1 /* $NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $ */
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
6 * Programmed for NetBSD by David Young.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
21 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $");
39 #include <sys/param.h>
40 #include <sys/sysctl.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
47 #include <sys/types.h>
48 #include <sys/device.h>
50 #include <machine/endian.h>
52 #include <sys/intr.h> /* splnet */
54 #include <uvm/uvm_extern.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_radiotap.h>
68 #include <dev/ic/rtwreg.h>
69 #include <dev/ic/rtwvar.h>
70 #include <dev/ic/rtwphyio.h>
71 #include <dev/ic/rtwphy.h>
73 #include <dev/ic/smc93cx6var.h>
75 static int rtw_rfprog_fallback
= 0;
76 static int rtw_host_rfio
= 0;
80 static int rtw_rxbufs_limit
= RTW_RXQLEN
;
81 #endif /* RTW_DEBUG */
83 #define NEXT_ATTACH_STATE(sc, state) do { \
84 DPRINTF(sc, RTW_DEBUG_ATTACH, \
85 ("%s: attach state %s\n", __func__, #state)); \
86 sc->sc_attach_state = state; \
89 int rtw_dwelltime
= 200; /* milliseconds */
90 static struct ieee80211_cipher rtw_cipher_wep
;
92 static void rtw_disable_interrupts(struct rtw_regs
*);
93 static void rtw_enable_interrupts(struct rtw_softc
*);
95 static int rtw_init(struct ifnet
*);
97 static void rtw_start(struct ifnet
*);
98 static void rtw_reset_oactive(struct rtw_softc
*);
99 static struct mbuf
*rtw_beacon_alloc(struct rtw_softc
*,
100 struct ieee80211_node
*);
101 static u_int
rtw_txring_next(struct rtw_regs
*, struct rtw_txdesc_blk
*);
103 static void rtw_io_enable(struct rtw_softc
*, uint8_t, int);
104 static int rtw_key_delete(struct ieee80211com
*, const struct ieee80211_key
*);
105 static int rtw_key_set(struct ieee80211com
*, const struct ieee80211_key
*,
106 const u_int8_t
[IEEE80211_ADDR_LEN
]);
107 static void rtw_key_update_end(struct ieee80211com
*);
108 static void rtw_key_update_begin(struct ieee80211com
*);
109 static int rtw_wep_decap(struct ieee80211_key
*, struct mbuf
*, int);
110 static void rtw_wep_setkeys(struct rtw_softc
*, struct ieee80211_key
*, int);
112 static void rtw_led_attach(struct rtw_led_state
*, void *);
113 static void rtw_led_detach(struct rtw_led_state
*);
114 static void rtw_led_init(struct rtw_regs
*);
115 static void rtw_led_slowblink(void *);
116 static void rtw_led_fastblink(void *);
117 static void rtw_led_set(struct rtw_led_state
*, struct rtw_regs
*, int);
119 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO
);
120 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO
);
122 static void rtw_dump_rings(struct rtw_softc
*sc
);
123 static void rtw_print_txdesc(struct rtw_softc
*, const char *,
124 struct rtw_txsoft
*, struct rtw_txdesc_blk
*, int);
125 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO
