Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / ic / i82557.c
blob0b5bc838547d0dc8ec10cee6817002d0b2e70699
1 /* $NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $ */
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36 * All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $");
71 #include "bpfilter.h"
72 #include "rnd.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
86 #include <machine/endian.h>
88 #include <uvm/uvm_extern.h>
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/udp.h>
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
109 #include <sys/bus.h>
110 #include <sys/intr.h>
112 #include <dev/mii/miivar.h>
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
117 #include <dev/microcode/i8255x/rcvbundl.h>
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
128 #define RFA_ALIGNMENT_FUDGE 2
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
136 * See the definition of struct fxp_cb_config for the bit definitions.
138 const uint8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
176 void fxp_mii_initmedia(struct fxp_softc *);
177 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179 void fxp_80c24_initmedia(struct fxp_softc *);
180 int fxp_80c24_mediachange(struct ifnet *);
181 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183 void fxp_start(struct ifnet *);
184 int fxp_ioctl(struct ifnet *, u_long, void *);
185 void fxp_watchdog(struct ifnet *);
186 int fxp_init(struct ifnet *);
187 void fxp_stop(struct ifnet *, int);
189 void fxp_txintr(struct fxp_softc *);
190 int fxp_rxintr(struct fxp_softc *);
192 void fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
193 const struct fxp_rfa *, u_int);
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(device_t, int, int);
198 void fxp_statchg(device_t);
199 void fxp_mdi_write(device_t, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, uint8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
209 int fxp_copy_small = 0;
212 * Variables for interrupt mitigating microcode.
214 int fxp_int_delay = 1000; /* usec */
215 int fxp_bundle_max = 6; /* packets */
217 struct fxp_phytype {
218 int fp_phy; /* type of PHY, -1 for MII at the end. */
219 void (*fp_init)(struct fxp_softc *);
220 } fxp_phytype_table[] = {
221 { FXP_PHY_80C24, fxp_80c24_initmedia },
222 { -1, fxp_mii_initmedia },
226 * Set initial transmit threshold at 64 (512 bytes). This is
227 * increased by 64 (512 bytes) at a time, to maximum of 192
228 * (1536 bytes), if an underrun occurs.
230 static int tx_threshold = 64;
233 * Wait for the previous command to be accepted (but not necessarily
234 * completed).
236 static inline void
237 fxp_scb_wait(struct fxp_softc *sc)
239 int i = 10000;
241 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
242 delay(2);
243 if (i == 0)
244 log(LOG_WARNING,
245 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
249 * Submit a command to the i82557.
251 static inline void
252 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
261 void
262 fxp_attach(struct fxp_softc *sc)
264 uint8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
270 callout_init(&sc->sc_callout, 0);
273 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
274 * Note: to use IPCB we need extended TXCB support too, and
275 * these feature flags should be set in each bus attachment.
277 if (sc->sc_flags & FXPF_EXT_RFA) {
278 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
279 sc->sc_rfa_size = RFA_EXT_SIZE;
280 } else {
281 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
282 sc->sc_rfa_size = RFA_SIZE;
286 * Allocate the control data structures, and create and load the
287 * DMA map for it.
289 if ((error = bus_dmamem_alloc(sc->sc_dmat,
290 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
291 0)) != 0) {
292 aprint_error_dev(sc->sc_dev,
293 "unable to allocate control data, error = %d\n",
294 error);
295 goto fail_0;
298 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
299 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
300 BUS_DMA_COHERENT)) != 0) {
301 aprint_error_dev(sc->sc_dev,
302 "unable to map control data, error = %d\n", error);
303 goto fail_1;
305 sc->sc_cdseg = seg;
306 sc->sc_cdnseg = rseg;
308 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
310 if ((error = bus_dmamap_create(sc->sc_dmat,
311 sizeof(struct fxp_control_data), 1,
312 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
313 aprint_error_dev(sc->sc_dev,
314 "unable to create control data DMA map, error = %d\n",
315 error);
316 goto fail_2;
319 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
320 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
321 0)) != 0) {
322 aprint_error_dev(sc->sc_dev,
323 "can't load control data DMA map, error = %d\n",
324 error);
325 goto fail_3;
329 * Create the transmit buffer DMA maps.
331 for (i = 0; i < FXP_NTXCB; i++) {
332 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
333 (sc->sc_flags & FXPF_EXT_RFA) ?
334 FXP_IPCB_NTXSEG : FXP_NTXSEG,
335 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
336 aprint_error_dev(sc->sc_dev,
337 "unable to create tx DMA map %d, error = %d\n",
338 i, error);
339 goto fail_4;
344 * Create the receive buffer DMA maps.
346 for (i = 0; i < FXP_NRFABUFS; i++) {
347 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
348 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
349 aprint_error_dev(sc->sc_dev,
350 "unable to create rx DMA map %d, error = %d\n",
351 i, error);
352 goto fail_5;
356 /* Initialize MAC address and media structures. */
357 fxp_get_info(sc, enaddr);
359 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
360 ether_sprintf(enaddr));
362 ifp = &sc->sc_ethercom.ec_if;
365 * Get info about our media interface, and initialize it. Note
366 * the table terminates itself with a phy of -1, indicating
367 * that we're using MII.
369 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
370 if (fp->fp_phy == sc->phy_primary_device)
371 break;
372 (*fp->fp_init)(sc);
374 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
375 ifp->if_softc = sc;
376 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
377 ifp->if_ioctl = fxp_ioctl;
378 ifp->if_start = fxp_start;
379 ifp->if_watchdog = fxp_watchdog;
380 ifp->if_init = fxp_init;
381 ifp->if_stop = fxp_stop;
382 IFQ_SET_READY(&ifp->if_snd);
384 if (sc->sc_flags & FXPF_EXT_RFA) {
386 * Enable hardware cksum support by EXT_RFA and IPCB.
388 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
389 * at least, on i82550 rev.12.
390 * specifically, it doesn't set ipv4 checksum properly
391 * when sending UDP (and probably TCP) packets with
392 * 20 byte ipv4 header + 1 or 2 byte data,
393 * though ICMP packets seem working.
394 * FreeBSD driver has related comments.
395 * We've added a workaround to handle the bug by padding
396 * such packets manually.
398 ifp->if_capabilities =
399 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
400 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
401 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
402 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
403 } else if (sc->sc_flags & FXPF_82559_RXCSUM) {
404 ifp->if_capabilities =
405 IFCAP_CSUM_TCPv4_Rx |
406 IFCAP_CSUM_UDPv4_Rx;
410 * We can support 802.1Q VLAN-sized frames.
412 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415 * Attach the interface.
417 if_attach(ifp);
418 ether_ifattach(ifp, enaddr);
419 #if NRND > 0
420 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
421 RND_TYPE_NET, 0);
422 #endif
424 #ifdef FXP_EVENT_COUNTERS
425 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
426 NULL, device_xname(sc->sc_dev), "txstall");
427 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
428 NULL, device_xname(sc->sc_dev), "txintr");
429 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
430 NULL, device_xname(sc->sc_dev), "rxintr");
431 if (sc->sc_flags & FXPF_FC) {
432 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
433 NULL, device_xname(sc->sc_dev), "txpause");
434 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
435 NULL, device_xname(sc->sc_dev), "rxpause");
437 #endif /* FXP_EVENT_COUNTERS */
439 /* The attach is successful. */
440 sc->sc_flags |= FXPF_ATTACHED;
442 return;
445 * Free any resources we've allocated during the failed attach
446 * attempt. Do this in reverse order and fall though.
