongain; /* codec monitor gain */
220 int clipcnt; /* sample clipped count */
221 int seccnt; /* second interval counter */
224 * RF variables
226 double hpf[5]; /* IRIG-B filter shift register */
227 double lpf[5]; /* IRIG-E filter shift register */
228 double intmin, intmax; /* integrated envelope min and max */
229 double envmax; /* peak amplitude */
230 double envmin; /* noise amplitude */
231 double maxsignal; /* integrated peak amplitude */
232 double noise; /* integrated noise amplitude */
233 double lastenv[CYCLE]; /* last cycle amplitudes */
234 double lastint[CYCLE]; /* last integrated cycle amplitudes */
235 double lastsig; /* last carrier sample */
236 double fdelay; /* filter delay */
237 int decim; /* sample decimation factor */
238 int envphase; /* envelope phase */
239 int envptr; /* envelope phase pointer */
240 int carphase; /* carrier phase */
241 int envsw; /* envelope state */
242 int envxing; /* envelope slice crossing */
243 int tc; /* time constant */
244 int tcount; /* time constant counter */
245 int badcnt; /* decimation interval counter */
248 * Decoder variables
250 int pulse; /* cycle counter */
251 int cycles; /* carrier cycles */
252 int dcycles; /* data cycles */
253 int xptr; /* translate table pointer */
254 int lastbit; /* last code element length */
255 int second; /* previous second */
256 int fieldcnt; /* subfield count in field */
257 int bits; /* demodulated bits */
258 int bitcnt; /* bit count in subfield */
259 #ifdef IRIG_SUCKS
260 l_fp wigwag; /* wiggle accumulator */
261 int wp; /* wiggle filter pointer */
262 l_fp wiggle[WIGGLE]; /* wiggle filter */
263 l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
264 #endif /* IRIG_SUCKS */
265 l_fp wuggle;
269 * Function prototypes
271 static int irig_start P((int, struct peer *));
272 static void irig_shutdown P((int, struct peer *));
273 static void irig_receive P((struct recvbuf *));
274 static void irig_poll P((int, struct peer *));
277 * More function prototypes
279 static void irig_base P((struct peer *, double));
280 static void irig_rf P((struct peer *, double));
281 static void irig_decode P((struct peer *, int));
282 static void irig_gain P((struct peer *));
285 * Transfer vector
287 struct refclock refclock_irig = {
288 irig_start, /* start up driver */
289 irig_shutdown, /* shut down driver */
290 irig_poll, /* transmit poll message */
291 noentry, /* not used (old irig_control) */
292 noentry, /* initialize driver (not used) */
293 noentry, /* not used (old irig_buginfo) */
294 NOFLAGS /* not used */
298 * Global variables
300 static char hexchar[] = { /* really quick decoding table */
301 '0', '8', '4', 'c', /* 0000 0001 0010 0011 */
302 '2', 'a', '6', 'e', /* 0100 0101 0110 0111 */
303 '1', '9', '5', 'd', /* 1000 1001 1010 1011 */
304 '3', 'b', '7', 'f' /* 1100 1101 1110 1111 */
309 * irig_start - open the devices and initialize data for processing
311 static int
312 irig_start(
313 int unit, /* instance number (used for PCM) */
314 struct peer *peer /* peer structure pointer */
317 struct refclockproc *pp;
318 struct irigunit *up;
321 * Local variables
323 int fd; /* file descriptor */
324 int i; /* index */
325 double step; /* codec adjustment */
328 * Open audio device
330 fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
331 if (fd < 0)
332 return (0);
333 #ifdef DEBUG
334 if (debug)
335 audio_show();
336 #endif
339 * Allocate and initialize unit structure
341 if (!(up = (struct irigunit *)
342 emalloc(sizeof(struct irigunit)))) {
343 (void) close(fd);
344 return (0);
346 memset((char *)up, 0, sizeof(struct irigunit));
347 pp = peer->procptr;
348 pp->unitptr = (caddr_t)up;
349 pp->io.clock_recv = irig_receive;
350 pp->io.srcclock = (caddr_t)peer;
351 pp->io.datalen = 0;
352 pp->io.fd = fd;
353 if (!io_addclock(&pp->io)) {
354 (void)close(fd);
355 free(up);
356 return (0);
360 * Initialize miscellaneous variables
362 peer->precision = PRECISION;
363 pp->clockdesc = DESCRIPTION;
364 memcpy((char *)&pp->refid, REFID, 4);
365 up->tc = MINTC;
366 up->decim = 1;
367 up->fdelay = IRIG_B;
368 up->gain = 127;
371 * The companded samples are encoded sign-magnitude. The table
372 * contains all the 256 values in the interest of speed.
