Fix memory barrier in a debug function
[netbsd-mini2440.git] / sys / kern / sys_pipe.c
blob78be2be5fb68f384d0323efc8dd6221a048fb5c2
1 /* $NetBSD: sys_pipe.c,v 1.126 2009/12/15 18:35:18 dsl Exp $ */
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg, and by Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Copyright (c) 1996 John S. Dyson
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice immediately at the beginning of the file, without modification,
41 * this list of conditions, and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Absolutely no warranty of function or purpose is made by the author
46 * John S. Dyson.
47 * 4. Modifications may be freely made to this file if the above conditions
48 * are met.
52 * This file contains a high-performance replacement for the socket-based
53 * pipes scheme originally used. It does not support all features of
54 * sockets, but does do everything that pipes normally do.
56 * This code has two modes of operation, a small write mode and a large
57 * write mode. The small write mode acts like conventional pipes with
58 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
59 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
60 * and PIPE_SIZE in size it is mapped read-only into the kernel address space
61 * using the UVM page loan facility from where the receiving process can copy
62 * the data directly from the pages in the sending process.
64 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
65 * happen for small transfers so that the system will not spend all of
66 * its time context switching. PIPE_SIZE is constrained by the
67 * amount of kernel virtual memory.
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.126 2009/12/15 18:35:18 dsl Exp $");
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/fcntl.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/filio.h>
80 #include <sys/kernel.h>
81 #include <sys/ttycom.h>
82 #include <sys/stat.h>
83 #include <sys/poll.h>
84 #include <sys/signalvar.h>
85 #include <sys/vnode.h>
86 #include <sys/uio.h>
87 #include <sys/select.h>
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90 #include <sys/sysctl.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/pipe.h>
95 #include <uvm/uvm.h>
98 * Use this to disable direct I/O and decrease the code size:
99 * #define PIPE_NODIRECT
102 /* XXX Disabled for now; rare hangs switching between direct/buffered */
103 #define PIPE_NODIRECT
105 static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
106 static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
107 static int pipe_close(file_t *);
108 static int pipe_poll(file_t *, int);
109 static int pipe_kqfilter(file_t *, struct knote *);
110 static int pipe_stat(file_t *, struct stat *);
111 static int pipe_ioctl(file_t *, u_long, void *);
112 static void pipe_restart(file_t *);
114 static const struct fileops pipeops = {
115 .fo_read = pipe_read,
116 .fo_write = pipe_write,
117 .fo_ioctl = pipe_ioctl,
118 .fo_fcntl = fnullop_fcntl,
119 .fo_poll = pipe_poll,
120 .fo_stat = pipe_stat,
121 .fo_close = pipe_close,
122 .fo_kqfilter = pipe_kqfilter,
123 .fo_restart = pipe_restart,
127 * Default pipe buffer size(s), this can be kind-of large now because pipe
128 * space is pageable. The pipe code will try to maintain locality of
129 * reference for performance reasons, so small amounts of outstanding I/O
130 * will not wipe the cache.
132 #define MINPIPESIZE (PIPE_SIZE / 3)
133 #define MAXPIPESIZE (2 * PIPE_SIZE / 3)
136 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
137 * is there so that on large systems, we don't exhaust it.
139 #define MAXPIPEKVA (8 * 1024 * 1024)
140 static u_int maxpipekva = MAXPIPEKVA;
143 * Limit for direct transfers, we cannot, of course limit
144 * the amount of kva for pipes in general though.
146 #define LIMITPIPEKVA (16 * 1024 * 1024)
147 static u_int limitpipekva = LIMITPIPEKVA;
150 * Limit the number of "big" pipes
152 #define LIMITBIGPIPES 32
153 static u_int maxbigpipes = LIMITBIGPIPES;
154 static u_int nbigpipe = 0;
157 * Amount of KVA consumed by pipe buffers.
159 static u_int amountpipekva = 0;
161 static void pipeclose(struct pipe *);
162 static void pipe_free_kmem(struct pipe *);
163 static int pipe_create(struct pipe **, pool_cache_t);
164 static int pipelock(struct pipe *, int);
165 static inline void pipeunlock(struct pipe *);
166 static void pipeselwakeup(struct pipe *, struct pipe *, int);
167 #ifndef PIPE_NODIRECT
168 static int pipe_direct_write(file_t *, struct pipe *, struct uio *);
169 #endif
170 static int pipespace(struct pipe *, int);
171 static int pipe_ctor(void *, void *, int);
172 static void pipe_dtor(void *, void *);
174 #ifndef PIPE_NODIRECT
175 static int pipe_loan_alloc(struct pipe *, int);
176 static void pipe_loan_free(struct pipe *);
177 #endif /* PIPE_NODIRECT */
179 static pool_cache_t pipe_wr_cache;
180 static pool_cache_t pipe_rd_cache;
182 void
183 pipe_init(void)
186 /* Writer side is not automatically allocated KVA. */
187 pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