448 fail_5:
449 for (i = 0; i < FXP_NRFABUFS; i++) {
450 if (sc->sc_rxmaps[i] != NULL)
451 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
453 fail_4:
454 for (i = 0; i < FXP_NTXCB; i++) {
455 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
456 bus_dmamap_destroy(sc->sc_dmat,
457 FXP_DSTX(sc, i)->txs_dmamap);
459 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
460 fail_3:
461 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
462 fail_2:
463 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
464 sizeof(struct fxp_control_data));
465 fail_1:
466 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
467 fail_0:
468 return;
471 void
472 fxp_mii_initmedia(struct fxp_softc *sc)
474 int flags;
476 sc->sc_flags |= FXPF_MII;
478 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
479 sc->sc_mii.mii_readreg = fxp_mdi_read;
480 sc->sc_mii.mii_writereg = fxp_mdi_write;
481 sc->sc_mii.mii_statchg = fxp_statchg;
483 sc->sc_ethercom.ec_mii = &sc->sc_mii;
484 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
485 fxp_mii_mediastatus);
487 flags = MIIF_NOISOLATE;
488 if (sc->sc_flags & FXPF_FC)
489 flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
491 * The i82557 wedges if all of its PHYs are isolated!
493 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
494 MII_OFFSET_ANY, flags);
495 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
496 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
497 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
498 } else
499 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
502 void
503 fxp_80c24_initmedia(struct fxp_softc *sc)
507 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
508 * doesn't have a programming interface of any sort. The
509 * media is sensed automatically based on how the link partner
510 * is configured. This is, in essence, manual configuration.
512 aprint_normal_dev(sc->sc_dev,
513 "Seeq 80c24 AutoDUPLEX media interface present\n");
514 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
515 fxp_80c24_mediastatus);
516 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
517 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
521 * Initialize the interface media.
523 void
524 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
526 uint16_t data, myea[ETHER_ADDR_LEN / 2];
529 * Reset to a stable state.
531 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
532 DELAY(100);
534 sc->sc_eeprom_size = 0;
535 fxp_autosize_eeprom(sc);
536 if (sc->sc_eeprom_size == 0) {
537 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
538 sc->sc_eeprom_size = 6; /* XXX panic here? */
540 #ifdef DEBUG
541 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
542 1 << sc->sc_eeprom_size);
543 #endif
546 * Get info about the primary PHY
548 fxp_read_eeprom(sc, &data, 6, 1);
549 sc->phy_primary_device =
550 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
553 * Read MAC address.
555 fxp_read_eeprom(sc, myea, 0, 3);
556 enaddr[0] = myea[0] & 0xff;
557 enaddr[1] = myea[0] >> 8;
558 enaddr[2] = myea[1] & 0xff;
559 enaddr[3] = myea[1] >> 8;
560 enaddr[4] = myea[2] & 0xff;
561 enaddr[5] = myea[2] >> 8;
564 * Systems based on the ICH2/ICH2-M chip from Intel, as well
565 * as some i82559 designs, have a defect where the chip can
566 * cause a PCI protocol violation if it receives a CU_RESUME
567 * command when it is entering the IDLE state.
569 * The work-around is to disable Dynamic Standby Mode, so that
570 * the chip never deasserts #CLKRUN, and always remains in the
571 * active state.
573 * Unfortunately, the only way to disable Dynamic Standby is
574 * to frob an EEPROM setting and reboot (the EEPROM setting
575 * is only consulted when the PCI bus comes out of reset).
577 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
579 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
580 fxp_read_eeprom(sc, &data, 10, 1);
581 if (data & 0x02) { /* STB enable */
582 aprint_error_dev(sc->sc_dev, "WARNING: "
583 "Disabling dynamic standby mode in EEPROM "
584 "to work around a\n");
585 aprint_normal_dev(sc->sc_dev,
586 "WARNING: hardware bug. You must reset "
587 "the system before using this\n");
588 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
589 data &= ~0x02;
590 fxp_write_eeprom(sc, &data, 10, 1);
591 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
592 data);
593 fxp_eeprom_update_cksum(sc);
597 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
598 /* Due to false positives we make it conditional on setting link1 */
599 fxp_read_eeprom(sc, &data, 3, 1);
600 if ((data & 0x03) != 0x03) {
601 aprint_verbose_dev(sc->sc_dev,
602 "May need receiver lock-up workaround\n");
606 static void
607 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
609 uint16_t reg;
610 int x;
612 for (x = 1 << (len - 1); x != 0; x >>= 1) {
613 DELAY(40);
614 if (data & x)
615 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
616 else
617 reg = FXP_EEPROM_EECS;
618 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
619 DELAY(40);
620 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
621 reg | FXP_EEPROM_EESK);
622 DELAY(40);
623 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
625 DELAY(40);
629 * Figure out EEPROM size.
631 * 559's can have either 64-word or 256-word EEPROMs, the 558
632 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
633 * talks about the existence of 16 to 256 word EEPROMs.
635 * The only known sizes are 64 and 256, where the 256 version is used
636 * by CardBus cards to store CIS information.
638 * The address is shifted in msb-to-lsb, and after the last
639 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
640 * after which follows the actual data. We try to detect this zero, by
641 * probing the data-out bit in the EEPROM control register just after
642 * having shifted in a bit. If the bit is zero, we assume we've
643 * shifted enough address bits. The data-out should be tri-state,
644 * before this, which should translate to a logical one.
646 * Other ways to do this would be to try to read a register with known
647 * contents with a varying number of address bits, but no such
648 * register seem to be available. The high bits of register 10 are 01
649 * on the 558 and 559, but apparently not on the 557.
651 * The Linux driver computes a checksum on the EEPROM data, but the
652 * value of this checksum is not very well documented.
655 void
656 fxp_autosize_eeprom(struct fxp_softc *sc)
658 int x;
660 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
661 DELAY(40);
663 /* Shift in read opcode. */
664 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
667 * Shift in address, wait for the dummy zero following a correct
668 * address shift.
670 for (x = 1; x <= 8; x++) {
671 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
672 DELAY(40);
673 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
674 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
675 DELAY(40);
676 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
677 FXP_EEPROM_EEDO) == 0)
678 break;
679 DELAY(40);
680 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
681 DELAY(40);
683 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
684 DELAY(40);
685 if (x != 6 && x != 8) {
686 #ifdef DEBUG
687 printf("%s: strange EEPROM size (%d)\n",
688 device_xname(sc->sc_dev), 1 << x);
689 #endif
690 } else
691 sc->sc_eeprom_size = x;
695 * Read from the serial EEPROM. Basically, you manually shift in
696 * the read opcode (one bit at a time) and then shift in the address,
697 * and then you shift out the data (all of this one bit at a time).
698 * The word size is 16 bits, so you have to provide the address for
699 * every 16 bits of data.
701 void
702 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
704 uint16_t reg;
705 int i, x;
707 for (i = 0; i < words; i++) {
708 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
710 /* Shift in read opcode. */
711 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
713 /* Shift in address. */
714 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
716 reg = FXP_EEPROM_EECS;
717 data[i] = 0;
719 /* Shift out data. */
720 for (x = 16; x > 0; x--) {
721 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
722 reg | FXP_EEPROM_EESK);
723 DELAY(40);
724 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
725 FXP_EEPROM_EEDO)
726 data[i] |= (1 << (x - 1));
727 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
728 DELAY(40);
730 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
731 DELAY(40);
736 * Write data to the serial EEPROM.