374 up->comp[0] = up->comp[OFFSET] = 0.;
375 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
376 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
377 step = 2.;
378 for (i = 3; i < OFFSET; i++) {
379 up->comp[i] = up->comp[i - 1] + step;
380 up->comp[OFFSET + i] = -up->comp[i];
381 if (i % 16 == 0)
382 step *= 2.;
384 DTOLFP(1. / SECOND, &up->tick);
385 return (1);
390 * irig_shutdown - shut down the clock
392 static void
393 irig_shutdown(
394 int unit, /* instance number (not used) */
395 struct peer *peer /* peer structure pointer */
398 struct refclockproc *pp;
399 struct irigunit *up;
401 pp = peer->procptr;
402 up = (struct irigunit *)pp->unitptr;
403 io_closeclock(&pp->io);
404 free(up);
409 * irig_receive - receive data from the audio device
411 * This routine reads input samples and adjusts the logical clock to
412 * track the irig clock by dropping or duplicating codec samples.
414 static void
415 irig_receive(
416 struct recvbuf *rbufp /* receive buffer structure pointer */
419 struct peer *peer;
420 struct refclockproc *pp;
421 struct irigunit *up;
424 * Local variables
426 double sample; /* codec sample */
427 u_char *dpt; /* buffer pointer */
428 int bufcnt; /* buffer counter */
429 l_fp ltemp; /* l_fp temp */
431 peer = (struct peer *)rbufp->recv_srcclock;
432 pp = peer->procptr;
433 up = (struct irigunit *)pp->unitptr;
436 * Main loop - read until there ain't no more. Note codec
437 * samples are bit-inverted.
439 DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
440 L_SUB(&rbufp->recv_time, &ltemp);
441 up->timestamp = rbufp->recv_time;
442 dpt = rbufp->recv_buffer;
443 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
444 sample = up->comp[~*dpt++ & 0xff];
447 * Clip noise spikes greater than MAXAMP. If no clips,
448 * increase the gain a tad; if the clips are too high,
449 * decrease a tad.
451 if (sample > MAXAMP) {
452 sample = MAXAMP;
453 up->clipcnt++;
454 } else if (sample < -MAXAMP) {
455 sample = -MAXAMP;
456 up->clipcnt++;
460 * Variable frequency oscillator. The codec oscillator
461 * runs at the nominal rate of 8000 samples per second,
462 * or 125 us per sample. A frequency change of one unit
463 * results in either duplicating or deleting one sample
464 * per second, which results in a frequency change of
465 * 125 PPM.
467 up->phase += up->freq / SECOND;
468 up->phase += pp->fudgetime2 / 1e6;
469 if (up->phase >= .5) {
470 up->phase -= 1.;
471 } else if (up->phase < -.5) {
472 up->phase += 1.;
473 irig_rf(peer, sample);
474 irig_rf(peer, sample);
475 } else {
476 irig_rf(peer, sample);
478 L_ADD(&up->timestamp, &up->tick);
481 * Once each second, determine the IRIG format and gain.
483 up->seccnt = (up->seccnt + 1) % SECOND;
484 if (up->seccnt == 0) {
485 if (up->irig_b > up->irig_e) {
486 up->decim = 1;
487 up->fdelay = IRIG_B;
488 } else {
489 up->decim = 10;
490 up->fdelay = IRIG_E;
492 irig_gain(peer);
493 up->irig_b = up->irig_e = 0;
498 * Set the input port and monitor gain for the next buffer.
500 if (pp->sloppyclockflag & CLK_FLAG2)
501 up->port = 2;
502 else
503 up->port = 1;
504 if (pp->sloppyclockflag & CLK_FLAG3)
505 up->mongain = MONGAIN;
506 else
507 up->mongain = 0;
511 * irig_rf - RF processing
513 * This routine filters the RF signal using a highpass filter for IRIG-B
514 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
515 * decimated by a factor of ten. The lowpass filter functions also as a
516 * decimation filter in this case. Note that the codec filters function
517 * as roofing filters to attenuate both the high and low ends of the
518 * passband. IIR filter coefficients were determined using Matlab Signal
519 * Processing Toolkit.