188 NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
189 KASSERT(pipe_wr_cache != NULL);
191 /* Reader side gets preallocated KVA. */
192 pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
193 NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
194 KASSERT(pipe_rd_cache != NULL);
197 static int
198 pipe_ctor(void *arg, void *obj, int flags)
200 struct pipe *pipe;
201 vaddr_t va;
203 pipe = obj;
205 memset(pipe, 0, sizeof(struct pipe));
206 if (arg != NULL) {
207 /* Preallocate space. */
208 va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
209 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
210 KASSERT(va != 0);
211 pipe->pipe_kmem = va;
212 atomic_add_int(&amountpipekva, PIPE_SIZE);
214 cv_init(&pipe->pipe_rcv, "piperd");
215 cv_init(&pipe->pipe_wcv, "pipewr");
216 cv_init(&pipe->pipe_draincv, "pipedrain");
217 cv_init(&pipe->pipe_lkcv, "pipelk");
218 selinit(&pipe->pipe_sel);
219 pipe->pipe_state = PIPE_SIGNALR;
221 return 0;
224 static void
225 pipe_dtor(void *arg, void *obj)
227 struct pipe *pipe;
229 pipe = obj;
231 cv_destroy(&pipe->pipe_rcv);
232 cv_destroy(&pipe->pipe_wcv);
233 cv_destroy(&pipe->pipe_draincv);
234 cv_destroy(&pipe->pipe_lkcv);
235 seldestroy(&pipe->pipe_sel);
236 if (pipe->pipe_kmem != 0) {
237 uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
238 UVM_KMF_PAGEABLE);
239 atomic_add_int(&amountpipekva, -PIPE_SIZE);
244 * The pipe system call for the DTYPE_PIPE type of pipes
247 sys_pipe(struct lwp *l, const void *v, register_t *retval)
249 struct pipe *rpipe, *wpipe;
250 file_t *rf, *wf;
251 int fd, error;
252 proc_t *p;
254 p = curproc;
255 rpipe = wpipe = NULL;
256 if (pipe_create(&rpipe, pipe_rd_cache) ||
257 pipe_create(&wpipe, pipe_wr_cache)) {
258 error = ENOMEM;
259 goto free2;
261 rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
262 wpipe->pipe_lock = rpipe->pipe_lock;
263 mutex_obj_hold(wpipe->pipe_lock);
265 error = fd_allocfile(&rf, &fd);
266 if (error)
267 goto free2;
268 retval[0] = fd;
269 rf->f_flag = FREAD;
270 rf->f_type = DTYPE_PIPE;
271 rf->f_data = (void *)rpipe;
272 rf->f_ops = &pipeops;
274 error = fd_allocfile(&wf, &fd);
275 if (error)
276 goto free3;
277 retval[1] = fd;
278 wf->f_flag = FWRITE;
279 wf->f_type = DTYPE_PIPE;
280 wf->f_data = (void *)wpipe;
281 wf->f_ops = &pipeops;
283 rpipe->pipe_peer = wpipe;
284 wpipe->pipe_peer = rpipe;
286 fd_affix(p, rf, (int)retval[0]);
287 fd_affix(p, wf, (int)retval[1]);
288 return (0);
289 free3:
290 fd_abort(p, rf, (int)retval[0]);
291 free2:
292 pipeclose(wpipe);
293 pipeclose(rpipe);
295 return (error);
299 * Allocate kva for pipe circular buffer, the space is pageable
300 * This routine will 'realloc' the size of a pipe safely, if it fails
301 * it will retain the old buffer.
302 * If it fails it will return ENOMEM.
304 static int
305 pipespace(struct pipe *pipe, int size)
307 void *buffer;
310 * Allocate pageable virtual address space. Physical memory is
311 * allocated on demand.
313 if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
314 buffer = (void *)pipe->pipe_kmem;
315 } else {
316 buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
317 0, UVM_KMF_PAGEABLE);
318 if (buffer == NULL)
319 return (ENOMEM);
320 atomic_add_int(&amountpipekva, size);
323 /* free old resources if we're resizing */
324 pipe_free_kmem(pipe);
325 pipe->pipe_buffer.buffer = buffer;
326 pipe->pipe_buffer.size = size;
327 pipe->pipe_buffer.in = 0;
328 pipe->pipe_buffer.out = 0;
329 pipe->pipe_buffer.cnt = 0;
330 return (0);
334 * Initialize and allocate VM and memory for pipe.
336 static int
337 pipe_create(struct pipe **pipep, pool_cache_t cache)
339 struct pipe *pipe;
340 int error;
342 pipe = pool_cache_get(cache, PR_WAITOK);
343 KASSERT(pipe != NULL);
344 *pipep = pipe;
345 error = 0;
346 getnanotime(&pipe->pipe_btime);
347 pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime;
348 pipe->pipe_lock = NULL;
349 if (cache == pipe_rd_cache) {
350 error = pipespace(pipe, PIPE_SIZE);
351 } else {
352 pipe->pipe_buffer.buffer = NULL;
353 pipe->pipe_buffer.size = 0;
354 pipe->pipe_buffer.in = 0;
355 pipe->pipe_buffer.out = 0;
356 pipe->pipe_buffer.cnt = 0;
358 return error;
362 * Lock a pipe for I/O, blocking other access
363 * Called with pipe spin lock held.
365 static int
366 pipelock(struct pipe *pipe, int catch)
368 int error;
370 KASSERT(mutex_owned(pipe->pipe_lock));
372 while (pipe->pipe_state & PIPE_LOCKFL) {
373 pipe->pipe_state |= PIPE_LWANT;
374 if (catch) {
375 error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
376 if (error != 0)
377 return error;
378 } else
379 cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
382 pipe->pipe_state |= PIPE_LOCKFL;
384 return 0;
388 * unlock a pipe I/O lock
390 static inline void
391 pipeunlock(struct pipe *pipe)
394 KASSERT(pipe->pipe_state & PIPE_LOCKFL);
396 pipe->pipe_state &= ~PIPE_LOCKFL;
397 if (pipe->pipe_state & PIPE_LWANT) {
398 pipe->pipe_state &= ~PIPE_LWANT;
399 cv_broadcast(&pipe->pipe_lkcv);
404 * Select/poll wakup. This also sends SIGIO to peer connected to
405 * 'sigpipe' side of pipe.
