Expand PMF_FN_* macros.
[netbsd-mini2440.git] / lib / libc / time / localtime.c
blobaca2867846bcabe9281efeb080c997e9fb149ead
1 /* $NetBSD: localtime.c,v 1.44 2009/10/24 17:01:04 mlelstv Exp $ */
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.9";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.44 2009/10/24 17:01:04 mlelstv Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
22 /*LINTLIBRARY*/
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 __weak_alias(tzset,_tzset)
34 __weak_alias(tzsetwall,_tzsetwall)
35 #endif
37 #include "float.h" /* for FLT_MAX and DBL_MAX */
39 #ifndef TZ_ABBR_MAX_LEN
40 #define TZ_ABBR_MAX_LEN 16
41 #endif /* !defined TZ_ABBR_MAX_LEN */
43 #ifndef TZ_ABBR_CHAR_SET
44 #define TZ_ABBR_CHAR_SET \
45 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
46 #endif /* !defined TZ_ABBR_CHAR_SET */
48 #ifndef TZ_ABBR_ERR_CHAR
49 #define TZ_ABBR_ERR_CHAR '_'
50 #endif /* !defined TZ_ABBR_ERR_CHAR */
53 ** SunOS 4.1.1 headers lack O_BINARY.
56 #ifdef O_BINARY
57 #define OPEN_MODE (O_RDONLY | O_BINARY)
58 #endif /* defined O_BINARY */
59 #ifndef O_BINARY
60 #define OPEN_MODE O_RDONLY
61 #endif /* !defined O_BINARY */
63 #ifndef WILDABBR
65 ** Someone might make incorrect use of a time zone abbreviation:
66 ** 1. They might reference tzname[0] before calling tzset (explicitly
67 ** or implicitly).
68 ** 2. They might reference tzname[1] before calling tzset (explicitly
69 ** or implicitly).
70 ** 3. They might reference tzname[1] after setting to a time zone
71 ** in which Daylight Saving Time is never observed.
72 ** 4. They might reference tzname[0] after setting to a time zone
73 ** in which Standard Time is never observed.
74 ** 5. They might reference tm.TM_ZONE after calling offtime.
75 ** What's best to do in the above cases is open to debate;
76 ** for now, we just set things up so that in any of the five cases
77 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
78 ** string "tzname[0] used before set", and similarly for the other cases.
79 ** And another: initialize tzname[0] to "ERA", with an explanation in the
80 ** manual page of what this "time zone abbreviation" means (doing this so
81 ** that tzname[0] has the "normal" length of three characters).
83 #define WILDABBR " "
84 #endif /* !defined WILDABBR */
86 static const char wildabbr[] = WILDABBR;
88 static const char gmt[] = "GMT";
91 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
92 ** We default to US rules as of 1999-08-17.
93 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
94 ** implementation dependent; for historical reasons, US rules are a
95 ** common default.
97 #ifndef TZDEFRULESTRING
98 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
99 #endif /* !defined TZDEFDST */
101 struct ttinfo { /* time type information */
102 long tt_gmtoff; /* UTC offset in seconds */
103 int tt_isdst; /* used to set tm_isdst */
104 int tt_abbrind; /* abbreviation list index */
105 int tt_ttisstd; /* TRUE if transition is std time */
106 int tt_ttisgmt; /* TRUE if transition is UTC */
109 struct lsinfo { /* leap second information */
110 time_t ls_trans; /* transition time */
111 long ls_corr; /* correction to apply */
114 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
116 #ifdef TZNAME_MAX
117 #define MY_TZNAME_MAX TZNAME_MAX
118 #endif /* defined TZNAME_MAX */
119 #ifndef TZNAME_MAX
120 #define MY_TZNAME_MAX 255
121 #endif /* !defined TZNAME_MAX */
123 struct state {
124 int leapcnt;
125 int timecnt;
126 int typecnt;
127 int charcnt;
128 int goback;
129 int goahead;
130 time_t ats[TZ_MAX_TIMES];
131 unsigned char types[TZ_MAX_TIMES];
132 struct ttinfo ttis[TZ_MAX_TYPES];
133 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
134 (2 * (MY_TZNAME_MAX + 1)))];
135 struct lsinfo lsis[TZ_MAX_LEAPS];
138 struct rule {
139 int r_type; /* type of rule--see below */
140 int r_day; /* day number of rule */
141 int r_week; /* week number of rule */
142 int r_mon; /* month number of rule */
143 long r_time; /* transition time of rule */
146 #define JULIAN_DAY 0 /* Jn - Julian day */
147 #define DAY_OF_YEAR 1 /* n - day of year */
148 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
151 ** Prototypes for static functions.
154 static long detzcode(const char * codep);
155 static time_t detzcode64(const char * codep);
156 static int differ_by_repeat(time_t t1, time_t t0);
157 static const char * getzname(const char * strp);
158 static const char * getqzname(const char * strp, const int delim);
159 static const char * getnum(const char * strp, int * nump, int min,
160 int max);
161 static const char * getsecs(const char * strp, long * secsp);
162 static const char * getoffset(const char * strp, long * offsetp);
163 static const char * getrule(const char * strp, struct rule * rulep);
164 static void gmtload(struct state * sp);
165 static struct tm * gmtsub(const time_t * timep, long offset,
166 struct tm * tmp);
167 static struct tm * localsub(const time_t * timep, long offset,
168 struct tm * tmp);
169 static int increment_overflow(int * number, int delta);
170 static int leaps_thru_end_of(int y);
171 static int long_increment_overflow(long * number, int delta);
172 static int long_normalize_overflow(long * tensptr,
173 int * unitsptr, int base);
174 static int normalize_overflow(int * tensptr, int * unitsptr,
175 int base);
176 static void settzname(void);
177 static time_t time1(struct tm * tmp,
178 struct tm * (*funcp)(const time_t *,
179 long, struct tm *),
180 long offset);
181 static time_t time2(struct tm *tmp,
182 struct tm * (*funcp)(const time_t *,
183 long, struct tm*),
184 long offset, int * okayp);
185 static time_t time2sub(struct tm *tmp,
186 struct tm * (*funcp)(const time_t *,
187 long, struct tm*),
188 long offset, int * okayp, int do_norm_secs);
189 static struct tm * timesub(const time_t * timep, long offset,
190 const struct state * sp, struct tm * tmp);
191 static int tmcomp(const struct tm * atmp,
192 const struct tm * btmp);
193 static time_t transtime(time_t janfirst, int year,
194 const struct rule * rulep, long offset);
195 static int typesequiv(const struct state * sp, int a, int b);
196 static int tzload(const char * name, struct state * sp,
197 int doextend);
198 static int tzparse(const char * name, struct state * sp,
199 int lastditch);
200 static void tzset_unlocked(void);
201 static void tzsetwall_unlocked(void);
202 static long leapcorr(time_t * timep);
204 #ifdef ALL_STATE
205 static struct state * lclptr;
206 static struct state * gmtptr;
207 #endif /* defined ALL_STATE */
209 #ifndef ALL_STATE
210 static struct state lclmem;
211 static struct state gmtmem;
212 #define lclptr (&lclmem)
213 #define gmtptr (&gmtmem)
214 #endif /* State Farm */
216 #ifndef TZ_STRLEN_MAX
217 #define TZ_STRLEN_MAX 255
218 #endif /* !defined TZ_STRLEN_MAX */
220 static char lcl_TZname[TZ_STRLEN_MAX + 1];
221 static int lcl_is_set;
222 static int gmt_is_set;
224 #if !defined(__LIBC12_SOURCE__)
226 __aconst char * tzname[2] = {
227 (__aconst char *)__UNCONST(wildabbr),
228 (__aconst char *)__UNCONST(wildabbr)
231 #else
233 extern __aconst char * tzname[2];
235 #endif
237 #ifdef _REENTRANT
238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
239 #endif
242 ** Section 4.12.3 of X3.159-1989 requires that
243 ** Except for the strftime function, these functions [asctime,
244 ** ctime, gmtime, localtime] return values in one of two static
245 ** objects: a broken-down time structure and an array of char.