521 static void
522 irig_rf(
523 struct peer *peer, /* peer structure pointer */
524 double sample /* current signal sample */
527 struct refclockproc *pp;
528 struct irigunit *up;
531 * Local variables
533 double irig_b, irig_e; /* irig filter outputs */
535 pp = peer->procptr;
536 up = (struct irigunit *)pp->unitptr;
539 * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
540 * passband ripple, -50 dB stopband ripple, phase delay .0022
541 * s)
543 irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
544 irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
545 irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
546 irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
547 up->hpf[0] = sample - irig_b;
548 irig_b = up->hpf[0] * 4.335855e-01
549 + up->hpf[1] * -1.695859e+00
550 + up->hpf[2] * 2.525004e+00
551 + up->hpf[3] * -1.695859e+00
552 + up->hpf[4] * 4.335855e-01;
553 up->irig_b += irig_b * irig_b;
556 * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
557 * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
559 irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
560 irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
561 irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
562 irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
563 up->lpf[0] = sample - irig_e;
564 irig_e = up->lpf[0] * 3.215696e-03
565 + up->lpf[1] * -1.174951e-02
566 + up->lpf[2] * 1.712074e-02
567 + up->lpf[3] * -1.174951e-02
568 + up->lpf[4] * 3.215696e-03;
569 up->irig_e += irig_e * irig_e;
572 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
574 up->badcnt = (up->badcnt + 1) % up->decim;
575 if (up->badcnt == 0) {
576 if (up->decim == 1)
577 irig_base(peer, irig_b);
578 else
579 irig_base(peer, irig_e);
584 * irig_base - baseband processing
586 * This routine processes the baseband signal and demodulates the AM
587 * carrier using a synchronous detector. It then synchronizes to the
588 * data frame at the baud rate and decodes the data pulses.
590 static void
591 irig_base(
592 struct peer *peer, /* peer structure pointer */
593 double sample /* current signal sample */
596 struct refclockproc *pp;
597 struct irigunit *up;
600 * Local variables
602 double xxing; /* phase detector interpolated output */
603 double lope; /* integrator output */
604 double env; /* envelope detector output */
605 double dtemp; /* double temp */
607 pp = peer->procptr;
608 up = (struct irigunit *)pp->unitptr;
611 * Synchronous baud integrator. Corresponding samples of current
612 * and past baud intervals are integrated to refine the envelope
613 * amplitude and phase estimate. We keep one cycle of both the
614 * raw and integrated data for later use.
616 up->envphase = (up->envphase + 1) % BAUD;
617 up->carphase = (up->carphase + 1) % CYCLE;
618 up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
619 (5 * up->tc);
620 lope = up->integ[up->envphase];
621 up->lastenv[up->carphase] = sample;
622 up->lastint[up->carphase] = lope;
625 * Phase detector. Sample amplitudes are integrated over the
626 * baud interval. Cycle phase is determined from these
627 * amplitudes using an eight-sample cyclic buffer. A phase
628 * change of 360 degrees produces an output change of one unit.
630 if (up->lastsig > 0 && lope <= 0) {
631 xxing = lope / (up->lastsig - lope);
632 up->zxing += (up->carphase - 4 + xxing) / CYCLE;
634 up->lastsig = lope;
637 * Update signal/noise estimates and PLL phase/frequency.
639 if (up->envphase == 0) {
642 * Update envelope signal and noise estimates and mess
643 * with error bits.
645 up->maxsignal = up->intmax;
646 up->noise = up->intmin;
647 if (up->maxsignal < DRPOUT)
648 up->errflg |= IRIG_ERR_AMP;
649 if (up->maxsignal > 0)
650 up->modndx = (up->intmax - up->intmin) /
651 up->intmax;
652 else
653 up->modndx = 0;
654 if (up->modndx < MODMIN)
655 up->errflg |= IRIG_ERR_MOD;
656 up->intmin = 1e6; up->intmax = 0;
657 if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
658 IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
659 up->tc = MINTC;
660 up->tcount = 0;
664 * Update PLL phase and frequency. The PLL time constant
665 * is set initially to stabilize the frequency within a
666 * minute or two, then increases to the maximum. The
667 * frequency is clamped so that the PLL capture range
668 * cannot be exceeded.
