Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / audio.c
bloba3ebca4d87550b7f17d9e754c2cf2eb5be4288d0
1 /* $NetBSD: audio.c,v 1.248 2009/09/29 15:58:54 sborrill Exp $ */
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
37 * This is a (partially) SunOS-compatible /dev/audio driver for NetBSD.
39 * This code tries to do something half-way sensible with
40 * half-duplex hardware, such as with the SoundBlaster hardware. With
41 * half-duplex hardware allowing O_RDWR access doesn't really make
42 * sense. However, closing and opening the device to "turn around the
43 * line" is relatively expensive and costs a card reset (which can
44 * take some time, at least for the SoundBlaster hardware). Instead
45 * we allow O_RDWR access, and provide an ioctl to set the "mode",
46 * i.e. playing or recording.
48 * If you write to a half-duplex device in record mode, the data is
49 * tossed. If you read from the device in play mode, you get silence
50 * filled buffers at the rate at which samples are naturally
51 * generated.
53 * If you try to set both play and record mode on a half-duplex
54 * device, playing takes precedence.
58 * Todo:
59 * - Add softaudio() isr processing for wakeup, poll, signals,
60 * and silence fill.
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.248 2009/09/29 15:58:54 sborrill Exp $");
66 #include "audio.h"
67 #if NAUDIO > 0
69 #include <sys/param.h>
70 #include <sys/ioctl.h>
71 #include <sys/fcntl.h>
72 #include <sys/vnode.h>
73 #include <sys/select.h>
74 #include <sys/poll.h>
75 #include <sys/malloc.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/syslog.h>
79 #include <sys/kernel.h>
80 #include <sys/signalvar.h>
81 #include <sys/conf.h>
82 #include <sys/audioio.h>
83 #include <sys/device.h>
84 #include <sys/intr.h>
86 #include <dev/audio_if.h>
87 #include <dev/audiovar.h>
89 #include <machine/endian.h>
91 /* #define AUDIO_DEBUG 1 */
92 #ifdef AUDIO_DEBUG
93 #define DPRINTF(x) if (audiodebug) printf x
94 #define DPRINTFN(n,x) if (audiodebug>(n)) printf x
95 int audiodebug = AUDIO_DEBUG;
96 #else
97 #define DPRINTF(x)
98 #define DPRINTFN(n,x)
99 #endif
101 #define ROUNDSIZE(x) x &= -16 /* round to nice boundary */
102 #define SPECIFIED(x) (x != ~0)
103 #define SPECIFIED_CH(x) (x != (u_char)~0)
105 /* #define AUDIO_PM_IDLE */
106 #ifdef AUDIO_PM_IDLE
107 int audio_idle_timeout = 30;
108 #endif
110 int audio_blk_ms = AUDIO_BLK_MS;
112 int audiosetinfo(struct audio_softc *, struct audio_info *);
113 int audiogetinfo(struct audio_softc *, struct audio_info *, int);
115 int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *);
116 int audio_close(struct audio_softc *, int, int, struct lwp *);
117 int audio_read(struct audio_softc *, struct uio *, int);
118 int audio_write(struct audio_softc *, struct uio *, int);
119 int audio_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
120 int audio_poll(struct audio_softc *, int, struct lwp *);
121 int audio_kqfilter(struct audio_softc *, struct knote *);
122 paddr_t audio_mmap(struct audio_softc *, off_t, int);
124 int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
125 int mixer_close(struct audio_softc *, int, int, struct lwp *);
126 int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
127 static void mixer_remove(struct audio_softc *, struct lwp *);
128 static void mixer_signal(struct audio_softc *);
130 void audio_init_record(struct audio_softc *);
131 void audio_init_play(struct audio_softc *);
132 int audiostartr(struct audio_softc *);
133 int audiostartp(struct audio_softc *);
134 void audio_rint(void *);
135 void audio_pint(void *);
136 int audio_check_params(struct audio_params *);
138 void audio_calc_blksize(struct audio_softc *, int);
139 void audio_fill_silence(struct audio_params *, uint8_t *, int);
140 int audio_silence_copyout(struct audio_softc *, int, struct uio *);
142 void audio_init_ringbuffer(struct audio_softc *,
143 struct audio_ringbuffer *, int);
144 int audio_initbufs(struct audio_softc *);
145 void audio_calcwater(struct audio_softc *);
146 static inline int audio_sleep_timo(int *, const char *, int);
147 static inline int audio_sleep(int *, const char *);
148 static inline void audio_wakeup(int *);
149 int audio_drain(struct audio_softc *);
150 void audio_clear(struct audio_softc *);
151 static inline void audio_pint_silence
152 (struct audio_softc *, struct audio_ringbuffer *, uint8_t *, int);
154 int audio_alloc_ring
155 (struct audio_softc *, struct audio_ringbuffer *, int, size_t);
156 void audio_free_ring(struct audio_softc *, struct audio_ringbuffer *);
157 static int audio_setup_pfilters(struct audio_softc *, const audio_params_t *,
158 stream_filter_list_t *);
159 static int audio_setup_rfilters(struct audio_softc *, const audio_params_t *,
160 stream_filter_list_t *);
161 static void audio_destruct_pfilters(struct audio_softc *);
162 static void audio_destruct_rfilters(struct audio_softc *);
163 static void audio_stream_dtor(audio_stream_t *);
164 static int audio_stream_ctor(audio_stream_t *, const audio_params_t *, int);
165 static void stream_filter_list_append
166 (stream_filter_list_t *, stream_filter_factory_t,
167 const audio_params_t *);
168 static void stream_filter_list_prepend
169 (stream_filter_list_t *, stream_filter_factory_t,
170 const audio_params_t *);
171 static void stream_filter_list_set
172 (stream_filter_list_t *, int, stream_filter_factory_t,
173 const audio_params_t *);
174 int audio_set_defaults(struct audio_softc *, u_int);
176 int audioprobe(device_t, cfdata_t, void *);
177 void audioattach(device_t, device_t, void *);
178 int audiodetach(device_t, int);
179 int audioactivate(device_t, enum devact);
181 #ifdef AUDIO_PM_IDLE
182 static void audio_idle(void *);
183 static void audio_activity(device_t, devactive_t);
184 #endif
186 static bool audio_suspend(device_t dv PMF_FN_PROTO);
187 static bool audio_resume(device_t dv PMF_FN_PROTO);
188 static void audio_volume_down(device_t);
189 static void audio_volume_up(device_t);
190 static void audio_volume_toggle(device_t);
192 static void audio_mixer_capture(struct audio_softc *);
193 static void audio_mixer_restore(struct audio_softc *);
195 static int audio_get_props(struct audio_softc *);
196 static bool audio_can_playback(struct audio_softc *);
197 static bool audio_can_capture(struct audio_softc *);
199 static void audio_softintr_rd(void *);
200 static void audio_softintr_wr(void *);
202 struct portname {
203 const char *name;
204 int mask;
206 static const struct portname itable[] = {
207 { AudioNmicrophone, AUDIO_MICROPHONE },
208 { AudioNline, AUDIO_LINE_IN },
209 { AudioNcd, AUDIO_CD },
210 { 0, 0 }
212 static const struct portname otable[] = {
213 { AudioNspeaker, AUDIO_SPEAKER },
214 { AudioNheadphone, AUDIO_HEADPHONE },
215 { AudioNline, AUDIO_LINE_OUT },
216 { 0, 0 }
218 void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
219 mixer_devinfo_t *, const struct portname *);
220 int au_set_gain(struct audio_softc *, struct au_mixer_ports *,
221 int, int);
222 void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
223 u_int *, u_char *);
224 int au_set_port(struct audio_softc *, struct au_mixer_ports *,
225 u_int);
226 int au_get_port(struct audio_softc *, struct au_mixer_ports *);
227 int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *,
228 int *, int *);
229 int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *,
230 int, int);
231 int au_portof(struct audio_softc *, char *, int);
233 typedef struct uio_fetcher {
234 stream_fetcher_t base;
235 struct uio *uio;
236 int usedhigh;
237 int last_used;
238 } uio_fetcher_t;
240 static void uio_fetcher_ctor(uio_fetcher_t *, struct uio *, int);
241 static int uio_fetcher_fetch_to(stream_fetcher_t *,
242 audio_stream_t *, int);
243 static int null_fetcher_fetch_to(stream_fetcher_t *,
244 audio_stream_t *, int);
246 dev_type_open(audioopen);
247 dev_type_close(audioclose);
248 dev_type_read(audioread);
249 dev_type_write(audiowrite);
250 dev_type_ioctl(audioioctl);
251 dev_type_poll(audiopoll);
252 dev_type_mmap(audiommap);
253 dev_type_kqfilter(audiokqfilter);
255 const struct cdevsw audio_cdevsw = {
256 audioopen, audioclose, audioread, audiowrite, audioioctl,
257 nostop, notty, audiopoll, audiommap, audiokqfilter, D_OTHER
260 /* The default audio mode: 8 kHz mono mu-law */
261 const struct audio_params audio_default = {
262 .sample_rate = 8000,
263 .encoding = AUDIO_ENCODING_ULAW,
264 .precision = 8,
265 .validbits = 8,
266 .channels = 1,
269 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
270 audioprobe, audioattach, audiodetach, audioactivate, NULL, NULL,
271 DVF_DETACH_SHUTDOWN);
273 extern struct cfdriver audio_cd;
276 audioprobe(device_t parent, cfdata_t match, void *aux)
278 struct audio_attach_args *sa;
280 sa = aux;
281 DPRINTF(("audioprobe: type=%d sa=%p hw=%p\n",
282 sa->type, sa, sa->hwif));
283 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
286 void
287 audioattach(device_t parent, device_t self, void *aux)
289 struct audio_softc *sc;
290 struct audio_attach_args *sa;
291 const struct audio_hw_if *hwp;
292 void *hdlp;
293 int error;
294 mixer_devinfo_t mi;
295 int iclass, mclass, oclass, rclass, props;
296 int record_master_found, record_source_found;
298 sc = device_private(self);
299 sc->dev = self;
300 sa = aux;
301 hwp = sa->hwif;
302 hdlp = sa->hdl;
303 #ifdef DIAGNOSTIC
304 if (hwp == 0 ||
305 hwp->query_encoding == 0 ||
306 hwp->set_params == 0 ||
307 (hwp->start_output == 0 && hwp->trigger_output == 0) ||
308 (hwp->start_input == 0 && hwp->trigger_input == 0) ||
309 hwp->halt_output == 0 ||
310 hwp->halt_input == 0 ||
311 hwp->getdev == 0 ||
312 hwp->set_port == 0 ||
313 hwp->get_port == 0 ||
314 hwp->query_devinfo == 0 ||
315 hwp->get_props == 0) {
316 printf(": missing method\n");
317 sc->hw_if = 0;
318 return;
320 #endif
322 sc->hw_if = hwp;
323 sc->hw_hdl = hdlp;
324 sc->sc_dev = parent;
325 sc->sc_opencnt = 0;
326 sc->sc_writing = sc->sc_waitcomp = 0;
327 sc->sc_lastinfovalid = false;
329 props = audio_get_props(sc);
331 if (props & AUDIO_PROP_FULLDUPLEX)
332 aprint_normal(": full duplex");
333 else
334 aprint_normal(": half duplex");
336 if (props & AUDIO_PROP_PLAYBACK)
337 aprint_normal(", playback");
338 if (props & AUDIO_PROP_CAPTURE)
339 aprint_normal(", capture");
340 if (props & AUDIO_PROP_MMAP)
341 aprint_normal(", mmap");
342 if (props & AUDIO_PROP_INDEPENDENT)
343 aprint_normal(", independent");
345 aprint_naive("\n");
346 aprint_normal("\n");
348 if (audio_can_playback(sc)) {
349 error = audio_alloc_ring(sc, &sc->sc_pr,
350 AUMODE_PLAY, AU_RING_SIZE);
351 if (error) {
352 sc->hw_if = NULL;
353 aprint_error("audio: could not allocate play buffer\n");
354 return;
357 if (audio_can_capture(sc)) {
358 error = audio_alloc_ring(sc, &sc->sc_rr,
359 AUMODE_RECORD, AU_RING_SIZE);
360 if (error) {
361 if (sc->sc_pr.s.start != 0)
362 audio_free_ring(sc, &sc->sc_pr);
363 sc->hw_if = NULL;
364 aprint_error("audio: could not allocate record buffer\n");
365 return;
369 sc->sc_lastgain = 128;
371 if ((error = audio_set_defaults(sc, 0))) {
372 aprint_error("audioattach: audio_set_defaults() failed\n");
373 sc->hw_if = NULL;
374 return;
377 sc->sc_sih_rd = softint_establish(SOFTINT_SERIAL,
378 audio_softintr_rd, sc);
379 sc->sc_sih_wr = softint_establish(SOFTINT_SERIAL,
380 audio_softintr_wr, sc);
382 iclass = mclass = oclass = rclass = -1;
383 sc->sc_inports.index = -1;
384 sc->sc_inports.master = -1;
385 sc->sc_inports.nports = 0;
386 sc->sc_inports.isenum = false;
387 sc->sc_inports.allports = 0;
388 sc->sc_inports.isdual = false;
389 sc->sc_inports.mixerout = -1;
390 sc->sc_inports.cur_port = -1;
391 sc->sc_outports.index = -1;
392 sc->sc_outports.master = -1;
393 sc->sc_outports.nports = 0;
394 sc->sc_outports.isenum = false;
395 sc->sc_outports.allports = 0;
396 sc->sc_outports.isdual = false;
397 sc->sc_outports.mixerout = -1;
398 sc->sc_outports.cur_port = -1;
399 sc->sc_monitor_port = -1;
401 * Read through the underlying driver's list, picking out the class
402 * names from the mixer descriptions. We'll need them to decode the
403 * mixer descriptions on the next pass through the loop.
405 for(mi.index = 0; ; mi.index++) {
406 if (hwp->query_devinfo(hdlp, &mi) != 0)
407 break;
409 * The type of AUDIO_MIXER_CLASS merely introduces a class.
410 * All the other types describe an actual mixer.
412 if (mi.type == AUDIO_MIXER_CLASS) {
413 if (strcmp(mi.label.name, AudioCinputs) == 0)
414 iclass = mi.mixer_class;
415 if (strcmp(mi.label.name, AudioCmonitor) == 0)
416 mclass = mi.mixer_class;
417 if (strcmp(mi.label.name, AudioCoutputs) == 0)
418 oclass = mi.mixer_class;
419 if (strcmp(mi.label.name, AudioCrecord) == 0)
420 rclass = mi.mixer_class;
424 * This is where we assign each control in the "audio" model, to the
425 * underlying "mixer" control. We walk through the whole list once,
426 * assigning likely candidates as we come across them.
428 record_master_found = 0;
429 record_source_found = 0;
430 for(mi.index = 0; ; mi.index++) {
431 if (hwp->query_devinfo(hdlp, &mi) != 0)
432 break;
433 if (mi.type == AUDIO_MIXER_CLASS)
434 continue;
435 if (mi.mixer_class == iclass) {
437 * AudioCinputs is only a fallback, when we don't
438 * find what we're looking for in AudioCrecord, so
439 * check the flags before accepting one of these.
441 if (strcmp(mi.label.name, AudioNmaster) == 0
442 && record_master_found == 0)
443 sc->sc_inports.master = mi.index;
444 if (strcmp(mi.label.name, AudioNsource) == 0
445 && record_source_found == 0) {
446 if (mi.type == AUDIO_MIXER_ENUM) {
447 int i;
448 for(i = 0; i < mi.un.e.num_mem; i++)
449 if (strcmp(mi.un.e.member[i].label.name,
450 AudioNmixerout) == 0)
451 sc->sc_inports.mixerout =
452 mi.un.e.member[i].ord;
454 au_setup_ports(sc, &sc->sc_inports, &mi,
455 itable);
457 if (strcmp(mi.label.name, AudioNdac) == 0 &&
458 sc->sc_outports.master == -1)
459 sc->sc_outports.master = mi.index;
460 } else if (mi.mixer_class == mclass) {
461 if (strcmp(mi.label.name, AudioNmonitor) == 0)
462 sc->sc_monitor_port = mi.index;
463 } else if (mi.mixer_class == oclass) {
464 if (strcmp(mi.label.name, AudioNmaster) == 0)
465 sc->sc_outports.master = mi.index;
466 if (strcmp(mi.label.name, AudioNselect) == 0)
467 au_setup_ports(sc, &sc->sc_outports, &mi,
468 otable);
469 } else if (mi.mixer_class == rclass) {
471 * These are the preferred mixers for the audio record
472 * controls, so set the flags here, but don't check.