);
126 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO
);
127 #endif /* RTW_DEBUG */
129 static void rtw_txring_fixup(struct rtw_softc
*sc
, const char *fn
, int ln
);
130 #endif /* RTW_DIAG */
133 * Setup sysctl(3) MIB, hw.rtw.*
135 * TBD condition CTLFLAG_PERMANENT on being a module or not
137 SYSCTL_SETUP(sysctl_rtw
, "sysctl rtw(4) subtree setup")
140 const struct sysctlnode
*cnode
, *rnode
;
142 if ((rc
= sysctl_createv(clog
, 0, NULL
, &rnode
,
143 CTLFLAG_PERMANENT
, CTLTYPE_NODE
, "hw", NULL
,
144 NULL
, 0, NULL
, 0, CTL_HW
, CTL_EOL
)) != 0)
147 if ((rc
= sysctl_createv(clog
, 0, &rnode
, &rnode
,
148 CTLFLAG_PERMANENT
, CTLTYPE_NODE
, "rtw",
149 "Realtek RTL818x 802.11 controls",
150 NULL
, 0, NULL
, 0, CTL_CREATE
, CTL_EOL
)) != 0)
154 /* control debugging printfs */
155 if ((rc
= sysctl_createv(clog
, 0, &rnode
, &cnode
,
156 CTLFLAG_PERMANENT
|CTLFLAG_READWRITE
, CTLTYPE_INT
,
157 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
158 rtw_sysctl_verify_debug
, 0, &rtw_debug
, 0,
159 CTL_CREATE
, CTL_EOL
)) != 0)
162 /* Limit rx buffers, for simulating resource exhaustion. */
163 if ((rc
= sysctl_createv(clog
, 0, &rnode
, &cnode
,
164 CTLFLAG_PERMANENT
|CTLFLAG_READWRITE
, CTLTYPE_INT
,
166 SYSCTL_DESCR("Set rx buffers limit"),
167 rtw_sysctl_verify_rxbufs_limit
, 0, &rtw_rxbufs_limit
, 0,
168 CTL_CREATE
, CTL_EOL
)) != 0)
171 #endif /* RTW_DEBUG */
172 /* set fallback RF programming method */
173 if ((rc
= sysctl_createv(clog
, 0, &rnode
, &cnode
,
174 CTLFLAG_PERMANENT
|CTLFLAG_READWRITE
, CTLTYPE_INT
,
176 SYSCTL_DESCR("Set fallback RF programming method"),
177 rtw_sysctl_verify_rfprog
, 0, &rtw_rfprog_fallback
, 0,
178 CTL_CREATE
, CTL_EOL
)) != 0)
181 /* force host to control RF I/O bus */
182 if ((rc
= sysctl_createv(clog
, 0, &rnode
, &cnode
,
183 CTLFLAG_PERMANENT
|CTLFLAG_READWRITE
, CTLTYPE_INT
,
184 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
185 rtw_sysctl_verify_rfio
, 0, &rtw_host_rfio
, 0,
186 CTL_CREATE
, CTL_EOL
)) != 0)
191 printf("%s: sysctl_createv failed (rc = %d)\n", __func__
, rc
);
195 rtw_sysctl_verify(SYSCTLFN_ARGS
, int lower
, int upper
)
198 struct sysctlnode node
;
201 t
= *(int*)rnode
->sysctl_data
;
202 node
.sysctl_data
= &t
;
203 error
= sysctl_lookup(SYSCTLFN_CALL(&node
));
204 if (error
|| newp
== NULL
)
207 if (t
< lower
|| t
> upper
)
210 *(int*)rnode
->sysctl_data
= t
;
216 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS
)
218 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode
)), 0,
219 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK
, RTW_CONFIG4_RFTYPE_MASK
));
223 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS
)
225 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode
)), 0, 1);
230 rtw_sysctl_verify_debug(SYSCTLFN_ARGS
)
232 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode
)),
237 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS
)
239 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode
)),
244 rtw_print_regs(struct rtw_regs
*regs
, const char *dvname
, const char *where
)
246 #define PRINTREG32(sc, reg) \
247 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
248 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
249 dvname, reg, RTW_READ(regs, reg)))
251 #define PRINTREG16(sc, reg) \
252 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
253 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
254 dvname, reg, RTW_READ16(regs, reg)))
256 #define PRINTREG8(sc, reg) \
257 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
258 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
259 dvname, reg, RTW_READ8(regs, reg)))
261 RTW_DPRINTF(RTW_DEBUG_REGDUMP
, ("%s: %s\n", dvname
, where
));
263 PRINTREG32(regs
, RTW_IDR0
);
264 PRINTREG32(regs
, RTW_IDR1
);
265 PRINTREG32(regs
, RTW_MAR0
);
266 PRINTREG32(regs
, RTW_MAR1
);
267 PRINTREG32(regs
, RTW_TSFTRL
);
268 PRINTREG32(regs
, RTW_TSFTRH
);
269 PRINTREG32(regs
, RTW_TLPDA
);
270 PRINTREG32(regs
, RTW_TNPDA
);
271 PRINTREG32(regs
, RTW_THPDA
);
272 PRINTREG32(regs
, RTW_TCR
);
273 PRINTREG32(regs
, RTW_RCR
);
274 PRINTREG32(regs
, RTW_TINT
);
275 PRINTREG32(regs
, RTW_TBDA
);
276 PRINTREG32(regs
, RTW_ANAPARM
);
277 PRINTREG32(regs
, RTW_BB
);
278 PRINTREG32(regs
, RTW_PHYCFG
);
279 PRINTREG32(regs
, RTW_WAKEUP0L
);
280 PRINTREG32(regs
, RTW_WAKEUP0H
);
281 PRINTREG32(regs
, RTW_WAKEUP1L
);
282 PRINTREG32(regs
, RTW_WAKEUP1H
);
283 PRINTREG32(regs
, RTW_WAKEUP2LL
);
284 PRINTREG32(regs
, RTW_WAKEUP2LH
);
285 PRINTREG32(regs
, RTW_WAKEUP2HL
);
286 PRINTREG32(regs
, RTW_WAKEUP2HH
);
287 PRINTREG32(regs
, RTW_WAKEUP3LL
);
288 PRINTREG32(regs
, RTW_WAKEUP3LH
);
289 PRINTREG32(regs
, RTW_WAKEUP3HL
);
290 PRINTREG32(regs
, RTW_WAKEUP3HH
);
291 PRINTREG32(regs
, RTW_WAKEUP4LL
);
292 PRINTREG32(regs
, RTW_WAKEUP4LH
);
293 PRINTREG32(regs
, RTW_WAKEUP4HL
);
294 PRINTREG32(regs
, RTW_WAKEUP4HH
);
295 PRINTREG32(regs
, RTW_DK0
);
296 PRINTREG32(regs
, RTW_DK1
);
297 PRINTREG32(regs
, RTW_DK2
);
298 PRINTREG32(regs
, RTW_DK3
);
299 PRINTREG32(regs
, RTW_RETRYCTR
);
300 PRINTREG32(regs
, RTW_RDSAR
);
301 PRINTREG32(regs
, RTW_FER
);
302 PRINTREG32(regs
, RTW_FEMR
);
303 PRINTREG32(regs
, RTW_FPSR
);
304 PRINTREG32(regs
, RTW_FFER
);
306 /* 16-bit registers */
307 PRINTREG16(regs
, RTW_BRSR
);
308 PRINTREG16(regs
, RTW_IMR
);
309 PRINTREG16(regs
, RTW_ISR
);
310 PRINTREG16(regs
, RTW_BCNITV
);
311 PRINTREG16(regs
, RTW_ATIMWND
);
312 PRINTREG16(regs
, RTW_BINTRITV
);
313 PRINTREG16(regs
, RTW_ATIMTRITV
);
314 PRINTREG16(regs
, RTW_CRC16ERR
);
315 PRINTREG16(regs
, RTW_CRC0
);
316 PRINTREG16(regs
, RTW_CRC1
);
317 PRINTREG16(regs
, RTW_CRC2
);
318 PRINTREG16(regs