670 dtemp = up->zxing * up->decim / BAUD;
671 up->yxing = dtemp;
672 up->zxing = 0.;
673 up->phase += dtemp / up->tc;
674 up->freq += dtemp / (4. * up->tc * up->tc);
675 if (up->freq > MAXFREQ) {
676 up->freq = MAXFREQ;
677 up->errflg |= IRIG_ERR_FREQ;
678 } else if (up->freq < -MAXFREQ) {
679 up->freq = -MAXFREQ;
680 up->errflg |= IRIG_ERR_FREQ;
685 * Synchronous demodulator. There are eight samples in the cycle
686 * and ten cycles in the baud interval. The amplitude of each
687 * cycle is determined at the last sample in the cycle. The
688 * beginning of the data pulse is determined from the integrated
689 * samples, while the end of the pulse is determined from the
690 * raw samples. The raw data bits are demodulated relative to
691 * the slice level and left-shifted in the decoding register.
693 if (up->carphase != 7)
694 return;
696 env = (up->lastenv[2] - up->lastenv[6]) / 2.;
697 lope = (up->lastint[2] - up->lastint[6]) / 2.;
698 if (lope > up->intmax)
699 up->intmax = lope;
700 if (lope < up->intmin)
701 up->intmin = lope;
704 * Pulse code demodulator and reference timestamp. The decoder
705 * looks for a sequence of ten bits; the first two bits must be
706 * one, the last two bits must be zero. Frame synch is asserted
707 * when three correct frames have been found.
709 up->pulse = (up->pulse + 1) % 10;
710 if (up->pulse == 1)
711 up->envmax = env;
712 else if (up->pulse == 9)
713 up->envmin = env;
714 up->dcycles <<= 1;
715 if (env >= (up->envmax + up->envmin) / 2.)
716 up->dcycles |= 1;
717 up->cycles <<= 1;
718 if (lope >= (up->maxsignal + up->noise) / 2.)
719 up->cycles |= 1;
720 if ((up->cycles & 0x303c0f03) == 0x300c0300) {
721 l_fp ltemp;
722 int bitz;
725 * The PLL time constant starts out small, in order to
726 * sustain a frequency tolerance of 250 PPM. It
727 * gradually increases as the loop settles down. Note
728 * that small wiggles are not believed, unless they
729 * persist for lots of samples.
731 if (up->pulse != 9)
732 up->errflg |= IRIG_ERR_SYNCH;
733 up->pulse = 9;
734 up->exing = -up->yxing;
735 if (fabs(up->envxing - up->envphase) <= 1) {
736 up->tcount++;
737 if (up->tcount > 50 * up->tc) {
738 up->tc++;
739 if (up->tc > MAXTC)
740 up->tc = MAXTC;
741 up->tcount = 0;
742 up->envxing = up->envphase;
743 } else {
744 up->exing -= up->envxing - up->envphase;
746 } else {
747 up->tcount = 0;
748 up->envxing = up->envphase;
752 * Determine a reference timestamp, accounting for the
753 * codec delay and filter delay. Note the timestamp is
754 * for the previous frame, so we have to backtrack for
755 * this plus the delay since the last carrier positive
756 * zero crossing.
758 dtemp = up->decim * ((up->exing + BAUD) / SECOND + 1.) +
759 up->fdelay;
760 DTOLFP(dtemp, &ltemp);
761 pp->lastrec = up->timestamp;
762 L_SUB(&pp->lastrec, &ltemp);
765 * The data bits are collected in ten-bit frames. The
766 * first two and last two bits are determined by frame
767 * sync and ignored here; the resulting patterns
768 * represent zero (0-1 bits), one (2-4 bits) and
769 * position identifier (5-6 bits). The remaining
770 * patterns represent errors and are treated as zeros.