246 ** Thanks to Paul Eggert for noting this.
249 static struct tm tm;
251 #ifdef USG_COMPAT
252 #if !defined(__LIBC12_SOURCE__)
253 long timezone = 0;
254 int daylight = 0;
255 #else
256 extern int daylight;
257 extern long timezone __RENAME(__timezone13);
258 #endif
259 #endif /* defined USG_COMPAT */
261 #ifdef ALTZONE
262 time_t altzone = 0;
263 #endif /* defined ALTZONE */
265 static long
266 detzcode(codep)
267 const char * const codep;
269 register long result;
270 register int i;
272 result = (codep[0] & 0x80) ? ~0L : 0;
273 for (i = 0; i < 4; ++i)
274 result = (result << 8) | (codep[i] & 0xff);
275 return result;
278 static time_t
279 detzcode64(codep)
280 const char * const codep;
282 register time_t result;
283 register int i;
285 result = (codep[0] & 0x80) ? -1 : 0;
286 for (i = 0; i < 8; ++i)
287 result = result * 256 + (codep[i] & 0xff);
288 return result;
291 static void
292 settzname(void)
294 register struct state * const sp = lclptr;
295 register int i;
297 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
298 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
299 #ifdef USG_COMPAT
300 daylight = 0;
301 timezone = 0;
302 #endif /* defined USG_COMPAT */
303 #ifdef ALTZONE
304 altzone = 0;
305 #endif /* defined ALTZONE */
306 #ifdef ALL_STATE
307 if (sp == NULL) {
308 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
309 return;
311 #endif /* defined ALL_STATE */
312 for (i = 0; i < sp->typecnt; ++i) {
313 register const struct ttinfo * const ttisp = &sp->ttis[i];
315 tzname[ttisp->tt_isdst] =
316 &sp->chars[ttisp->tt_abbrind];
317 #ifdef USG_COMPAT
318 if (ttisp->tt_isdst)
319 daylight = 1;
320 if (i == 0 || !ttisp->tt_isdst)
321 timezone = -(ttisp->tt_gmtoff);
322 #endif /* defined USG_COMPAT */
323 #ifdef ALTZONE
324 if (i == 0 || ttisp->tt_isdst)
325 altzone = -(ttisp->tt_gmtoff);
326 #endif /* defined ALTZONE */
329 ** And to get the latest zone names into tzname. . .
331 for (i = 0; i < sp->timecnt; ++i) {
332 register const struct ttinfo * const ttisp =
333 &sp->ttis[
334 sp->types[i]];
336 tzname[ttisp->tt_isdst] =
337 &sp->chars[ttisp->tt_abbrind];
340 ** Finally, scrub the abbreviations.
341 ** First, replace bogus characters.
343 for (i = 0; i < sp->charcnt; ++i)
344 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
345 sp->chars[i] = TZ_ABBR_ERR_CHAR;
347 ** Second, truncate long abbreviations.
349 for (i = 0; i < sp->typecnt; ++i) {
350 register const struct ttinfo * const ttisp = &sp->ttis[i];
351 register char * cp = &sp->chars[ttisp->tt_abbrind];
353 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
354 strcmp(cp, GRANDPARENTED) != 0)
355 *(cp + TZ_ABBR_MAX_LEN) = '\0';
359 static int
360 differ_by_repeat(t1, t0)
361 const time_t t1;
362 const time_t t0;
364 /* CONSTCOND */
365 if (TYPE_INTEGRAL(time_t) &&
366 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
367 return 0;
368 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
371 static int
372 tzload(name, sp, doextend)
373 register const char * name;
374 register struct state * const sp;
375 register const int doextend;
377 register const char * p;
378 register int i;
379 register int fid;
380 register int stored;
381 register int nread;
382 union {
383 struct tzhead tzhead;
384 char buf[2 * sizeof(struct tzhead) +
385 2 * sizeof *sp +
386 4 * TZ_MAX_TIMES];
387 } u;
389 if (name == NULL && (name = TZDEFAULT) == NULL)
390 return -1;
392 register int doaccess;
394 ** Section 4.9.1 of the C standard says that
395 ** "FILENAME_MAX expands to an integral constant expression
396 ** that is the size needed for an array of char large enough
397 ** to hold the longest file name string that the implementation
398 ** guarantees can be opened."
400 char fullname[FILENAME_MAX + 1];
402 if (name[0] == ':')
403 ++name;
404 doaccess = name[0] == '/';
405 if (!doaccess) {
406 if ((p = TZDIR) == NULL)
407 return -1;
408 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
409 return -1;
410 (void) strcpy(fullname, p); /* XXX strcpy is safe */
411 (void) strcat(fullname, "/"); /* XXX strcat is safe */
412 (void) strcat(fullname, name); /* XXX strcat is safe */
414 ** Set doaccess if '.' (as in "../") shows up in name.
416 if (strchr(name, '.') != NULL)
417 doaccess = TRUE;
418 name = fullname;
420 if (doaccess && access(name, R_OK) != 0)
421 return -1;
423 * XXX potential security problem here if user of a set-id
424 * program has set TZ (which is passed in as name) here,
425 * and uses a race condition trick to defeat the access(2)
426 * above.
428 if ((fid = open(name, OPEN_MODE)) == -1)
429 return -1;
431 nread = read(fid, u.buf, sizeof u.buf);
432 if (close(fid) < 0 || nread <= 0)
433 return -1;
434 for (stored = 4; stored <= 8; stored *= 2) {
435 int ttisstdcnt;
436 int ttisgmtcnt;
438 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
439 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
440 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
441 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
442 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
443 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
444 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
445 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
446 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
447 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
448 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
449 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
450 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
451 return -1;
452 if (nread - (p - u.buf) <
453 sp->timecnt * stored + /* ats */
454 sp->timecnt + /* types */
455 sp->typecnt * 6 + /* ttinfos */
456 sp->charcnt + /* chars */
457 sp->leapcnt * (stored + 4) + /* lsinfos */
458 ttisstdcnt + /* ttisstds */
459 ttisgmtcnt) /* ttisgmts */
460 return -1;
461 for (i = 0; i < sp->timecnt; ++i) {
462 sp->ats[i] = (stored == 4) ?
463 detzcode(p) : detzcode64(p);
464 p += stored;
466 for (i = 0; i < sp->timecnt; ++i) {
467 sp->types[i] = (unsigned char) *p++;
468 if (sp->types[i] >= sp->typecnt)
469 return -1;
471 for (i = 0; i < sp->typecnt; ++i) {
472 register struct ttinfo * ttisp;
474 ttisp = &sp->ttis[i];
475 ttisp->tt_gmtoff = detzcode(p);
476 p += 4;
477 ttisp->tt_isdst = (unsigned char) *p++;
478 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
479 return -1;
480 ttisp->tt_abbrind = (unsigned char) *p++;
481 if (ttisp->tt_abbrind < 0 ||
482 ttisp->tt_abbrind > sp->charcnt)
483 return -1;
485 for (i = 0; i < sp->charcnt; ++i)
486 sp->chars[i] = *p++;
487 sp->chars[i] = '\0'; /* ensure '\0' at end */
488 for (i = 0; i < sp->leapcnt; ++i) {
489 register struct lsinfo * lsisp;
491 lsisp = &sp->lsis[i];
492 lsisp->ls_trans = (stored == 4) ?