, RTW_CRC3
);
319 PRINTREG16(regs
, RTW_CRC4
);
320 PRINTREG16(regs
, RTW_CWR
);
322 /* 8-bit registers */
323 PRINTREG8(regs
, RTW_CR
);
324 PRINTREG8(regs
, RTW_9346CR
);
325 PRINTREG8(regs
, RTW_CONFIG0
);
326 PRINTREG8(regs
, RTW_CONFIG1
);
327 PRINTREG8(regs
, RTW_CONFIG2
);
328 PRINTREG8(regs
, RTW_MSR
);
329 PRINTREG8(regs
, RTW_CONFIG3
);
330 PRINTREG8(regs
, RTW_CONFIG4
);
331 PRINTREG8(regs
, RTW_TESTR
);
332 PRINTREG8(regs
, RTW_PSR
);
333 PRINTREG8(regs
, RTW_SCR
);
334 PRINTREG8(regs
, RTW_PHYDELAY
);
335 PRINTREG8(regs
, RTW_CRCOUNT
);
336 PRINTREG8(regs
, RTW_PHYADDR
);
337 PRINTREG8(regs
, RTW_PHYDATAW
);
338 PRINTREG8(regs
, RTW_PHYDATAR
);
339 PRINTREG8(regs
, RTW_CONFIG5
);
340 PRINTREG8(regs
, RTW_TPPOLL
);
342 PRINTREG16(regs
, RTW_BSSID16
);
343 PRINTREG32(regs
, RTW_BSSID32
);
348 #endif /* RTW_DEBUG */
351 rtw_continuous_tx_enable(struct rtw_softc
*sc
, int enable
)
353 struct rtw_regs
*regs
= &sc
->sc_regs
;
356 tcr
= RTW_READ(regs
, RTW_TCR
);
357 tcr
&= ~RTW_TCR_LBK_MASK
;
359 tcr
|= RTW_TCR_LBK_CONT
;
361 tcr
|= RTW_TCR_LBK_NORMAL
;
362 RTW_WRITE(regs
, RTW_TCR
, tcr
);
363 RTW_SYNC(regs
, RTW_TCR
, RTW_TCR
);
364 rtw_set_access(regs
, RTW_ACCESS_ANAPARM
);
365 rtw_txdac_enable(sc
, !enable
);
366 rtw_set_access(regs
, RTW_ACCESS_ANAPARM
);/* XXX Voodoo from Linux. */
367 rtw_set_access(regs
, RTW_ACCESS_NONE
);
372 rtw_access_string(enum rtw_access access
)
375 case RTW_ACCESS_NONE
:
377 case RTW_ACCESS_CONFIG
:
379 case RTW_ACCESS_ANAPARM
:
385 #endif /* RTW_DEBUG */
388 rtw_set_access1(struct rtw_regs
*regs
, enum rtw_access naccess
)
390 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
391 naccess
<= RTW_ACCESS_ANAPARM
);
392 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
393 regs
->r_access
<= RTW_ACCESS_ANAPARM
);
395 if (naccess
== regs
->r_access
)
399 case RTW_ACCESS_NONE
:
400 switch (regs
->r_access
) {
401 case RTW_ACCESS_ANAPARM
:
402 rtw_anaparm_enable(regs
, 0);
404 case RTW_ACCESS_CONFIG
:
405 rtw_config0123_enable(regs
, 0);
407 case RTW_ACCESS_NONE
:
411 case RTW_ACCESS_CONFIG
:
412 switch (regs
->r_access
) {
413 case RTW_ACCESS_NONE
:
414 rtw_config0123_enable(regs
, 1);
416 case RTW_ACCESS_CONFIG
:
418 case RTW_ACCESS_ANAPARM
:
419 rtw_anaparm_enable(regs
, 0);
423 case RTW_ACCESS_ANAPARM
:
424 switch (regs
->r_access
) {
425 case RTW_ACCESS_NONE
:
426 rtw_config0123_enable(regs
, 1);
428 case RTW_ACCESS_CONFIG
:
429 rtw_anaparm_enable(regs
, 1);
431 case RTW_ACCESS_ANAPARM
:
439 rtw_set_access(struct rtw_regs
*regs
, enum rtw_access access
)
441 rtw_set_access1(regs
, access
);
442 RTW_DPRINTF(RTW_DEBUG_ACCESS
,
443 ("%s: access %s -> %s\n", __func__
,
444 rtw_access_string(regs
->r_access
),
445 rtw_access_string(access
)));
446 regs
->r_access
= access
;
450 * Enable registers, switch register banks.