407 static void
408 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
410 int band;
412 switch (code) {
413 case POLL_IN:
414 band = POLLIN|POLLRDNORM;
415 break;
416 case POLL_OUT:
417 band = POLLOUT|POLLWRNORM;
418 break;
419 case POLL_HUP:
420 band = POLLHUP;
421 break;
422 case POLL_ERR:
423 band = POLLERR;
424 break;
425 default:
426 band = 0;
427 #ifdef DIAGNOSTIC
428 printf("bad siginfo code %d in pipe notification.\n", code);
429 #endif
430 break;
433 selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
435 if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
436 return;
438 fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
441 static int
442 pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
443 int flags)
445 struct pipe *rpipe = (struct pipe *) fp->f_data;
446 struct pipebuf *bp = &rpipe->pipe_buffer;
447 kmutex_t *lock = rpipe->pipe_lock;
448 int error;
449 size_t nread = 0;
450 size_t size;
451 size_t ocnt;
452 unsigned int wakeup_state = 0;
454 mutex_enter(lock);
455 ++rpipe->pipe_busy;
456 ocnt = bp->cnt;
458 again:
459 error = pipelock(rpipe, 1);
460 if (error)
461 goto unlocked_error;
463 while (uio->uio_resid) {
465 * Normal pipe buffer receive.
467 if (bp->cnt > 0) {
468 size = bp->size - bp->out;
469 if (size > bp->cnt)
470 size = bp->cnt;
471 if (size > uio->uio_resid)
472 size = uio->uio_resid;
474 mutex_exit(lock);
475 error = uiomove((char *)bp->buffer + bp->out, size, uio);
476 mutex_enter(lock);
477 if (error)
478 break;
480 bp->out += size;
481 if (bp->out >= bp->size)
482 bp->out = 0;
484 bp->cnt -= size;
487 * If there is no more to read in the pipe, reset
488 * its pointers to the beginning. This improves
489 * cache hit stats.
491 if (bp->cnt == 0) {
492 bp->in = 0;
493 bp->out = 0;
495 nread += size;
496 continue;
499 #ifndef PIPE_NODIRECT
500 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
502 * Direct copy, bypassing a kernel buffer.
504 void *va;
505 u_int gen;
507 KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
509 size = rpipe->pipe_map.cnt;
510 if (size > uio->uio_resid)
511 size = uio->uio_resid;
513 va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
514 gen = rpipe->pipe_map.egen;
515 mutex_exit(lock);
518 * Consume emap and read the data from loaned pages.
520 uvm_emap_consume(gen);
521 error = uiomove(va, size, uio);
523 mutex_enter(lock);
524 if (error)
525 break;
526 nread += size;
527 rpipe->pipe_map.pos += size;
528 rpipe->pipe_map.cnt -= size;
529 if (rpipe->pipe_map.cnt == 0) {
530 rpipe->pipe_state &= ~PIPE_DIRECTR;
531 cv_broadcast(&rpipe->pipe_wcv);
533 continue;
535 #endif
537 * Break if some data was read.
539 if (nread > 0)
540 break;
543 * Detect EOF condition.
544 * Read returns 0 on EOF, no need to set error.
546 if (rpipe->pipe_state & PIPE_EOF)
547 break;
550 * Don't block on non-blocking I/O.
552 if (fp->f_flag & FNONBLOCK) {
553 error = EAGAIN;
554 break;
558 * Unlock the pipe buffer for our remaining processing.
559 * We will either break out with an error or we will
560 * sleep and relock to loop.
562 pipeunlock(rpipe);
565 * Re-check to see if more direct writes are pending.
567 if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
568 goto again;
570 #if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
572 * We want to read more, wake up select/poll.
574 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
577 * If the "write-side" is blocked, wake it up now.
579 cv_broadcast(&rpipe->pipe_wcv);
580 #endif
582 if (wakeup_state & PIPE_RESTART) {
583 error = ERESTART;
584 goto unlocked_error;
587 /* Now wait until the pipe is filled */
588 error = cv_wait_sig(&rpipe->pipe_rcv, lock);
589 if (error != 0)
590 goto unlocked_error;
591 wakeup_state = rpipe->pipe_state;
592 goto again;
595 if (error == 0)
596 getnanotime(&rpipe->pipe_atime);
597 pipeunlock(rpipe);
599 unlocked_error:
600 --rpipe->pipe_busy;
601 if (rpipe->pipe_busy == 0) {
602 rpipe->pipe_state &= ~PIPE_RESTART;
603 cv_broadcast(&rpipe->pipe_draincv);
605 if (bp->cnt < MINPIPESIZE) {
606 cv_broadcast(&rpipe->pipe_wcv);
610 * If anything was read off the buffer, signal to the writer it's
611 * possible to write more data. Also send signal if we are here for the
612 * first time after last write.
614 if ((bp->size - bp->cnt) >= PIPE_BUF
615 && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
616 pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
617 rpipe->pipe_state &= ~PIPE_SIGNALR;
620 mutex_exit(lock);
621 return (error);
624 #ifndef PIPE_NODIRECT
626 * Allocate structure for loan transfer.