474 if (strcmp(mi.label.name, AudioNmaster) == 0) {
475 sc->sc_inports.master = mi.index;
476 record_master_found = 1;
478 #if 1 /* Deprecated. Use AudioNmaster. */
479 if (strcmp(mi.label.name, AudioNrecord) == 0) {
480 sc->sc_inports.master = mi.index;
481 record_master_found = 1;
483 if (strcmp(mi.label.name, AudioNvolume) == 0) {
484 sc->sc_inports.master = mi.index;
485 record_master_found = 1;
487 #endif
488 if (strcmp(mi.label.name, AudioNsource) == 0) {
489 if (mi.type == AUDIO_MIXER_ENUM) {
490 int i;
491 for(i = 0; i < mi.un.e.num_mem; i++)
492 if (strcmp(mi.un.e.member[i].label.name,
493 AudioNmixerout) == 0)
494 sc->sc_inports.mixerout =
495 mi.un.e.member[i].ord;
497 au_setup_ports(sc, &sc->sc_inports, &mi,
498 itable);
499 record_source_found = 1;
503 DPRINTF(("audio_attach: inputs ports=0x%x, input master=%d, "
504 "output ports=0x%x, output master=%d\n",
505 sc->sc_inports.allports, sc->sc_inports.master,
506 sc->sc_outports.allports, sc->sc_outports.master));
508 selinit(&sc->sc_rsel);
509 selinit(&sc->sc_wsel);
511 #ifdef AUDIO_PM_IDLE
512 callout_init(&sc->sc_idle_counter, 0);
513 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
514 #endif
516 if (!pmf_device_register(self, audio_suspend, audio_resume))
517 aprint_error_dev(self, "couldn't establish power handler\n");
518 #ifdef AUDIO_PM_IDLE
519 if (!device_active_register(self, audio_activity))
520 aprint_error_dev(self, "couldn't register activity handler\n");
521 #endif
523 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
524 audio_volume_down, true))
525 aprint_error_dev(self, "couldn't add volume down handler\n");
526 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
527 audio_volume_up, true))
528 aprint_error_dev(self, "couldn't add volume up handler\n");
529 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
530 audio_volume_toggle, true))
531 aprint_error_dev(self, "couldn't add volume toggle handler\n");
533 #ifdef AUDIO_PM_IDLE
534 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
535 #endif
539 audioactivate(device_t self, enum devact act)
541 struct audio_softc *sc = device_private(self);
543 switch (act) {
544 case DVACT_DEACTIVATE:
545 sc->sc_dying = true;
546 return 0;
547 default:
548 return EOPNOTSUPP;
553 audiodetach(device_t self, int flags)
555 struct audio_softc *sc;
556 int maj, mn;
557 int s;
559 sc = device_private(self);
560 DPRINTF(("audio_detach: sc=%p flags=%d\n", sc, flags));
562 sc->sc_dying = true;
564 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
565 audio_volume_down, true);
566 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
567 audio_volume_up, true);
568 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
569 audio_volume_toggle, true);
571 #ifdef AUDIO_PM_IDLE
572 callout_stop(&sc->sc_idle_counter);
574 device_active_deregister(self, audio_activity);
575 #endif
577 pmf_device_deregister(self);
579 wakeup(&sc->sc_wchan);
580 wakeup(&sc->sc_rchan);
581 s = splaudio();
582 if (--sc->sc_refcnt >= 0) {
583 if (tsleep(&sc->sc_refcnt, PZERO, "auddet", hz * 120))
584 printf("audiodetach: %s didn't detach\n",
585 device_xname(sc->dev));
587 splx(s);
589 /* free resources */
590 audio_free_ring(sc, &sc->sc_pr);
591 audio_free_ring(sc, &sc->sc_rr);
592 audio_destruct_pfilters(sc);
593 audio_destruct_rfilters(sc);
595 /* locate the major number */
596 maj = cdevsw_lookup_major(&audio_cdevsw);
598 /* Nuke the vnodes for any open instances (calls close). */
599 mn = device_unit(self);
600 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
601 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
602 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
603 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
605 if (sc->sc_sih_rd) {
606 softint_disestablish(sc->sc_sih_rd);
607 sc->sc_sih_rd = NULL;
609 if (sc->sc_sih_wr) {
610 softint_disestablish(sc->sc_sih_wr);
611 sc->sc_sih_wr = NULL;
614 #ifdef AUDIO_PM_IDLE
615 callout_destroy(&sc->sc_idle_counter);
616 #endif
617 seldestroy(&sc->sc_rsel);
618 seldestroy(&sc->sc_wsel);
620 return 0;
624 au_portof(struct audio_softc *sc, char *name, int class)
626 mixer_devinfo_t mi;
628 for(mi.index = 0;
629 sc->hw_if->query_devinfo(sc->hw_hdl, &mi) == 0;
630 mi.index++)
631 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
632 return mi.index;
633 return -1;
636 void
637 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
638 mixer_devinfo_t *mi, const struct portname *tbl)
640 int i, j;
642 ports->index = mi->index;
643 if (mi->type == AUDIO_MIXER_ENUM) {
644 ports->isenum = true;
645 for(i = 0; tbl[i].name; i++)
646 for(j = 0; j < mi->un.e.num_mem; j++)
647 if (strcmp(mi->un.e.member[j].label.name,
648 tbl[i].name) == 0) {
649 ports->allports |= tbl[i].mask;
650 ports->aumask[ports->nports] = tbl[i].mask;
651 ports->misel[ports->nports] =
652 mi->un.e.member[j].ord;
653 ports->miport[ports->nports] =
654 au_portof(sc, mi->un.e.member[j].label.name,
655 mi->mixer_class);
656 if (ports->mixerout != -1 &&
657 ports->miport[ports->nports] != -1)
658 ports->isdual = true;
659 ++ports->nports;
661 } else if (mi->type == AUDIO_MIXER_SET) {
662 for(i = 0; tbl[i].name; i++)
663 for(j = 0; j < mi->un.s.num_mem; j++)
664 if (strcmp(mi->un.s.member[j].label.name,
665 tbl[i].name) == 0) {
666 ports->allports |= tbl[i].mask;
667 ports->aumask[ports->nports] = tbl[i].mask;
668 ports->misel[ports->nports] =
669 mi->un.s.member[j].mask;
670 ports->miport[ports->nports] =
671 au_portof(sc, mi->un.s.member[j].label.name,
672 mi->mixer_class);
673 ++ports->nports;
679 * Called from hardware driver. This is where the MI audio driver gets
680 * probed/attached to the hardware driver.
682 device_t
683 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
685 struct audio_attach_args arg;
687 #ifdef DIAGNOSTIC
688 if (ahwp == NULL) {
689 aprint_error("audio_attach_mi: NULL\n");
690 return 0;
692 #endif
693 arg.type = AUDIODEV_TYPE_AUDIO;
694 arg.hwif = ahwp;
695 arg.hdl = hdlp;
696 return config_found(dev, &arg, audioprint);
699 #ifdef AUDIO_DEBUG
700 void audio_printsc(struct audio_softc *);
701 void audio_print_params(const char *, struct audio_params *);
703 void
704 audio_printsc(struct audio_softc *sc)
706 printf("hwhandle %p hw_if %p ", sc->hw_hdl, sc->hw_if);
707 printf("open 0x%x mode 0x%x\n", sc->sc_open, sc->sc_mode);
708 printf("rchan 0x%x wchan 0x%x ", sc->sc_rchan, sc->sc_wchan);
709 printf("rring used 0x%x pring used=%d\n",
710 audio_stream_get_used(&sc->sc_rr.s),
711 audio_stream_get_used(&sc->sc_pr.s));
712 printf("rbus 0x%x pbus 0x%x ", sc->sc_rbus, sc->sc_pbus);
713 printf("blksize %d", sc->sc_pr.blksize);
714 printf("hiwat %d lowat %d\n", sc->sc_pr.usedhigh, sc->sc_pr.usedlow);
717 void
718 audio_print_params(const char *s, struct audio_params *p)
720 printf("%s enc=%u %uch %u/%ubit %uHz\n", s, p->encoding, p->channels,
721 p->validbits, p->precision, p->sample_rate);
723 #endif
726 audio_alloc_ring(struct audio_softc *sc, struct audio_ringbuffer *r,
727 int direction, size_t bufsize)
729 const struct audio_hw_if *hw;
730 void *hdl;
732 hw = sc->hw_if;
733 hdl = sc->hw_hdl;
735 * Alloc DMA play and record buffers
737 if (bufsize < AUMINBUF)
738 bufsize = AUMINBUF;
739 ROUNDSIZE(bufsize);
740 if (hw->round_buffersize)
741 bufsize = hw->round_buffersize(hdl, direction, bufsize);
742 if (hw->allocm)
743 r->s.start = hw->allocm(hdl, direction, bufsize,
744 M_DEVBUF, M_WAITOK);
745 else
746 r->s.start = malloc(bufsize, M_DEVBUF, M_WAITOK);
747 if (r->s.start == 0)
748 return ENOMEM;
749 r->s.bufsize = bufsize;
750 return 0;
753 void
754 audio_free_ring(struct audio_softc *sc, struct audio_ringbuffer *r)
756 if (r->s.start == 0)
757 return;
759 if (sc->hw_if->freem)
760 sc->hw_if->freem(sc->hw_hdl, r->s.start, M_DEVBUF);
761 else
762 free(r->s.start, M_DEVBUF);
763 r->s.start = 0;
766 static int
767 audio_setup_pfilters(struct audio_softc *sc, const audio_params_t *pp,
768 stream_filter_list_t *pfilters)
770 stream_filter_t *pf[AUDIO_MAX_FILTERS];
771 audio_stream_t ps[AUDIO_MAX_FILTERS];
772 const audio_params_t *from_param;
773 audio_params_t *to_param;
774 int i, n;
776 while (sc->sc_writing) {
777 sc->sc_waitcomp = 1;
778 (void)tsleep(sc, 0, "audioch", 10*hz);
781 memset(pf, 0, sizeof(pf));
782 memset(ps, 0, sizeof(ps));
783 from_param = pp;
784 for (i = 0; i < pfilters->req_size; i++) {
785 n = pfilters->req_size - i - 1;
786 to_param = &pfilters->filters[n].param;
787 audio_check_params(to_param);
788 pf[i] = pfilters->filters[n].factory(sc, from_param, to_param);
789 if (pf[i] == NULL)
790 break;
791 if (audio_stream_ctor(&ps[i], from_param, AU_RING_SIZE))
792 break;
793 if (i > 0)
794 pf[i]->set_fetcher(pf[i], &pf[i - 1]->base);
795 from_param = to_param;
797 if (i < pfilters->req_size) { /* failure */
798 DPRINTF(("%s: pfilters failure\n", __func__));
799 for (; i >= 0; i--) {
800 if (pf[i] != NULL)
801 pf[i]->dtor(pf[i]);
802 audio_stream_dtor(&ps[i]);
804 sc->sc_waitcomp = 0;
805 return EINVAL;
808 audio_destruct_pfilters(sc);
809 memcpy(sc->sc_pfilters, pf, sizeof(pf));
810 memcpy(sc->sc_pstreams, ps, sizeof(ps));
811 sc->sc_npfilters = pfilters->req_size;
812 for (i = 0; i < pfilters->req_size; i++) {
813 pf[i]->set_inputbuffer(pf[i], &sc->sc_pstreams[i]);
816 /* hardware format and the buffer near to userland */
817 if (pfilters->req_size <= 0) {
818 sc->sc_pr.s.param = *pp;
819 sc->sc_pustream = &sc->sc_pr.s;
820 } else {
821 sc->sc_pr.s.param = pfilters->filters[0].param;
822 sc->sc_pustream = &sc->sc_pstreams[0];
824 #ifdef AUDIO_DEBUG
825 printf("%s: HW-buffer=%p pustream=%p\n",
826 __func__, &sc->sc_pr.s, sc->sc_pustream);
827 for (i = 0; i < pfilters->req_size; i++) {
828 char num[100];
829 snprintf(num, 100, "[%d]", i);
830 audio_print_params(num, &sc->sc_pstreams[i].param);
832 audio_print_params("[HW]", &sc->sc_pr.s.param);
833 #endif /* AUDIO_DEBUG */
835 sc->sc_waitcomp = 0;
836 return 0;
839 static int
840 audio_setup_rfilters(struct audio_softc *sc, const audio_params_t *rp,
841 stream_filter_list_t *rfilters)
843 stream_filter_t *rf[AUDIO_MAX_FILTERS];
844 audio_stream_t rs[AUDIO_MAX_FILTERS];
845 const audio_params_t *to_param;
846 audio_params_t *from_param;
847 int i;
849 memset(rf, 0, sizeof(rf));
850 memset(rs, 0, sizeof(rs));
851 for (i = 0; i < rfilters->req_size; i++) {
852 from_param = &rfilters->filters[i].param;
853 audio_check_params(from_param);
854 to_param = i + 1 < rfilters->req_size
855 ? &rfilters->filters[i + 1].param : rp;
856 rf[i] = rfilters->filters[i].factory(sc, from_param, to_param);
857 if (rf[i] == NULL)
858 break;
859 if (audio_stream_ctor(&rs[i], to_param, AU_RING_SIZE))
860 break;
861 if (i > 0) {
862 rf[i]->set_fetcher(rf[i], &rf[i - 1]->base);
863 } else {
864 /* rf[0] has no previous fetcher because
865 * the audio hardware fills data to the
866 * input buffer. */
867 rf[0]->set_inputbuffer(rf[0], &sc->sc_rr.s);
870 if (i < rfilters->req_size) { /* failure */
871 DPRINTF(("%s: rfilters failure\n", __func__));
872 for (; i >= 0; i--) {
873 if (rf[i] != NULL)
874 rf[i]->dtor(rf[i]);
875 audio_stream_dtor(&rs[i]);
877 return EINVAL;
880 audio_destruct_rfilters(sc);
881 memcpy(sc->sc_rfilters, rf, sizeof(rf));
882 memcpy(sc->sc_rstreams, rs, sizeof(rs));
883 sc->sc_nrfilters = rfilters->req_size;
884 for (i = 1; i < rfilters->req_size; i++) {
885 rf[i]->set_inputbuffer(rf[i], &sc->sc_rstreams[i - 1]);
888 /* hardware format and the buffer near to userland */
889 if (rfilters->req_size <= 0) {
890 sc->sc_rr.s.param = *rp;
891 sc->sc_rustream = &sc->sc_rr.s;
892 } else {
893 sc->sc_rr.s.param = rfilters->filters[0].param;
894 sc->sc_rustream = &sc->sc_rstreams[rfilters->req_size - 1];
896 #ifdef AUDIO_DEBUG
897 printf("%s: HW-buffer=%p pustream=%p\n",
898 __func__, &sc->sc_rr.s, sc->sc_rustream);
899 audio_print_params("[HW]", &sc->sc_rr.s.param);
900 for (i = 0; i < rfilters->req_size; i++) {
901 char num[100];
902 snprintf(num, 100, "[%d]", i);
903 audio_print_params(num, &sc->sc_rstreams[i].param);
905 #endif /* AUDIO_DEBUG */
906 return 0;
909 static void
910 audio_destruct_pfilters(struct audio_softc *sc)
912 int i;
914 for (i = 0; i < sc->sc_npfilters; i++) {
915 sc->sc_pfilters[i]->dtor(sc->sc_pfilters[i]);
916 sc->sc_pfilters[i] = NULL;
917 audio_stream_dtor(&sc->sc_pstreams[i]);
919 sc->sc_npfilters = 0;
922 static void
923 audio_destruct_rfilters(struct audio_softc *sc)
925 int i;
927 for (i = 0; i < sc->sc_nrfilters; i++) {
928 sc->sc_rfilters[i]->dtor(sc->sc_rfilters[i]);
929 sc->sc_rfilters[i] = NULL;
930 audio_stream_dtor(&sc->sc_rstreams[i]);
932 sc->sc_nrfilters = 0;
935 static void
936 audio_stream_dtor(audio_stream_t *stream)
939 if (stream->start != NULL)
940 free(stream->start, M_DEVBUF);
941 memset(stream, 0, sizeof(audio_stream_t));
944 static int
945 audio_stream_ctor(audio_stream_t *stream, const audio_params_t *param, int size)
947 int frame_size;
949 size = min(size, AU_RING_SIZE);
950 stream->bufsize = size;
951 stream->start = malloc(size, M_DEVBUF, M_NOWAIT);
952 if (stream->start == NULL)
953 return ENOMEM;
954 frame_size = (param->precision + 7) / 8 * param->channels;
955 size = (size / frame_size) * frame_size;
956 stream->end = stream->start + size;
957 stream->inp = stream->start;
958 stream->outp = stream->start;
959 stream->used = 0;
960 stream->param = *param;
961 stream->loop = false;
962 return 0;
965 static void
966 stream_filter_list_append(stream_filter_list_t *list,
967 stream_filter_factory_t factory,
968 const audio_params_t *param)
971 if (list->req_size >= AUDIO_MAX_FILTERS) {
972 printf("%s: increase AUDIO_MAX_FILTERS in sys/dev/audio_if.h\n",
973 __func__);
974 return;
976 list->filters[list->req_size].factory = factory;
977 list->filters[list->req_size].param = *param;
978 list->req_size++;
981 static void
982 stream_filter_list_set(stream_filter_list_t *list, int i,