493 detzcode(p) : detzcode64(p);
494 p += stored;
495 lsisp->ls_corr = detzcode(p);
496 p += 4;
498 for (i = 0; i < sp->typecnt; ++i) {
499 register struct ttinfo * ttisp;
501 ttisp = &sp->ttis[i];
502 if (ttisstdcnt == 0)
503 ttisp->tt_ttisstd = FALSE;
504 else {
505 ttisp->tt_ttisstd = *p++;
506 if (ttisp->tt_ttisstd != TRUE &&
507 ttisp->tt_ttisstd != FALSE)
508 return -1;
511 for (i = 0; i < sp->typecnt; ++i) {
512 register struct ttinfo * ttisp;
514 ttisp = &sp->ttis[i];
515 if (ttisgmtcnt == 0)
516 ttisp->tt_ttisgmt = FALSE;
517 else {
518 ttisp->tt_ttisgmt = *p++;
519 if (ttisp->tt_ttisgmt != TRUE &&
520 ttisp->tt_ttisgmt != FALSE)
521 return -1;
525 ** Out-of-sort ats should mean we're running on a
526 ** signed time_t system but using a data file with
527 ** unsigned values (or vice versa).
529 for (i = 0; i < sp->timecnt - 2; ++i)
530 if (sp->ats[i] > sp->ats[i + 1]) {
531 ++i;
532 /* CONSTCOND */
533 if (TYPE_SIGNED(time_t)) {
535 ** Ignore the end (easy).
537 sp->timecnt = i;
538 } else {
540 ** Ignore the beginning (harder).
542 register int j;
544 for (j = 0; j + i < sp->timecnt; ++j) {
545 sp->ats[j] = sp->ats[j + i];
546 sp->types[j] = sp->types[j + i];
548 sp->timecnt = j;
550 break;
553 ** If this is an old file, we're done.
555 if (u.tzhead.tzh_version[0] == '\0')
556 break;
557 nread -= p - u.buf;
558 for (i = 0; i < nread; ++i)
559 u.buf[i] = p[i];
561 ** If this is a narrow integer time_t system, we're done.
563 if (stored >= (int) sizeof(time_t)
564 /* CONSTCOND */
565 && TYPE_INTEGRAL(time_t))
566 break;
568 if (doextend && nread > 2 &&
569 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
570 sp->typecnt + 2 <= TZ_MAX_TYPES) {
571 struct state ts;
572 register int result;
574 u.buf[nread - 1] = '\0';
575 result = tzparse(&u.buf[1], &ts, FALSE);
576 if (result == 0 && ts.typecnt == 2 &&
577 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
578 for (i = 0; i < 2; ++i)
579 ts.ttis[i].tt_abbrind +=
580 sp->charcnt;
581 for (i = 0; i < ts.charcnt; ++i)
582 sp->chars[sp->charcnt++] =
583 ts.chars[i];
584 i = 0;
585 while (i < ts.timecnt &&
586 ts.ats[i] <=
587 sp->ats[sp->timecnt - 1])
588 ++i;
589 while (i < ts.timecnt &&
590 sp->timecnt < TZ_MAX_TIMES) {
591 sp->ats[sp->timecnt] =
592 ts.ats[i];
593 sp->types[sp->timecnt] =
594 sp->typecnt +
595 ts.types[i];
596 ++sp->timecnt;
597 ++i;
599 sp->ttis[sp->typecnt++] = ts.ttis[0];
600 sp->ttis[sp->typecnt++] = ts.ttis[1];
603 sp->goback = sp->goahead = FALSE;
604 if (sp->timecnt > 1) {
605 for (i = 1; i < sp->timecnt; ++i)
606 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
607 differ_by_repeat(sp->ats[i], sp->ats[0])) {
608 sp->goback = TRUE;
609 break;
611 for (i = sp->timecnt - 2; i >= 0; --i)
612 if (typesequiv(sp, sp->types[sp->timecnt - 1],
613 sp->types[i]) &&
614 differ_by_repeat(sp->ats[sp->timecnt - 1],
615 sp->ats[i])) {
616 sp->goahead = TRUE;
617 break;
620 return 0;
623 static int
624 typesequiv(sp, a, b)
625 const struct state * const sp;
626 const int a;
627 const int b;
629 register int result;
631 if (sp == NULL ||
632 a < 0 || a >= sp->typecnt ||
633 b < 0 || b >= sp->typecnt)
634 result = FALSE;
635 else {
636 register const struct ttinfo * ap = &sp->ttis[a];
637 register const struct ttinfo * bp = &sp->ttis[b];
638 result = ap->tt_gmtoff == bp->tt_gmtoff &&
639 ap->tt_isdst == bp->tt_isdst &&
640 ap->tt_ttisstd == bp->tt_ttisstd &&
641 ap->tt_ttisgmt == bp->tt_ttisgmt &&
642 strcmp(&sp->chars[ap->tt_abbrind],
643 &sp->chars[bp->tt_abbrind]) == 0;
645 return result;
648 static const int mon_lengths[2][MONSPERYEAR] = {
649 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
650 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
653 static const int year_lengths[2] = {
654 DAYSPERNYEAR, DAYSPERLYEAR
658 ** Given a pointer into a time zone string, scan until a character that is not
659 ** a valid character in a zone name is found. Return a pointer to that
660 ** character.
663 static const char *
664 getzname(strp)
665 register const char * strp;
667 register char c;
669 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
670 c != '+')
671 ++strp;
672 return strp;
676 ** Given a pointer into an extended time zone string, scan until the ending
677 ** delimiter of the zone name is located. Return a pointer to the delimiter.
679 ** As with getzname above, the legal character set is actually quite
680 ** restricted, with other characters producing undefined results.
681 ** We don't do any checking here; checking is done later in common-case code.
684 static const char *
685 getqzname(register const char *strp, const int delim)
687 register int c;
689 while ((c = *strp) != '\0' && c != delim)
690 ++strp;
691 return strp;
695 ** Given a pointer into a time zone string, extract a number from that string.
696 ** Check that the number is within a specified range; if it is not, return
697 ** NULL.
698 ** Otherwise, return a pointer to the first character not part of the number.
701 static const char *
702 getnum(strp, nump, min, max)
703 register const char * strp;
704 int * const nump;
705 const int min;
706 const int max;
708 register char c;
709 register int num;
711 if (strp == NULL || !is_digit(c = *strp))
712 return NULL;
713 num = 0;
714 do {
715 num = num * 10 + (c - '0');
716 if (num > max)
717 return NULL; /* illegal value */
718 c = *++strp;
719 } while (is_digit(c));
720 if (num < min)
721 return NULL; /* illegal value */
722 *nump = num;
723 return strp;
727 ** Given a pointer into a time zone string, extract a number of seconds,
728 ** in hh[:mm[:ss]] form, from the string.
729 ** If any error occurs, return NULL.
730 ** Otherwise, return a pointer to the first character not part of the number
731 ** of seconds.
734 static const char *
735 getsecs(strp, secsp)
736 register const char * strp;
737 long * const secsp;
739 int num;
742 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
743 ** "M10.4.6/26", which does not conform to Posix,
744 ** but which specifies the equivalent of
745 ** ``02:00 on the first Sunday on or after 23 Oct''.
747 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
748 if (strp == NULL)
749 return NULL;
750 *secsp = num * (long) SECSPERHOUR;
751 if (*strp == ':') {
752 ++strp;
753 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
754 if (strp == NULL)
755 return NULL;
756 *secsp += num * SECSPERMIN;
757 if (*strp == ':') {
758 ++strp;
759 /* `SECSPERMIN' allows for leap seconds. */
760 strp = getnum(strp, &num, 0, SECSPERMIN);
761 if (strp == NULL)
762 return NULL;
763 *secsp += num;
766 return strp;
770 ** Given a pointer into a time zone string, extract an offset, in
771 ** [+-]hh[:mm[:ss]] form, from the string.
772 ** If any error occurs, return NULL.
773 ** Otherwise, return a pointer to the first character not part of the time.
776 static const char *
777 getoffset(strp, offsetp)
778 register const char * strp;
779 long * const offsetp;
781 register int neg = 0;
783 if (*strp == '-') {
784 neg = 1;
785 ++strp;
786 } else if (*strp == '+')
787 ++strp;
788 strp = getsecs(strp, offsetp);
789 if (strp == NULL)
790 return NULL; /* illegal time */
791 if (neg)
792 *offsetp = -*offsetp;
793 return strp;
797 ** Given a pointer into a time zone string, extract a rule in the form
798 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
799 ** If a valid rule is not found, return NULL.