628 static int
629 pipe_loan_alloc(struct pipe *wpipe, int npages)
631 vsize_t len;
633 len = (vsize_t)npages << PAGE_SHIFT;
634 atomic_add_int(&amountpipekva, len);
635 wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
636 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
637 if (wpipe->pipe_map.kva == 0) {
638 atomic_add_int(&amountpipekva, -len);
639 return (ENOMEM);
642 wpipe->pipe_map.npages = npages;
643 wpipe->pipe_map.pgs = kmem_alloc(npages * sizeof(struct vm_page *),
644 KM_SLEEP);
645 return (0);
649 * Free resources allocated for loan transfer.
651 static void
652 pipe_loan_free(struct pipe *wpipe)
654 vsize_t len;
656 len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
657 uvm_emap_remove(wpipe->pipe_map.kva, len); /* XXX */
658 uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
659 wpipe->pipe_map.kva = 0;
660 atomic_add_int(&amountpipekva, -len);
661 kmem_free(wpipe->pipe_map.pgs,
662 wpipe->pipe_map.npages * sizeof(struct vm_page *));
663 wpipe->pipe_map.pgs = NULL;
667 * NetBSD direct write, using uvm_loan() mechanism.
668 * This implements the pipe buffer write mechanism. Note that only
669 * a direct write OR a normal pipe write can be pending at any given time.
670 * If there are any characters in the pipe buffer, the direct write will
671 * be deferred until the receiving process grabs all of the bytes from
672 * the pipe buffer. Then the direct mapping write is set-up.
674 * Called with the long-term pipe lock held.
676 static int
677 pipe_direct_write(file_t *fp, struct pipe *wpipe, struct uio *uio)
679 struct vm_page **pgs;
680 vaddr_t bbase, base, bend;
681 vsize_t blen, bcnt;
682 int error, npages;
683 voff_t bpos;
684 kmutex_t *lock = wpipe->pipe_lock;
686 KASSERT(mutex_owned(wpipe->pipe_lock));
687 KASSERT(wpipe->pipe_map.cnt == 0);
689 mutex_exit(lock);
692 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
693 * not aligned to PAGE_SIZE.
695 bbase = (vaddr_t)uio->uio_iov->iov_base;
696 base = trunc_page(bbase);
697 bend = round_page(bbase + uio->uio_iov->iov_len);
698 blen = bend - base;
699 bpos = bbase - base;
701 if (blen > PIPE_DIRECT_CHUNK) {
702 blen = PIPE_DIRECT_CHUNK;
703 bend = base + blen;
704 bcnt = PIPE_DIRECT_CHUNK - bpos;
705 } else {
706 bcnt = uio->uio_iov->iov_len;
708 npages = blen >> PAGE_SHIFT;
711 * Free the old kva if we need more pages than we have
712 * allocated.
714 if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
715 pipe_loan_free(wpipe);
717 /* Allocate new kva. */
718 if (wpipe->pipe_map.kva == 0) {
719 error = pipe_loan_alloc(wpipe, npages);
720 if (error) {
721 mutex_enter(lock);
722 return (error);
726 /* Loan the write buffer memory from writer process */
727 pgs = wpipe->pipe_map.pgs;
728 error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
729 pgs, UVM_LOAN_TOPAGE);
730 if (error) {
731 pipe_loan_free(wpipe);
732 mutex_enter(lock);
733 return (ENOMEM); /* so that caller fallback to ordinary write */
736 /* Enter the loaned pages to KVA, produce new emap generation number. */
737 uvm_emap_enter(wpipe->pipe_map.kva, pgs, npages);
738 wpipe->pipe_map.egen = uvm_emap_produce();
740 /* Now we can put the pipe in direct write mode */
741 wpipe->pipe_map.pos = bpos;
742 wpipe->pipe_map.cnt = bcnt;
745 * But before we can let someone do a direct read, we
746 * have to wait until the pipe is drained. Release the
747 * pipe lock while we wait.
749 mutex_enter(lock);
750 wpipe->pipe_state |= PIPE_DIRECTW;
751 pipeunlock(wpipe);
753 while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
754 cv_broadcast(&wpipe->pipe_rcv);
755 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
756 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
757 error = EPIPE;
760 /* Pipe is drained; next read will off the direct buffer */
761 wpipe->pipe_state |= PIPE_DIRECTR;
763 /* Wait until the reader is done */
764 while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
765 cv_broadcast(&wpipe->pipe_rcv);
766 pipeselwakeup(wpipe, wpipe, POLL_IN);
767 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
768 if (error == 0 && wpipe->pipe_state & PIPE_EOF)
769 error = EPIPE;
772 /* Take pipe out of direct write mode */
773 wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
775 /* Acquire the pipe lock and cleanup */
776 (void)pipelock(wpipe, 0);
777 mutex_exit(lock);
779 if (pgs != NULL) {
780 /* XXX: uvm_emap_remove */
781 uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
783 if (error || amountpipekva > maxpipekva)
784 pipe_loan_free(wpipe);
786 mutex_enter(lock);
787 if (error) {
788 pipeselwakeup(wpipe, wpipe, POLL_ERR);
791 * If nothing was read from what we offered, return error
792 * straight on. Otherwise update uio resid first. Caller
793 * will deal with the error condition, returning short
794 * write, error, or restarting the write(2) as appropriate.