983 stream_filter_factory_t factory,
984 const audio_params_t *param)
987 if (i < 0 || i >= AUDIO_MAX_FILTERS) {
988 printf("%s: invalid index: %d\n", __func__, i);
989 return;
992 list->filters[i].factory = factory;
993 list->filters[i].param = *param;
994 if (list->req_size <= i)
995 list->req_size = i + 1;
998 static void
999 stream_filter_list_prepend(stream_filter_list_t *list,
1000 stream_filter_factory_t factory,
1001 const audio_params_t *param)
1004 if (list->req_size >= AUDIO_MAX_FILTERS) {
1005 printf("%s: increase AUDIO_MAX_FILTERS in sys/dev/audio_if.h\n",
1006 __func__);
1007 return;
1009 memmove(&list->filters[1], &list->filters[0],
1010 sizeof(struct stream_filter_req) * list->req_size);
1011 list->filters[0].factory = factory;
1012 list->filters[0].param = *param;
1013 list->req_size++;
1017 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1019 struct audio_softc *sc;
1020 int error;
1022 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1023 if (sc == NULL)
1024 return ENXIO;
1026 if (sc->sc_dying)
1027 return EIO;
1029 device_active(sc->dev, DVA_SYSTEM);
1031 sc->sc_opencnt++;
1033 sc->sc_refcnt++;
1034 switch (AUDIODEV(dev)) {
1035 case SOUND_DEVICE:
1036 case AUDIO_DEVICE:
1037 error = audio_open(dev, sc, flags, ifmt, l);
1038 break;
1039 case AUDIOCTL_DEVICE:
1040 error = 0;
1041 break;
1042 case MIXER_DEVICE:
1043 error = mixer_open(dev, sc, flags, ifmt, l);
1044 break;
1045 default:
1046 error = ENXIO;
1047 break;
1049 if (--sc->sc_refcnt < 0)
1050 wakeup(&sc->sc_refcnt);
1051 return error;
1055 audioclose(dev_t dev, int flags, int ifmt, struct lwp *l)
1057 struct audio_softc *sc;
1058 int error;
1060 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1062 device_active(sc->dev, DVA_SYSTEM);
1064 switch (AUDIODEV(dev)) {
1065 case SOUND_DEVICE:
1066 case AUDIO_DEVICE:
1067 error = audio_close(sc, flags, ifmt, l);
1068 break;
1069 case MIXER_DEVICE:
1070 error = mixer_close(sc, flags, ifmt, l);
1071 break;
1072 case AUDIOCTL_DEVICE:
1073 error = 0;
1074 break;
1075 default:
1076 error = ENXIO;
1077 break;
1080 sc->sc_opencnt--;
1082 return error;
1086 audioread(dev_t dev, struct uio *uio, int ioflag)
1088 struct audio_softc *sc;
1089 int error;
1091 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1092 if (sc == NULL)
1093 return ENXIO;
1095 if (sc->sc_dying)
1096 return EIO;
1098 sc->sc_refcnt++;
1099 switch (AUDIODEV(dev)) {
1100 case SOUND_DEVICE:
1101 case AUDIO_DEVICE:
1102 error = audio_read(sc, uio, ioflag);
1103 break;
1104 case AUDIOCTL_DEVICE:
1105 case MIXER_DEVICE:
1106 error = ENODEV;
1107 break;
1108 default:
1109 error = ENXIO;
1110 break;
1112 if (--sc->sc_refcnt < 0)
1113 wakeup(&sc->sc_refcnt);
1114 return error;
1118 audiowrite(dev_t dev, struct uio *uio, int ioflag)
1120 struct audio_softc *sc;
1121 int error;
1123 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1124 if (sc == NULL)
1125 return ENXIO;
1127 if (sc->sc_dying)
1128 return EIO;
1130 sc->sc_refcnt++;
1131 switch (AUDIODEV(dev)) {
1132 case SOUND_DEVICE:
1133 case AUDIO_DEVICE:
1134 error = audio_write(sc, uio, ioflag);
1135 break;
1136 case AUDIOCTL_DEVICE:
1137 case MIXER_DEVICE:
1138 error = ENODEV;
1139 break;
1140 default:
1141 error = ENXIO;
1142 break;
1144 if (--sc->sc_refcnt < 0)
1145 wakeup(&sc->sc_refcnt);
1146 return error;
1150 audioioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
1152 struct audio_softc *sc;
1153 int error;
1155 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1156 if (sc->sc_dying)
1157 return EIO;
1159 sc->sc_refcnt++;
1160 switch (AUDIODEV(dev)) {
1161 case SOUND_DEVICE:
1162 case AUDIO_DEVICE:
1163 case AUDIOCTL_DEVICE:
1164 device_active(sc->dev, DVA_SYSTEM);
1165 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1166 error = mixer_ioctl(sc, cmd, addr, flag, l);
1167 else
1168 error = audio_ioctl(sc, cmd, addr, flag, l);
1169 break;
1170 case MIXER_DEVICE:
1171 error = mixer_ioctl(sc, cmd, addr, flag, l);
1172 break;
1173 default:
1174 error = ENXIO;
1175 break;
1177 if (--sc->sc_refcnt < 0)
1178 wakeup(&sc->sc_refcnt);
1179 return error;
1183 audiopoll(dev_t dev, int events, struct lwp *l)
1185 struct audio_softc *sc;
1186 int revents;
1188 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1189 if (sc->sc_dying)
1190 return POLLHUP;
1192 sc->sc_refcnt++;
1193 switch (AUDIODEV(dev)) {
1194 case SOUND_DEVICE:
1195 case AUDIO_DEVICE:
1196 revents = audio_poll(sc, events, l);
1197 break;
1198 case AUDIOCTL_DEVICE:
1199 case MIXER_DEVICE:
1200 revents = 0;
1201 break;
1202 default:
1203 revents = POLLERR;
1204 break;
1206 if (--sc->sc_refcnt < 0)
1207 wakeup(&sc->sc_refcnt);
1208 return revents;
1212 audiokqfilter(dev_t dev, struct knote *kn)
1214 struct audio_softc *sc;
1215 int rv;
1217 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1218 if (sc->sc_dying)
1219 return 1;
1221 sc->sc_refcnt++;
1222 switch (AUDIODEV(dev)) {
1223 case SOUND_DEVICE:
1224 case AUDIO_DEVICE:
1225 rv = audio_kqfilter(sc, kn);
1226 break;
1227 case AUDIOCTL_DEVICE:
1228 case MIXER_DEVICE:
1229 rv = 1;
1230 break;
1231 default:
1232 rv = 1;
1234 if (--sc->sc_refcnt < 0)
1235 wakeup(&sc->sc_refcnt);
1236 return rv;
1239 paddr_t
1240 audiommap(dev_t dev, off_t off, int prot)
1242 struct audio_softc *sc;
1243 paddr_t error;
1245 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1246 if (sc->sc_dying)
1247 return -1;
1249 device_active(sc->dev, DVA_SYSTEM); /* XXXJDM */
1251 sc->sc_refcnt++;
1252 switch (AUDIODEV(dev)) {
1253 case SOUND_DEVICE:
1254 case AUDIO_DEVICE:
1255 error = audio_mmap(sc, off, prot);
1256 break;
1257 case AUDIOCTL_DEVICE:
1258 case MIXER_DEVICE:
1259 error = -1;
1260 break;
1261 default:
1262 error = -1;
1263 break;
1265 if (--sc->sc_refcnt < 0)
1266 wakeup(&sc->sc_refcnt);
1267 return error;
1271 * Audio driver
1273 void
1274 audio_init_ringbuffer(struct audio_softc *sc, struct audio_ringbuffer *rp,
1275 int mode)
1277 int nblks;
1278 int blksize;
1280 blksize = rp->blksize;
1281 if (blksize < AUMINBLK)
1282 blksize = AUMINBLK;
1283 if (blksize > rp->s.bufsize / AUMINNOBLK)
1284 blksize = rp->s.bufsize / AUMINNOBLK;
1285 ROUNDSIZE(blksize);
1286 DPRINTF(("audio_init_ringbuffer: MI blksize=%d\n", blksize));
1287 if (sc->hw_if->round_blocksize)
1288 blksize = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
1289 mode, &rp->s.param);
1290 if (blksize <= 0)
1291 panic("audio_init_ringbuffer: blksize");
1292 nblks = rp->s.bufsize / blksize;
1294 DPRINTF(("audio_init_ringbuffer: final blksize=%d\n", blksize));
1295 rp->blksize = blksize;
1296 rp->maxblks = nblks;
1297 rp->s.end = rp->s.start + nblks * blksize;
1298 rp->s.outp = rp->s.inp = rp->s.start;
1299 rp->s.used = 0;
1300 rp->stamp = 0;
1301 rp->stamp_last = 0;
1302 rp->fstamp = 0;
1303 rp->drops = 0;
1304 rp->copying = false;
1305 rp->needfill = false;
1306 rp->mmapped = false;
1310 audio_initbufs(struct audio_softc *sc)
1312 const struct audio_hw_if *hw;
1313 int error;
1315 DPRINTF(("audio_initbufs: mode=0x%x\n", sc->sc_mode));
1316 hw = sc->hw_if;
1317 if (audio_can_capture(sc)) {
1318 audio_init_ringbuffer(sc, &sc->sc_rr, AUMODE_RECORD);
1319 if (hw->init_input && (sc->sc_mode & AUMODE_RECORD)) {
1320 error = hw->init_input(sc->hw_hdl, sc->sc_rr.s.start,
1321 sc->sc_rr.s.end - sc->sc_rr.s.start);
1322 if (error)
1323 return error;
1327 if (audio_can_playback(sc)) {
1328 audio_init_ringbuffer(sc, &sc->sc_pr, AUMODE_PLAY);
1329 sc->sc_sil_count = 0;
1330 if (hw->init_output && (sc->sc_mode & AUMODE_PLAY)) {
1331 error = hw->init_output(sc->hw_hdl, sc->sc_pr.s.start,
1332 sc->sc_pr.s.end - sc->sc_pr.s.start);
1333 if (error)
1334 return error;
1338 #ifdef AUDIO_INTR_TIME
1339 #define double u_long
1340 if (audio_can_playback(sc)) {
1341 sc->sc_pnintr = 0;
1342 sc->sc_pblktime = (u_long)(
1343 (double)sc->sc_pr.blksize * 100000 /
1344 (double)(sc->sc_pparams.precision / NBBY *
1345 sc->sc_pparams.channels *
1346 sc->sc_pparams.sample_rate)) * 10;
1347 DPRINTF(("audio: play blktime = %lu for %d\n",
1348 sc->sc_pblktime, sc->sc_pr.blksize));
1350 if (audio_can_capture(sc)) {
1351 sc->sc_rnintr = 0;
1352 sc->sc_rblktime = (u_long)(
1353 (double)sc->sc_rr.blksize * 100000 /
1354 (double)(sc->sc_rparams.precision / NBBY *
1355 sc->sc_rparams.channels *
1356 sc->sc_rparams.sample_rate)) * 10;
1357 DPRINTF(("audio: record blktime = %lu for %d\n",
1358 sc->sc_rblktime, sc->sc_rr.blksize));
1360 #undef double
1361 #endif
1363 return 0;
1366 void
1367 audio_calcwater(struct audio_softc *sc)
1370 /* set high at 100% */
1371 if (audio_can_playback(sc)) {
1372 sc->sc_pr.usedhigh =
1373 sc->sc_pustream->end - sc->sc_pustream->start;
1374 /* set low at 75% of usedhigh */
1375 sc->sc_pr.usedlow = sc->sc_pr.usedhigh * 3 / 4;
1376 if (sc->sc_pr.usedlow == sc->sc_pr.usedhigh)
1377 sc->sc_pr.usedlow -= sc->sc_pr.blksize;
1380 if (audio_can_capture(sc)) {
1381 sc->sc_rr.usedhigh =
1382 sc->sc_rustream->end - sc->sc_rustream->start -
1383 sc->sc_rr.blksize;
1384 sc->sc_rr.usedlow = 0;
1385 DPRINTF(("%s: plow=%d phigh=%d rlow=%d rhigh=%d\n", __func__,
1386 sc->sc_pr.usedlow, sc->sc_pr.usedhigh,
1387 sc->sc_rr.usedlow, sc->sc_rr.usedhigh));
1391 static inline int
1392 audio_sleep_timo(int *chan, const char *label, int timo)
1394 int st;
1396 if (label == NULL)
1397 label = "audio";
1399 DPRINTFN(3, ("audio_sleep_timo: chan=%p, label=%s, timo=%d\n",
1400 chan, label, timo));
1401 *chan = 1;
1402 st = tsleep(chan, PWAIT | PCATCH, label, timo);
1403 *chan = 0;
1404 #ifdef AUDIO_DEBUG
1405 if (st != 0 && st != EINTR)
1406 DPRINTF(("audio_sleep: woke up st=%d\n", st));
1407 #endif
1408 return st;
1411 static inline int
1412 audio_sleep(int *chan, const char *label)
1415 return audio_sleep_timo(chan, label, 0);
1418 /* call at splaudio() */
1419 static inline void
1420 audio_wakeup(int *chan)
1423 DPRINTFN(3, ("audio_wakeup: chan=%p, *chan=%d\n", chan, *chan));
1424 if (*chan) {
1425 wakeup(chan);
1426 *chan = 0;
1431 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1432 struct lwp *l)
1434 int error;
1435 u_int mode;
1436 const struct audio_hw_if *hw;
1438 hw = sc->hw_if;
1439 if (hw == NULL)
1440 return ENXIO;
1442 DPRINTF(("audio_open: flags=0x%x sc=%p hdl=%p\n",
1443 flags, sc, sc->hw_hdl));
1445 if (((flags & FREAD) && (sc->sc_open & AUOPEN_READ)) ||
1446 ((flags & FWRITE) && (sc->sc_open & AUOPEN_WRITE)))
1447 return EBUSY;
1449 if (hw->open != NULL) {
1450 error = hw->open(sc->hw_hdl, flags);
1451 if (error)
1452 return error;
1455 sc->sc_async_audio = 0;
1456 sc->sc_rchan = 0;
1457 sc->sc_wchan = 0;
1458 sc->sc_sil_count = 0;
1459 sc->sc_rbus = false;
1460 sc->sc_pbus = false;
1461 sc->sc_eof = 0;
1462 sc->sc_playdrop = 0;
1464 sc->sc_full_duplex =
1465 (flags & (FWRITE|FREAD)) == (FWRITE|FREAD) &&
1466 (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1468 mode = 0;
1469 if (flags & FREAD) {
1470 sc->sc_open |= AUOPEN_READ;
1471 mode |= AUMODE_RECORD;
1473 if (flags & FWRITE) {
1474 sc->sc_open |= AUOPEN_WRITE;
1475 mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1479 * Multiplex device: /dev/audio (MU-Law) and /dev/sound (linear)
1480 * The /dev/audio is always (re)set to 8-bit MU-Law mono
1481 * For the other devices, you get what they were last set to.
1483 if (ISDEVAUDIO(dev)) {
1484 error = audio_set_defaults(sc, mode);
1485 } else {
1486 struct audio_info ai;
1488 AUDIO_INITINFO(&ai);
1489 ai.mode = mode;
1490 error = audiosetinfo(sc, &ai);
1492 if (error)
1493 goto bad;
1495 #ifdef DIAGNOSTIC
1497 * Sample rate and precision are supposed to be set to proper
1498 * default values by the hardware driver, so that it may give
1499 * us these values.
1501 if (sc->sc_rparams.precision == 0 || sc->sc_pparams.precision == 0) {
1502 printf("audio_open: 0 precision\n");
1503 return EINVAL;
1505 #endif
1507 /* audio_close() decreases sc_pr.usedlow, recalculate here */
1508 audio_calcwater(sc);
1510 DPRINTF(("audio_open: done sc_mode = 0x%x\n", sc->sc_mode));
1512 return 0;
1514 bad:
1515 if (hw->close != NULL)
1516 hw->close(sc->hw_hdl);
1517 sc->sc_open = 0;
1518 sc->sc_mode = 0;
1519 sc->sc_full_duplex = 0;
1520 return error;
1524 * Must be called from task context.
1526 void
1527 audio_init_record(struct audio_softc *sc)
1529 int s;
1531 s = splaudio();
1532 if (sc->hw_if->speaker_ctl &&
1533 (!sc->sc_full_duplex || (sc->sc_mode & AUMODE_PLAY) == 0))
1534 sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_OFF);
1535 splx(s);
1539 * Must be called from task context.
1541 void
1542 audio_init_play(struct audio_softc *sc)
1544 int s;
1546 s = splaudio();
1547 sc->sc_wstamp = sc->sc_pr.stamp;
1548 if (sc->hw_if->speaker_ctl)
1549 sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_ON);
1550 splx(s);
1554 audio_drain(struct audio_softc *sc)
1556 struct audio_ringbuffer *cb;
1557 int error, drops;
1558 int s;
1559 int i, used;
1561 DPRINTF(("audio_drain: enter busy=%d\n", sc->sc_pbus));
1562 cb = &sc->sc_pr;
1563 if (cb->mmapped)
1564 return 0;
1566 used = audio_stream_get_used(&sc->sc_pr.s);
1567 s = splaudio();
1568 for (i = 0; i < sc->sc_npfilters; i++)
1569 used += audio_stream_get_used(&sc->sc_pstreams[i]);
1570 splx(s);
1571 if (used <= 0)
1572 return 0;
1574 if (!sc->sc_pbus) {
1575 /* We've never started playing, probably because the
1576 * block was too short. Pad it and start now.
1578 int cc;
1579 uint8_t *inp = cb->s.inp;
1581 cc = cb->blksize - (inp - cb->s.start) % cb->blksize;
1582 audio_fill_silence(&cb->s.param, inp, cc);
1583 s = splaudio();
1584 cb->s.inp = audio_stream_add_inp(&cb->s, inp, cc);
1585 error = audiostartp(sc);
1586 splx(s);
1587 if (error)
1588 return error;
1591 * Play until a silence block has been played, then we
1592 * know all has been drained.
1593 * XXX This should be done some other way to avoid
1594 * playing silence.