800 ** Otherwise, return a pointer to the first character not part of the rule.
803 static const char *
804 getrule(strp, rulep)
805 const char * strp;
806 register struct rule * const rulep;
808 if (*strp == 'J') {
810 ** Julian day.
812 rulep->r_type = JULIAN_DAY;
813 ++strp;
814 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
815 } else if (*strp == 'M') {
817 ** Month, week, day.
819 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
820 ++strp;
821 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
822 if (strp == NULL)
823 return NULL;
824 if (*strp++ != '.')
825 return NULL;
826 strp = getnum(strp, &rulep->r_week, 1, 5);
827 if (strp == NULL)
828 return NULL;
829 if (*strp++ != '.')
830 return NULL;
831 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
832 } else if (is_digit(*strp)) {
834 ** Day of year.
836 rulep->r_type = DAY_OF_YEAR;
837 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
838 } else return NULL; /* invalid format */
839 if (strp == NULL)
840 return NULL;
841 if (*strp == '/') {
843 ** Time specified.
845 ++strp;
846 strp = getsecs(strp, &rulep->r_time);
847 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
848 return strp;
852 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
853 ** year, a rule, and the offset from UTC at the time that rule takes effect,
854 ** calculate the Epoch-relative time that rule takes effect.
857 static time_t
858 transtime(janfirst, year, rulep, offset)
859 const time_t janfirst;
860 const int year;
861 register const struct rule * const rulep;
862 const long offset;
864 register int leapyear;
865 register time_t value;
866 register int i;
867 int d, m1, yy0, yy1, yy2, dow;
869 INITIALIZE(value);
870 leapyear = isleap(year);
871 switch (rulep->r_type) {
873 case JULIAN_DAY:
875 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
876 ** years.
877 ** In non-leap years, or if the day number is 59 or less, just
878 ** add SECSPERDAY times the day number-1 to the time of
879 ** January 1, midnight, to get the day.
881 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
882 if (leapyear && rulep->r_day >= 60)
883 value += SECSPERDAY;
884 break;
886 case DAY_OF_YEAR:
888 ** n - day of year.
889 ** Just add SECSPERDAY times the day number to the time of
890 ** January 1, midnight, to get the day.
892 value = janfirst + rulep->r_day * SECSPERDAY;
893 break;
895 case MONTH_NTH_DAY_OF_WEEK:
897 ** Mm.n.d - nth "dth day" of month m.
899 value = janfirst;
900 for (i = 0; i < rulep->r_mon - 1; ++i)
901 value += mon_lengths[leapyear][i] * SECSPERDAY;
904 ** Use Zeller's Congruence to get day-of-week of first day of
905 ** month.
907 m1 = (rulep->r_mon + 9) % 12 + 1;
908 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
909 yy1 = yy0 / 100;
910 yy2 = yy0 % 100;
911 dow = ((26 * m1 - 2) / 10 +
912 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
913 if (dow < 0)
914 dow += DAYSPERWEEK;
917 ** "dow" is the day-of-week of the first day of the month. Get
918 ** the day-of-month (zero-origin) of the first "dow" day of the
919 ** month.
921 d = rulep->r_day - dow;
922 if (d < 0)
923 d += DAYSPERWEEK;
924 for (i = 1; i < rulep->r_week; ++i) {
925 if (d + DAYSPERWEEK >=
926 mon_lengths[leapyear][rulep->r_mon - 1])
927 break;
928 d += DAYSPERWEEK;
932 ** "d" is the day-of-month (zero-origin) of the day we want.
934 value += d * SECSPERDAY;
935 break;
939 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
940 ** question. To get the Epoch-relative time of the specified local
941 ** time on that day, add the transition time and the current offset
942 ** from UTC.
944 return value + rulep->r_time + offset;
948 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
949 ** appropriate.
952 static int
953 tzparse(name, sp, lastditch)
954 const char * name;
955 register struct state * const sp;
956 const int lastditch;
958 const char * stdname;
959 const char * dstname;
960 size_t stdlen;
961 size_t dstlen;
962 long stdoffset;
963 long dstoffset;
964 register time_t * atp;
965 register unsigned char * typep;
966 register char * cp;
967 register int load_result;
969 INITIALIZE(dstname);
970 stdname = name;
971 if (lastditch) {
972 stdlen = strlen(name); /* length of standard zone name */
973 name += stdlen;
974 if (stdlen >= sizeof sp->chars)
975 stdlen = (sizeof sp->chars) - 1;
976 stdoffset = 0;
977 } else {
978 if (*name == '<') {
979 name++;
980 stdname = name;
981 name = getqzname(name, '>');
982 if (*name != '>')
983 return (-1);
984 stdlen = name - stdname;
985 name++;
986 } else {
987 name = getzname(name);
988 stdlen = name - stdname;
990 if (*name == '\0')
991 return -1;
992 name = getoffset(name, &stdoffset);
993 if (name == NULL)
994 return -1;
996 load_result = tzload(TZDEFRULES, sp, FALSE);
997 if (load_result != 0)
998 sp->leapcnt = 0; /* so, we're off a little */
999 if (*name != '\0') {
1000 if (*name == '<') {
1001 dstname = ++name;
1002 name = getqzname(name, '>');
1003 if (*name != '>')
1004 return -1;
1005 dstlen = name - dstname;
1006 name++;
1007 } else {
1008 dstname = name;
1009 name = getzname(name);
1010 dstlen = name - dstname; /* length of DST zone name */
1012 if (*name != '\0' && *name != ',' && *name != ';') {
1013 name = getoffset(name, &dstoffset);
1014 if (name == NULL)
1015 return -1;
1016 } else dstoffset = stdoffset - SECSPERHOUR;
1017 if (*name == '\0' && load_result != 0)
1018 name = TZDEFRULESTRING;
1019 if (*name == ',' || *name == ';') {
1020 struct rule start;
1021 struct rule end;
1022 register int year;
1023 register time_t janfirst;
1024 time_t starttime;
1025 time_t endtime;
1027 ++name;
1028 if ((name = getrule(name, &start)) == NULL)
1029 return -1;
1030 if (*name++ != ',')
1031 return -1;
1032 if ((name = getrule(name, &end)) == NULL)
1033 return -1;
1034 if (*name != '\0')
1035 return -1;
1036 sp->typecnt = 2; /* standard time and DST */
1038 ** Two transitions per year, from EPOCH_YEAR forward.
1040 sp->ttis[0].tt_gmtoff = -dstoffset;
1041 sp->ttis[0].tt_isdst = 1;
1042 sp->ttis[0].tt_abbrind = stdlen + 1;
1043 sp->ttis[1].tt_gmtoff = -stdoffset;
1044 sp->ttis[1].tt_isdst = 0;
1045 sp->ttis[1].tt_abbrind = 0;
1046 atp = sp->ats;
1047 typep = sp->types;
1048 janfirst = 0;
1049 sp->timecnt = 0;
1050 for (year = EPOCH_YEAR;
1051 sp->timecnt + 2 <= TZ_MAX_TIMES;
1052 ++year) {
1053 time_t newfirst;
1055 starttime = transtime(janfirst, year, &start,
1056 stdoffset);
1057 endtime = transtime(janfirst, year, &end,
1058 dstoffset);
1059 if (starttime > endtime) {
1060 *atp++ = endtime;
1061 *typep++ = 1; /* DST ends */
1062 *atp++ = starttime;
1063 *typep++ = 0; /* DST begins */
1064 } else {
1065 *atp++ = starttime;
1066 *typep++ = 0; /* DST begins */
1067 *atp++ = endtime;
1068 *typep++ = 1; /* DST ends */
1070 sp->timecnt += 2;
1071 newfirst = janfirst;
1072 newfirst += year_lengths[isleap(year)] *
1073 SECSPERDAY;
1074 if (newfirst <= janfirst)
1075 break;
1076 janfirst = newfirst;
1078 } else {
1079 register long theirstdoffset;
1080 register long theirdstoffset;
1081 register long theiroffset;
1082 register int isdst;
1083 register int i;
1084 register int j;
1086 if (*name != '\0')
1087 return -1;
1089 ** Initial values of theirstdoffset
1091 theirstdoffset = 0;
1092 for (i = 0; i < sp->timecnt; ++i) {
1093 j = sp->types[i];
1094 if (!sp->ttis[j].tt_isdst) {
1095 theirstdoffset =
1096 -sp->ttis[j].tt_gmtoff;
1097 break;
1100 theirdstoffset = 0;
1101 for (i = 0; i < sp->timecnt; ++i) {
1102 j = sp->types[i];
1103 if (sp->ttis[j].tt_isdst) {
1104 theirdstoffset =
1105 -sp->ttis[j].tt_gmtoff;
1106 break;
1110 ** Initially we're assumed to be in standard time.