738 void
739 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
741 int i, j;
743 for (i = 0; i < words; i++) {
744 /* Erase/write enable. */
745 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
746 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
747 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
748 sc->sc_eeprom_size);
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
750 DELAY(4);
752 /* Shift in write opcode, address, data. */
753 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
754 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
755 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
756 fxp_eeprom_shiftin(sc, data[i], 16);
757 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
758 DELAY(4);
760 /* Wait for the EEPROM to finish up. */
761 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
762 DELAY(4);
763 for (j = 0; j < 1000; j++) {
764 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
765 FXP_EEPROM_EEDO)
766 break;
767 DELAY(50);
769 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
770 DELAY(4);
772 /* Erase/write disable. */
773 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
774 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
775 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
776 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
777 DELAY(4);
782 * Update the checksum of the EEPROM.
784 void
785 fxp_eeprom_update_cksum(struct fxp_softc *sc)
787 int i;
788 uint16_t data, cksum;
790 cksum = 0;
791 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
792 fxp_read_eeprom(sc, &data, i, 1);
793 cksum += data;
795 i = (1 << sc->sc_eeprom_size) - 1;
796 cksum = 0xbaba - cksum;
797 fxp_read_eeprom(sc, &data, i, 1);
798 fxp_write_eeprom(sc, &cksum, i, 1);
799 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
800 device_xname(sc->sc_dev), i, data, cksum);
804 * Start packet transmission on the interface.
806 void
807 fxp_start(struct ifnet *ifp)
809 struct fxp_softc *sc = ifp->if_softc;
810 struct mbuf *m0, *m;
811 struct fxp_txdesc *txd;
812 struct fxp_txsoft *txs;
813 bus_dmamap_t dmamap;
814 int error, lasttx, nexttx, opending, seg, nsegs, len;
817 * If we want a re-init, bail out now.
819 if (sc->sc_flags & FXPF_WANTINIT) {
820 ifp->if_flags |= IFF_OACTIVE;
821 return;
824 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
825 return;
828 * Remember the previous txpending and the current lasttx.
830 opending = sc->sc_txpending;
831 lasttx = sc->sc_txlast;
834 * Loop through the send queue, setting up transmit descriptors
835 * until we drain the queue, or use up all available transmit
836 * descriptors.
838 for (;;) {
839 struct fxp_tbd *tbdp;
840 int csum_flags;
843 * Grab a packet off the queue.
845 IFQ_POLL(&ifp->if_snd, m0);
846 if (m0 == NULL)
847 break;
848 m = NULL;
850 if (sc->sc_txpending == FXP_NTXCB - 1) {
851 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
852 break;
856 * Get the next available transmit descriptor.
858 nexttx = FXP_NEXTTX(sc->sc_txlast);
859 txd = FXP_CDTX(sc, nexttx);
860 txs = FXP_DSTX(sc, nexttx);
861 dmamap = txs->txs_dmamap;
864 * Load the DMA map. If this fails, the packet either
865 * didn't fit in the allotted number of frags, or we were
866 * short on resources. In this case, we'll copy and try
867 * again.
869 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
870 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
871 MGETHDR(m, M_DONTWAIT, MT_DATA);
872 if (m == NULL) {
873 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
874 device_xname(sc->sc_dev));
875 break;
877 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
878 if (m0->m_pkthdr.len > MHLEN) {
879 MCLGET(m, M_DONTWAIT);
880 if ((m->m_flags & M_EXT) == 0) {
881 log(LOG_ERR, "%s: unable to allocate "
882 "Tx cluster\n",
883 device_xname(sc->sc_dev));
884 m_freem(m);
885 break;
888 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
889 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
890 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
891 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
892 if (error) {
893 log(LOG_ERR, "%s: unable to load Tx buffer, "
894 "error = %d\n",
895 device_xname(sc->sc_dev), error);
896 break;
900 IFQ_DEQUEUE(&ifp->if_snd, m0);
901 csum_flags = m0->m_pkthdr.csum_flags;
902 if (m != NULL) {
903 m_freem(m0);
904 m0 = m;
907 /* Initialize the fraglist. */
908 tbdp = txd->txd_tbd;
909 len = m0->m_pkthdr.len;
910 nsegs = dmamap->dm_nsegs;
911 if (sc->sc_flags & FXPF_EXT_RFA)
912 tbdp++;
913 for (seg = 0; seg < nsegs; seg++) {
914 tbdp[seg].tb_addr =
915 htole32(dmamap->dm_segs[seg].ds_addr);
916 tbdp[seg].tb_size =
917 htole32(dmamap->dm_segs[seg].ds_len);
919 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
920 (csum_flags & M_CSUM_IPv4) != 0)) {
922 * Pad short packets to avoid ip4csum-tx bug.
924 * XXX Should we still consider if such short
925 * (36 bytes or less) packets might already
926 * occupy FXP_IPCB_NTXSEG (15) fragments here?
928 KASSERT(nsegs < FXP_IPCB_NTXSEG);
929 nsegs++;
930 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
931 tbdp[seg].tb_size =
932 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
935 /* Sync the DMA map. */
936 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
937 BUS_DMASYNC_PREWRITE);
940 * Store a pointer to the packet so we can free it later.
942 txs->txs_mbuf = m0;
945 * Initialize the transmit descriptor.
947 /* BIG_ENDIAN: no need to swap to store 0 */
948 txd->txd_txcb.cb_status = 0;
949 txd->txd_txcb.cb_command =
950 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
951 txd->txd_txcb.tx_threshold = tx_threshold;
952 txd->txd_txcb.tbd_number = nsegs;
954 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
955 if (sc->sc_flags & FXPF_EXT_RFA) {
956 struct m_tag *vtag;
957 struct fxp_ipcb *ipcb;
959 * Deal with TCP/IP checksum offload. Note that
960 * in order for TCP checksum offload to work,
961 * the pseudo header checksum must have already
962 * been computed and stored in the checksum field
963 * in the TCP header. The stack should have
964 * already done this for us.
966 ipcb = &txd->txd_u.txdu_ipcb;
967 memset(ipcb, 0, sizeof(*ipcb));
969 * always do hardware parsing.
971 ipcb->ipcb_ip_activation_high =
972 FXP_IPCB_HARDWAREPARSING_ENABLE;
974 * ip checksum offloading.
976 if (csum_flags & M_CSUM_IPv4) {
977 ipcb->ipcb_ip_schedule |=
978 FXP_IPCB_IP_CHECKSUM_ENABLE;
981 * TCP/UDP checksum offloading.
983 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
984 ipcb->ipcb_ip_schedule |=
985 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
989 * request VLAN tag insertion if needed.
991 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
992 if (vtag) {
993 ipcb->ipcb_vlan_id =
994 htobe16(*(u_int *)(vtag + 1));
995 ipcb->ipcb_ip_activation_high |=
996 FXP_IPCB_INSERTVLAN_ENABLE;
998 } else {
999 KASSERT((csum_flags &
1000 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1003 FXP_CDTXSYNC(sc, nexttx,
1004 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1006 /* Advance the tx pointer. */
1007 sc->sc_txpending++;
1008 sc->sc_txlast = nexttx;
1010 #if NBPFILTER > 0
1012 * Pass packet to bpf if there is a listener.
1014 if (ifp->if_bpf)
1015 bpf_mtap(ifp->if_bpf, m0);
1016 #endif
1019 if (sc->sc_txpending == FXP_NTXCB - 1) {
1020 /* No more slots; notify upper layer. */
1021 ifp->if_flags |= IFF_OACTIVE;
1024 if (sc->sc_txpending != opending) {
1026 * We enqueued packets. If the transmitter was idle,
1027 * reset the txdirty pointer.