1596 #ifdef DIAGNOSTIC
1597 if (cb->copying) {
1598 printf("audio_drain: copying in progress!?!\n");
1599 cb->copying = false;
1601 #endif
1602 drops = cb->drops;
1603 error = 0;
1604 s = splaudio();
1605 while (cb->drops == drops && !error) {
1606 DPRINTF(("audio_drain: used=%d, drops=%ld\n",
1607 audio_stream_get_used(&sc->sc_pr.s), cb->drops));
1609 * When the process is exiting, it ignores all signals and
1610 * we can't interrupt this sleep, so we set a timeout
1611 * just in case.
1613 error = audio_sleep_timo(&sc->sc_wchan, "aud_dr", 30*hz);
1614 if (sc->sc_dying)
1615 error = EIO;
1617 splx(s);
1618 return error;
1622 * Close an audio chip.
1624 /* ARGSUSED */
1626 audio_close(struct audio_softc *sc, int flags, int ifmt,
1627 struct lwp *l)
1629 const struct audio_hw_if *hw;
1630 int s;
1632 DPRINTF(("audio_close: sc=%p\n", sc));
1633 hw = sc->hw_if;
1634 s = splaudio();
1635 /* Stop recording. */
1636 if ((flags & FREAD) && sc->sc_rbus) {
1638 * XXX Some drivers (e.g. SB) use the same routine
1639 * to halt input and output so don't halt input if
1640 * in full duplex mode. These drivers should be fixed.
1642 if (!sc->sc_full_duplex || hw->halt_input != hw->halt_output)
1643 hw->halt_input(sc->hw_hdl);
1644 sc->sc_rbus = false;
1647 * Block until output drains, but allow ^C interrupt.
1649 sc->sc_pr.usedlow = sc->sc_pr.blksize; /* avoid excessive wakeups */
1651 * If there is pending output, let it drain (unless
1652 * the output is paused).
1654 if ((flags & FWRITE) && sc->sc_pbus) {
1655 if (!sc->sc_pr.pause && !audio_drain(sc) && hw->drain)
1656 (void)hw->drain(sc->hw_hdl);
1657 hw->halt_output(sc->hw_hdl);
1658 sc->sc_pbus = false;
1661 if (hw->close != NULL)
1662 hw->close(sc->hw_hdl);
1664 sc->sc_open = 0;
1665 sc->sc_mode = 0;
1666 sc->sc_async_audio = 0;
1667 sc->sc_full_duplex = 0;
1668 splx(s);
1669 DPRINTF(("audio_close: done\n"));
1671 return 0;
1675 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag)
1677 struct audio_ringbuffer *cb;
1678 const uint8_t *outp;
1679 uint8_t *inp;
1680 int error, s, used, cc, n;
1682 cb = &sc->sc_rr;
1683 if (cb->mmapped)
1684 return EINVAL;
1686 DPRINTFN(1,("audio_read: cc=%zu mode=%d\n",
1687 uio->uio_resid, sc->sc_mode));
1689 #ifdef AUDIO_PM_IDLE
1690 if (device_is_active(&sc->dev) || sc->sc_idle)
1691 device_active(&sc->dev, DVA_SYSTEM);
1692 #endif
1694 error = 0;
1696 * If hardware is half-duplex and currently playing, return
1697 * silence blocks based on the number of blocks we have output.
1699 if (!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY)) {
1700 while (uio->uio_resid > 0 && !error) {
1701 s = splaudio();
1702 for(;;) {
1703 cc = sc->sc_pr.stamp - sc->sc_wstamp;
1704 if (cc > 0)
1705 break;
1706 DPRINTF(("audio_read: stamp=%lu, wstamp=%lu\n",
1707 sc->sc_pr.stamp, sc->sc_wstamp));
1708 if (ioflag & IO_NDELAY) {
1709 splx(s);
1710 return EWOULDBLOCK;
1712 error = audio_sleep(&sc->sc_rchan, "aud_hr");
1713 if (sc->sc_dying)
1714 error = EIO;
1715 if (error) {
1716 splx(s);
1717 return error;
1720 splx(s);
1722 if (uio->uio_resid < cc)
1723 cc = uio->uio_resid;
1724 DPRINTFN(1,("audio_read: reading in write mode, "
1725 "cc=%d\n", cc));
1726 error = audio_silence_copyout(sc, cc, uio);
1727 sc->sc_wstamp += cc;
1729 return error;
1732 while (uio->uio_resid > 0 && !error) {
1733 s = splaudio();
1734 while ((used = audio_stream_get_used(sc->sc_rustream)) <= 0) {
1735 if (!sc->sc_rbus && !sc->sc_rr.pause) {
1736 error = audiostartr(sc);
1737 if (error) {
1738 splx(s);
1739 return error;
1742 if (ioflag & IO_NDELAY) {
1743 splx(s);
1744 return EWOULDBLOCK;
1746 DPRINTFN(2, ("audio_read: sleep used=%d\n", used));
1747 error = audio_sleep(&sc->sc_rchan, "aud_rd");
1748 if (sc->sc_dying)
1749 error = EIO;
1750 if (error) {
1751 splx(s);
1752 return error;
1756 outp = sc->sc_rustream->outp;
1757 inp = sc->sc_rustream->inp;
1758 cb->copying = true;
1759 splx(s);
1762 * cc is the amount of data in the sc_rustream excluding
1763 * wrapped data. Note the tricky case of inp == outp, which
1764 * must mean the buffer is full, not empty, because used > 0.
1766 cc = outp < inp ? inp - outp :sc->sc_rustream->end - outp;
1767 DPRINTFN(1,("audio_read: outp=%p, cc=%d\n", outp, cc));
1769 n = uio->uio_resid;
1770 error = uiomove(__UNCONST(outp), cc, uio);
1771 n -= uio->uio_resid; /* number of bytes actually moved */
1773 s = splaudio();
1774 sc->sc_rustream->outp = audio_stream_add_outp
1775 (sc->sc_rustream, outp, n);
1776 cb->copying = false;
1777 splx(s);
1779 return error;
1782 void
1783 audio_clear(struct audio_softc *sc)
1785 int s;
1787 s = splaudio();
1788 if (sc->sc_rbus) {
1789 audio_wakeup(&sc->sc_rchan);
1790 sc->hw_if->halt_input(sc->hw_hdl);
1791 sc->sc_rbus = false;
1792 sc->sc_rr.pause = false;
1794 if (sc->sc_pbus) {
1795 audio_wakeup(&sc->sc_wchan);
1796 sc->hw_if->halt_output(sc->hw_hdl);
1797 sc->sc_pbus = false;
1798 sc->sc_pr.pause = false;
1800 splx(s);
1803 void
1804 audio_calc_blksize(struct audio_softc *sc, int mode)
1806 const audio_params_t *parm;
1807 struct audio_ringbuffer *rb;
1809 if (sc->sc_blkset)
1810 return;
1812 if (mode == AUMODE_PLAY) {
1813 rb = &sc->sc_pr;
1814 parm = &rb->s.param;
1815 } else {
1816 rb = &sc->sc_rr;
1817 parm = &rb->s.param;
1820 rb->blksize = parm->sample_rate * audio_blk_ms / 1000 *
1821 parm->channels * parm->precision / NBBY;
1823 DPRINTF(("audio_calc_blksize: %s blksize=%d\n",
1824 mode == AUMODE_PLAY ? "play" : "record", rb->blksize));
1827 void
1828 audio_fill_silence(struct audio_params *params, uint8_t *p, int n)
1830 uint8_t auzero0, auzero1;
1831 int nfill;
1833 auzero1 = 0; /* initialize to please gcc */
1834 nfill = 1;
1835 switch (params->encoding) {
1836 case AUDIO_ENCODING_ULAW:
1837 auzero0 = 0x7f;
1838 break;
1839 case AUDIO_ENCODING_ALAW:
1840 auzero0 = 0x55;
1841 break;
1842 case AUDIO_ENCODING_MPEG_L1_STREAM:
1843 case AUDIO_ENCODING_MPEG_L1_PACKETS:
1844 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
1845 case AUDIO_ENCODING_MPEG_L2_STREAM:
1846 case AUDIO_ENCODING_MPEG_L2_PACKETS:
1847 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
1848 case AUDIO_ENCODING_ADPCM: /* is this right XXX */
1849 case AUDIO_ENCODING_SLINEAR_LE:
1850 case AUDIO_ENCODING_SLINEAR_BE:
1851 auzero0 = 0;/* fortunately this works for any number of bits */
1852 break;
1853 case AUDIO_ENCODING_ULINEAR_LE:
1854 case AUDIO_ENCODING_ULINEAR_BE:
1855 if (params->precision > 8) {
1856 nfill = (params->precision + NBBY - 1)/ NBBY;
1857 auzero0 = 0x80;
1858 auzero1 = 0;
1859 } else
1860 auzero0 = 0x80;
1861 break;
1862 default:
1863 DPRINTF(("audio: bad encoding %d\n", params->encoding));
1864 auzero0 = 0;
1865 break;
1867 if (nfill == 1) {
1868 while (--n >= 0)
1869 *p++ = auzero0; /* XXX memset */
1870 } else /* nfill must no longer be 2 */ {
1871 if (params->encoding == AUDIO_ENCODING_ULINEAR_LE) {
1872 int k = nfill;
1873 while (--k > 0)
1874 *p++ = auzero1;
1875 n -= nfill - 1;
1877 while (n >= nfill) {
1878 int k = nfill;
1879 *p++ = auzero0;
1880 while (--k > 0)
1881 *p++ = auzero1;
1883 n -= nfill;
1885 if (n-- > 0) /* XXX must be 1 - DIAGNOSTIC check? */
1886 *p++ = auzero0;
1891 audio_silence_copyout(struct audio_softc *sc, int n, struct uio *uio)
1893 uint8_t zerobuf[128];
1894 int error;
1895 int k;
1897 audio_fill_silence(&sc->sc_rparams, zerobuf, sizeof zerobuf);
1899 error = 0;
1900 while (n > 0 && uio->uio_resid > 0 && !error) {
1901 k = min(n, min(uio->uio_resid, sizeof zerobuf));
1902 error = uiomove(zerobuf, k, uio);
1903 n -= k;
1905 return error;
1908 static int
1909 uio_fetcher_fetch_to(stream_fetcher_t *self, audio_stream_t *p,
1910 int max_used)
1912 uio_fetcher_t *this;
1913 int size;
1914 int stream_space;
1915 int error;
1917 this = (uio_fetcher_t *)self;
1918 this->last_used = audio_stream_get_used(p);
1919 if (this->last_used >= this->usedhigh)
1920 return 0;
1922 * uio_fetcher ignores max_used and move the data as
1923 * much as possible in order to return the correct value
1924 * for audio_prinfo::seek and kfilters.
1926 stream_space = audio_stream_get_space(p);
1927 size = min(this->uio->uio_resid, stream_space);
1929 /* the first fragment of the space */
1930 stream_space = p->end - p->inp;
1931 if (stream_space >= size) {
1932 error = uiomove(p->inp, size, this->uio);
1933 if (error)
1934 return error;
1935 p->inp = audio_stream_add_inp(p, p->inp, size);
1936 } else {
1937 error = uiomove(p->inp, stream_space, this->uio);
1938 if (error)
1939 return error;
1940 p->inp = audio_stream_add_inp(p, p->inp, stream_space);
1941 error = uiomove(p->start, size - stream_space, this->uio);
1942 if (error)
1943 return error;
1944 p->inp = audio_stream_add_inp(p, p->inp, size - stream_space);
1946 this->last_used = audio_stream_get_used(p);
1947 return 0;
1950 static int
1951 null_fetcher_fetch_to(stream_fetcher_t *self,
1952 audio_stream_t *p, int max_used)
1955 return 0;
1958 static void
1959 uio_fetcher_ctor(uio_fetcher_t *this, struct uio *u, int h)
1962 this->base.fetch_to = uio_fetcher_fetch_to;
1963 this->uio = u;
1964 this->usedhigh = h;
1968 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag)
1970 uio_fetcher_t ufetcher;
1971 audio_stream_t stream;
1972 struct audio_ringbuffer *cb;
1973 stream_fetcher_t *fetcher;
1974 stream_filter_t *filter;
1975 uint8_t *inp, *einp;
1976 int saveerror, error, s, n, cc, used;
1978 DPRINTFN(2,("audio_write: sc=%p count=%zu used=%d(hi=%d)\n",
1979 sc, uio->uio_resid, audio_stream_get_used(sc->sc_pustream),
1980 sc->sc_pr.usedhigh));
1981 cb = &sc->sc_pr;
1982 if (cb->mmapped)
1983 return EINVAL;
1985 if (uio->uio_resid == 0) {
1986 sc->sc_eof++;
1987 return 0;
1990 #ifdef AUDIO_PM_IDLE
1991 if (device_is_active(&sc->dev) || sc->sc_idle)
1992 device_active(&sc->dev, DVA_SYSTEM);
1993 #endif
1996 * If half-duplex and currently recording, throw away data.
1998 if (!sc->sc_full_duplex &&
1999 (sc->sc_mode & AUMODE_RECORD)) {
2000 uio->uio_offset += uio->uio_resid;
2001 uio->uio_resid = 0;
2002 DPRINTF(("audio_write: half-dpx read busy\n"));
2003 return 0;
2006 if (!(sc->sc_mode & AUMODE_PLAY_ALL) && sc->sc_playdrop > 0) {
2007 n = min(sc->sc_playdrop, uio->uio_resid);
2008 DPRINTF(("audio_write: playdrop %d\n", n));
2009 uio->uio_offset += n;
2010 uio->uio_resid -= n;
2011 sc->sc_playdrop -= n;
2012 if (uio->uio_resid == 0)
2013 return 0;
2017 * setup filter pipeline
2019 uio_fetcher_ctor(&ufetcher, uio, cb->usedhigh);
2020 if (sc->sc_npfilters > 0) {
2021 fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2022 } else {
2023 fetcher = &ufetcher.base;
2026 error = 0;
2027 while (uio->uio_resid > 0 && !error) {
2028 s = splaudio();
2029 /* wait if the first buffer is occupied */
2030 while ((used = audio_stream_get_used(sc->sc_pustream))
2031 >= cb->usedhigh) {
2032 DPRINTFN(2, ("audio_write: sleep used=%d lowat=%d "
2033 "hiwat=%d\n", used,
2034 cb->usedlow, cb->usedhigh));
2035 if (ioflag & IO_NDELAY) {
2036 splx(s);
2037 return EWOULDBLOCK;
2039 error = audio_sleep(&sc->sc_wchan, "aud_wr");
2040 if (sc->sc_dying)
2041 error = EIO;
2042 if (error) {
2043 splx(s);
2044 return error;
2047 inp = cb->s.inp;
2048 cb->copying = true;
2049 stream = cb->s;
2050 used = stream.used;
2051 splx(s);
2054 * write to the sc_pustream as much as possible
2056 * work with a temporary audio_stream_t to narrow
2057 * splaudio() enclosure
2060 sc->sc_writing = 1;
2062 if (sc->sc_npfilters > 0) {
2063 filter = sc->sc_pfilters[0];
2064 filter->set_fetcher(filter, &ufetcher.base);
2065 fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2066 cc = cb->blksize * 2;
2067 error = fetcher->fetch_to(fetcher, &stream, cc);
2068 if (error != 0) {
2069 fetcher = &ufetcher.base;
2070 cc = sc->sc_pustream->end - sc->sc_pustream->start;
2071 error = fetcher->fetch_to(fetcher, sc->sc_pustream, cc);
2073 } else {
2074 fetcher = &ufetcher.base;
2075 cc = stream.end - stream.start;
2076 error = fetcher->fetch_to(fetcher, &stream, cc);
2078 sc->sc_writing = 0;
2079 if (sc->sc_waitcomp)
2080 wakeup(sc);
2082 s = splaudio();
2083 if (sc->sc_npfilters > 0) {
2084 cb->fstamp += ufetcher.last_used
2085 - audio_stream_get_used(sc->sc_pustream);
2087 cb->s.used += stream.used - used;
2088 cb->s.inp = stream.inp;
2089 einp = cb->s.inp;
2092 * This is a very suboptimal way of keeping track of
2093 * silence in the buffer, but it is simple.
2095 sc->sc_sil_count = 0;
2098 * If the interrupt routine wants the last block filled AND
2099 * the copy did not fill the last block completely it needs to
2100 * be padded.