796 if (wpipe->pipe_map.cnt == bcnt) {
797 wpipe->pipe_map.cnt = 0;
798 cv_broadcast(&wpipe->pipe_wcv);
799 return (error);
802 bcnt -= wpipe->pipe_map.cnt;
805 uio->uio_resid -= bcnt;
806 /* uio_offset not updated, not set/used for write(2) */
807 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
808 uio->uio_iov->iov_len -= bcnt;
809 if (uio->uio_iov->iov_len == 0) {
810 uio->uio_iov++;
811 uio->uio_iovcnt--;
814 wpipe->pipe_map.cnt = 0;
815 return (error);
817 #endif /* !PIPE_NODIRECT */
819 static int
820 pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
821 int flags)
823 struct pipe *wpipe, *rpipe;
824 struct pipebuf *bp;
825 kmutex_t *lock;
826 int error;
827 unsigned int wakeup_state = 0;
829 /* We want to write to our peer */
830 rpipe = (struct pipe *) fp->f_data;
831 lock = rpipe->pipe_lock;
832 error = 0;
834 mutex_enter(lock);
835 wpipe = rpipe->pipe_peer;
838 * Detect loss of pipe read side, issue SIGPIPE if lost.
840 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
841 mutex_exit(lock);
842 return EPIPE;
844 ++wpipe->pipe_busy;
846 /* Aquire the long-term pipe lock */
847 if ((error = pipelock(wpipe, 1)) != 0) {
848 --wpipe->pipe_busy;
849 if (wpipe->pipe_busy == 0) {
850 wpipe->pipe_state &= ~PIPE_RESTART;
851 cv_broadcast(&wpipe->pipe_draincv);
853 mutex_exit(lock);
854 return (error);
857 bp = &wpipe->pipe_buffer;
860 * If it is advantageous to resize the pipe buffer, do so.
862 if ((uio->uio_resid > PIPE_SIZE) &&
863 (nbigpipe < maxbigpipes) &&
864 #ifndef PIPE_NODIRECT
865 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
866 #endif
867 (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
869 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
870 atomic_inc_uint(&nbigpipe);
873 while (uio->uio_resid) {
874 size_t space;
876 #ifndef PIPE_NODIRECT
878 * Pipe buffered writes cannot be coincidental with
879 * direct writes. Also, only one direct write can be
880 * in progress at any one time. We wait until the currently
881 * executing direct write is completed before continuing.
883 * We break out if a signal occurs or the reader goes away.
885 while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
886 cv_broadcast(&wpipe->pipe_rcv);
887 pipeunlock(wpipe);
888 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
889 (void)pipelock(wpipe, 0);
890 if (wpipe->pipe_state & PIPE_EOF)
891 error = EPIPE;
893 if (error)
894 break;
897 * If the transfer is large, we can gain performance if
898 * we do process-to-process copies directly.
899 * If the write is non-blocking, we don't use the
900 * direct write mechanism.
902 * The direct write mechanism will detect the reader going
903 * away on us.
905 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
906 (fp->f_flag & FNONBLOCK) == 0 &&
907 (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
908 error = pipe_direct_write(fp, wpipe, uio);
911 * Break out if error occurred, unless it's ENOMEM.
912 * ENOMEM means we failed to allocate some resources
913 * for direct write, so we just fallback to ordinary
914 * write. If the direct write was successful,
915 * process rest of data via ordinary write.
917 if (error == 0)
918 continue;
920 if (error != ENOMEM)
921 break;
923 #endif /* PIPE_NODIRECT */
925 space = bp->size - bp->cnt;
927 /* Writes of size <= PIPE_BUF must be atomic. */
928 if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
929 space = 0;
931 if (space > 0) {
932 int size; /* Transfer size */
933 int segsize; /* first segment to transfer */
936 * Transfer size is minimum of uio transfer
937 * and free space in pipe buffer.
939 if (space > uio->uio_resid)
940 size = uio->uio_resid;
941 else
942 size = space;
944 * First segment to transfer is minimum of
945 * transfer size and contiguous space in
946 * pipe buffer. If first segment to transfer
947 * is less than the transfer size, we've got
948 * a wraparound in the buffer.
950 segsize = bp->size - bp->in;
951 if (segsize > size)
952 segsize = size;
954 /* Transfer first segment */
955 mutex_exit(lock);
956 error = uiomove((char *)bp->buffer + bp->in, segsize,
957 uio);
959 if (error == 0 && segsize < size) {
961 * Transfer remaining part now, to
962 * support atomic writes. Wraparound
963 * happened.
965 KASSERT(bp->in + segsize == bp->size);
966 error = uiomove(bp->buffer,
967 size - segsize, uio);
969 mutex_enter(lock);
970 if (error)
971 break;
973 bp->in += size;
974 if (bp->in >= bp->size) {
975 KASSERT(bp->in == size - segsize + bp->size);
976 bp->in = size - segsize;
979 bp->cnt += size;
980 KASSERT(bp->cnt <= bp->size);
981 wakeup_state = 0;
982 } else {
984 * If the "read-side" has been blocked, wake it up now.
986 cv_broadcast(&wpipe->pipe_rcv);
989 * Don't block on non-blocking I/O.
991 if (fp->f_flag & FNONBLOCK) {
992 error = EAGAIN;
993 break;
997 * We have no more space and have something to offer,
998 * wake up select/poll.