1029 if (opending == 0)
1030 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1033 * Cause the chip to interrupt and suspend command
1034 * processing once the last packet we've enqueued
1035 * has been transmitted.
1037 * To avoid a race between updating status bits
1038 * by the fxp chip and clearing command bits
1039 * by this function on machines which don't have
1040 * atomic methods to clear/set bits in memory
1041 * smaller than 32bits (both cb_status and cb_command
1042 * members are uint16_t and in the same 32bit word),
1043 * we have to prepare a dummy TX descriptor which has
1044 * NOP command and just causes a TX completion interrupt.
1046 sc->sc_txpending++;
1047 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1048 txd = FXP_CDTX(sc, sc->sc_txlast);
1049 /* BIG_ENDIAN: no need to swap to store 0 */
1050 txd->txd_txcb.cb_status = 0;
1051 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1052 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1053 FXP_CDTXSYNC(sc, sc->sc_txlast,
1054 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057 * The entire packet chain is set up. Clear the suspend bit
1058 * on the command prior to the first packet we set up.
1060 FXP_CDTXSYNC(sc, lasttx,
1061 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1062 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1063 htole16(~FXP_CB_COMMAND_S);
1064 FXP_CDTXSYNC(sc, lasttx,
1065 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1068 * Issue a Resume command in case the chip was suspended.
1070 fxp_scb_wait(sc);
1071 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1073 /* Set a watchdog timer in case the chip flakes out. */
1074 ifp->if_timer = 5;
1079 * Process interface interrupts.
1082 fxp_intr(void *arg)
1084 struct fxp_softc *sc = arg;
1085 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1086 bus_dmamap_t rxmap;
1087 int claimed = 0, rnr;
1088 uint8_t statack;
1090 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1091 return (0);
1093 * If the interface isn't running, don't try to
1094 * service the interrupt.. just ack it and bail.
1096 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1097 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1098 if (statack) {
1099 claimed = 1;
1100 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1102 return (claimed);
1105 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1106 claimed = 1;
1109 * First ACK all the interrupts in this pass.
1111 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1114 * Process receiver interrupts. If a no-resource (RNR)
1115 * condition exists, get whatever packets we can and
1116 * re-start the receiver.
1118 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1119 1 : 0;
1120 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1121 FXP_SCB_STATACK_SWI)) {
1122 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1123 rnr |= fxp_rxintr(sc);
1127 * Free any finished transmit mbuf chains.
1129 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1130 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1131 fxp_txintr(sc);
1134 * Try to get more packets going.
1136 fxp_start(ifp);
1138 if (sc->sc_txpending == 0) {
1140 * Tell them that they can re-init now.
1142 if (sc->sc_flags & FXPF_WANTINIT)
1143 wakeup(sc);
1147 if (rnr) {
1148 fxp_scb_wait(sc);
1149 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1150 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1151 fxp_scb_wait(sc);
1152 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1153 rxmap->dm_segs[0].ds_addr +
1154 RFA_ALIGNMENT_FUDGE);
1155 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1159 #if NRND > 0
1160 if (claimed)
1161 rnd_add_uint32(&sc->rnd_source, statack);
1162 #endif
1163 return (claimed);
1167 * Handle transmit completion interrupts.
1169 void
1170 fxp_txintr(struct fxp_softc *sc)
1172 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1173 struct fxp_txdesc *txd;
1174 struct fxp_txsoft *txs;
1175 int i;
1176 uint16_t txstat;
1178 ifp->if_flags &= ~IFF_OACTIVE;
1179 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1180 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1181 txd = FXP_CDTX(sc, i);
1182 txs = FXP_DSTX(sc, i);
1184 FXP_CDTXSYNC(sc, i,
1185 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187 /* skip dummy NOP TX descriptor */
1188 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1189 == FXP_CB_COMMAND_NOP)
1190 continue;
1192 txstat = le16toh(txd->txd_txcb.cb_status);
1194 if ((txstat & FXP_CB_STATUS_C) == 0)
1195 break;
1197 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1198 0, txs->txs_dmamap->dm_mapsize,
1199 BUS_DMASYNC_POSTWRITE);
1200 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1201 m_freem(txs->txs_mbuf);
1202 txs->txs_mbuf = NULL;
1205 /* Update the dirty transmit buffer pointer. */
1206 sc->sc_txdirty = i;
1209 * Cancel the watchdog timer if there are no pending
1210 * transmissions.
1212 if (sc->sc_txpending == 0)
1213 ifp->if_timer = 0;
1217 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1220 void
1221 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1222 u_int len)
1224 uint32_t csum_data;
1225 int csum_flags;
1228 * check H/W Checksumming.
1231 csum_flags = 0;
1232 csum_data = 0;
1234 if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1235 uint8_t rxparsestat;
1236 uint8_t csum_stat;
1238 csum_stat = rfa->cksum_stat;
1239 rxparsestat = rfa->rx_parse_stat;
1240 if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1241 goto out;
1243 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1244 csum_flags = M_CSUM_IPv4;
1245 if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1246 csum_flags |= M_CSUM_IPv4_BAD;
1249 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1250 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1251 if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1252 csum_flags |= M_CSUM_TCP_UDP_BAD;
1255 } else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 struct ether_header *eh;
1258 struct ip *ip;
1259 struct udphdr *uh;
1260 u_int hlen, pktlen;
1262 if (len < ETHER_HDR_LEN + sizeof(struct ip))
1263 goto out;
1264 pktlen = len - ETHER_HDR_LEN;
1265 eh = mtod(m, struct ether_header *);
1266 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1267 goto out;
1268 ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1269 if (ip->ip_v != IPVERSION)
1270 goto out;
1272 hlen = ip->ip_hl << 2;
1273 if (hlen < sizeof(struct ip))
1274 goto out;
1277 * Bail if too short, has random trailing garbage, truncated,
1278 * fragment, or has ethernet pad.
1280 if (ntohs(ip->ip_len) < hlen ||
1281 ntohs(ip->ip_len) != pktlen ||
1282 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1283 goto out;
1285 switch (ip->ip_p) {
1286 case IPPROTO_TCP:
1287 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1288 pktlen < (hlen + sizeof(struct tcphdr)))
1289 goto out;
1290 csum_flags =
1291 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1292 break;
1293 case IPPROTO_UDP:
1294 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1295 pktlen < (hlen + sizeof(struct udphdr)))
1296 goto out;
1297 uh = (struct udphdr *)((uint8_t *)ip + hlen);
1298 if (uh->uh_sum == 0)
1299 goto out; /* no checksum */
1300 csum_flags =
1301 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1302 break;
1303 default:
1304 goto out;
1307 /* Extract computed checksum. */
1308 csum_data = be16dec(mtod(m, uint8_t *) + len);
1311 * The computed checksum includes IP headers,
1312 * so we have to deduct them.
1314 #if 0
1316 * But in TCP/UDP layer we can assume the IP header is valid,
1317 * i.e. a sum of the whole IP header should be 0xffff,
1318 * so we don't have to bother to deduct it.
1320 if (hlen > 0) {
1321 uint32_t hsum;
1322 const uint16_t *iphdr;
1323 hsum = 0;
1324 iphdr = (uint16_t *)ip;
1326 while (hlen > 1) {
1327 hsum += ntohs(*iphdr++);
1328 hlen -= sizeof(uint16_t);
1330 while (hsum >> 16)
1331 hsum = (hsum >> 16) + (hsum & 0xffff);
1333 csum_data += (uint16_t)~hsum;
1335 while (csum_data >> 16)
1336 csum_data =
1337 (csum_data >> 16) + (csum_data & 0xffff);
1339 #endif
1341 out:
1342 m->m_pkthdr.csum_flags = csum_flags;
1343 m->m_pkthdr.csum_data = csum_data;
1347 * Handle receive interrupts.