2102 if (cb->needfill && inp < einp &&
2103 (inp - cb->s.start) / cb->blksize ==
2104 (einp - cb->s.start) / cb->blksize) {
2105 /* Figure out how many bytes to a block boundary. */
2106 cc = cb->blksize - (einp - cb->s.start) % cb->blksize;
2107 DPRINTF(("audio_write: partial fill %d\n", cc));
2108 } else
2109 cc = 0;
2110 cb->needfill = false;
2111 cb->copying = false;
2112 if (!sc->sc_pbus && !cb->pause) {
2113 saveerror = error;
2114 error = audiostartp(sc);
2115 if (saveerror != 0) {
2116 /* Report the first error that occurred. */
2117 error = saveerror;
2120 splx(s);
2121 if (cc != 0) {
2122 DPRINTFN(1, ("audio_write: fill %d\n", cc));
2123 audio_fill_silence(&cb->s.param, einp, cc);
2127 return error;
2131 audio_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
2132 struct lwp *l)
2134 const struct audio_hw_if *hw;
2135 struct audio_offset *ao;
2136 u_long stamp;
2137 int error, s, offs, fd;
2138 bool rbus, pbus;
2140 DPRINTF(("audio_ioctl(%lu,'%c',%lu)\n",
2141 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff));
2142 hw = sc->hw_if;
2143 error = 0;
2144 switch (cmd) {
2145 case FIONBIO:
2146 /* All handled in the upper FS layer. */
2147 break;
2149 case FIONREAD:
2150 *(int *)addr = audio_stream_get_used(sc->sc_rustream);
2151 break;
2153 case FIOASYNC:
2154 if (*(int *)addr) {
2155 if (sc->sc_async_audio)
2156 return EBUSY;
2157 sc->sc_async_audio = l->l_proc;
2158 DPRINTF(("audio_ioctl: FIOASYNC %p\n", l->l_proc));
2159 } else
2160 sc->sc_async_audio = 0;
2161 break;
2163 case AUDIO_FLUSH:
2164 DPRINTF(("AUDIO_FLUSH\n"));
2165 rbus = sc->sc_rbus;
2166 pbus = sc->sc_pbus;
2167 audio_clear(sc);
2168 s = splaudio();
2169 error = audio_initbufs(sc);
2170 if (error) {
2171 splx(s);
2172 return error;
2174 if ((sc->sc_mode & AUMODE_PLAY) && !sc->sc_pbus && pbus)
2175 error = audiostartp(sc);
2176 if (!error &&
2177 (sc->sc_mode & AUMODE_RECORD) && !sc->sc_rbus && rbus)
2178 error = audiostartr(sc);
2179 splx(s);
2180 break;
2183 * Number of read (write) samples dropped. We don't know where or
2184 * when they were dropped.
2186 case AUDIO_RERROR:
2187 *(int *)addr = sc->sc_rr.drops;
2188 break;
2190 case AUDIO_PERROR:
2191 *(int *)addr = sc->sc_pr.drops;
2192 break;
2195 * Offsets into buffer.
2197 case AUDIO_GETIOFFS:
2198 ao = (struct audio_offset *)addr;
2199 s = splaudio();
2200 /* figure out where next DMA will start */
2201 stamp = sc->sc_rustream == &sc->sc_rr.s
2202 ? sc->sc_rr.stamp : sc->sc_rr.fstamp;
2203 offs = sc->sc_rustream->inp - sc->sc_rustream->start;
2204 splx(s);
2205 ao->samples = stamp;
2206 ao->deltablks =
2207 (stamp / sc->sc_rr.blksize) -
2208 (sc->sc_rr.stamp_last / sc->sc_rr.blksize);
2209 sc->sc_rr.stamp_last = stamp;
2210 ao->offset = offs;
2211 break;
2213 case AUDIO_GETOOFFS:
2214 ao = (struct audio_offset *)addr;
2215 s = splaudio();
2216 /* figure out where next DMA will start */
2217 stamp = sc->sc_pustream == &sc->sc_pr.s
2218 ? sc->sc_pr.stamp : sc->sc_pr.fstamp;
2219 offs = sc->sc_pustream->outp - sc->sc_pustream->start
2220 + sc->sc_pr.blksize;
2221 splx(s);
2222 ao->samples = stamp;
2223 ao->deltablks =
2224 (stamp / sc->sc_pr.blksize) -
2225 (sc->sc_pr.stamp_last / sc->sc_pr.blksize);
2226 sc->sc_pr.stamp_last = stamp;
2227 if (sc->sc_pustream->start + offs >= sc->sc_pustream->end)
2228 offs = 0;
2229 ao->offset = offs;
2230 break;
2233 * How many bytes will elapse until mike hears the first
2234 * sample of what we write next?
2236 case AUDIO_WSEEK:
2237 *(u_long *)addr = audio_stream_get_used(sc->sc_pustream);
2238 break;
2240 case AUDIO_SETINFO:
2241 DPRINTF(("AUDIO_SETINFO mode=0x%x\n", sc->sc_mode));
2242 error = audiosetinfo(sc, (struct audio_info *)addr);
2243 break;
2245 case AUDIO_GETINFO:
2246 DPRINTF(("AUDIO_GETINFO\n"));
2247 error = audiogetinfo(sc, (struct audio_info *)addr, 0);
2248 break;
2250 case AUDIO_GETBUFINFO:
2251 DPRINTF(("AUDIO_GETBUFINFO\n"));
2252 error = audiogetinfo(sc, (struct audio_info *)addr, 1);
2253 break;
2255 case AUDIO_DRAIN:
2256 DPRINTF(("AUDIO_DRAIN\n"));
2257 error = audio_drain(sc);
2258 if (!error && hw->drain)
2259 error = hw->drain(sc->hw_hdl);
2260 break;
2262 case AUDIO_GETDEV:
2263 DPRINTF(("AUDIO_GETDEV\n"));
2264 error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
2265 break;
2267 case AUDIO_GETENC:
2268 DPRINTF(("AUDIO_GETENC\n"));
2269 error = hw->query_encoding(sc->hw_hdl,
2270 (struct audio_encoding *)addr);
2271 break;
2273 case AUDIO_GETFD:
2274 DPRINTF(("AUDIO_GETFD\n"));
2275 *(int *)addr = sc->sc_full_duplex;
2276 break;
2278 case AUDIO_SETFD:
2279 DPRINTF(("AUDIO_SETFD\n"));
2280 fd = *(int *)addr;
2281 if (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX) {
2282 if (hw->setfd)
2283 error = hw->setfd(sc->hw_hdl, fd);
2284 else
2285 error = 0;
2286 if (!error)
2287 sc->sc_full_duplex = fd;
2288 } else {
2289 if (fd)
2290 error = ENOTTY;
2291 else
2292 error = 0;
2294 break;
2296 case AUDIO_GETPROPS:
2297 DPRINTF(("AUDIO_GETPROPS\n"));
2298 *(int *)addr = audio_get_props(sc);
2299 break;
2301 default:
2302 if (hw->dev_ioctl) {
2303 error = hw->dev_ioctl(sc->hw_hdl, cmd, addr, flag, l);
2304 } else {
2305 DPRINTF(("audio_ioctl: unknown ioctl\n"));
2306 error = EINVAL;
2308 break;
2310 DPRINTF(("audio_ioctl(%lu,'%c',%lu) result %d\n",
2311 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, error));
2312 return error;
2316 audio_poll(struct audio_softc *sc, int events, struct lwp *l)
2318 int revents;
2319 int s;
2320 int used;
2322 DPRINTF(("audio_poll: events=0x%x mode=%d\n", events, sc->sc_mode));
2324 revents = 0;
2325 s = splaudio();
2326 if (events & (POLLIN | POLLRDNORM)) {
2327 used = audio_stream_get_used(sc->sc_rustream);
2329 * If half duplex and playing, audio_read() will generate
2330 * silence at the play rate; poll for silence being
2331 * available. Otherwise, poll for recorded sound.
2333 if ((!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY)) ?
2334 sc->sc_pr.stamp > sc->sc_wstamp :
2335 used > sc->sc_rr.usedlow)
2336 revents |= events & (POLLIN | POLLRDNORM);
2339 if (events & (POLLOUT | POLLWRNORM)) {
2340 used = audio_stream_get_used(sc->sc_pustream);
2342 * If half duplex and recording, audio_write() will throw
2343 * away play data, which means we are always ready to write.
2344 * Otherwise, poll for play buffer being below its low water
2345 * mark.
2347 if ((!sc->sc_full_duplex && (sc->sc_mode & AUMODE_RECORD)) ||
2348 (!(sc->sc_mode & AUMODE_PLAY_ALL) && sc->sc_playdrop > 0) ||
2349 (used <= sc->sc_pr.usedlow))
2350 revents |= events & (POLLOUT | POLLWRNORM);
2353 if (revents == 0) {
2354 if (events & (POLLIN | POLLRDNORM))
2355 selrecord(l, &sc->sc_rsel);
2357 if (events & (POLLOUT | POLLWRNORM))
2358 selrecord(l, &sc->sc_wsel);
2361 splx(s);
2362 return revents;
2365 static void
2366 filt_audiordetach(struct knote *kn)
2368 struct audio_softc *sc;
2369 int s;
2371 sc = kn->kn_hook;
2372 s = splaudio();
2373 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2374 splx(s);
2377 static int
2378 filt_audioread(struct knote *kn, long hint)
2380 struct audio_softc *sc;
2381 int s;
2383 sc = kn->kn_hook;
2384 s = splaudio();
2385 if (!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY))
2386 kn->kn_data = sc->sc_pr.stamp - sc->sc_wstamp;
2387 else
2388 kn->kn_data = audio_stream_get_used(sc->sc_rustream)
2389 - sc->sc_rr.usedlow;
2390 splx(s);
2392 return kn->kn_data > 0;
2395 static const struct filterops audioread_filtops =
2396 { 1, NULL, filt_audiordetach, filt_audioread };
2398 static void
2399 filt_audiowdetach(struct knote *kn)
2401 struct audio_softc *sc;
2402 int s;
2404 sc = kn->kn_hook;
2405 s = splaudio();
2406 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2407 splx(s);
2410 static int
2411 filt_audiowrite(struct knote *kn, long hint)
2413 struct audio_softc *sc;
2414 audio_stream_t *stream;
2415 int s;
2417 sc = kn->kn_hook;
2418 s = splaudio();
2419 stream = sc->sc_pustream;
2420 kn->kn_data = (stream->end - stream->start)
2421 - audio_stream_get_used(stream);
2422 splx(s);
2424 return kn->kn_data > 0;
2427 static const struct filterops audiowrite_filtops =
2428 { 1, NULL, filt_audiowdetach, filt_audiowrite };
2431 audio_kqfilter(struct audio_softc *sc, struct knote *kn)
2433 struct klist *klist;
2434 int s;
2436 switch (kn->kn_filter) {
2437 case EVFILT_READ:
2438 klist = &sc->sc_rsel.sel_klist;
2439 kn->kn_fop = &audioread_filtops;
2440 break;
2442 case EVFILT_WRITE:
2443 klist = &sc->sc_wsel.sel_klist;
2444 kn->kn_fop = &audiowrite_filtops;
2445 break;
2447 default:
2448 return EINVAL;
2451 kn->kn_hook = sc;
2453 s = splaudio();
2454 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2455 splx(s);
2457 return 0;
2460 paddr_t
2461 audio_mmap(struct audio_softc *sc, off_t off, int prot)
2463 const struct audio_hw_if *hw;
2464 struct audio_ringbuffer *cb;
2465 int s;
2467 DPRINTF(("audio_mmap: off=%lld, prot=%d\n", (long long)off, prot));
2468 hw = sc->hw_if;
2469 if (!(audio_get_props(sc) & AUDIO_PROP_MMAP) || !hw->mappage)
2470 return -1;
2471 #if 0
2472 /* XXX
2473 * The idea here was to use the protection to determine if
2474 * we are mapping the read or write buffer, but it fails.
2475 * The VM system is broken in (at least) two ways.
2476 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2477 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2478 * has to be used for mmapping the play buffer.
2479 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2480 * audio_mmap will get called at some point with VM_PROT_READ
2481 * only.
2482 * So, alas, we always map the play buffer for now.
2484 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2485 prot == VM_PROT_WRITE)
2486 cb = &sc->sc_pr;
2487 else if (prot == VM_PROT_READ)
2488 cb = &sc->sc_rr;
2489 else
2490 return -1;
2491 #else
2492 cb = &sc->sc_pr;
2493 #endif
2495 if ((u_int)off >= cb->s.bufsize)
2496 return -1;
2497 if (!cb->mmapped) {
2498 cb->mmapped = true;
2499 if (cb == &sc->sc_pr) {
2500 audio_fill_silence(&cb->s.param, cb->s.start,
2501 cb->s.bufsize);
2502 s = splaudio();
2503 sc->sc_pustream = &cb->s;
2504 if (!sc->sc_pbus && !sc->sc_pr.pause)
2505 (void)audiostartp(sc);
2506 splx(s);
2507 } else {
2508 s = splaudio();
2509 sc->sc_rustream = &cb->s;
2510 if (!sc->sc_rbus && !sc->sc_rr.pause)
2511 (void)audiostartr(sc);
2512 splx(s);
2516 return hw->mappage(sc->hw_hdl, cb->s.start, off, prot);
2520 audiostartr(struct audio_softc *sc)
2522 int error;
2524 DPRINTF(("audiostartr: start=%p used=%d(hi=%d) mmapped=%d\n",
2525 sc->sc_rr.s.start, audio_stream_get_used(&sc->sc_rr.s),
2526 sc->sc_rr.usedhigh, sc->sc_rr.mmapped));
2528 if (!audio_can_capture(sc))
2529 return EINVAL;
2531 if (sc->hw_if->trigger_input)
2532 error = sc->hw_if->trigger_input(sc->hw_hdl, sc->sc_rr.s.start,
2533 sc->sc_rr.s.end, sc->sc_rr.blksize,
2534 audio_rint, (void *)sc, &sc->sc_rr.s.param);
2535 else
2536 error = sc->hw_if->start_input(sc->hw_hdl, sc->sc_rr.s.start,
2537 sc->sc_rr.blksize, audio_rint, (void *)sc);
2538 if (error) {
2539 DPRINTF(("audiostartr failed: %d\n", error));
2540 return error;
2542 sc->sc_rbus = true;
2543 return 0;
2547 audiostartp(struct audio_softc *sc)
2549 int error;
2550 int used;
2552 used = audio_stream_get_used(&sc->sc_pr.s);
2553 DPRINTF(("audiostartp: start=%p used=%d(hi=%d blk=%d) mmapped=%d\n",
2554 sc->sc_pr.s.start, used, sc->sc_pr.usedhigh,
2555 sc->sc_pr.blksize, sc->sc_pr.mmapped));
2557 if (!audio_can_playback(sc))
2558 return EINVAL;
2560 if (!sc->sc_pr.mmapped && used < sc->sc_pr.blksize) {
2561 wakeup(&sc->sc_wchan);
2562 DPRINTF(("%s: wakeup and return\n", __func__));
2563 return 0;
2566 if (sc->hw_if->trigger_output) {
2567 DPRINTF(("%s: call trigger_output\n", __func__));
2568 error = sc->hw_if->trigger_output(sc->hw_hdl, sc->sc_pr.s.start,
2569 sc->sc_pr.s.end, sc->sc_pr.blksize,
2570 audio_pint, (void *)sc, &sc->sc_pr.s.param);
2571 } else {
2572 DPRINTF(("%s: call start_output\n", __func__));
2573 error = sc->hw_if->start_output(sc->hw_hdl,
2574 __UNCONST(sc->sc_pr.s.outp), sc->sc_pr.blksize,
2575 audio_pint, (void *)sc);
2577 if (error) {
2578 DPRINTF(("audiostartp failed: %d\n", error));
2579 return error;
2581 sc->sc_pbus = true;
2582 return 0;
2586 * When the play interrupt routine finds that the write isn't keeping
2587 * the buffer filled it will insert silence in the buffer to make up
2588 * for this. The part of the buffer that is filled with silence
2589 * is kept track of in a very approximate way: it starts at sc_sil_start
2590 * and extends sc_sil_count bytes. If there is already silence in
2591 * the requested area nothing is done; so when the whole buffer is
2592 * silent nothing happens. When the writer starts again sc_sil_count
2593 * is set to 0.
2595 /* XXX
2596 * Putting silence into the output buffer should not really be done
2597 * at splaudio, but there is no softaudio level to do it at yet.
2599 static inline void
2600 audio_pint_silence(struct audio_softc *sc, struct audio_ringbuffer *cb,
2601 uint8_t *inp, int cc)
2603 uint8_t *s, *e, *p, *q;
2605 if (sc->sc_sil_count > 0) {
2606 s = sc->sc_sil_start; /* start of silence */
2607 e = s + sc->sc_sil_count; /* end of sil., may be beyond end */
2608 p = inp; /* adjusted pointer to area to fill */
2609 if (p < s)
2610 p += cb->s.end - cb->s.start;
2611 q = p + cc;
2612 /* Check if there is already silence. */
2613 if (!(s <= p && p < e &&
2614 s <= q && q <= e)) {
2615 if (s <= p)
2616 sc->sc_sil_count = max(sc->sc_sil_count, q-s);
2617 DPRINTFN(5,("audio_pint_silence: fill cc=%d inp=%p, "
2618 "count=%d size=%d\n",
2619 cc, inp, sc->sc_sil_count,
2620 (int)(cb->s.end - cb->s.start)));
2621 audio_fill_silence(&cb->s.param, inp, cc);
2622 } else {
2623 DPRINTFN(5,("audio_pint_silence: already silent "
2624 "cc=%d inp=%p\n", cc, inp));
2627 } else {
2628 sc->sc_sil_start = inp;
2629 sc->sc_sil_count = cc;
2630 DPRINTFN(5, ("audio_pint_silence: start fill %p %d\n",
2631 inp, cc));
2632 audio_fill_silence(&cb->s.param, inp, cc);
2636 static void
2637 audio_softintr_rd(void *cookie)
2639 struct audio_softc *sc = cookie;
2640 struct proc *p;
2642 audio_wakeup(&sc->sc_rchan);
2643 selnotify(&sc->sc_rsel, 0, 0);
2644 if (sc->sc_async_audio != NULL) {
2645 DPRINTFN(3, ("audio_softintr_rd: sending SIGIO %p\n",
2646 sc->sc_async_audio));
2647 mutex_enter(proc_lock);
2648 if ((p = sc->sc_async_audio) != NULL)
2649 psignal(p, SIGIO);
2650 mutex_exit(proc_lock);
2654 static void
2655 audio_softintr_wr(void *cookie)
2657 struct audio_softc *sc = cookie;
2658 struct proc *p;
2660 audio_wakeup(&sc->sc_wchan);
2661 selnotify(&sc->sc_wsel, 0, 0);
2662 if (sc->sc_async_audio != NULL) {
2663 DPRINTFN(3, ("audio_softintr_wr: sending SIGIO %p\n",
2664 sc->sc_async_audio));
2665 mutex_enter(proc_lock);
2666 if ((p = sc->sc_async_audio) != NULL)
2667 psignal(p, SIGIO);
2668 mutex_exit(proc_lock);
2673 * Called from HW driver module on completion of DMA output.