772 bitz = up->dcycles & 0xfc;
773 switch(bitz) {
775 case 0x00:
776 case 0x80:
777 irig_decode(peer, BIT0);
778 break;
780 case 0xc0:
781 case 0xe0:
782 case 0xf0:
783 irig_decode(peer, BIT1);
784 break;
786 case 0xf8:
787 case 0xfc:
788 irig_decode(peer, BITP);
789 break;
791 default:
792 irig_decode(peer, 0);
793 up->errflg |= IRIG_ERR_DECODE;
800 * irig_decode - decode the data
802 * This routine assembles bits into digits, digits into subfields and
803 * subfields into the timecode field. Bits can have values of zero, one
804 * or position identifier. There are four bits per digit, two digits per
805 * subfield and ten subfields per field. The last bit in every subfield
806 * and the first bit in the first subfield are position identifiers.
808 static void
809 irig_decode(
810 struct peer *peer, /* peer structure pointer */
811 int bit /* data bit (0, 1 or 2) */
814 struct refclockproc *pp;
815 struct irigunit *up;
816 #ifdef IRIG_SUCKS
817 int i;
818 #endif /* IRIG_SUCKS */
821 * Local variables
823 char syncchar; /* sync character (Spectracom) */
824 char sbs[6]; /* binary seconds since 0h */
825 char spare[2]; /* mulligan digits */
827 pp = peer->procptr;
828 up = (struct irigunit *)pp->unitptr;
831 * Assemble subfield bits.
833 up->bits <<= 1;
834 if (bit == BIT1) {
835 up->bits |= 1;
836 } else if (bit == BITP && up->lastbit == BITP) {
839 * Frame sync - two adjacent position identifiers.
840 * Monitor the reference timestamp and wiggle the
841 * clock, but only if no errors have occurred.
843 up->bitcnt = 1;
844 up->fieldcnt = 0;
845 up->lastbit = 0;
846 if (up->errflg == 0) {
847 #ifdef IRIG_SUCKS
848 l_fp ltemp;
851 * You really don't wanna know what comes down
852 * here. Leave it to say Solaris 2.8 broke the
853 * nice clean audio stream, apparently affected
854 * by a 5-ms sawtooth jitter. Sundown on
855 * Solaris. This leaves a little twilight.
857 * The scheme involves differentiation, forward
858 * learning and integration. The sawtooth has a
859 * period of 11 seconds. The timestamp
860 * differences are integrated and subtracted
861 * from the signal.
863 ltemp = pp->lastrec;
864 L_SUB(&ltemp, &pp->lastref);
865 if (ltemp.l_f < 0)
866 ltemp.l_i = -1;
867 else
868 ltemp.l_i = 0;
869 pp->lastref = pp->lastrec;
870 if (!L_ISNEG(&ltemp))
871 L_CLR(&up->wigwag);
872 else
873 L_ADD(&up->wigwag, &ltemp);
874 L_SUB(&pp->lastrec, &up->wigwag);
875 up->wiggle[up->wp] = ltemp;
878 * Bottom fisher. To understand this, you have
879 * to know about velocity microphones and AM
880 * transmitters. No further explanation is
881 * offered, as this is truly a black art.
883 up->wigbot[up->wp] = pp->lastrec;
884 for (i = 0; i < WIGGLE; i++) {
885 if (i != up->wp)
886 up->wigbot[i].l_ui++;
887 L_SUB(&pp->lastrec, &up->wigbot[i]);
888 if (L_ISNEG(&pp->lastrec))
889 L_ADD(&pp->lastrec,
890 &up->wigbot[i]);
891 else
892 pp->lastrec = up->wigbot[i];
894 up->wp++;
895 up->wp %= WIGGLE;
896 up->wuggle = pp->lastrec;
897 refclock_process(pp);
898 #else /* IRIG_SUCKS */
899 pp->lastref = pp->lastrec;
900 up->wuggle = pp->lastrec;
901 refclock_process(pp);
902 #endif /* IRIG_SUCKS */
904 up->errflg = 0;
906 up->bitcnt = (up->bitcnt + 1) % SUBFLD;
907 if (up->bitcnt == 0) {
910 * End of subfield. Encode two hexadecimal digits in
911 * little-endian timecode field.
913 if (up->fieldcnt == 0)
914 up->bits <<= 1;
915 if (up->xptr < 2)
916 up->xptr = 2 * FIELD;
917 up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
918 0xf];
919 up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
920 up->fieldcnt = (up->fieldcnt + 1) % FIELD;
921 if (up->fieldcnt == 0) {
924 * End of field. Decode the timecode and wind
925 * the clock. Not all IRIG generators have the
926 * year; if so, it is nonzero after year 2000.