1112 isdst = FALSE;
1113 theiroffset = theirstdoffset;
1115 ** Now juggle transition times and types
1116 ** tracking offsets as you do.
1118 for (i = 0; i < sp->timecnt; ++i) {
1119 j = sp->types[i];
1120 sp->types[i] = sp->ttis[j].tt_isdst;
1121 if (sp->ttis[j].tt_ttisgmt) {
1122 /* No adjustment to transition time */
1123 } else {
1125 ** If summer time is in effect, and the
1126 ** transition time was not specified as
1127 ** standard time, add the summer time
1128 ** offset to the transition time;
1129 ** otherwise, add the standard time
1130 ** offset to the transition time.
1133 ** Transitions from DST to DDST
1134 ** will effectively disappear since
1135 ** POSIX provides for only one DST
1136 ** offset.
1138 if (isdst && !sp->ttis[j].tt_ttisstd) {
1139 sp->ats[i] += dstoffset -
1140 theirdstoffset;
1141 } else {
1142 sp->ats[i] += stdoffset -
1143 theirstdoffset;
1146 theiroffset = -sp->ttis[j].tt_gmtoff;
1147 if (!sp->ttis[j].tt_isdst)
1148 theirstdoffset = theiroffset;
1149 else theirdstoffset = theiroffset;
1152 ** Finally, fill in ttis.
1153 ** ttisstd and ttisgmt need not be handled.
1155 sp->ttis[0].tt_gmtoff = -stdoffset;
1156 sp->ttis[0].tt_isdst = FALSE;
1157 sp->ttis[0].tt_abbrind = 0;
1158 sp->ttis[1].tt_gmtoff = -dstoffset;
1159 sp->ttis[1].tt_isdst = TRUE;
1160 sp->ttis[1].tt_abbrind = stdlen + 1;
1161 sp->typecnt = 2;
1163 } else {
1164 dstlen = 0;
1165 sp->typecnt = 1; /* only standard time */
1166 sp->timecnt = 0;
1167 sp->ttis[0].tt_gmtoff = -stdoffset;
1168 sp->ttis[0].tt_isdst = 0;
1169 sp->ttis[0].tt_abbrind = 0;
1171 sp->charcnt = stdlen + 1;
1172 if (dstlen != 0)
1173 sp->charcnt += dstlen + 1;
1174 if ((size_t) sp->charcnt > sizeof sp->chars)
1175 return -1;
1176 cp = sp->chars;
1177 (void) strncpy(cp, stdname, stdlen);
1178 cp += stdlen;
1179 *cp++ = '\0';
1180 if (dstlen != 0) {
1181 (void) strncpy(cp, dstname, dstlen);
1182 *(cp + dstlen) = '\0';
1184 return 0;
1187 static void
1188 gmtload(sp)
1189 struct state * const sp;
1191 if (tzload(gmt, sp, TRUE) != 0)
1192 (void) tzparse(gmt, sp, TRUE);
1195 static void
1196 tzsetwall_unlocked(void)
1198 if (lcl_is_set < 0)
1199 return;
1200 lcl_is_set = -1;
1202 #ifdef ALL_STATE
1203 if (lclptr == NULL) {
1204 int saveerrno = errno;
1205 lclptr = (struct state *) malloc(sizeof *lclptr);
1206 errno = saveerrno;
1207 if (lclptr == NULL) {
1208 settzname(); /* all we can do */
1209 return;
1212 #endif /* defined ALL_STATE */
1213 if (tzload((char *) NULL, lclptr, TRUE) != 0)
1214 gmtload(lclptr);
1215 settzname();
1218 #ifndef STD_INSPIRED
1220 ** A non-static declaration of tzsetwall in a system header file
1221 ** may cause a warning about this upcoming static declaration...
1223 static
1224 #endif /* !defined STD_INSPIRED */
1225 void
1226 tzsetwall(void)
1228 rwlock_wrlock(&lcl_lock);
1229 tzsetwall_unlocked();
1230 rwlock_unlock(&lcl_lock);
1233 #ifndef STD_INSPIRED
1235 ** A non-static declaration of tzsetwall in a system header file
1236 ** may cause a warning about this upcoming static declaration...
1238 static
1239 #endif /* !defined STD_INSPIRED */
1240 void
1241 tzset_unlocked(void)
1243 register const char * name;
1244 int saveerrno;
1246 saveerrno = errno;
1247 name = getenv("TZ");
1248 errno = saveerrno;
1249 if (name == NULL) {
1250 tzsetwall_unlocked();
1251 return;
1254 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1255 return;
1256 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1257 if (lcl_is_set)
1258 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1260 #ifdef ALL_STATE
1261 if (lclptr == NULL) {
1262 saveerrno = errno;
1263 lclptr = (struct state *) malloc(sizeof *lclptr);
1264 errno = saveerrno;
1265 if (lclptr == NULL) {
1266 settzname(); /* all we can do */
1267 return;
1270 #endif /* defined ALL_STATE */
1271 if (*name == '\0') {
1273 ** User wants it fast rather than right.
1275 lclptr->leapcnt = 0; /* so, we're off a little */
1276 lclptr->timecnt = 0;
1277 lclptr->typecnt = 0;
1278 lclptr->ttis[0].tt_isdst = 0;
1279 lclptr->ttis[0].tt_gmtoff = 0;
1280 lclptr->ttis[0].tt_abbrind = 0;
1281 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1282 } else if (tzload(name, lclptr, TRUE) != 0)
1283 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1284 (void) gmtload(lclptr);
1285 settzname();
1288 void
1289 tzset(void)
1291 rwlock_wrlock(&lcl_lock);
1292 tzset_unlocked();
1293 rwlock_unlock(&lcl_lock);
1297 ** The easy way to behave "as if no library function calls" localtime
1298 ** is to not call it--so we drop its guts into "localsub", which can be
1299 ** freely called. (And no, the PANS doesn't require the above behavior--
1300 ** but it *is* desirable.)
1302 ** The unused offset argument is for the benefit of mktime variants.