1350 fxp_rxintr(struct fxp_softc *sc)
1352 struct ethercom *ec = &sc->sc_ethercom;
1353 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1354 struct mbuf *m, *m0;
1355 bus_dmamap_t rxmap;
1356 struct fxp_rfa *rfa;
1357 int rnr;
1358 uint16_t len, rxstat;
1360 rnr = 0;
1362 for (;;) {
1363 m = sc->sc_rxq.ifq_head;
1364 rfa = FXP_MTORFA(m);
1365 rxmap = M_GETCTX(m, bus_dmamap_t);
1367 FXP_RFASYNC(sc, m,
1368 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1370 rxstat = le16toh(rfa->rfa_status);
1372 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1373 rnr = 1;
1375 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1377 * We have processed all of the
1378 * receive buffers.
1380 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1381 return rnr;
1384 IF_DEQUEUE(&sc->sc_rxq, m);
1386 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1388 len = le16toh(rfa->actual_size) &
1389 (m->m_ext.ext_size - 1);
1390 if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1391 /* Adjust for appended checksum bytes. */
1392 len -= sizeof(uint16_t);
1395 if (len < sizeof(struct ether_header)) {
1397 * Runt packet; drop it now.
1399 FXP_INIT_RFABUF(sc, m);
1400 continue;
1404 * If support for 802.1Q VLAN sized frames is
1405 * enabled, we need to do some additional error
1406 * checking (as we are saving bad frames, in
1407 * order to receive the larger ones).
1409 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1410 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1411 FXP_RFA_STATUS_RNR|
1412 FXP_RFA_STATUS_ALIGN|
1413 FXP_RFA_STATUS_CRC)) != 0) {
1414 FXP_INIT_RFABUF(sc, m);
1415 continue;
1419 * check VLAN tag stripping.
1421 if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1422 (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1423 struct m_tag *vtag;
1425 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1426 M_NOWAIT);
1427 if (vtag == NULL)
1428 goto dropit;
1429 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1430 m_tag_prepend(m, vtag);
1433 /* Do checksum checking. */
1434 if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1435 fxp_rx_hwcksum(sc, m, rfa, len);
1438 * If the packet is small enough to fit in a
1439 * single header mbuf, allocate one and copy
1440 * the data into it. This greatly reduces
1441 * memory consumption when we receive lots
1442 * of small packets.
1444 * Otherwise, we add a new buffer to the receive
1445 * chain. If this fails, we drop the packet and
1446 * recycle the old buffer.
1448 if (fxp_copy_small != 0 && len <= MHLEN) {
1449 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1450 if (m0 == NULL)
1451 goto dropit;
1452 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1453 memcpy(mtod(m0, void *),
1454 mtod(m, void *), len);
1455 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1456 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1457 FXP_INIT_RFABUF(sc, m);
1458 m = m0;
1459 } else {
1460 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1461 dropit:
1462 ifp->if_ierrors++;
1463 FXP_INIT_RFABUF(sc, m);
1464 continue;
1468 m->m_pkthdr.rcvif = ifp;
1469 m->m_pkthdr.len = m->m_len = len;
1471 #if NBPFILTER > 0
1473 * Pass this up to any BPF listeners, but only
1474 * pass it up the stack if it's for us.
1476 if (ifp->if_bpf)
1477 bpf_mtap(ifp->if_bpf, m);
1478 #endif
1480 /* Pass it on. */
1481 (*ifp->if_input)(ifp, m);
1486 * Update packet in/out/collision statistics. The i82557 doesn't
1487 * allow you to access these counters without doing a fairly
1488 * expensive DMA to get _all_ of the statistics it maintains, so
1489 * we do this operation here only once per second. The statistics
1490 * counters in the kernel are updated from the previous dump-stats
1491 * DMA and then a new dump-stats DMA is started. The on-chip
1492 * counters are zeroed when the DMA completes. If we can't start
1493 * the DMA immediately, we don't wait - we just prepare to read
1494 * them again next time.
1496 void
1497 fxp_tick(void *arg)
1499 struct fxp_softc *sc = arg;
1500 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1502 int s;
1504 if (!device_is_active(sc->sc_dev))
1505 return;
1507 s = splnet();
1509 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1511 ifp->if_opackets += le32toh(sp->tx_good);
1512 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1513 if (sp->rx_good) {
1514 ifp->if_ipackets += le32toh(sp->rx_good);
1515 sc->sc_rxidle = 0;
1516 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1517 sc->sc_rxidle++;
1519 ifp->if_ierrors +=
1520 le32toh(sp->rx_crc_errors) +
1521 le32toh(sp->rx_alignment_errors) +
1522 le32toh(sp->rx_rnr_errors) +
1523 le32toh(sp->rx_overrun_errors);
1525 * If any transmit underruns occurred, bump up the transmit
1526 * threshold by another 512 bytes (64 * 8).
1528 if (sp->tx_underruns) {
1529 ifp->if_oerrors += le32toh(sp->tx_underruns);
1530 if (tx_threshold < 192)
1531 tx_threshold += 64;
1533 #ifdef FXP_EVENT_COUNTERS
1534 if (sc->sc_flags & FXPF_FC) {
1535 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1536 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1538 #endif
1541 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1542 * then assume the receiver has locked up and attempt to clear
1543 * the condition by reprogramming the multicast filter (actually,
1544 * resetting the interface). This is a work-around for a bug in
1545 * the 82557 where the receiver locks up if it gets certain types
1546 * of garbage in the synchronization bits prior to the packet header.
1547 * This bug is supposed to only occur in 10Mbps mode, but has been
1548 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1549 * speed transition).
1551 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1552 (void) fxp_init(ifp);
1553 splx(s);
1554 return;
1557 * If there is no pending command, start another stats
1558 * dump. Otherwise punt for now.
1560 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1562 * Start another stats dump.
1564 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1565 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1566 } else {
1568 * A previous command is still waiting to be accepted.
1569 * Just zero our copy of the stats and wait for the
1570 * next timer event to update them.
1572 /* BIG_ENDIAN: no swap required to store 0 */
1573 sp->tx_good = 0;
1574 sp->tx_underruns = 0;
1575 sp->tx_total_collisions = 0;
1577 sp->rx_good = 0;
1578 sp->rx_crc_errors = 0;
1579 sp->rx_alignment_errors = 0;
1580 sp->rx_rnr_errors = 0;
1581 sp->rx_overrun_errors = 0;
1582 if (sc->sc_flags & FXPF_FC) {
1583 sp->tx_pauseframes = 0;
1584 sp->rx_pauseframes = 0;
1588 if (sc->sc_flags & FXPF_MII) {
1589 /* Tick the MII clock. */
1590 mii_tick(&sc->sc_mii);
1593 splx(s);
1596 * Schedule another timeout one second from now.
1598 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1602 * Drain the receive queue.
1604 void
1605 fxp_rxdrain(struct fxp_softc *sc)
1607 bus_dmamap_t rxmap;
1608 struct mbuf *m;
1610 for (;;) {
1611 IF_DEQUEUE(&sc->sc_rxq, m);
1612 if (m == NULL)
1613 break;
1614 rxmap = M_GETCTX(m, bus_dmamap_t);
1615 bus_dmamap_unload(sc->sc_dmat, rxmap);
1616 FXP_RXMAP_PUT(sc, rxmap);
1617 m_freem(m);
1622 * Stop the interface. Cancels the statistics updater and resets
1623 * the interface.