927 * Not all have the hardware status bit; if so,
928 * it is lit when the source is okay and dim
929 * when bad. We watch this only if the year is
930 * nonzero. Not all are configured for signature
931 * control. If so, all BCD digits are set to
932 * zero if the source is bad. In this case the
933 * refclock_process() will reject the timecode
934 * as invalid.
936 up->xptr = 2 * FIELD;
937 if (sscanf((char *)up->timecode,
938 "%6s%2d%c%2s%3d%2d%2d%2d", sbs, &pp->year,
939 &syncchar, spare, &pp->day, &pp->hour,
940 &pp->minute, &pp->second) != 8)
941 pp->leap = LEAP_NOTINSYNC;
942 else
943 pp->leap = LEAP_NOWARNING;
944 up->second = (up->second + up->decim) % 60;
945 if (pp->year > 0)
946 pp->year += 2000;
947 if (pp->second != up->second)
948 up->errflg |= IRIG_ERR_CHECK;
949 up->second = pp->second;
950 sprintf(pp->a_lastcode,
951 "%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.1f %6.1f %s",
952 up->errflg, syncchar, pp->year, pp->day,
953 pp->hour, pp->minute, pp->second,
954 up->maxsignal, up->gain, up->modndx,
955 up->tc, up->exing * 1e6 / SECOND, up->freq *
956 1e6 / SECOND, ulfptoa(&up->wuggle, 6));
957 pp->lencode = strlen(pp->a_lastcode);
958 if (pp->sloppyclockflag & CLK_FLAG4) {
959 record_clock_stats(&peer->srcadr,
960 pp->a_lastcode);
961 #ifdef DEBUG
962 if (debug)
963 printf("irig: %s\n",
964 pp->a_lastcode);
965 #endif /* DEBUG */
969 up->lastbit = bit;
974 * irig_poll - called by the transmit procedure
976 * This routine sweeps up the timecode updates since the last poll. For
977 * IRIG-B there should be at least 60 updates; for IRIG-E there should
978 * be at least 6. If nothing is heard, a timeout event is declared and
979 * any orphaned timecode updates are sent to foster care.
981 static void
982 irig_poll(
983 int unit, /* instance number (not used) */
984 struct peer *peer /* peer structure pointer */
987 struct refclockproc *pp;
988 struct irigunit *up;
990 pp = peer->procptr;
991 up = (struct irigunit *)pp->unitptr;
993 if (pp->coderecv == pp->codeproc) {
994 refclock_report(peer, CEVNT_TIMEOUT);
995 return;
997 } else {
998 refclock_receive(peer);
999 record_clock_stats(&peer->srcadr, pp->a_lastcode);
1000 #ifdef DEBUG
1001 if (debug)
1002 printf("irig: %s\n", pp->a_lastcode);
1003 #endif /* DEBUG */
1005 pp->polls++;
1011 * irig_gain - adjust codec gain
1013 * This routine is called once each second. If the signal envelope
1014 * amplitude is too low, the codec gain is bumped up by four units; if
1015 * too high, it is bumped down. The decoder is relatively insensitive to
1016 * amplitude, so this crudity works just fine. The input port is set and
1017 * the error flag is cleared, mostly to be ornery.
1019 static void
1020 irig_gain(
1021 struct peer *peer /* peer structure pointer */
1024 struct refclockproc *pp;
1025 struct irigunit *up;
1027 pp = peer->procptr;
1028 up = (struct irigunit *)pp->unitptr;
1031 * Apparently, the codec uses only the high order bits of the
1032 * gain control field. Thus, it may take awhile for changes to
1033 * wiggle the hardware bits.
1035 if (up->clipcnt == 0) {
1036 up->gain += 4;
1037 if (up->gain > MAXGAIN)
1038 up->gain = MAXGAIN;
1039 } else if (up->clipcnt > MAXCLP) {
1040 up->gain -= 4;
1041 if (up->gain < 0)
1042 up->gain = 0;
1044 audio_gain(up->gain, up->mongain, up->port);
1045 up->clipcnt = 0;
1048 #else
1049 int refclock_irig_bs;
1050 #endif /* REFCLOCK */