2674 * Start output of new block, wrap in ring buffer if needed.
2675 * If no more buffers to play, output zero instead.
2676 * Do a wakeup if necessary.
2678 void
2679 audio_pint(void *v)
2681 stream_fetcher_t null_fetcher;
2682 struct audio_softc *sc;
2683 const struct audio_hw_if *hw;
2684 struct audio_ringbuffer *cb;
2685 stream_fetcher_t *fetcher;
2686 uint8_t *inp;
2687 int cc, used;
2688 int blksize;
2689 int error;
2691 sc = v;
2692 if (!sc->sc_open)
2693 return; /* ignore interrupt if not open */
2695 hw = sc->hw_if;
2696 cb = &sc->sc_pr;
2697 blksize = cb->blksize;
2698 cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
2699 cb->stamp += blksize;
2700 if (cb->mmapped) {
2701 DPRINTFN(5, ("audio_pint: mmapped outp=%p cc=%d inp=%p\n",
2702 cb->s.outp, blksize, cb->s.inp));
2703 if (hw->trigger_output == NULL)
2704 (void)hw->start_output(sc->hw_hdl, __UNCONST(cb->s.outp),
2705 blksize, audio_pint, (void *)sc);
2706 return;
2709 #ifdef AUDIO_INTR_TIME
2711 struct timeval tv;
2712 u_long t;
2713 microtime(&tv);
2714 t = tv.tv_usec + 1000000 * tv.tv_sec;
2715 if (sc->sc_pnintr) {
2716 long lastdelta, totdelta;
2717 lastdelta = t - sc->sc_plastintr - sc->sc_pblktime;
2718 if (lastdelta > sc->sc_pblktime / 3) {
2719 printf("audio: play interrupt(%d) off "
2720 "relative by %ld us (%lu)\n",
2721 sc->sc_pnintr, lastdelta,
2722 sc->sc_pblktime);
2724 totdelta = t - sc->sc_pfirstintr -
2725 sc->sc_pblktime * sc->sc_pnintr;
2726 if (totdelta > sc->sc_pblktime) {
2727 printf("audio: play interrupt(%d) off "
2728 "absolute by %ld us (%lu) (LOST)\n",
2729 sc->sc_pnintr, totdelta,
2730 sc->sc_pblktime);
2731 sc->sc_pnintr++; /* avoid repeated messages */
2733 } else
2734 sc->sc_pfirstintr = t;
2735 sc->sc_plastintr = t;
2736 sc->sc_pnintr++;
2738 #endif
2740 used = audio_stream_get_used(&cb->s);
2742 * "used <= cb->usedlow" should be "used < blksize" ideally.
2743 * Some HW drivers such as uaudio(4) does not call audio_pint()
2744 * at accurate timing. If used < blksize, uaudio(4) already
2745 * request transfer of garbage data.
2747 if (used <= cb->usedlow && !cb->copying && sc->sc_npfilters > 0) {
2748 /* we might have data in filter pipeline */
2749 null_fetcher.fetch_to = null_fetcher_fetch_to;
2750 fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2751 sc->sc_pfilters[0]->set_fetcher(sc->sc_pfilters[0],
2752 &null_fetcher);
2753 used = audio_stream_get_used(sc->sc_pustream);
2754 cc = cb->s.end - cb->s.start;
2755 if (blksize * 2 < cc)
2756 cc = blksize * 2;
2757 fetcher->fetch_to(fetcher, &cb->s, cc);
2758 cb->fstamp += used - audio_stream_get_used(sc->sc_pustream);
2759 used = audio_stream_get_used(&cb->s);
2761 if (used < blksize) {
2762 /* we don't have a full block to use */
2763 if (cb->copying) {
2764 /* writer is in progress, don't disturb */
2765 cb->needfill = true;
2766 DPRINTFN(1, ("audio_pint: copying in progress\n"));
2767 } else {
2768 inp = cb->s.inp;
2769 cc = blksize - (inp - cb->s.start) % blksize;
2770 if (cb->pause)
2771 cb->pdrops += cc;
2772 else {
2773 cb->drops += cc;
2774 sc->sc_playdrop += cc;
2776 audio_pint_silence(sc, cb, inp, cc);
2777 cb->s.inp = audio_stream_add_inp(&cb->s, inp, cc);
2779 /* Clear next block so we keep ahead of the DMA. */
2780 used = audio_stream_get_used(&cb->s);
2781 if (used + cc < cb->s.end - cb->s.start)
2782 audio_pint_silence(sc, cb, inp, blksize);
2786 DPRINTFN(5, ("audio_pint: outp=%p cc=%d\n", cb->s.outp, blksize));
2787 if (hw->trigger_output == NULL) {
2788 error = hw->start_output(sc->hw_hdl, __UNCONST(cb->s.outp),
2789 blksize, audio_pint, (void *)sc);
2790 if (error) {
2791 /* XXX does this really help? */
2792 DPRINTF(("audio_pint restart failed: %d\n", error));
2793 audio_clear(sc);
2797 DPRINTFN(2, ("audio_pint: mode=%d pause=%d used=%d lowat=%d\n",
2798 sc->sc_mode, cb->pause,
2799 audio_stream_get_used(sc->sc_pustream), cb->usedlow));
2800 if ((sc->sc_mode & AUMODE_PLAY) && !cb->pause) {
2801 if (audio_stream_get_used(sc->sc_pustream) <= cb->usedlow)
2802 softint_schedule(sc->sc_sih_wr);
2805 /* Possible to return one or more "phantom blocks" now. */
2806 if (!sc->sc_full_duplex && sc->sc_rchan)
2807 softint_schedule(sc->sc_sih_rd);
2811 * Called from HW driver module on completion of DMA input.
2812 * Mark it as input in the ring buffer (fiddle pointers).
2813 * Do a wakeup if necessary.
2815 void
2816 audio_rint(void *v)
2818 stream_fetcher_t null_fetcher;
2819 struct audio_softc *sc;
2820 const struct audio_hw_if *hw;
2821 struct audio_ringbuffer *cb;
2822 stream_fetcher_t *last_fetcher;
2823 int cc;
2824 int used;
2825 int blksize;
2826 int error;
2828 sc = v;
2829 cb = &sc->sc_rr;
2830 if (!sc->sc_open)
2831 return; /* ignore interrupt if not open */
2833 hw = sc->hw_if;
2834 blksize = cb->blksize;
2835 cb->s.inp = audio_stream_add_inp(&cb->s, cb->s.inp, blksize);
2836 cb->stamp += blksize;
2837 if (cb->mmapped) {
2838 DPRINTFN(2, ("audio_rint: mmapped inp=%p cc=%d\n",
2839 cb->s.inp, blksize));
2840 if (hw->trigger_input == NULL)
2841 (void)hw->start_input(sc->hw_hdl, cb->s.inp, blksize,
2842 audio_rint, (void *)sc);
2843 return;
2846 #ifdef AUDIO_INTR_TIME
2848 struct timeval tv;
2849 u_long t;
2850 microtime(&tv);
2851 t = tv.tv_usec + 1000000 * tv.tv_sec;
2852 if (sc->sc_rnintr) {
2853 long lastdelta, totdelta;
2854 lastdelta = t - sc->sc_rlastintr - sc->sc_rblktime;
2855 if (lastdelta > sc->sc_rblktime / 5) {
2856 printf("audio: record interrupt(%d) off "
2857 "relative by %ld us (%lu)\n",
2858 sc->sc_rnintr, lastdelta,
2859 sc->sc_rblktime);
2861 totdelta = t - sc->sc_rfirstintr -
2862 sc->sc_rblktime * sc->sc_rnintr;
2863 if (totdelta > sc->sc_rblktime / 2) {
2864 sc->sc_rnintr++;
2865 printf("audio: record interrupt(%d) off "
2866 "absolute by %ld us (%lu)\n",
2867 sc->sc_rnintr, totdelta,
2868 sc->sc_rblktime);
2869 sc->sc_rnintr++; /* avoid repeated messages */
2871 } else
2872 sc->sc_rfirstintr = t;
2873 sc->sc_rlastintr = t;
2874 sc->sc_rnintr++;
2876 #endif
2878 if (!cb->pause && sc->sc_nrfilters > 0) {
2879 null_fetcher.fetch_to = null_fetcher_fetch_to;
2880 last_fetcher = &sc->sc_rfilters[sc->sc_nrfilters - 1]->base;
2881 sc->sc_rfilters[0]->set_fetcher(sc->sc_rfilters[0],
2882 &null_fetcher);
2883 used = audio_stream_get_used(sc->sc_rustream);
2884 cc = sc->sc_rustream->end - sc->sc_rustream->start;
2885 error = last_fetcher->fetch_to
2886 (last_fetcher, sc->sc_rustream, cc);
2887 cb->fstamp += audio_stream_get_used(sc->sc_rustream) - used;
2888 /* XXX what should do for error? */
2890 used = audio_stream_get_used(&sc->sc_rr.s);
2891 if (cb->pause) {
2892 DPRINTFN(1, ("audio_rint: pdrops %lu\n", cb->pdrops));
2893 cb->pdrops += blksize;
2894 cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
2895 } else if (used + blksize > cb->s.end - cb->s.start && !cb->copying) {
2896 DPRINTFN(1, ("audio_rint: drops %lu\n", cb->drops));
2897 cb->drops += blksize;
2898 cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
2901 DPRINTFN(2, ("audio_rint: inp=%p cc=%d\n", cb->s.inp, blksize));
2902 if (hw->trigger_input == NULL) {
2903 error = hw->start_input(sc->hw_hdl, cb->s.inp, blksize,
2904 audio_rint, (void *)sc);
2905 if (error) {
2906 /* XXX does this really help? */
2907 DPRINTF(("audio_rint: restart failed: %d\n", error));
2908 audio_clear(sc);
2912 softint_schedule(sc->sc_sih_rd);
2916 audio_check_params(struct audio_params *p)
2919 if (p->encoding == AUDIO_ENCODING_PCM16) {
2920 if (p->precision == 8)
2921 p->encoding = AUDIO_ENCODING_ULINEAR;
2922 else
2923 p->encoding = AUDIO_ENCODING_SLINEAR;
2924 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
2925 if (p->precision == 8)
2926 p->encoding = AUDIO_ENCODING_ULINEAR;
2927 else
2928 return EINVAL;
2931 if (p->encoding == AUDIO_ENCODING_SLINEAR)
2932 #if BYTE_ORDER == LITTLE_ENDIAN
2933 p->encoding = AUDIO_ENCODING_SLINEAR_LE;
2934 #else
2935 p->encoding = AUDIO_ENCODING_SLINEAR_BE;
2936 #endif
2937 if (p->encoding == AUDIO_ENCODING_ULINEAR)
2938 #if BYTE_ORDER == LITTLE_ENDIAN
2939 p->encoding = AUDIO_ENCODING_ULINEAR_LE;
2940 #else
2941 p->encoding = AUDIO_ENCODING_ULINEAR_BE;
2942 #endif
2944 switch (p->encoding) {
2945 case AUDIO_ENCODING_ULAW:
2946 case AUDIO_ENCODING_ALAW:
2947 if (p->precision != 8)
2948 return EINVAL;
2949 break;
2950 case AUDIO_ENCODING_ADPCM:
2951 if (p->precision != 4 && p->precision != 8)
2952 return EINVAL;
2953 break;
2954 case AUDIO_ENCODING_SLINEAR_LE:
2955 case AUDIO_ENCODING_SLINEAR_BE:
2956 case AUDIO_ENCODING_ULINEAR_LE:
2957 case AUDIO_ENCODING_ULINEAR_BE:
2958 /* XXX is: our zero-fill can handle any multiple of 8 */
2959 if (p->precision != 8 && p->precision != 16 &&
2960 p->precision != 24 && p->precision != 32)
2961 return EINVAL;
2962 if (p->precision == 8 && p->encoding == AUDIO_ENCODING_SLINEAR_BE)
2963 p->encoding = AUDIO_ENCODING_SLINEAR_LE;
2964 if (p->precision == 8 && p->encoding == AUDIO_ENCODING_ULINEAR_BE)
2965 p->encoding = AUDIO_ENCODING_ULINEAR_LE;
2966 if (p->validbits > p->precision)
2967 return EINVAL;
2968 break;
2969 case AUDIO_ENCODING_MPEG_L1_STREAM:
2970 case AUDIO_ENCODING_MPEG_L1_PACKETS:
2971 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
2972 case AUDIO_ENCODING_MPEG_L2_STREAM:
2973 case AUDIO_ENCODING_MPEG_L2_PACKETS:
2974 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
2975 break;
2976 default:
2977 return EINVAL;
2980 /* sanity check # of channels*/
2981 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
2982 return EINVAL;
2984 return 0;
2988 audio_set_defaults(struct audio_softc *sc, u_int mode)
2990 struct audio_info ai;
2992 /* default parameters */
2993 sc->sc_rparams = audio_default;
2994 sc->sc_pparams = audio_default;
2995 sc->sc_blkset = false;
2997 AUDIO_INITINFO(&ai);
2998 ai.record.sample_rate = sc->sc_rparams.sample_rate;
2999 ai.record.encoding = sc->sc_rparams.encoding;
3000 ai.record.channels = sc->sc_rparams.channels;
3001 ai.record.precision = sc->sc_rparams.precision;
3002 ai.record.pause = false;
3003 ai.play.sample_rate = sc->sc_pparams.sample_rate;
3004 ai.play.encoding = sc->sc_pparams.encoding;
3005 ai.play.channels = sc->sc_pparams.channels;
3006 ai.play.precision = sc->sc_pparams.precision;
3007 ai.play.pause = false;
3008 ai.mode = mode;
3010 return audiosetinfo(sc, &ai);
3014 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
3017 ct->type = AUDIO_MIXER_VALUE;
3018 ct->un.value.num_channels = 2;
3019 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
3020 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
3021 if (sc->hw_if->set_port(sc->hw_hdl, ct) == 0)
3022 return 0;
3023 ct->un.value.num_channels = 1;
3024 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
3025 return sc->hw_if->set_port(sc->hw_hdl, ct);
3029 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
3030 int gain, int balance)
3032 mixer_ctrl_t ct;
3033 int i, error;
3034 int l, r;
3035 u_int mask;
3036 int nset;
3038 if (balance == AUDIO_MID_BALANCE) {
3039 l = r = gain;
3040 } else if (balance < AUDIO_MID_BALANCE) {
3041 l = gain;
3042 r = (balance * gain) / AUDIO_MID_BALANCE;
3043 } else {
3044 r = gain;
3045 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
3046 / AUDIO_MID_BALANCE;
3048 DPRINTF(("au_set_gain: gain=%d balance=%d, l=%d r=%d\n",
3049 gain, balance, l, r));
3051 if (ports->index == -1) {
3052 usemaster:
3053 if (ports->master == -1)
3054 return 0; /* just ignore it silently */
3055 ct.dev = ports->master;
3056 error = au_set_lr_value(sc, &ct, l, r);
3057 } else {
3058 ct.dev = ports->index;
3059 if (ports->isenum) {
3060 ct.type = AUDIO_MIXER_ENUM;
3061 error = sc->hw_if->get_port(sc->hw_hdl, &ct);
3062 if (error)
3063 return error;
3064 if (ports->isdual) {
3065 if (ports->cur_port == -1)
3066 ct.dev = ports->master;
3067 else
3068 ct.dev = ports->miport[ports->cur_port];
3069 error = au_set_lr_value(sc, &ct, l, r);
3070 } else {
3071 for(i = 0; i < ports->nports; i++)
3072 if (ports->misel[i] == ct.un.ord) {
3073 ct.dev = ports->miport[i];
3074 if (ct.dev == -1 ||
3075 au_set_lr_value(sc, &ct, l, r))
3076 goto usemaster;
3077 else
3078 break;
3081 } else {
3082 ct.type = AUDIO_MIXER_SET;
3083 error = sc->hw_if->get_port(sc->hw_hdl, &ct);
3084 if (error)
3085 return error;
3086 mask = ct.un.mask;
3087 nset = 0;
3088 for(i = 0; i < ports->nports; i++) {
3089 if (ports->misel[i] & mask) {
3090 ct.dev = ports->miport[i];
3091 if (ct.dev != -1 &&
3092 au_set_lr_value(sc, &ct, l, r) == 0)
3093 nset++;
3096 if (nset == 0)
3097 goto usemaster;
3100 if (!error)
3101 mixer_signal(sc);
3102 return error;
3106 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
3108 int error;
3110 ct->un.value.num_channels = 2;
3111 if (sc->hw_if->get_port(sc->hw_hdl, ct) == 0) {
3112 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
3113 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
3114 } else {
3115 ct->un.value.num_channels = 1;
3116 error = sc->hw_if->get_port(sc->hw_hdl, ct);
3117 if (error)
3118 return error;
3119 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
3121 return 0;
3124 void
3125 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
3126 u_int *pgain, u_char *pbalance)
3128 mixer_ctrl_t ct;
3129 int i, l, r, n;
3130 int lgain, rgain;
3132 lgain = AUDIO_MAX_GAIN / 2;
3133 rgain = AUDIO_MAX_GAIN / 2;
3134 if (ports->index == -1) {
3135 usemaster:
3136 if (ports->master == -1)
3137 goto bad;
3138 ct.dev = ports->master;
3139 ct.type = AUDIO_MIXER_VALUE;
3140 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
3141 goto bad;
3142 } else {
3143 ct.dev = ports->index;
3144 if (ports->isenum) {
3145 ct.type = AUDIO_MIXER_ENUM;
3146 if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3147 goto bad;
3148 ct.type = AUDIO_MIXER_VALUE;
3149 if (ports->isdual) {
3150 if (ports->cur_port == -1)
3151 ct.dev = ports->master;
3152 else
3153 ct.dev = ports->miport[ports->cur_port];
3154 au_get_lr_value(sc, &ct, &lgain, &rgain);
3155 } else {
3156 for(i = 0; i < ports->nports; i++)
3157 if (ports->misel[i] == ct.un.ord) {
3158 ct.dev = ports->miport[i];
3159 if (ct.dev == -1 ||
3160 au_get_lr_value(sc, &ct,
3161 &lgain, &rgain))
3162 goto usemaster;
3163 else
3164 break;
3167 } else {
3168 ct.type = AUDIO_MIXER_SET;
3169 if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3170 goto bad;
3171 ct.type = AUDIO_MIXER_VALUE;
3172 lgain = rgain = n = 0;
3173 for(i = 0; i < ports->nports; i++) {