1000 if (bp->cnt)
1001 pipeselwakeup(wpipe, wpipe, POLL_IN);
1003 if (wakeup_state & PIPE_RESTART) {
1004 error = ERESTART;
1005 break;
1008 pipeunlock(wpipe);
1009 error = cv_wait_sig(&wpipe->pipe_wcv, lock);
1010 (void)pipelock(wpipe, 0);
1011 if (error != 0)
1012 break;
1014 * If read side wants to go away, we just issue a signal
1015 * to ourselves.
1017 if (wpipe->pipe_state & PIPE_EOF) {
1018 error = EPIPE;
1019 break;
1021 wakeup_state = wpipe->pipe_state;
1025 --wpipe->pipe_busy;
1026 if (wpipe->pipe_busy == 0) {
1027 wpipe->pipe_state &= ~PIPE_RESTART;
1028 cv_broadcast(&wpipe->pipe_draincv);
1030 if (bp->cnt > 0) {
1031 cv_broadcast(&wpipe->pipe_rcv);
1035 * Don't return EPIPE if I/O was successful
1037 if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1038 error = 0;
1040 if (error == 0)
1041 getnanotime(&wpipe->pipe_mtime);
1044 * We have something to offer, wake up select/poll.
1045 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1046 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1048 if (bp->cnt)
1049 pipeselwakeup(wpipe, wpipe, POLL_IN);
1052 * Arrange for next read(2) to do a signal.
1054 wpipe->pipe_state |= PIPE_SIGNALR;
1056 pipeunlock(wpipe);
1057 mutex_exit(lock);
1058 return (error);
1062 * We implement a very minimal set of ioctls for compatibility with sockets.
1065 pipe_ioctl(file_t *fp, u_long cmd, void *data)
1067 struct pipe *pipe = fp->f_data;
1068 kmutex_t *lock = pipe->pipe_lock;
1070 switch (cmd) {
1072 case FIONBIO:
1073 return (0);
1075 case FIOASYNC:
1076 mutex_enter(lock);
1077 if (*(int *)data) {
1078 pipe->pipe_state |= PIPE_ASYNC;
1079 } else {
1080 pipe->pipe_state &= ~PIPE_ASYNC;
1082 mutex_exit(lock);
1083 return (0);
1085 case FIONREAD:
1086 mutex_enter(lock);
1087 #ifndef PIPE_NODIRECT
1088 if (pipe->pipe_state & PIPE_DIRECTW)
1089 *(int *)data = pipe->pipe_map.cnt;
1090 else
1091 #endif
1092 *(int *)data = pipe->pipe_buffer.cnt;
1093 mutex_exit(lock);
1094 return (0);
1096 case FIONWRITE:
1097 /* Look at other side */
1098 pipe = pipe->pipe_peer;
1099 mutex_enter(lock);
1100 #ifndef PIPE_NODIRECT
1101 if (pipe->pipe_state & PIPE_DIRECTW)
1102 *(int *)data = pipe->pipe_map.cnt;
1103 else
1104 #endif
1105 *(int *)data = pipe->pipe_buffer.cnt;
1106 mutex_exit(lock);
1107 return (0);
1109 case FIONSPACE:
1110 /* Look at other side */
1111 pipe = pipe->pipe_peer;
1112 mutex_enter(lock);
1113 #ifndef PIPE_NODIRECT
1115 * If we're in direct-mode, we don't really have a
1116 * send queue, and any other write will block. Thus
1117 * zero seems like the best answer.
1119 if (pipe->pipe_state & PIPE_DIRECTW)
1120 *(int *)data = 0;
1121 else
1122 #endif
1123 *(int *)data = pipe->pipe_buffer.size -
1124 pipe->pipe_buffer.cnt;
1125 mutex_exit(lock);
1126 return (0);
1128 case TIOCSPGRP:
1129 case FIOSETOWN:
1130 return fsetown(&pipe->pipe_pgid, cmd, data);
1132 case TIOCGPGRP:
1133 case FIOGETOWN:
1134 return fgetown(pipe->pipe_pgid, cmd, data);
1137 return (EPASSTHROUGH);
1141 pipe_poll(file_t *fp, int events)
1143 struct pipe *rpipe = fp->f_data;
1144 struct pipe *wpipe;
1145 int eof = 0;
1146 int revents = 0;
1148 mutex_enter(rpipe->pipe_lock);
1149 wpipe = rpipe->pipe_peer;
1151 if (events & (POLLIN | POLLRDNORM))
1152 if ((rpipe->pipe_buffer.cnt > 0) ||
1153 #ifndef PIPE_NODIRECT
1154 (rpipe->pipe_state & PIPE_DIRECTR) ||
1155 #endif
1156 (rpipe->pipe_state & PIPE_EOF))
1157 revents |= events & (POLLIN | POLLRDNORM);
1159 eof |= (rpipe->pipe_state & PIPE_EOF);
1161 if (wpipe == NULL)
1162 revents |= events & (POLLOUT | POLLWRNORM);
1163 else {
1164 if (events & (POLLOUT | POLLWRNORM))
1165 if ((wpipe->pipe_state & PIPE_EOF) || (
1166 #ifndef PIPE_NODIRECT
1167 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1168 #endif
1169 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1170 revents |= events & (POLLOUT | POLLWRNORM);
1172 eof |= (wpipe->pipe_state & PIPE_EOF);
1175 if (wpipe == NULL || eof)
1176 revents |= POLLHUP;
1178 if (revents == 0) {
1179 if (events & (POLLIN | POLLRDNORM))
1180 selrecord(curlwp, &rpipe->pipe_sel);
1182 if (events & (POLLOUT | POLLWRNORM))
1183 selrecord(curlwp, &wpipe->pipe_sel);
1185 mutex_exit(rpipe->pipe_lock);
1187 return (revents);
1190 static int
1191 pipe_stat(file_t *fp, struct stat *ub)
1193 struct pipe *pipe = fp->f_data;
1195 mutex_enter(pipe->pipe_lock);
1196 memset(ub, 0, sizeof(*ub));
1197 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1198 ub->st_blksize = pipe->pipe_buffer.size;
1199 if (ub->st_blksize == 0 && pipe->pipe_peer)
1200 ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1201 ub->st_size = pipe->pipe_buffer.cnt;
1202 ub->st_blocks = (ub->st_size) ? 1 : 0;
1203 ub->st_atimespec = pipe->pipe_atime;
1204 ub->st_mtimespec = pipe->pipe_mtime;
1205 ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
1206 ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1207 ub->st_gid = kauth_cred_getegid(fp->f_cred);
1210 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1211 * XXX (st_dev, st_ino) should be unique.