1305 /*ARGSUSED*/
1306 static struct tm *
1307 localsub(timep, offset, tmp)
1308 const time_t * const timep;
1309 const long offset;
1310 struct tm * const tmp;
1312 register struct state * sp;
1313 register const struct ttinfo * ttisp;
1314 register int i;
1315 register struct tm * result;
1316 const time_t t = *timep;
1318 sp = lclptr;
1319 #ifdef ALL_STATE
1320 if (sp == NULL)
1321 return gmtsub(timep, offset, tmp);
1322 #endif /* defined ALL_STATE */
1323 if ((sp->goback && t < sp->ats[0]) ||
1324 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1325 time_t newt = t;
1326 register time_t seconds;
1327 register time_t tcycles;
1328 register int_fast64_t icycles;
1330 if (t < sp->ats[0])
1331 seconds = sp->ats[0] - t;
1332 else seconds = t - sp->ats[sp->timecnt - 1];
1333 --seconds;
1334 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1335 ++tcycles;
1336 icycles = tcycles;
1337 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1338 return NULL;
1339 seconds = (time_t) icycles;
1340 seconds *= YEARSPERREPEAT;
1341 seconds *= AVGSECSPERYEAR;
1342 if (t < sp->ats[0])
1343 newt += seconds;
1344 else newt -= seconds;
1345 if (newt < sp->ats[0] ||
1346 newt > sp->ats[sp->timecnt - 1])
1347 return NULL; /* "cannot happen" */
1348 result = localsub(&newt, offset, tmp);
1349 if (result == tmp) {
1350 register time_t newy;
1352 newy = tmp->tm_year;
1353 if (t < sp->ats[0])
1354 newy -= (time_t)icycles * YEARSPERREPEAT;
1355 else newy += (time_t)icycles * YEARSPERREPEAT;
1356 tmp->tm_year = (int)newy;
1357 if (tmp->tm_year != newy)
1358 return NULL;
1360 return result;
1362 if (sp->timecnt == 0 || t < sp->ats[0]) {
1363 i = 0;
1364 while (sp->ttis[i].tt_isdst)
1365 if (++i >= sp->typecnt) {
1366 i = 0;
1367 break;
1369 } else {
1370 register int lo = 1;
1371 register int hi = sp->timecnt;
1373 while (lo < hi) {
1374 register int mid = (lo + hi) / 2;
1376 if (t < sp->ats[mid])
1377 hi = mid;
1378 else lo = mid + 1;
1380 i = (int) sp->types[lo - 1];
1382 ttisp = &sp->ttis[i];
1384 ** To get (wrong) behavior that's compatible with System V Release 2.0
1385 ** you'd replace the statement below with
1386 ** t += ttisp->tt_gmtoff;
1387 ** timesub(&t, 0L, sp, tmp);
1389 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1390 tmp->tm_isdst = ttisp->tt_isdst;
1391 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1392 #ifdef TM_ZONE
1393 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1394 #endif /* defined TM_ZONE */
1395 return result;
1398 struct tm *
1399 localtime(timep)
1400 const time_t * const timep;
1402 struct tm *result;
1404 rwlock_wrlock(&lcl_lock);
1405 tzset_unlocked();
1406 result = localsub(timep, 0L, &tm);
1407 rwlock_unlock(&lcl_lock);
1408 return result;
1412 ** Re-entrant version of localtime.
1415 struct tm *
1416 localtime_r(timep, tmp)
1417 const time_t * const timep;
1418 struct tm * tmp;
1420 struct tm *result;
1422 rwlock_rdlock(&lcl_lock);
1423 tzset_unlocked();
1424 result = localsub(timep, 0L, tmp);
1425 rwlock_unlock(&lcl_lock);
1426 return result;
1430 ** gmtsub is to gmtime as localsub is to localtime.
1433 static struct tm *
1434 gmtsub(timep, offset, tmp)
1435 const time_t * const timep;
1436 const long offset;
1437 struct tm * const tmp;
1439 register struct tm * result;
1440 #ifdef _REENTRANT
1441 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1442 #endif
1444 mutex_lock(&gmt_mutex);
1445 if (!gmt_is_set) {
1446 #ifdef ALL_STATE
1447 int saveerrno;
1448 #endif
1449 gmt_is_set = TRUE;
1450 #ifdef ALL_STATE
1451 saveerrno = errno;
1452 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1453 errno = saveerrno;
1454 if (gmtptr != NULL)
1455 #endif /* defined ALL_STATE */
1456 gmtload(gmtptr);
1458 mutex_unlock(&gmt_mutex);
1459 result = timesub(timep, offset, gmtptr, tmp);
1460 #ifdef TM_ZONE
1462 ** Could get fancy here and deliver something such as
1463 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1464 ** but this is no time for a treasure hunt.
1466 if (offset != 0)
1467 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1468 else {
1469 #ifdef ALL_STATE
1470 if (gmtptr == NULL)
1471 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1472 else tmp->TM_ZONE = gmtptr->chars;
1473 #endif /* defined ALL_STATE */
1474 #ifndef ALL_STATE
1475 tmp->TM_ZONE = gmtptr->chars;
1476 #endif /* State Farm */
1478 #endif /* defined TM_ZONE */
1479 return result;
1482 struct tm *
1483 gmtime(timep)
1484 const time_t * const timep;
1486 return gmtsub(timep, 0L, &tm);
1490 ** Re-entrant version of gmtime.
1493 struct tm *
1494 gmtime_r(timep, tmp)
1495 const time_t * const timep;
1496 struct tm * tmp;
1498 return gmtsub(timep, 0L, tmp);
1501 #ifdef STD_INSPIRED
1503 struct tm *
1504 offtime(timep, offset)
1505 const time_t * const timep;
1506 const long offset;
1508 return gmtsub(timep, offset, &tm);
1511 #endif /* defined STD_INSPIRED */
1514 ** Return the number of leap years through the end of the given year
1515 ** where, to make the math easy, the answer for year zero is defined as zero.
1518 static int
1519 leaps_thru_end_of(y)
1520 register const int y;
1522 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1523 -(leaps_thru_end_of(-(y + 1)) + 1);
1526 static struct tm *
1527 timesub(timep, offset, sp, tmp)
1528 const time_t * const timep;
1529 const long offset;
1530 register const struct state * const sp;
1531 register struct tm * const tmp;
1533 register const struct lsinfo * lp;
1534 register time_t tdays;
1535 register int idays; /* unsigned would be so 2003 */
1536 register long rem;
1537 int y;
1538 register const int * ip;
1539 register long corr;
1540 register int hit;
1541 register int i;
1543 corr = 0;
1544 hit = 0;
1545 #ifdef ALL_STATE
1546 i = (sp == NULL) ? 0 : sp->leapcnt;
1547 #endif /* defined ALL_STATE */
1548 #ifndef ALL_STATE
1549 i = sp->leapcnt;
1550 #endif /* State Farm */
1551 while (--i >= 0) {
1552 lp = &sp->lsis[i];
1553 if (*timep >= lp->ls_trans) {
1554 if (*timep == lp->ls_trans) {
1555 hit = ((i == 0 && lp->ls_corr > 0) ||
1556 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1557 if (hit)
1558 while (i > 0 &&
1559 sp->lsis[i].ls_trans ==
1560 sp->lsis[i - 1].ls_trans + 1 &&
1561 sp->lsis[i].ls_corr ==
1562 sp->lsis[i - 1].ls_corr + 1) {
1563 ++hit;
1564 --i;
1567 corr = lp->ls_corr;
1568 break;
1571 y = EPOCH_YEAR;
1572 tdays = *timep / SECSPERDAY;
1573 rem = (long) (*timep - tdays * SECSPERDAY);
1574 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1575 int newy;
1576 register time_t tdelta;
1577 register int idelta;
1578 register int leapdays;
1580 tdelta = tdays / DAYSPERLYEAR;
1581 idelta = (int) tdelta;
1582 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1583 return NULL;
1584 if (idelta == 0)
1585 idelta = (tdays < 0) ? -1 : 1;
1586 newy = y;
1587 if (increment_overflow(&newy, idelta))
1588 return NULL;
1589 leapdays = leaps_thru_end_of(newy - 1) -
1590 leaps_thru_end_of(y - 1);
1591 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1592 tdays -= leapdays;
1593 y = newy;
1596 register long seconds;
1598 seconds = tdays * SECSPERDAY + 0.5;
1599 tdays = seconds / SECSPERDAY;
1600 rem += (long) (seconds - tdays * SECSPERDAY);
1603 ** Given the range, we can now fearlessly cast...
1605 idays = (int) tdays;
1606 rem += offset - corr;
1607 while (rem < 0) {
1608 rem += SECSPERDAY;
1609 --idays;
1611 while (rem >= SECSPERDAY) {
1612 rem -= SECSPERDAY;
1613 ++idays;
1615 while (idays < 0) {
1616 if (increment_overflow(&y, -1))
1617 return NULL;
1618 idays += year_lengths[isleap(y)];
1620 while (idays >= year_lengths[isleap(y)]) {
1621 idays -= year_lengths[isleap(y)];
1622 if (increment_overflow(&y, 1))
1623 return NULL;
1625 tmp->tm_year = y;
1626 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1627 return NULL;
1628 tmp->tm_yday = idays;
1630 ** The "extra" mods below avoid overflow problems.