453 rtw_config0123_enable(struct rtw_regs
*regs
, int enable
)
456 ecr
= RTW_READ8(regs
, RTW_9346CR
);
457 ecr
&= ~(RTW_9346CR_EEM_MASK
| RTW_9346CR_EECS
| RTW_9346CR_EESK
);
459 ecr
|= RTW_9346CR_EEM_CONFIG
;
461 RTW_WBW(regs
, RTW_9346CR
, MAX(RTW_CONFIG0
, RTW_CONFIG3
));
462 ecr
|= RTW_9346CR_EEM_NORMAL
;
464 RTW_WRITE8(regs
, RTW_9346CR
, ecr
);
465 RTW_SYNC(regs
, RTW_9346CR
, RTW_9346CR
);
468 /* requires rtw_config0123_enable(, 1) */
470 rtw_anaparm_enable(struct rtw_regs
*regs
, int enable
)
474 cfg3
= RTW_READ8(regs
, RTW_CONFIG3
);
475 cfg3
|= RTW_CONFIG3_CLKRUNEN
;
477 cfg3
|= RTW_CONFIG3_PARMEN
;
479 cfg3
&= ~RTW_CONFIG3_PARMEN
;
480 RTW_WRITE8(regs
, RTW_CONFIG3
, cfg3
);
481 RTW_SYNC(regs
, RTW_CONFIG3
, RTW_CONFIG3
);
484 /* requires rtw_anaparm_enable(, 1) */
486 rtw_txdac_enable(struct rtw_softc
*sc
, int enable
)
489 struct rtw_regs
*regs
= &sc
->sc_regs
;
491 anaparm
= RTW_READ(regs
, RTW_ANAPARM
);
493 anaparm
&= ~RTW_ANAPARM_TXDACOFF
;
495 anaparm
|= RTW_ANAPARM_TXDACOFF
;
496 RTW_WRITE(regs
, RTW_ANAPARM
, anaparm
);
497 RTW_SYNC(regs
, RTW_ANAPARM
, RTW_ANAPARM
);
501 rtw_chip_reset1(struct rtw_regs
*regs
, device_t dev
)
506 RTW_WRITE8(regs
, RTW_CR
, RTW_CR_RST
);
508 RTW_WBR(regs
, RTW_CR
, RTW_CR
);
510 for (i
= 0; i
< 1000; i
++) {
511 if ((cr
= RTW_READ8(regs
, RTW_CR
) & RTW_CR_RST
) == 0) {
512 RTW_DPRINTF(RTW_DEBUG_RESET
,
513 ("%s: reset in %dus\n", device_xname(dev
), i
));
516 RTW_RBR(regs
, RTW_CR
, RTW_CR
);
517 DELAY(10); /* 10us */
520 aprint_error_dev(dev
, "reset failed\n");
525 rtw_chip_reset(struct rtw_regs
*regs
, device_t dev
)
529 /* from Linux driver */
530 tcr
= RTW_TCR_CWMIN
| RTW_TCR_MXDMA_2048
|
531 __SHIFTIN(7, RTW_TCR_SRL_MASK
) | __SHIFTIN(7, RTW_TCR_LRL_MASK
);
533 RTW_WRITE(regs
, RTW_TCR
, tcr
);
535 RTW_WBW(regs
, RTW_CR
, RTW_TCR
);
537 return rtw_chip_reset1(regs
, dev
);
541 rtw_wep_decap(struct ieee80211_key
*k
, struct mbuf
*m
, int hdrlen
)
543 struct ieee80211_key keycopy
;
545 RTW_DPRINTF(RTW_DEBUG_KEY
, ("%s:\n", __func__
));
548 keycopy
.wk_flags
&= ~IEEE80211_KEY_SWCRYPT
;
550 return (*ieee80211_cipher_wep
.ic_decap
)(&keycopy
, m
, hdrlen
);
554 rtw_key_delete(struct ieee80211com
*ic
, const struct ieee80211_key
*k
)
556 struct rtw_softc
*sc
= ic
->ic_ifp
->if_softc
;
558 DPRINTF(sc
, RTW_DEBUG_KEY
, ("%s: delete key %u\n", __func__
,
561 KASSERT(k
->wk_keyix
< IEEE80211_WEP_NKID
);
563 if (k
->wk_keylen