1213 mutex_exit(pipe->pipe_lock);
1214 return 0;
1217 static int
1218 pipe_close(file_t *fp)
1220 struct pipe *pipe = fp->f_data;
1222 fp->f_data = NULL;
1223 pipeclose(pipe);
1224 return (0);
1227 static void
1228 pipe_restart(file_t *fp)
1230 struct pipe *pipe = fp->f_data;
1233 * Unblock blocked reads/writes in order to allow close() to complete.
1234 * System calls return ERESTART so that the fd is revalidated.
1235 * (Partial writes return the transfer length.)
1237 mutex_enter(pipe->pipe_lock);
1238 pipe->pipe_state |= PIPE_RESTART;
1239 /* Wakeup both cvs, maybe we only need one, but maybe there are some
1240 * other paths where wakeup is needed, and it saves deciding which! */
1241 cv_broadcast(&pipe->pipe_rcv);
1242 cv_broadcast(&pipe->pipe_wcv);
1243 mutex_exit(pipe->pipe_lock);
1246 static void
1247 pipe_free_kmem(struct pipe *pipe)
1250 if (pipe->pipe_buffer.buffer != NULL) {
1251 if (pipe->pipe_buffer.size > PIPE_SIZE) {
1252 atomic_dec_uint(&nbigpipe);
1254 if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
1255 uvm_km_free(kernel_map,
1256 (vaddr_t)pipe->pipe_buffer.buffer,
1257 pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1258 atomic_add_int(&amountpipekva,
1259 -pipe->pipe_buffer.size);
1261 pipe->pipe_buffer.buffer = NULL;
1263 #ifndef PIPE_NODIRECT
1264 if (pipe->pipe_map.kva != 0) {
1265 pipe_loan_free(pipe);
1266 pipe->pipe_map.cnt = 0;
1267 pipe->pipe_map.kva = 0;
1268 pipe->pipe_map.pos = 0;
1269 pipe->pipe_map.npages = 0;
1271 #endif /* !PIPE_NODIRECT */
1275 * Shutdown the pipe.
1277 static void
1278 pipeclose(struct pipe *pipe)
1280 kmutex_t *lock;
1281 struct pipe *ppipe;
1283 if (pipe == NULL)
1284 return;
1286 KASSERT(cv_is_valid(&pipe->pipe_rcv));
1287 KASSERT(cv_is_valid(&pipe->pipe_wcv));
1288 KASSERT(cv_is_valid(&pipe->pipe_draincv));
1289 KASSERT(cv_is_valid(&pipe->pipe_lkcv));
1291 lock = pipe->pipe_lock;
1292 if (lock == NULL)
1293 /* Must have failed during create */
1294 goto free_resources;
1296 mutex_enter(lock);
1297 pipeselwakeup(pipe, pipe, POLL_HUP);
1300 * If the other side is blocked, wake it up saying that
1301 * we want to close it down.
1303 pipe->pipe_state |= PIPE_EOF;
1304 if (pipe->pipe_busy) {
1305 while (pipe->pipe_busy) {
1306 cv_broadcast(&pipe->pipe_wcv);
1307 cv_wait_sig(&pipe->pipe_draincv, lock);
1312 * Disconnect from peer.
1314 if ((ppipe = pipe->pipe_peer) != NULL) {
1315 pipeselwakeup(ppipe, ppipe, POLL_HUP);
1316 ppipe->pipe_state |= PIPE_EOF;
1317 cv_broadcast(&ppipe->pipe_rcv);
1318 ppipe->pipe_peer = NULL;
1322 * Any knote objects still left in the list are
1323 * the one attached by peer. Since no one will
1324 * traverse this list, we just clear it.
1326 SLIST_INIT(&pipe->pipe_sel.sel_klist);
1328 KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1329 mutex_exit(lock);
1330 mutex_obj_free(lock);
1333 * Free resources.