3174 if (ports->misel[i] & ct.un.mask) {
3175 ct.dev = ports->miport[i];
3176 if (ct.dev == -1 ||
3177 au_get_lr_value(sc, &ct, &l, &r))
3178 goto usemaster;
3179 else {
3180 lgain += l;
3181 rgain += r;
3182 n++;
3186 if (n != 0) {
3187 lgain /= n;
3188 rgain /= n;
3192 bad:
3193 if (lgain == rgain) { /* handles lgain==rgain==0 */
3194 *pgain = lgain;
3195 *pbalance = AUDIO_MID_BALANCE;
3196 } else if (lgain < rgain) {
3197 *pgain = rgain;
3198 /* balance should be > AUDIO_MID_BALANCE */
3199 *pbalance = AUDIO_RIGHT_BALANCE -
3200 (AUDIO_MID_BALANCE * lgain) / rgain;
3201 } else /* lgain > rgain */ {
3202 *pgain = lgain;
3203 /* balance should be < AUDIO_MID_BALANCE */
3204 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
3209 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
3211 mixer_ctrl_t ct;
3212 int i, error, use_mixerout;
3214 use_mixerout = 1;
3215 if (port == 0) {
3216 if (ports->allports == 0)
3217 return 0; /* Allow this special case. */
3218 else if (ports->isdual) {
3219 if (ports->cur_port == -1) {
3220 return 0;
3221 } else {
3222 port = ports->aumask[ports->cur_port];
3223 ports->cur_port = -1;
3224 use_mixerout = 0;
3228 if (ports->index == -1)
3229 return EINVAL;
3230 ct.dev = ports->index;
3231 if (ports->isenum) {
3232 if (port & (port-1))
3233 return EINVAL; /* Only one port allowed */
3234 ct.type = AUDIO_MIXER_ENUM;
3235 error = EINVAL;
3236 for(i = 0; i < ports->nports; i++)
3237 if (ports->aumask[i] == port) {
3238 if (ports->isdual && use_mixerout) {
3239 ct.un.ord = ports->mixerout;
3240 ports->cur_port = i;
3241 } else {
3242 ct.un.ord = ports->misel[i];
3244 error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3245 break;
3247 } else {
3248 ct.type = AUDIO_MIXER_SET;
3249 ct.un.mask = 0;
3250 for(i = 0; i < ports->nports; i++)
3251 if (ports->aumask[i] & port)
3252 ct.un.mask |= ports->misel[i];
3253 if (port != 0 && ct.un.mask == 0)
3254 error = EINVAL;
3255 else
3256 error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3258 if (!error)
3259 mixer_signal(sc);
3260 return error;
3264 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
3266 mixer_ctrl_t ct;
3267 int i, aumask;
3269 if (ports->index == -1)
3270 return 0;
3271 ct.dev = ports->index;
3272 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
3273 if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3274 return 0;
3275 aumask = 0;
3276 if (ports->isenum) {
3277 if (ports->isdual && ports->cur_port != -1) {
3278 if (ports->mixerout == ct.un.ord)
3279 aumask = ports->aumask[ports->cur_port];
3280 else
3281 ports->cur_port = -1;
3283 if (aumask == 0)
3284 for(i = 0; i < ports->nports; i++)
3285 if (ports->misel[i] == ct.un.ord)
3286 aumask = ports->aumask[i];
3287 } else {
3288 for(i = 0; i < ports->nports; i++)
3289 if (ct.un.mask & ports->misel[i])
3290 aumask |= ports->aumask[i];
3292 return aumask;
3296 audiosetinfo(struct audio_softc *sc, struct audio_info *ai)
3298 stream_filter_list_t pfilters, rfilters;
3299 audio_params_t pp, rp;
3300 struct audio_prinfo *r, *p;
3301 const struct audio_hw_if *hw;
3302 audio_stream_t *oldpus, *oldrus;
3303 int s, setmode;
3304 int error;
3305 int np, nr;
3306 unsigned int blks;
3307 int oldpblksize, oldrblksize;
3308 u_int gain;
3309 bool rbus, pbus;
3310 bool cleared, modechange, pausechange;
3311 u_char balance;
3313 hw = sc->hw_if;
3314 if (hw == NULL) /* HW has not attached */
3315 return ENXIO;
3317 DPRINTF(("%s sc=%p ai=%p\n", __func__, sc, ai));
3318 r = &ai->record;
3319 p = &ai->play;
3320 rbus = sc->sc_rbus;
3321 pbus = sc->sc_pbus;
3322 error = 0;
3323 cleared = false;
3324 modechange = false;
3325 pausechange = false;
3327 pp = sc->sc_pparams; /* Temporary encoding storage in */
3328 rp = sc->sc_rparams; /* case setting the modes fails. */
3329 nr = np = 0;
3331 if (SPECIFIED(p->sample_rate)) {
3332 pp.sample_rate = p->sample_rate;
3333 np++;
3335 if (SPECIFIED(r->sample_rate)) {
3336 rp.sample_rate = r->sample_rate;
3337 nr++;
3339 if (SPECIFIED(p->encoding)) {
3340 pp.encoding = p->encoding;
3341 np++;
3343 if (SPECIFIED(r->encoding)) {
3344 rp.encoding = r->encoding;
3345 nr++;
3347 if (SPECIFIED(p->precision)) {
3348 pp.precision = p->precision;
3349 /* we don't have API to specify validbits */
3350 pp.validbits = p->precision;
3351 np++;
3353 if (SPECIFIED(r->precision)) {
3354 rp.precision = r->precision;
3355 /* we don't have API to specify validbits */
3356 rp.validbits = r->precision;
3357 nr++;
3359 if (SPECIFIED(p->channels)) {
3360 pp.channels = p->channels;
3361 np++;
3363 if (SPECIFIED(r->channels)) {
3364 rp.channels = r->channels;
3365 nr++;
3368 if (!audio_can_capture(sc))
3369 nr = 0;
3370 if (!audio_can_playback(sc))
3371 np = 0;
3373 #ifdef AUDIO_DEBUG
3374 if (audiodebug && nr > 0)
3375 audio_print_params("audiosetinfo() Setting record params:", &rp);
3376 if (audiodebug && np > 0)
3377 audio_print_params("audiosetinfo() Setting play params:", &pp);
3378 #endif
3379 if (nr > 0 && (error = audio_check_params(&rp)))
3380 return error;
3381 if (np > 0 && (error = audio_check_params(&pp)))
3382 return error;
3384 oldpblksize = sc->sc_pr.blksize;
3385 oldrblksize = sc->sc_rr.blksize;
3387 setmode = 0;
3388 if (nr > 0) {
3389 if (!cleared) {
3390 audio_clear(sc);
3391 cleared = true;
3393 modechange = true;
3394 setmode |= AUMODE_RECORD;
3396 if (np > 0) {
3397 if (!cleared) {
3398 audio_clear(sc);
3399 cleared = true;
3401 modechange = true;
3402 setmode |= AUMODE_PLAY;
3405 if (SPECIFIED(ai->mode)) {
3406 if (!cleared) {
3407 audio_clear(sc);
3408 cleared = true;
3410 modechange = true;
3411 sc->sc_mode = ai->mode;
3412 if (sc->sc_mode & AUMODE_PLAY_ALL)
3413 sc->sc_mode |= AUMODE_PLAY;
3414 if ((sc->sc_mode & AUMODE_PLAY) && !sc->sc_full_duplex)
3415 /* Play takes precedence */
3416 sc->sc_mode &= ~AUMODE_RECORD;
3419 oldpus = sc->sc_pustream;
3420 oldrus = sc->sc_rustream;
3421 if (modechange) {
3422 int indep;
3424 indep = audio_get_props(sc) & AUDIO_PROP_INDEPENDENT;
3425 if (!indep) {
3426 if (setmode == AUMODE_RECORD)
3427 pp = rp;
3428 else if (setmode == AUMODE_PLAY)
3429 rp = pp;
3431 memset(&pfilters, 0, sizeof(pfilters));
3432 memset(&rfilters, 0, sizeof(rfilters));
3433 pfilters.append = stream_filter_list_append;
3434 pfilters.prepend = stream_filter_list_prepend;
3435 pfilters.set = stream_filter_list_set;
3436 rfilters.append = stream_filter_list_append;
3437 rfilters.prepend = stream_filter_list_prepend;
3438 rfilters.set = stream_filter_list_set;
3439 /* Some device drivers change channels/sample_rate and change
3440 * no channels/sample_rate. */
3441 error = hw->set_params(sc->hw_hdl, setmode,
3442 sc->sc_mode & (AUMODE_PLAY | AUMODE_RECORD), &pp, &rp,
3443 &pfilters, &rfilters);
3444 if (error) {
3445 DPRINTF(("%s: hw->set_params() failed with %d\n",
3446 __func__, error));
3447 goto cleanup;
3450 audio_check_params(&pp);
3451 audio_check_params(&rp);
3452 if (!indep) {
3453 /* XXX for !indep device, we have to use the same
3454 * parameters for the hardware, not userland */
3455 if (setmode == AUMODE_RECORD) {
3456 pp = rp;
3457 } else if (setmode == AUMODE_PLAY) {
3458 rp = pp;
3462 if (sc->sc_pr.mmapped && pfilters.req_size > 0) {
3463 DPRINTF(("%s: mmapped, and filters are requested.\n",
3464 __func__));
3465 error = EINVAL;
3466 goto cleanup;
3469 /* construct new filter chain */
3470 if (setmode & AUMODE_PLAY) {
3471 error = audio_setup_pfilters(sc, &pp, &pfilters);
3472 if (error)
3473 goto cleanup;
3475 if (setmode & AUMODE_RECORD) {
3476 error = audio_setup_rfilters(sc, &rp, &rfilters);
3477 if (error)
3478 goto cleanup;
3480 DPRINTF(("%s: filter setup is completed.\n", __func__));
3482 /* userland formats */
3483 sc->sc_pparams = pp;
3484 sc->sc_rparams = rp;
3487 /* Play params can affect the record params, so recalculate blksize. */
3488 if (nr > 0 || np > 0) {
3489 audio_calc_blksize(sc, AUMODE_RECORD);
3490 audio_calc_blksize(sc, AUMODE_PLAY);
3492 #ifdef AUDIO_DEBUG
3493 if (audiodebug > 1 && nr > 0)
3494 audio_print_params("audiosetinfo() After setting record params:", &sc->sc_rparams);
3495 if (audiodebug > 1 && np > 0)
3496 audio_print_params("audiosetinfo() After setting play params:", &sc->sc_pparams);
3497 #endif
3499 if (SPECIFIED(p->port)) {
3500 if (!cleared) {
3501 audio_clear(sc);
3502 cleared = true;
3504 error = au_set_port(sc, &sc->sc_outports, p->port);
3505 if (error)
3506 goto cleanup;
3508 if (SPECIFIED(r->port)) {
3509 if (!cleared) {
3510 audio_clear(sc);
3511 cleared = true;
3513 error = au_set_port(sc, &sc->sc_inports, r->port);
3514 if (error)
3515 goto cleanup;
3517 if (SPECIFIED(p->gain)) {
3518 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
3519 error = au_set_gain(sc, &sc->sc_outports, p->gain, balance);
3520 if (error)
3521 goto cleanup;
3523 if (SPECIFIED(r->gain)) {
3524 au_get_gain(sc, &sc->sc_inports, &gain, &balance);
3525 error = au_set_gain(sc, &sc->sc_inports, r->gain, balance);
3526 if (error)
3527 goto cleanup;
3530 if (SPECIFIED_CH(p->balance)) {
3531 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
3532 error = au_set_gain(sc, &sc->sc_outports, gain, p->balance);
3533 if (error)
3534 goto cleanup;
3536 if (SPECIFIED_CH(r->balance)) {
3537 au_get_gain(sc, &sc->sc_inports, &gain, &balance);
3538 error = au_set_gain(sc, &sc->sc_inports, gain, r->balance);
3539 if (error)
3540 goto cleanup;
3543 if (SPECIFIED(ai->monitor_gain) && sc->sc_monitor_port != -1) {
3544 mixer_ctrl_t ct;
3546 ct.dev = sc->sc_monitor_port;
3547 ct.type = AUDIO_MIXER_VALUE;
3548 ct.un.value.num_channels = 1;
3549 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = ai->monitor_gain;
3550 error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3551 if (error)
3552 goto cleanup;
3555 if (SPECIFIED_CH(p->pause)) {
3556 sc->sc_pr.pause = p->pause;
3557 pbus = !p->pause;
3558 pausechange = true;
3560 if (SPECIFIED_CH(r->pause)) {
3561 sc->sc_rr.pause = r->pause;
3562 rbus = !r->pause;
3563 pausechange = true;
3566 if (SPECIFIED(ai->blocksize)) {
3567 int pblksize, rblksize;
3569 /* Block size specified explicitly. */
3570 if (ai->blocksize == 0) {
3571 if (!cleared) {
3572 audio_clear(sc);
3573 cleared = true;
3575 sc->sc_blkset = false;
3576 audio_calc_blksize(sc, AUMODE_RECORD);
3577 audio_calc_blksize(sc, AUMODE_PLAY);
3578 } else {
3579 sc->sc_blkset = true;
3580 /* check whether new blocksize changes actually */
3581 if (hw->round_blocksize == NULL) {
3582 if (!cleared) {
3583 audio_clear(sc);
3584 cleared = true;
3586 sc->sc_pr.blksize = ai->blocksize;
3587 sc->sc_rr.blksize = ai->blocksize;
3588 } else {
3589 pblksize = hw->round_blocksize(sc->hw_hdl,
3590 ai->blocksize, AUMODE_PLAY, &sc->sc_pr.s.param);
3591 rblksize = hw->round_blocksize(sc->hw_hdl,
3592 ai->blocksize, AUMODE_RECORD, &sc->sc_rr.s.param);
3593 if (pblksize != sc->sc_pr.blksize ||
3594 rblksize != sc->sc_rr.blksize) {
3595 if (!cleared) {
3596 audio_clear(sc);
3597 cleared = true;
3599 sc->sc_pr.blksize = ai->blocksize;
3600 sc->sc_rr.blksize = ai->blocksize;
3606 if (SPECIFIED(ai->mode)) {
3607 if (sc->sc_mode & AUMODE_PLAY)
3608 audio_init_play(sc);
3609 if (sc->sc_mode & AUMODE_RECORD)
3610 audio_init_record(sc);
3613 if (hw->commit_settings) {
3614 error = hw->commit_settings(sc->hw_hdl);
3615 if (error)
3616 goto cleanup;
3619 sc->sc_lastinfo = *ai;
3620 sc->sc_lastinfovalid = true;
3622 cleanup:
3623 if (cleared || pausechange) {
3624 int init_error;
3626 s = splaudio();
3627 init_error = audio_initbufs(sc);
3628 if (init_error) goto err;
3629 if (sc->sc_pr.blksize != oldpblksize ||
3630 sc->sc_rr.blksize != oldrblksize ||
3631 sc->sc_pustream != oldpus ||
3632 sc->sc_rustream != oldrus)
3633 audio_calcwater(sc);
3634 if ((sc->sc_mode & AUMODE_PLAY) &&
3635 pbus && !sc->sc_pbus)
3636 init_error = audiostartp(sc);
3637 if (!init_error &&
3638 (sc->sc_mode & AUMODE_RECORD) &&
3639 rbus && !sc->sc_rbus)
3640 init_error = audiostartr(sc);
3641 err:
3642 splx(s);
3643 if (init_error)
3644 return init_error;
3647 /* Change water marks after initializing the buffers. */
3648 if (SPECIFIED(ai->hiwat)) {
3649 blks = ai->hiwat;
3650 if (blks > sc->sc_pr.maxblks)
3651 blks = sc->sc_pr.maxblks;
3652 if (blks < 2)
3653 blks = 2;
3654 sc->sc_pr.usedhigh = blks * sc->sc_pr.blksize;
3656 if (SPECIFIED(ai->lowat)) {
3657 blks = ai->lowat;
3658 if (blks > sc->sc_pr.maxblks - 1)
3659 blks = sc->sc_pr.maxblks - 1;
3660 sc->sc_pr.usedlow = blks * sc->sc_pr.blksize;
3662 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
3663 if (sc->sc_pr.usedlow > sc->sc_pr.usedhigh - sc->sc_pr.blksize)
3664 sc->sc_pr.usedlow =
3665 sc->sc_pr.usedhigh - sc->sc_pr.blksize;
3668 return error;
3672 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int buf_only_mode)
3674 struct audio_prinfo *r, *p;
3675 const struct audio_hw_if *hw;
3677 r = &ai->record;
3678 p = &ai->play;
3679 hw = sc->hw_if;
3680 if (hw == NULL) /* HW has not attached */
3681 return ENXIO;
3683 p->sample_rate = sc->sc_pparams.sample_rate;
3684 r->sample_rate = sc->sc_rparams.sample_rate;
3685 p->channels = sc->sc_pparams.channels;
3686 r->channels = sc->sc_rparams.channels;
3687 p->precision = sc->sc_pparams.precision;
3688 r->precision = sc->sc_rparams.precision;
3689 p->encoding = sc->sc_pparams.encoding;
3690 r->encoding = sc->sc_rparams.encoding;
3692 if (buf_only_mode) {
3693 r->port = 0;
3694 p->port = 0;
3696 r->avail_ports = 0;
3697 p->avail_ports = 0;
3699 r->gain = 0;
3700 r->balance = 0;
3702 p->gain = 0;
3703 p->balance = 0;
3704 } else {
3705 r->port = au_get_port(sc, &sc->sc_inports);
3706 p->port = au_get_port(sc, &sc->sc_outports);
3708 r->avail_ports = sc->sc_inports.allports;
3709 p->avail_ports = sc->sc_outports.allports;
3711 au_get_gain(sc, &sc->sc_inports, &r->gain, &r->balance);
3712 au_get_gain(sc, &sc->sc_outports, &p->gain, &p->balance);
3715 if (sc->sc_monitor_port != -1 && buf_only_mode == 0) {
3716 mixer_ctrl_t ct;
3718 ct.dev = sc->sc_monitor_port;
3719 ct.type = AUDIO_MIXER_VALUE;
3720 ct.un.value.num_channels = 1;
3721 if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3722 ai->monitor_gain = 0;
3723 else
3724 ai->monitor_gain =
3725 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
3726 } else
3727 ai->monitor_gain = 0;
3729 p->seek = audio_stream_get_used(sc->sc_pustream);
3730 r->seek = audio_stream_get_used(sc->sc_rustream);
3733 * XXX samples should be a value for userland data.