!= 0 &&
564 k
->wk_cipher
->ic_cipher
== IEEE80211_CIPHER_WEP
)
565 sc
->sc_flags
&= ~RTW_F_DK_VALID
;
571 rtw_key_set(struct ieee80211com
*ic
, const struct ieee80211_key
*k
,
572 const u_int8_t mac
[IEEE80211_ADDR_LEN
])
574 struct rtw_softc
*sc
= ic
->ic_ifp
->if_softc
;
576 DPRINTF(sc
, RTW_DEBUG_KEY
, ("%s: set key %u\n", __func__
, k
->wk_keyix
));
578 KASSERT(k
->wk_keyix
< IEEE80211_WEP_NKID
);
580 sc
->sc_flags
&= ~RTW_F_DK_VALID
;
586 rtw_key_update_begin(struct ieee80211com
*ic
)
589 struct ifnet
*ifp
= ic
->ic_ifp
;
590 struct rtw_softc
*sc
= ifp
->if_softc
;
593 DPRINTF(sc
, RTW_DEBUG_KEY
, ("%s:\n", __func__
));
597 rtw_tx_kick(struct rtw_regs
*regs
, uint8_t ringsel
)
601 tppoll
= RTW_READ8(regs
, RTW_TPPOLL
);
602 tppoll
&= ~RTW_TPPOLL_SALL
;
603 tppoll
|= ringsel
& RTW_TPPOLL_ALL
;
604 RTW_WRITE8(regs
, RTW_TPPOLL
, tppoll
);
605 RTW_SYNC(regs
, RTW_TPPOLL
, RTW_TPPOLL
);
609 rtw_key_update_end(struct ieee80211com
*ic
)
611 struct ifnet
*ifp
= ic
->ic_ifp
;
612 struct rtw_softc
*sc
= ifp
->if_softc
;
614 DPRINTF(sc
, RTW_DEBUG_KEY
, ("%s:\n", __func__
));
616 if ((sc
->sc_flags
& RTW_F_DK_VALID
) != 0 ||
617 !device_is_active(sc
->sc_dev
))
620 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 0);
621 rtw_wep_setkeys(sc
, ic
->ic_nw_keys
, ic
->ic_def_txkey
);
622 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
,
623 (ifp
->if_flags
& IFF_RUNNING
) != 0);
627 rtw_key_hwsupp(uint32_t flags
, const struct ieee80211_key
*k
)
629 if (k
->wk_cipher
->ic_cipher
!= IEEE80211_CIPHER_WEP
)
632 return ((flags
& RTW_C_RXWEP_40
) != 0 && k
->wk_keylen
== 5) ||
633 ((flags
& RTW_C_RXWEP_104
) != 0 && k
->wk_keylen
== 13);
637 rtw_wep_setkeys(struct rtw_softc
*sc
, struct ieee80211_key
*wk
, int txkey
)
641 struct rtw_regs
*regs
;
647 (void)memset(rk
, 0, sizeof(rk
));
649 /* Temporarily use software crypto for all keys. */
650 for (i
= 0; i
< IEEE80211_WEP_NKID
; i
++) {
651 if (wk
[i
].wk_cipher
== &rtw_cipher_wep
)
652 wk
[i
].wk_cipher
= &ieee80211_cipher_wep
;
655 rtw_set_access(regs
, RTW_ACCESS_CONFIG
);
657 psr
= RTW_READ8(regs
, RTW_PSR
);
658 scr
= RTW_READ8(regs
, RTW_SCR
);
659 scr
&= ~(RTW_SCR_KM_MASK
| RTW_SCR_TXSECON
| RTW_SCR_RXSECON
);
661 if ((sc
->sc_ic
.ic_flags
& IEEE80211_F_PRIVACY
) == 0)
664 for (i
= 0; i
< IEEE80211_WEP_NKID
; i
++) {
665 if (!rtw_key_hwsupp(sc
->sc_flags
, &wk
[i
]))
668 keylen
= wk
[i
].wk_keylen
;
671 keylen