1632 tmp->tm_wday = EPOCH_WDAY +
1633 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1634 (DAYSPERNYEAR % DAYSPERWEEK) +
1635 leaps_thru_end_of(y - 1) -
1636 leaps_thru_end_of(EPOCH_YEAR - 1) +
1637 idays;
1638 tmp->tm_wday %= DAYSPERWEEK;
1639 if (tmp->tm_wday < 0)
1640 tmp->tm_wday += DAYSPERWEEK;
1641 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1642 rem %= SECSPERHOUR;
1643 tmp->tm_min = (int) (rem / SECSPERMIN);
1645 ** A positive leap second requires a special
1646 ** representation. This uses "... ??:59:60" et seq.
1648 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1649 ip = mon_lengths[isleap(y)];
1650 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1651 idays -= ip[tmp->tm_mon];
1652 tmp->tm_mday = (int) (idays + 1);
1653 tmp->tm_isdst = 0;
1654 #ifdef TM_GMTOFF
1655 tmp->TM_GMTOFF = offset;
1656 #endif /* defined TM_GMTOFF */
1657 return tmp;
1660 char *
1661 ctime(timep)
1662 const time_t * const timep;
1665 ** Section 4.12.3.2 of X3.159-1989 requires that
1666 ** The ctime function converts the calendar time pointed to by timer
1667 ** to local time in the form of a string. It is equivalent to
1668 ** asctime(localtime(timer))
1670 return asctime(localtime(timep));
1673 char *
1674 ctime_r(timep, buf)
1675 const time_t * const timep;
1676 char * buf;
1678 struct tm mytm;
1680 return asctime_r(localtime_r(timep, &mytm), buf);
1684 ** Adapted from code provided by Robert Elz, who writes:
1685 ** The "best" way to do mktime I think is based on an idea of Bob
1686 ** Kridle's (so its said...) from a long time ago.
1687 ** It does a binary search of the time_t space. Since time_t's are
1688 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1689 ** would still be very reasonable).
1692 #ifndef WRONG
1693 #define WRONG (-1)
1694 #endif /* !defined WRONG */
1697 ** Simplified normalize logic courtesy Paul Eggert.
1700 static int
1701 increment_overflow(number, delta)
1702 int * number;
1703 int delta;
1705 int number0;
1707 number0 = *number;
1708 *number += delta;
1709 return (*number < number0) != (delta < 0);
1712 static int
1713 long_increment_overflow(number, delta)
1714 long * number;
1715 int delta;
1717 long number0;
1719 number0 = *number;
1720 *number += delta;
1721 return (*number < number0) != (delta < 0);
1724 static int
1725 normalize_overflow(tensptr, unitsptr, base)
1726 int * const tensptr;
1727 int * const unitsptr;
1728 const int base;
1730 register int tensdelta;
1732 tensdelta = (*unitsptr >= 0) ?
1733 (*unitsptr / base) :
1734 (-1 - (-1 - *unitsptr) / base);
1735 *unitsptr -= tensdelta * base;
1736 return increment_overflow(tensptr, tensdelta);
1739 static int
1740 long_normalize_overflow(tensptr, unitsptr, base)
1741 long * const tensptr;
1742 int * const unitsptr;
1743 const int base;
1745 register int tensdelta;
1747 tensdelta = (*unitsptr >= 0) ?
1748 (*unitsptr / base) :
1749 (-1 - (-1 - *unitsptr) / base);
1750 *unitsptr -= tensdelta * base;
1751 return long_increment_overflow(tensptr, tensdelta);
1754 static int
1755 tmcomp(atmp, btmp)
1756 register const struct tm * const atmp;
1757 register const struct tm * const btmp;
1759 register int result;
1761 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1762 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1763 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1764 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1765 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1766 result = atmp->tm_sec - btmp->tm_sec;
1767 return result;
1770 static time_t
1771 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1772 struct tm * const tmp;
1773 struct tm * (* const funcp)(const time_t*, long, struct tm*);
1774 const long offset;
1775 int * const okayp;
1776 const int do_norm_secs;
1778 register const struct state * sp;
1779 register int dir;
1780 register int i, j;
1781 register int saved_seconds;
1782 register long li;
1783 register time_t lo;
1784 register time_t hi;
1785 long y;
1786 time_t newt;
1787 time_t t;
1788 struct tm yourtm, mytm;
1790 *okayp = FALSE;
1791 yourtm = *tmp;
1792 if (do_norm_secs) {
1793 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1794 SECSPERMIN))
1795 return WRONG;
1797 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1798 return WRONG;
1799 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1800 return WRONG;
1801 y = yourtm.tm_year;
1802 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1803 return WRONG;
1805 ** Turn y into an actual year number for now.
1806 ** It is converted back to an offset from TM_YEAR_BASE later.
1808 if (long_increment_overflow(&y, TM_YEAR_BASE))
1809 return WRONG;
1810 while (yourtm.tm_mday <= 0) {
1811 if (long_increment_overflow(&y, -1))
1812 return WRONG;
1813 li = y + (1 < yourtm.tm_mon);
1814 yourtm.tm_mday += year_lengths[isleap(li)];
1816 while (yourtm.tm_mday > DAYSPERLYEAR) {
1817 li = y + (1 < yourtm.tm_mon);
1818 yourtm.tm_mday -= year_lengths[isleap(li)];
1819 if (long_increment_overflow(&y, 1))
1820 return WRONG;
1822 for ( ; ; ) {
1823 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1824 if (yourtm.tm_mday <= i)
1825 break;
1826 yourtm.tm_mday -= i;
1827 if (++yourtm.tm_mon >= MONSPERYEAR) {
1828 yourtm.tm_mon = 0;
1829 if (long_increment_overflow(&y, 1))
1830 return WRONG;
1833 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1834 return WRONG;
1835 yourtm.tm_year = y;
1836 if (yourtm.tm_year != y)
1837 return WRONG;
1838 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1839 saved_seconds = 0;
1840 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1842 ** We can't set tm_sec to 0, because that might push the
1843 ** time below the minimum representable time.
1844 ** Set tm_sec to 59 instead.
1845 ** This assumes that the minimum representable time is
1846 ** not in the same minute that a leap second was deleted from,
1847 ** which is a safer assumption than using 58 would be.
1849 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1850 return WRONG;
1851 saved_seconds = yourtm.tm_sec;
1852 yourtm.tm_sec = SECSPERMIN - 1;
1853 } else {
1854 saved_seconds = yourtm.tm_sec;
1855 yourtm.tm_sec = 0;
1858 ** Do a binary search (this works whatever time_t's type is).
1860 /* LINTED constant */
1861 if (!TYPE_SIGNED(time_t)) {
1862 lo = 0;
1863 hi = lo - 1;
1864 /* LINTED constant */
1865 } else if (!TYPE_INTEGRAL(time_t)) {
1866 /* CONSTCOND */
1867 if (sizeof(time_t) > sizeof(float))
1868 /* LINTED assumed double */
1869 hi = (time_t) DBL_MAX;
1870 /* LINTED assumed float */
1871 else hi = (time_t) FLT_MAX;
1872 lo = -hi;
1873 } else {
1874 lo = 1;
1875 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1876 lo *= 2;
1877 hi = -(lo + 1);
1879 for ( ; ; ) {
1880 t = lo / 2 + hi / 2;
1881 if (t < lo)
1882 t = lo;
1883 else if (t > hi)
1884 t = hi;
1885 if ((*funcp)(&t, offset, &mytm) == NULL) {
1887 ** Assume that t is too extreme to be represented in
1888 ** a struct tm; arrange things so that it is less
1889 ** extreme on the next pass.