1625 void
1626 fxp_stop(struct ifnet *ifp, int disable)
1628 struct fxp_softc *sc = ifp->if_softc;
1629 struct fxp_txsoft *txs;
1630 int i;
1633 * Turn down interface (done early to avoid bad interactions
1634 * between panics, shutdown hooks, and the watchdog timer)
1636 ifp->if_timer = 0;
1637 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1640 * Cancel stats updater.
1642 callout_stop(&sc->sc_callout);
1643 if (sc->sc_flags & FXPF_MII) {
1644 /* Down the MII. */
1645 mii_down(&sc->sc_mii);
1649 * Issue software reset. This unloads any microcode that
1650 * might already be loaded.
1652 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1653 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1654 DELAY(50);
1657 * Release any xmit buffers.
1659 for (i = 0; i < FXP_NTXCB; i++) {
1660 txs = FXP_DSTX(sc, i);
1661 if (txs->txs_mbuf != NULL) {
1662 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1663 m_freem(txs->txs_mbuf);
1664 txs->txs_mbuf = NULL;
1667 sc->sc_txpending = 0;
1669 if (disable) {
1670 fxp_rxdrain(sc);
1671 fxp_disable(sc);
1677 * Watchdog/transmission transmit timeout handler. Called when a
1678 * transmission is started on the interface, but no interrupt is
1679 * received before the timeout. This usually indicates that the
1680 * card has wedged for some reason.
1682 void
1683 fxp_watchdog(struct ifnet *ifp)
1685 struct fxp_softc *sc = ifp->if_softc;
1687 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1688 ifp->if_oerrors++;
1690 (void) fxp_init(ifp);
1694 * Initialize the interface. Must be called at splnet().
1697 fxp_init(struct ifnet *ifp)
1699 struct fxp_softc *sc = ifp->if_softc;
1700 struct fxp_cb_config *cbp;
1701 struct fxp_cb_ias *cb_ias;
1702 struct fxp_txdesc *txd;
1703 bus_dmamap_t rxmap;
1704 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1705 uint16_t status;
1707 if ((error = fxp_enable(sc)) != 0)
1708 goto out;
1711 * Cancel any pending I/O
1713 fxp_stop(ifp, 0);
1716 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1717 * flag, and this prevents the MII from detaching resulting in
1718 * a panic. The flags field should perhaps be split in runtime
1719 * flags and more static information. For now, just clear the
1720 * only other flag set.
1723 sc->sc_flags &= ~FXPF_WANTINIT;
1726 * Initialize base of CBL and RFA memory. Loading with zero
1727 * sets it up for regular linear addressing.
1729 fxp_scb_wait(sc);
1730 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1731 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1733 fxp_scb_wait(sc);
1734 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1737 * Initialize the multicast filter. Do this now, since we might
1738 * have to setup the config block differently.
1740 fxp_mc_setup(sc);
1742 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1743 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1746 * In order to support receiving 802.1Q VLAN frames, we have to
1747 * enable "save bad frames", since they are 4 bytes larger than
1748 * the normal Ethernet maximum frame length. On i82558 and later,
1749 * we have a better mechanism for this.
1751 save_bf = 0;
1752 lrxen = 0;
1753 vlan_drop = 0;
1754 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1755 if (sc->sc_rev < FXP_REV_82558_A4)
1756 save_bf = 1;
1757 else
1758 lrxen = 1;
1759 if (sc->sc_rev >= FXP_REV_82550)
1760 vlan_drop = 1;
1764 * Initialize base of dump-stats buffer.
1766 fxp_scb_wait(sc);
1767 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1768 sc->sc_cddma + FXP_CDSTATSOFF);
1769 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1770 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1772 cbp = &sc->sc_control_data->fcd_configcb;
1773 memset(cbp, 0, sizeof(struct fxp_cb_config));
1776 * Load microcode for this controller.
1778 fxp_load_ucode(sc);
1780 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1781 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1782 else
1783 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1786 * This copy is kind of disgusting, but there are a bunch of must be
1787 * zero and must be one bits in this structure and this is the easiest
1788 * way to initialize them all to proper values.
1790 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1792 /* BIG_ENDIAN: no need to swap to store 0 */
1793 cbp->cb_status = 0;
1794 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1795 FXP_CB_COMMAND_EL);
1796 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1797 cbp->link_addr = 0xffffffff; /* (no) next command */
1798 /* bytes in config block */
1799 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1800 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1801 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1802 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1803 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1804 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1805 cbp->type_enable = 0; /* actually reserved */
1806 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1807 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1808 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1809 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1810 cbp->dma_mbce = 0; /* (disable) dma max counters */
1811 cbp->late_scb = 0; /* (don't) defer SCB update */
1812 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1813 cbp->ci_int = 1; /* interrupt on CU idle */
1814 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1815 cbp->ext_stats_dis = 1; /* disable extended counters */
1816 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1817 cbp->save_bf = save_bf;/* save bad frames */
1818 cbp->disc_short_rx = !prm; /* discard short packets */
1819 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1820 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1821 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1822 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1823 /* interface mode */
1824 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1825 cbp->csma_dis = 0; /* (don't) disable link */
1826 cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1827 /* (don't) enable RX checksum */
1828 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1829 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1830 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1831 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1832 cbp->nsai = 1; /* (don't) disable source addr insert */
1833 cbp->preamble_length = 2; /* (7 byte) preamble */
1834 cbp->loopback = 0; /* (don't) loopback */
1835 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1836 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1837 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1838 cbp->promiscuous = prm; /* promiscuous mode */
1839 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1840 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1841 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1842 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1843 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1844 cbp->stripping = !prm; /* truncate rx packet to byte count */
1845 cbp->padding = 1; /* (do) pad short tx packets */
1846 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1847 cbp->long_rx_en = lrxen; /* long packet receive enable */
1848 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1849 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1850 /* must set wake_en in PMCSR also */
1851 cbp->force_fdx = 0; /* (don't) force full duplex */
1852 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1853 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1854 cbp->mc_all = allm; /* accept all multicasts */
1855 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1856 cbp->vlan_drop_en = vlan_drop;
1858 if (!(sc->sc_flags & FXPF_FC)) {
1860 * The i82557 has no hardware flow control, the values
1861 * here are the defaults for the chip.
1863 cbp->fc_delay_lsb = 0;
1864 cbp->fc_delay_msb = 0x40;
1865 cbp->pri_fc_thresh = 3;
1866 cbp->tx_fc_dis = 0;
1867 cbp->rx_fc_restop = 0;
1868 cbp->rx_fc_restart = 0;
1869 cbp->fc_filter = 0;
1870 cbp->pri_fc_loc = 1;
1871 } else {
1872 cbp->fc_delay_lsb = 0x1f;
1873 cbp->fc_delay_msb = 0x01;
1874 cbp->pri_fc_thresh = 3;
1875 cbp->tx_fc_dis = 0; /* enable transmit FC */
1876 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1877 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1878 cbp->fc_filter = !prm; /* drop FC frames to host */
1879 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1880 cbp->ext_stats_dis = 0; /* enable extended stats */
1883 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1886 * Start the config command/DMA.