= MAX(keylen
, wk
[i
].wk_keylen
);
675 scr
|= RTW_SCR_KM_WEP40
| RTW_SCR_RXSECON
;
676 else if (keylen
== 13)
677 scr
|= RTW_SCR_KM_WEP104
| RTW_SCR_RXSECON
;
679 for (i
= 0; i
< IEEE80211_WEP_NKID
; i
++) {
680 if (wk
[i
].wk_keylen
!= keylen
||
681 wk
[i
].wk_cipher
->ic_cipher
!= IEEE80211_CIPHER_WEP
)
683 /* h/w will decrypt, s/w still strips headers */
684 wk
[i
].wk_cipher
= &rtw_cipher_wep
;
685 (void)memcpy(rk
->rk_keys
[i
], wk
[i
].wk_key
, wk
[i
].wk_keylen
);
689 RTW_WRITE8(regs
, RTW_PSR
, psr
& ~RTW_PSR_PSEN
);
691 bus_space_write_region_stream_4(regs
->r_bt
, regs
->r_bh
,
692 RTW_DK0
, rk
->rk_words
, __arraycount(rk
->rk_words
));
694 bus_space_barrier(regs
->r_bt
, regs
->r_bh
, RTW_DK0
, sizeof(rk
->rk_words
),
695 BUS_SPACE_BARRIER_SYNC
);
697 RTW_DPRINTF(RTW_DEBUG_KEY
,
698 ("%s.%d: scr %02" PRIx8
", keylen %d\n", __func__
, __LINE__
, scr
,
701 RTW_WBW(regs
, RTW_DK0
, RTW_PSR
);
702 RTW_WRITE8(regs
, RTW_PSR
, psr
);
703 RTW_WBW(regs
, RTW_PSR
, RTW_SCR
);
704 RTW_WRITE8(regs
, RTW_SCR
, scr
);
705 RTW_SYNC(regs
, RTW_SCR
, RTW_SCR
);
706 rtw_set_access(regs
, RTW_ACCESS_NONE
);
707 sc
->sc_flags
|= RTW_F_DK_VALID
;
711 rtw_recall_eeprom(struct rtw_regs
*regs
, device_t dev
)
716 ecr
= RTW_READ8(regs
, RTW_9346CR
);
717 ecr
= (ecr
& ~RTW_9346CR_EEM_MASK
) | RTW_9346CR_EEM_AUTOLOAD
;
718 RTW_WRITE8(regs
, RTW_9346CR
, ecr
);
720 RTW_WBR(regs
, RTW_9346CR
, RTW_9346CR
);
722 /* wait 25ms for completion */
723 for (i
= 0; i
< 250; i
++) {
724 ecr
= RTW_READ8(regs
, RTW_9346CR
);
725 if ((ecr
& RTW_9346CR_EEM_MASK
) == RTW_9346CR_EEM_NORMAL
) {
726 RTW_DPRINTF(RTW_DEBUG_RESET
,
727 ("%s: recall EEPROM in %dus\n", device_xname(dev
),
731 RTW_RBR(regs
, RTW_9346CR
, RTW_9346CR
);
734 aprint_error_dev(dev
, "recall EEPROM failed\n");
739 rtw_reset(struct rtw_softc
*sc
)
744 sc
->sc_flags
&= ~RTW_F_DK_VALID
;
746 if ((rc
= rtw_chip_reset(&sc
->sc_regs
, sc
->sc_dev
)) != 0)
749 rc
= rtw_recall_eeprom(&sc
->sc_regs
, sc
->sc_dev
);
751 config1
= RTW_READ8(&sc
->sc_regs
, RTW_CONFIG1
);
752 RTW_WRITE8(&sc
->sc_regs
, RTW_CONFIG1
, config1
& ~RTW_CONFIG1_PMEN
);
753 /* TBD turn off maximum power saving? */
759 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat
, struct rtw_txsoft
*descs
,
763 for (i
= 0; i
< ndescs
; i
++) {
764 rc
= bus_dmamap_create(dmat
, MCLBYTES
, RTW_MAXPKTSEGS
, MCLBYTES
,
765 0, 0, &descs
[i
].ts_dmamap
);