1891 dir = (t > 0) ? 1 : -1;
1892 } else dir = tmcomp(&mytm, &yourtm);
1893 if (dir != 0) {
1894 if (t == lo) {
1895 ++t;
1896 if (t <= lo)
1897 return WRONG;
1898 ++lo;
1899 } else if (t == hi) {
1900 --t;
1901 if (t >= hi)
1902 return WRONG;
1903 --hi;
1905 if (lo > hi)
1906 return WRONG;
1907 if (dir > 0)
1908 hi = t;
1909 else lo = t;
1910 continue;
1912 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1913 break;
1915 ** Right time, wrong type.
1916 ** Hunt for right time, right type.
1917 ** It's okay to guess wrong since the guess
1918 ** gets checked.
1920 sp = (const struct state *)
1921 ((funcp == localsub) ? lclptr : gmtptr);
1922 #ifdef ALL_STATE
1923 if (sp == NULL)
1924 return WRONG;
1925 #endif /* defined ALL_STATE */
1926 for (i = sp->typecnt - 1; i >= 0; --i) {
1927 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1928 continue;
1929 for (j = sp->typecnt - 1; j >= 0; --j) {
1930 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1931 continue;
1932 newt = t + sp->ttis[j].tt_gmtoff -
1933 sp->ttis[i].tt_gmtoff;
1934 if ((*funcp)(&newt, offset, &mytm) == NULL)
1935 continue;
1936 if (tmcomp(&mytm, &yourtm) != 0)
1937 continue;
1938 if (mytm.tm_isdst != yourtm.tm_isdst)
1939 continue;
1941 ** We have a match.
1943 t = newt;
1944 goto label;
1947 return WRONG;
1949 label:
1950 newt = t + saved_seconds;
1951 if ((newt < t) != (saved_seconds < 0))
1952 return WRONG;
1953 t = newt;
1954 if ((*funcp)(&t, offset, tmp))
1955 *okayp = TRUE;
1956 return t;
1959 static time_t
1960 time2(tmp, funcp, offset, okayp)
1961 struct tm * const tmp;
1962 struct tm * (* const funcp)(const time_t*, long, struct tm*);
1963 const long offset;
1964 int * const okayp;
1966 time_t t;
1969 ** First try without normalization of seconds
1970 ** (in case tm_sec contains a value associated with a leap second).
1971 ** If that fails, try with normalization of seconds.
1973 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1974 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1977 static time_t
1978 time1(tmp, funcp, offset)
1979 struct tm * const tmp;
1980 struct tm * (* const funcp)(const time_t *, long, struct tm *);
1981 const long offset;
1983 register time_t t;
1984 register const struct state * sp;
1985 register int samei, otheri;
1986 register int sameind, otherind;
1987 register int i;
1988 register int nseen;
1989 int seen[TZ_MAX_TYPES];
1990 int types[TZ_MAX_TYPES];
1991 int okay;
1993 if (tmp->tm_isdst > 1)
1994 tmp->tm_isdst = 1;
1995 t = time2(tmp, funcp, offset, &okay);
1996 #ifdef PCTS
1998 ** PCTS code courtesy Grant Sullivan.
2000 if (okay)
2001 return t;
2002 if (tmp->tm_isdst < 0)
2003 tmp->tm_isdst = 0; /* reset to std and try again */
2004 #endif /* defined PCTS */
2005 #ifndef PCTS
2006 if (okay || tmp->tm_isdst < 0)
2007 return t;
2008 #endif /* !defined PCTS */
2010 ** We're supposed to assume that somebody took a time of one type
2011 ** and did some math on it that yielded a "struct tm" that's bad.
2012 ** We try to divine the type they started from and adjust to the
2013 ** type they need.
2015 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2016 #ifdef ALL_STATE
2017 if (sp == NULL)
2018 return WRONG;
2019 #endif /* defined ALL_STATE */
2020 for (i = 0; i < sp->typecnt; ++i)
2021 seen[i] = FALSE;
2022 nseen = 0;
2023 for (i = sp->timecnt - 1; i >= 0; --i)
2024 if (!seen[sp->types[i]]) {
2025 seen[sp->types[i]] = TRUE;
2026 types[nseen++] = sp->types[i];
2028 for (sameind = 0; sameind < nseen; ++sameind) {
2029 samei = types[sameind];
2030 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2031 continue;
2032 for (otherind = 0; otherind < nseen; ++otherind) {
2033 otheri = types[otherind];
2034 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2035 continue;
2036 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2037 sp->ttis[samei].tt_gmtoff);
2038 tmp->tm_isdst = !tmp->tm_isdst;
2039 t = time2(tmp, funcp, offset, &okay);
2040 if (okay)
2041 return t;
2042 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2043 sp->ttis[samei].tt_gmtoff);
2044 tmp->tm_isdst = !tmp->tm_isdst;
2047 return WRONG;
2050 time_t
2051 mktime(tmp)
2052 struct tm * const tmp;
2054 time_t result;
2056 rwlock_wrlock(&lcl_lock);
2057 tzset_unlocked();
2058 result = time1(tmp, localsub, 0L);
2059 rwlock_unlock(&lcl_lock);
2060 return (result);
2063 #ifdef STD_INSPIRED
2065 time_t
2066 timelocal(tmp)
2067 struct tm * const tmp;
2069 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2070 return mktime(tmp);
2073 time_t
2074 timegm(tmp)
2075 struct tm * const tmp;
2077 tmp->tm_isdst = 0;
2078 return time1(tmp, gmtsub, 0L);
2081 time_t
2082 timeoff(tmp, offset)
2083 struct tm * const tmp;
2084 const long offset;
2086 tmp->tm_isdst = 0;
2087 return time1(tmp, gmtsub, offset);
2090 #endif /* defined STD_INSPIRED */
2092 #ifdef CMUCS
2095 ** The following is supplied for compatibility with
2096 ** previous versions of the CMUCS runtime library.
2099 long
2100 gtime(tmp)
2101 struct tm * const tmp;
2103 const time_t t = mktime(tmp);
2105 if (t == WRONG)
2106 return -1;
2107 return t;
2110 #endif /* defined CMUCS */
2113 ** XXX--is the below the right way to conditionalize??
2116 #ifdef STD_INSPIRED
2119 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2120 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2121 ** is not the case if we are accounting for leap seconds.
2122 ** So, we provide the following conversion routines for use
2123 ** when exchanging timestamps with POSIX conforming systems.
2126 static long
2127 leapcorr(timep)
2128 time_t * timep;
2130 register struct state * sp;
2131 register struct lsinfo * lp;
2132 register int i;
2134 sp = lclptr;
2135 i = sp->leapcnt;
2136 while (--i >= 0) {
2137 lp = &sp->lsis[i];
2138 if (*timep >= lp->ls_trans)
2139 return lp->ls_corr;
2141 return 0;
2144 time_t
2145 time2posix(t)
2146 time_t t;
2148 time_t result;
2150 rwlock_wrlock(&lcl_lock);
2151 tzset_unlocked();
2152 result = t - leapcorr(&t);
2153 rwlock_unlock(&lcl_lock);
2154 return (result);
2157 time_t
2158 posix2time(t)
2159 time_t t;
2161 time_t x;
2162 time_t y;
2164 rwlock_wrlock(&lcl_lock);
2165 tzset_unlocked();
2167 ** For a positive leap second hit, the result
2168 ** is not unique. For a negative leap second
2169 ** hit, the corresponding time doesn't exist,
2170 ** so we return an adjacent second.
2172 x = t + leapcorr(&t);
2173 y = x - leapcorr(&x);
2174 if (y < t) {
2175 do {
2176 x++;
2177 y = x - leapcorr(&x);
2178 } while (y < t);
2179 if (t != y) {
2180 rwlock_unlock(&lcl_lock);
2181 return x - 1;
2183 } else if (y > t) {
2184 do {
2185 --x;
2186 y = x - leapcorr(&x);
2187 } while (y > t);
2188 if (t != y) {
2189 rwlock_unlock(&lcl_lock);
2190 return x + 1;
2193 rwlock_unlock(&lcl_lock);
2194 return x;
2197 #endif /* defined STD_INSPIRED */