1888 fxp_scb_wait(sc);
1889 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1890 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1891 /* ...and wait for it to complete. */
1892 for (i = 1000; i > 0; i--) {
1893 FXP_CDCONFIGSYNC(sc,
1894 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1895 status = le16toh(cbp->cb_status);
1896 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1897 if ((status & FXP_CB_STATUS_C) != 0)
1898 break;
1899 DELAY(1);
1901 if (i == 0) {
1902 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1903 device_xname(sc->sc_dev), __LINE__);
1904 return (ETIMEDOUT);
1908 * Initialize the station address.
1910 cb_ias = &sc->sc_control_data->fcd_iascb;
1911 /* BIG_ENDIAN: no need to swap to store 0 */
1912 cb_ias->cb_status = 0;
1913 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1914 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1915 cb_ias->link_addr = 0xffffffff;
1916 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1918 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1921 * Start the IAS (Individual Address Setup) command/DMA.
1923 fxp_scb_wait(sc);
1924 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1925 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1926 /* ...and wait for it to complete. */
1927 for (i = 1000; i > 0; i++) {
1928 FXP_CDIASSYNC(sc,
1929 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1930 status = le16toh(cb_ias->cb_status);
1931 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1932 if ((status & FXP_CB_STATUS_C) != 0)
1933 break;
1934 DELAY(1);
1936 if (i == 0) {
1937 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1938 device_xname(sc->sc_dev), __LINE__);
1939 return (ETIMEDOUT);
1943 * Initialize the transmit descriptor ring. txlast is initialized
1944 * to the end of the list so that it will wrap around to the first
1945 * descriptor when the first packet is transmitted.
1947 for (i = 0; i < FXP_NTXCB; i++) {
1948 txd = FXP_CDTX(sc, i);
1949 memset(txd, 0, sizeof(*txd));
1950 txd->txd_txcb.cb_command =
1951 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1952 txd->txd_txcb.link_addr =
1953 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1954 if (sc->sc_flags & FXPF_EXT_TXCB)
1955 txd->txd_txcb.tbd_array_addr =
1956 htole32(FXP_CDTBDADDR(sc, i) +
1957 (2 * sizeof(struct fxp_tbd)));
1958 else
1959 txd->txd_txcb.tbd_array_addr =
1960 htole32(FXP_CDTBDADDR(sc, i));
1961 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1963 sc->sc_txpending = 0;
1964 sc->sc_txdirty = 0;
1965 sc->sc_txlast = FXP_NTXCB - 1;
1968 * Initialize the receive buffer list.
1970 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1971 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1972 rxmap = FXP_RXMAP_GET(sc);
1973 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1974 log(LOG_ERR, "%s: unable to allocate or map rx "
1975 "buffer %d, error = %d\n",
1976 device_xname(sc->sc_dev),
1977 sc->sc_rxq.ifq_len, error);
1979 * XXX Should attempt to run with fewer receive
1980 * XXX buffers instead of just failing.
1982 FXP_RXMAP_PUT(sc, rxmap);
1983 fxp_rxdrain(sc);
1984 goto out;
1987 sc->sc_rxidle = 0;
1990 * Give the transmit ring to the chip. We do this by pointing
1991 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1992 * issuing a start command. It will execute the NOP and then
1993 * suspend, pointing at the first descriptor.
1995 fxp_scb_wait(sc);
1996 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1997 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2000 * Initialize receiver buffer area - RFA.
2002 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
2003 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
2004 fxp_scb_wait(sc);
2005 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2006 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
2007 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2008 #endif
2010 if (sc->sc_flags & FXPF_MII) {
2012 * Set current media.
2014 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
2015 goto out;
2019 * ...all done!
2021 ifp->if_flags |= IFF_RUNNING;
2022 ifp->if_flags &= ~IFF_OACTIVE;
2025 * Request a software generated interrupt that will be used to
2026 * (re)start the RU processing. If we direct the chip to start
2027 * receiving from the start of queue now, instead of letting the
2028 * interrupt handler first process all received packets, we run
2029 * the risk of having it overwrite mbuf clusters while they are
2030 * being processed or after they have been returned to the pool.
2032 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2035 * Start the one second timer.
2037 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2040 * Attempt to start output on the interface.
2042 fxp_start(ifp);
2044 out:
2045 if (error) {
2046 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2047 ifp->if_timer = 0;
2048 log(LOG_ERR, "%s: interface not running\n",
2049 device_xname(sc->sc_dev));
2051 return (error);
2055 * Notify the world which media we're using.
2057 void
2058 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2060 struct fxp_softc *sc = ifp->if_softc;
2062 if (sc->sc_enabled == 0) {
2063 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2064 ifmr->ifm_status = 0;
2065 return;
2068 ether_mediastatus(ifp, ifmr);
2072 fxp_80c24_mediachange(struct ifnet *ifp)
2075 /* Nothing to do here. */
2076 return (0);
2079 void
2080 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2082 struct fxp_softc *sc = ifp->if_softc;
2085 * Media is currently-selected media. We cannot determine
2086 * the link status.
2088 ifmr->ifm_status = 0;
2089 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2093 * Add a buffer to the end of the RFA buffer list.
2094 * Return 0 if successful, error code on failure.
2096 * The RFA struct is stuck at the beginning of mbuf cluster and the
2097 * data pointer is fixed up to point just past it.
2100 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2102 struct mbuf *m;
2103 int error;
2105 MGETHDR(m, M_DONTWAIT, MT_DATA);
2106 if (m == NULL)
2107 return (ENOBUFS);
2109 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2110 MCLGET(m, M_DONTWAIT);
2111 if ((m->m_flags & M_EXT) == 0) {
2112 m_freem(m);
2113 return (ENOBUFS);
2116 if (unload)
2117 bus_dmamap_unload(sc->sc_dmat, rxmap);
2119 M_SETCTX(m, rxmap);
2121 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2122 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2123 BUS_DMA_READ|BUS_DMA_NOWAIT);
2124 if (error) {
2125 /* XXX XXX XXX */
2126 aprint_error_dev(sc->sc_dev,
2127 "can't load rx DMA map %d, error = %d\n",
2128 sc->sc_rxq.ifq_len, error);
2129 panic("fxp_add_rfabuf");
2132 FXP_INIT_RFABUF(sc, m);
2134 return (0);
2138 fxp_mdi_read(device_t self, int phy, int reg)
2140 struct fxp_softc *sc = device_private(self);
2141 int count = 10000;
2142 int value;
2144 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2145 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2147 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2148 0x10000000) == 0 && count--)
2149 DELAY(10);
2151 if (count <= 0)
2152 log(LOG_WARNING,
2153 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2155 return (value & 0xffff);
2158 void
2159 fxp_statchg(device_t self)
2162 /* Nothing to do. */
2165 void
2166 fxp_mdi_write(device_t self, int phy, int reg, int value)
2168 struct fxp_softc *sc = device_private(self);
2169 int count = 10000;
2171 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2172 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2173 (value & 0xffff));
2175 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2176 count--)
2177 DELAY(10);
2179 if (count <= 0)
2180 log(LOG_WARNING,
2181 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2185 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2187 struct fxp_softc *sc = ifp->if_softc;
2188 struct ifreq *ifr = (struct ifreq *)data;
2189 int s, error;
2191 s = splnet();
2193 switch (cmd) {
2194 case SIOCSIFMEDIA:
2195 case SIOCGIFMEDIA:
2196 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2197 break;
2199 default:
2200 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2201 break;
2203 error = 0;
2205 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2207 else if (ifp->if_flags & IFF_RUNNING) {
2209 * Multicast list has changed; set the
2210 * hardware filter accordingly.