3734 * But drops is a value for HW data.
3736 p->samples = (sc->sc_pustream == &sc->sc_pr.s
3737 ? sc->sc_pr.stamp : sc->sc_pr.fstamp) - sc->sc_pr.drops;
3738 r->samples = (sc->sc_rustream == &sc->sc_rr.s
3739 ? sc->sc_rr.stamp : sc->sc_rr.fstamp) - sc->sc_rr.drops;
3741 p->eof = sc->sc_eof;
3742 r->eof = 0;
3744 p->pause = sc->sc_pr.pause;
3745 r->pause = sc->sc_rr.pause;
3747 p->error = sc->sc_pr.drops != 0;
3748 r->error = sc->sc_rr.drops != 0;
3750 p->waiting = r->waiting = 0; /* open never hangs */
3752 p->open = (sc->sc_open & AUOPEN_WRITE) != 0;
3753 r->open = (sc->sc_open & AUOPEN_READ) != 0;
3755 p->active = sc->sc_pbus;
3756 r->active = sc->sc_rbus;
3758 p->buffer_size = sc->sc_pustream ? sc->sc_pustream->bufsize : 0;
3759 r->buffer_size = sc->sc_rustream ? sc->sc_rustream->bufsize : 0;
3761 ai->blocksize = sc->sc_pr.blksize;
3762 if (sc->sc_pr.blksize > 0) {
3763 ai->hiwat = sc->sc_pr.usedhigh / sc->sc_pr.blksize;
3764 ai->lowat = sc->sc_pr.usedlow / sc->sc_pr.blksize;
3765 } else
3766 ai->hiwat = ai->lowat = 0;
3767 ai->mode = sc->sc_mode;
3769 return 0;
3773 * Mixer driver
3776 mixer_open(dev_t dev, struct audio_softc *sc, int flags,
3777 int ifmt, struct lwp *l)
3779 if (sc->hw_if == NULL)
3780 return ENXIO;
3782 DPRINTF(("mixer_open: flags=0x%x sc=%p\n", flags, sc));
3784 return 0;
3788 * Remove a process from those to be signalled on mixer activity.
3790 static void
3791 mixer_remove(struct audio_softc *sc, struct lwp *l)
3793 struct mixer_asyncs **pm, *m;
3794 struct proc *p;
3796 if (l == NULL)
3797 return;
3799 p = l->l_proc;
3801 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
3802 if ((*pm)->proc == p) {
3803 m = *pm;
3804 *pm = m->next;
3805 free(m, M_DEVBUF);
3806 return;
3812 * Signal all processes waiting for the mixer.
3814 static void
3815 mixer_signal(struct audio_softc *sc)
3817 struct mixer_asyncs *m;
3819 for (m = sc->sc_async_mixer; m; m = m->next) {
3820 mutex_enter(proc_lock);
3821 psignal(m->proc, SIGIO);
3822 mutex_exit(proc_lock);
3827 * Close a mixer device
3829 /* ARGSUSED */
3831 mixer_close(struct audio_softc *sc, int flags, int ifmt,
3832 struct lwp *l)
3835 DPRINTF(("mixer_close: sc %p\n", sc));
3836 mixer_remove(sc, l);
3837 return 0;
3841 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
3842 struct lwp *l)
3844 const struct audio_hw_if *hw;
3845 mixer_ctrl_t *mc;
3846 int error;
3848 DPRINTF(("mixer_ioctl(%lu,'%c',%lu)\n",
3849 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff));
3850 hw = sc->hw_if;
3851 error = EINVAL;
3853 /* we can return cached values if we are sleeping */
3854 if (cmd != AUDIO_MIXER_READ)
3855 device_active(sc->dev, DVA_SYSTEM);
3857 switch (cmd) {
3858 case FIOASYNC:
3859 mixer_remove(sc, l); /* remove old entry */
3860 if (*(int *)addr) {
3861 struct mixer_asyncs *ma;
3862 ma = malloc(sizeof (struct mixer_asyncs),
3863 M_DEVBUF, M_WAITOK);
3864 ma->next = sc->sc_async_mixer;
3865 ma->proc = l->l_proc;
3866 sc->sc_async_mixer = ma;
3868 error = 0;
3869 break;
3871 case AUDIO_GETDEV:
3872 DPRINTF(("AUDIO_GETDEV\n"));
3873 error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
3874 break;
3876 case AUDIO_MIXER_DEVINFO:
3877 DPRINTF(("AUDIO_MIXER_DEVINFO\n"));
3878 ((mixer_devinfo_t *)addr)->un.v.delta = 0; /* default */
3879 error = hw->query_devinfo(sc->hw_hdl, (mixer_devinfo_t *)addr);
3880 break;
3882 case AUDIO_MIXER_READ:
3883 DPRINTF(("AUDIO_MIXER_READ\n"));
3884 mc = (mixer_ctrl_t *)addr;
3886 if (device_is_active(sc->sc_dev) ||
3887 sc->sc_mixer_state == NULL)
3888 error = hw->get_port(sc->hw_hdl, mc);
3889 else if (mc->dev >= sc->sc_nmixer_states)
3890 error = ENXIO;
3891 else {
3892 int dev = mc->dev;
3893 memcpy(mc, &sc->sc_mixer_state[dev],
3894 sizeof(mixer_ctrl_t));
3895 error = 0;
3897 break;
3899 case AUDIO_MIXER_WRITE:
3900 DPRINTF(("AUDIO_MIXER_WRITE\n"));
3901 error = hw->set_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
3902 if (!error && hw->commit_settings)
3903 error = hw->commit_settings(sc->hw_hdl);
3904 if (!error)
3905 mixer_signal(sc);
3906 break;
3908 default:
3909 if (hw->dev_ioctl)
3910 error = hw->dev_ioctl(sc->hw_hdl, cmd, addr, flag, l);
3911 else
3912 error = EINVAL;
3913 break;
3915 DPRINTF(("mixer_ioctl(%lu,'%c',%lu) result %d\n",
3916 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, error));
3917 return error;
3919 #endif /* NAUDIO > 0 */
3921 #include "midi.h"
3923 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
3924 #include <sys/param.h>
3925 #include <sys/systm.h>
3926 #include <sys/device.h>
3927 #include <sys/audioio.h>
3928 #include <dev/audio_if.h>
3929 #endif
3931 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
3933 audioprint(void *aux, const char *pnp)
3935 struct audio_attach_args *arg;
3936 const char *type;
3938 if (pnp != NULL) {
3939 arg = aux;
3940 switch (arg->type) {
3941 case AUDIODEV_TYPE_AUDIO:
3942 type = "audio";
3943 break;
3944 case AUDIODEV_TYPE_MIDI:
3945 type = "midi";
3946 break;
3947 case AUDIODEV_TYPE_OPL:
3948 type = "opl";
3949 break;
3950 case AUDIODEV_TYPE_MPU:
3951 type = "mpu";
3952 break;
3953 default:
3954 panic("audioprint: unknown type %d", arg->type);
3956 aprint_normal("%s at %s", type, pnp);
3958 return UNCONF;
3961 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
3963 #if NAUDIO > 0
3964 static void
3965 audio_mixer_capture(struct audio_softc *sc)
3967 mixer_devinfo_t mi;
3968 mixer_ctrl_t *mc;
3970 for (mi.index = 0; ; mi.index++)
3971 if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
3972 break;
3974 #ifdef DIAGNOSTIC
3975 if (sc->sc_mixer_state != NULL && sc->sc_nmixer_states != mi.index) {
3976 free(sc->sc_mixer_state, M_DEVBUF);
3977 sc->sc_mixer_state = NULL;
3979 #endif
3981 sc->sc_nmixer_states = mi.index;
3982 if (sc->sc_mixer_state == NULL)
3983 sc->sc_mixer_state = malloc(
3984 sizeof(mixer_ctrl_t) * sc->sc_nmixer_states,
3985 M_DEVBUF, M_NOWAIT);
3986 if (sc->sc_mixer_state == NULL) {
3987 aprint_error("%s: couldn't allocate memory for mixer state\n",
3988 device_xname(sc->dev));
3989 return;
3992 for (mi.index = 0; ; mi.index++) {
3993 if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
3994 break;
3995 if (mi.type == AUDIO_MIXER_CLASS)
3996 continue;
3997 mc = &sc->sc_mixer_state[mi.index];
3998 mc->dev = mi.index;
3999 mc->type = mi.type;
4000 mc->un.value.num_channels = mi.un.v.num_channels;
4001 (void)sc->hw_if->get_port(sc->hw_hdl, mc);
4004 return;
4007 static void
4008 audio_mixer_restore(struct audio_softc *sc)
4010 mixer_devinfo_t mi;
4011 mixer_ctrl_t *mc;
4013 if (sc->sc_mixer_state == NULL)
4014 return;
4016 for (mi.index = 0; ; mi.index++) {
4017 if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
4018 break;
4019 if (mi.type == AUDIO_MIXER_CLASS)
4020 continue;
4021 mc = &sc->sc_mixer_state[mi.index];
4022 (void)sc->hw_if->set_port(sc->hw_hdl, mc);
4024 if (sc->hw_if->commit_settings)
4025 sc->hw_if->commit_settings(sc->hw_hdl);
4027 return;
4030 #ifdef AUDIO_PM_IDLE
4031 static void
4032 audio_idle(void *arg)
4034 device_t dv = arg;
4035 struct audio_softc *sc = device_private(dv);
4037 #ifdef PNP_DEBUG
4038 extern int pnp_debug_idle;
4039 if (pnp_debug_idle)
4040 printf("%s: idle handler called\n", device_xname(dv));
4041 #endif
4043 sc->sc_idle = true;
4045 /* XXX joerg Make pmf_device_suspend handle children? */
4046 if (!pmf_device_suspend(dv, PMF_Q_SELF))
4047 return;
4049 if (!pmf_device_suspend(sc->sc_dev, PMF_Q_SELF))
4050 pmf_device_resume(dv, PMF_Q_SELF);
4053 static void
4054 audio_activity(device_t dv, devactive_t type)
4056 struct audio_softc *sc = device_private(dv);
4058 if (type != DVA_SYSTEM)
4059 return;
4061 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
4063 sc->sc_idle = false;
4064 if (!device_is_active(dv)) {
4065 /* XXX joerg How to deal with a failing resume... */
4066 pmf_device_resume(sc->sc_dev, PMF_Q_SELF);
4067 pmf_device_resume(dv, PMF_Q_SELF);
4070 #endif
4072 static bool
4073 audio_suspend(device_t dv PMF_FN_ARGS)
4075 struct audio_softc *sc = device_private(dv);
4076 const struct audio_hw_if *hwp = sc->hw_if;
4077 int (s);
4079 s = splaudio();
4080 audio_mixer_capture(sc);
4081 if (sc->sc_pbus == true)
4082 hwp->halt_output(sc->hw_hdl);
4083 if (sc->sc_rbus == true)
4084 hwp->halt_input(sc->hw_hdl);
4085 #ifdef AUDIO_PM_IDLE
4086 callout_stop(&sc->sc_idle_counter);
4087 #endif
4088 splx(s);
4090 return true;
4093 static bool
4094 audio_resume(device_t dv PMF_FN_ARGS)
4096 struct audio_softc *sc = device_private(dv);
4097 int s;
4099 s = splaudio();
4100 if (sc->sc_lastinfovalid)
4101 audiosetinfo(sc, &sc->sc_lastinfo);
4102 audio_mixer_restore(sc);
4103 if ((sc->sc_pbus == true) && !sc->sc_pr.pause)
4104 audiostartp(sc);
4105 if ((sc->sc_rbus == true) && !sc->sc_rr.pause)
4106 audiostartr(sc);
4107 splx(s);
4109 return true;
4112 static void
4113 audio_volume_down(device_t dv)
4115 struct audio_softc *sc = device_private(dv);
4116 mixer_devinfo_t mi;
4117 int newgain;
4118 u_int gain;
4119 u_char balance;
4120 int s;
4122 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
4123 mi.index = sc->sc_outports.master;
4124 mi.un.v.delta = 0;
4125 if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
4126 return;
4128 s = splaudio();
4129 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4130 newgain = gain - mi.un.v.delta;
4131 if (newgain < AUDIO_MIN_GAIN)
4132 newgain = AUDIO_MIN_GAIN;
4133 au_set_gain(sc, &sc->sc_outports, newgain, balance);
4134 splx(s);
4138 static void
4139 audio_volume_up(device_t dv)
4141 struct audio_softc *sc = device_private(dv);
4142 mixer_devinfo_t mi;
4143 u_int gain, newgain;
4144 u_char balance;
4145 int s;
4147 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
4148 mi.index = sc->sc_outports.master;
4149 mi.un.v.delta = 0;
4150 if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
4151 return;
4153 s = splaudio();
4154 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4155 newgain = gain + mi.un.v.delta;
4156 if (newgain > AUDIO_MAX_GAIN)
4157 newgain = AUDIO_MAX_GAIN;
4158 au_set_gain(sc, &sc->sc_outports, newgain, balance);
4159 splx(s);
4163 static void
4164 audio_volume_toggle(device_t dv)
4166 struct audio_softc *sc = device_private(dv);
4167 u_int gain, newgain;
4168 u_char balance;
4169 int s;
4171 s = splaudio();
4172 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4173 if (gain != 0) {
4174 sc->sc_lastgain = gain;
4175 newgain = 0;
4176 } else
4177 newgain = sc->sc_lastgain;
4178 au_set_gain(sc, &sc->sc_outports, newgain, balance);
4179 splx(s);
4182 static int
4183 audio_get_props(struct audio_softc *sc)
4185 const struct audio_hw_if *hw;
4186 int props;
4188 hw = sc->hw_if;
4189 props = hw->get_props(sc->hw_hdl);
4192 * if neither playback nor capture properties are reported,
4193 * assume both are supported by the device driver
4195 if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
4196 props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
4198 return props;
4201 static bool
4202 audio_can_playback(struct audio_softc *sc)
4204 return audio_get_props(sc) & AUDIO_PROP_PLAYBACK ? true : false;
4207 static bool
4208 audio_can_capture(struct audio_softc *sc)
4210 return audio_get_props(sc) & AUDIO_PROP_CAPTURE ? true : false;
4213 #endif /* NAUDIO > 0 */