1335 free_resources:
1336 pipe->pipe_pgid = 0;
1337 pipe->pipe_state = PIPE_SIGNALR;
1338 pipe_free_kmem(pipe);
1339 if (pipe->pipe_kmem != 0) {
1340 pool_cache_put(pipe_rd_cache, pipe);
1341 } else {
1342 pool_cache_put(pipe_wr_cache, pipe);
1346 static void
1347 filt_pipedetach(struct knote *kn)
1349 struct pipe *pipe;
1350 kmutex_t *lock;
1352 pipe = ((file_t *)kn->kn_obj)->f_data;
1353 lock = pipe->pipe_lock;
1355 mutex_enter(lock);
1357 switch(kn->kn_filter) {
1358 case EVFILT_WRITE:
1359 /* Need the peer structure, not our own. */
1360 pipe = pipe->pipe_peer;
1362 /* If reader end already closed, just return. */
1363 if (pipe == NULL) {
1364 mutex_exit(lock);
1365 return;
1368 break;
1369 default:
1370 /* Nothing to do. */
1371 break;
1374 KASSERT(kn->kn_hook == pipe);
1375 SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1376 mutex_exit(lock);
1379 static int
1380 filt_piperead(struct knote *kn, long hint)
1382 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1383 struct pipe *wpipe;
1385 if ((hint & NOTE_SUBMIT) == 0) {
1386 mutex_enter(rpipe->pipe_lock);
1388 wpipe = rpipe->pipe_peer;
1389 kn->kn_data = rpipe->pipe_buffer.cnt;
1391 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1392 kn->kn_data = rpipe->pipe_map.cnt;
1394 if ((rpipe->pipe_state & PIPE_EOF) ||
1395 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1396 kn->kn_flags |= EV_EOF;
1397 if ((hint & NOTE_SUBMIT) == 0) {
1398 mutex_exit(rpipe->pipe_lock);
1400 return (1);
1403 if ((hint & NOTE_SUBMIT) == 0) {
1404 mutex_exit(rpipe->pipe_lock);
1406 return (kn->kn_data > 0);
1409 static int
1410 filt_pipewrite(struct knote *kn, long hint)
1412 struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_data;
1413 struct pipe *wpipe;
1415 if ((hint & NOTE_SUBMIT) == 0) {
1416 mutex_enter(rpipe->pipe_lock);
1418 wpipe = rpipe->pipe_peer;
1420 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1421 kn->kn_data = 0;
1422 kn->kn_flags |= EV_EOF;
1423 if ((hint & NOTE_SUBMIT) == 0) {
1424 mutex_exit(rpipe->pipe_lock);
1426 return (1);
1428 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1429 if (wpipe->pipe_state & PIPE_DIRECTW)
1430 kn->kn_data = 0;
1432 if ((hint & NOTE_SUBMIT) == 0) {
1433 mutex_exit(rpipe->pipe_lock);
1435 return (kn->kn_data >= PIPE_BUF);
1438 static const struct filterops pipe_rfiltops =
1439 { 1, NULL, filt_pipedetach, filt_piperead };
1440 static const struct filterops pipe_wfiltops =
1441 { 1, NULL, filt_pipedetach, filt_pipewrite };
1443 static int
1444 pipe_kqfilter(file_t *fp, struct knote *kn)
1446 struct pipe *pipe;
1447 kmutex_t *lock;
1449 pipe = ((file_t *)kn->kn_obj)->f_data;
1450 lock = pipe->pipe_lock;
1452 mutex_enter(lock);
1454 switch (kn->kn_filter) {
1455 case EVFILT_READ:
1456 kn->kn_fop = &pipe_rfiltops;
1457 break;
1458 case EVFILT_WRITE:
1459 kn->kn_fop = &pipe_wfiltops;
1460 pipe = pipe->pipe_peer;
1461 if (pipe == NULL) {
1462 /* Other end of pipe has been closed. */
1463 mutex_exit(lock);
1464 return (EBADF);
1466 break;
1467 default:
1468 mutex_exit(lock);
1469 return (EINVAL);
1472 kn->kn_hook = pipe;
1473 SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1474 mutex_exit(lock);
1476 return (0);
1480 * Handle pipe sysctls.
1482 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1485 sysctl_createv(clog, 0, NULL, NULL,
1486 CTLFLAG_PERMANENT,
1487 CTLTYPE_NODE, "kern", NULL,
1488 NULL, 0, NULL, 0,
1489 CTL_KERN, CTL_EOL);
1490 sysctl_createv(clog, 0, NULL, NULL,
1491 CTLFLAG_PERMANENT,
1492 CTLTYPE_NODE, "pipe",
1493 SYSCTL_DESCR("Pipe settings"),
1494 NULL, 0, NULL, 0,
1495 CTL_KERN, KERN_PIPE, CTL_EOL);
1497 sysctl_createv(clog, 0, NULL, NULL,
1498 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1499 CTLTYPE_INT, "maxkvasz",
1500 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1501 "used for pipes"),
1502 NULL, 0, &maxpipekva, 0,
1503 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1504 sysctl_createv(clog, 0, NULL, NULL,
1505 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1506 CTLTYPE_INT, "maxloankvasz",
1507 SYSCTL_DESCR("Limit for direct transfers via page loan"),
1508 NULL, 0, &limitpipekva, 0,
1509 CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1510 sysctl_createv(clog, 0, NULL, NULL,
1511 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1512 CTLTYPE_INT, "maxbigpipes",
1513 SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1514 NULL, 0, &maxbigpipes, 0,
1515 CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1516 sysctl_createv(clog, 0, NULL, NULL,
1517 CTLFLAG_PERMANENT,
1518 CTLTYPE_INT, "nbigpipes",
1519 SYSCTL_DESCR("Number of \"big\" pipes"),
1520 NULL, 0, &nbigpipe, 0,
1521 CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1522 sysctl_createv(clog, 0, NULL, NULL,
1523 CTLFLAG_PERMANENT,
1524 CTLTYPE_INT, "kvasize",
1525 SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1526 "buffers"),
1527 NULL, 0, &amountpipekva, 0,
1528 CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);