2212 while (sc->sc_txpending) {
2213 sc->sc_flags |= FXPF_WANTINIT;
2214 tsleep(sc, PSOCK, "fxp_init", 0);
2216 error = fxp_init(ifp);
2218 break;
2221 /* Try to get more packets going. */
2222 if (sc->sc_enabled)
2223 fxp_start(ifp);
2225 splx(s);
2226 return (error);
2230 * Program the multicast filter.
2232 * This function must be called at splnet().
2234 void
2235 fxp_mc_setup(struct fxp_softc *sc)
2237 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2238 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2239 struct ethercom *ec = &sc->sc_ethercom;
2240 struct ether_multi *enm;
2241 struct ether_multistep step;
2242 int count, nmcasts;
2243 uint16_t status;
2245 #ifdef DIAGNOSTIC
2246 if (sc->sc_txpending)
2247 panic("fxp_mc_setup: pending transmissions");
2248 #endif
2250 ifp->if_flags &= ~IFF_ALLMULTI;
2253 * Initialize multicast setup descriptor.
2255 nmcasts = 0;
2256 ETHER_FIRST_MULTI(step, ec, enm);
2257 while (enm != NULL) {
2259 * Check for too many multicast addresses or if we're
2260 * listening to a range. Either way, we simply have
2261 * to accept all multicasts.
2263 if (nmcasts >= MAXMCADDR ||
2264 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2265 ETHER_ADDR_LEN) != 0) {
2267 * Callers of this function must do the
2268 * right thing with this. If we're called
2269 * from outside fxp_init(), the caller must
2270 * detect if the state if IFF_ALLMULTI changes.
2271 * If it does, the caller must then call
2272 * fxp_init(), since allmulti is handled by
2273 * the config block.
2275 ifp->if_flags |= IFF_ALLMULTI;
2276 return;
2278 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2279 ETHER_ADDR_LEN);
2280 nmcasts++;
2281 ETHER_NEXT_MULTI(step, enm);
2284 /* BIG_ENDIAN: no need to swap to store 0 */
2285 mcsp->cb_status = 0;
2286 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2287 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2288 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2290 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2293 * Wait until the command unit is not active. This should never
2294 * happen since nothing is queued, but make sure anyway.
2296 count = 100;
2297 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2298 FXP_SCB_CUS_ACTIVE && --count)
2299 DELAY(1);
2300 if (count == 0) {
2301 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2302 device_xname(sc->sc_dev), __LINE__);
2303 return;
2307 * Start the multicast setup command/DMA.
2309 fxp_scb_wait(sc);
2310 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2311 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2313 /* ...and wait for it to complete. */
2314 for (count = 1000; count > 0; count--) {
2315 FXP_CDMCSSYNC(sc,
2316 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2317 status = le16toh(mcsp->cb_status);
2318 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2319 if ((status & FXP_CB_STATUS_C) != 0)
2320 break;
2321 DELAY(1);
2323 if (count == 0) {
2324 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2325 device_xname(sc->sc_dev), __LINE__);
2326 return;
2330 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2331 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2332 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2333 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2334 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2335 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2337 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2339 static const struct ucode {
2340 int32_t revision;
2341 const uint32_t *ucode;
2342 size_t length;
2343 uint16_t int_delay_offset;
2344 uint16_t bundle_max_offset;
2345 } ucode_table[] = {
2346 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2347 D101_CPUSAVER_DWORD, 0 },
2349 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2350 D101_CPUSAVER_DWORD, 0 },
2352 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2353 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2355 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2356 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2358 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2359 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2361 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2362 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2364 { 0, NULL, 0, 0, 0 }
2367 void
2368 fxp_load_ucode(struct fxp_softc *sc)
2370 const struct ucode *uc;
2371 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2372 int count, i;
2373 uint16_t status;
2375 if (sc->sc_flags & FXPF_UCODE_LOADED)
2376 return;
2379 * Only load the uCode if the user has requested that
2380 * we do so.
2382 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2383 sc->sc_int_delay = 0;
2384 sc->sc_bundle_max = 0;
2385 return;
2388 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2389 if (sc->sc_rev == uc->revision)
2390 break;
2392 if (uc->ucode == NULL)
2393 return;
2395 /* BIG ENDIAN: no need to swap to store 0 */
2396 cbp->cb_status = 0;
2397 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2398 cbp->link_addr = 0xffffffff; /* (no) next command */
2399 for (i = 0; i < uc->length; i++)
2400 cbp->ucode[i] = htole32(uc->ucode[i]);
2402 if (uc->int_delay_offset)
2403 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2404 htole16(fxp_int_delay + (fxp_int_delay / 2));
2406 if (uc->bundle_max_offset)
2407 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2408 htole16(fxp_bundle_max);
2410 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2413 * Download the uCode to the chip.
2415 fxp_scb_wait(sc);
2416 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2417 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2419 /* ...and wait for it to complete. */
2420 for (count = 10000; count > 0; count--) {
2421 FXP_CDUCODESYNC(sc,
2422 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2423 status = le16toh(cbp->cb_status);
2424 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2425 if ((status & FXP_CB_STATUS_C) != 0)
2426 break;
2427 DELAY(2);
2429 if (count == 0) {
2430 sc->sc_int_delay = 0;
2431 sc->sc_bundle_max = 0;
2432 log(LOG_WARNING, "%s: timeout loading microcode\n",
2433 device_xname(sc->sc_dev));
2434 return;
2437 if (sc->sc_int_delay != fxp_int_delay ||
2438 sc->sc_bundle_max != fxp_bundle_max) {
2439 sc->sc_int_delay = fxp_int_delay;
2440 sc->sc_bundle_max = fxp_bundle_max;
2441 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2442 "max bundle: %d\n", device_xname(sc->sc_dev),
2443 sc->sc_int_delay,
2444 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2447 sc->sc_flags |= FXPF_UCODE_LOADED;
2451 fxp_enable(struct fxp_softc *sc)
2454 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2455 if ((*sc->sc_enable)(sc) != 0) {
2456 log(LOG_ERR, "%s: device enable failed\n",
2457 device_xname(sc->sc_dev));
2458 return (EIO);
2462 sc->sc_enabled = 1;
2463 return (0);
2466 void
2467 fxp_disable(struct fxp_softc *sc)
2470 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2471 (*sc->sc_disable)(sc);
2472 sc->sc_enabled = 0;
2477 * fxp_activate:
2479 * Handle device activation/deactivation requests.
2482 fxp_activate(device_t self, enum devact act)
2484 struct fxp_softc *sc = device_private(self);
2486 switch (act) {
2487 case DVACT_DEACTIVATE:
2488 if_deactivate(&sc->sc_ethercom.ec_if);
2489 return 0;
2490 default:
2491 return EOPNOTSUPP;
2496 * fxp_detach:
2498 * Detach an i82557 interface.
2501 fxp_detach(struct fxp_softc *sc)
2503 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2504 int i;
2506 /* Succeed now if there's no work to do. */
2507 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2508 return (0);
2510 /* Unhook our tick handler. */
2511 callout_stop(&sc->sc_callout);
2513 if (sc->sc_flags & FXPF_MII) {
2514 /* Detach all PHYs */
2515 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2518 /* Delete all remaining media. */
2519 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2521 #if NRND > 0
2522 rnd_detach_source(&sc->rnd_source);
2523 #endif
2524 ether_ifdetach(ifp);
2525 if_detach(ifp);
2527 for (i = 0; i < FXP_NRFABUFS; i++) {
2528 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2529 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2532 for (i = 0; i < FXP_NTXCB; i++) {
2533 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2534 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2537 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2538 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2539 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2540 sizeof(struct fxp_control_data));
2541 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2543 return (0);