773 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat
, struct rtw_rxsoft
*descs
,
777 for (i
= 0; i
< ndescs
; i
++) {
778 rc
= bus_dmamap_create(dmat
, MCLBYTES
, 1, MCLBYTES
, 0, 0,
779 &descs
[i
].rs_dmamap
);
787 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat
, struct rtw_rxsoft
*descs
,
791 for (i
= 0; i
< ndescs
; i
++) {
792 if (descs
[i
].rs_dmamap
!= NULL
)
793 bus_dmamap_destroy(dmat
, descs
[i
].rs_dmamap
);
798 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat
, struct rtw_txsoft
*descs
,
802 for (i
= 0; i
< ndescs
; i
++) {
803 if (descs
[i
].ts_dmamap
!= NULL
)
804 bus_dmamap_destroy(dmat
, descs
[i
].ts_dmamap
);
809 rtw_srom_free(struct rtw_srom
*sr
)
812 if (sr
->sr_content
== NULL
)
814 free(sr
->sr_content
, M_DEVBUF
);
815 sr
->sr_content
= NULL
;
819 rtw_srom_defaults(struct rtw_srom
*sr
, uint32_t *flags
,
820 uint8_t *cs_threshold
, enum rtw_rfchipid
*rfchipid
, uint32_t *rcr
)
822 *flags
|= (RTW_F_DIGPHY
|RTW_F_ANTDIV
);
823 *cs_threshold
= RTW_SR_ENERGYDETTHR_DEFAULT
;
824 *rcr
|= RTW_RCR_ENCS1
;
825 *rfchipid
= RTW_RFCHIPID_PHILIPS
;
829 rtw_srom_parse(struct rtw_srom
*sr
, uint32_t *flags
, uint8_t *cs_threshold
,
830 enum rtw_rfchipid
*rfchipid
, uint32_t *rcr
, enum rtw_locale
*locale
,
834 const char *rfname
, *paname
;
835 char scratch
[sizeof("unknown 0xXX")];
836 uint16_t srom_version
;
837 uint8_t mac
[IEEE80211_ADDR_LEN
];
839 *flags
&= ~(RTW_F_DIGPHY
|RTW_F_DFLANTB
|RTW_F_ANTDIV
);
840 *rcr
&= ~(RTW_RCR_ENCS1
| RTW_RCR_ENCS2
);
842 srom_version
= RTW_SR_GET16(sr
, RTW_SR_VERSION
);
844 if (srom_version
<= 0x0101) {
845 aprint_error_dev(dev
,
846 "SROM version %d.%d is not understood, "
847 "limping along with defaults\n",
848 srom_version
>> 8, srom_version
& 0xff);
849 rtw_srom_defaults(sr
, flags
, cs_threshold
, rfchipid
, rcr
);
852 aprint_verbose_dev(dev
, "SROM version %d.%d",
853 srom_version
>> 8, srom_version
& 0xff);
856 for (i
= 0; i
< IEEE80211_ADDR_LEN
; i
++)
857 mac
[i
] = RTW_SR_GET(sr
, RTW_SR_MAC
+ i
);
859 RTW_DPRINTF(RTW_DEBUG_ATTACH
,
860 ("%s: EEPROM MAC %s\n", device_xname(dev
), ether_sprintf(mac
)));
862 *cs_threshold
= RTW_SR_GET(sr
, RTW_SR_ENERGYDETTHR
);
864 if ((RTW_SR_GET(sr
, RTW_SR_CONFIG2
) & RTW_CONFIG2_ANT
) != 0)
865 *flags
|= RTW_F_ANTDIV
;
867 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
870 if ((RTW_SR_GET(sr
, RTW_SR_RFPARM
) & RTW_SR_RFPARM_DIGPHY
) == 0)
871 *flags
|= RTW_F_DIGPHY
;
872 if ((RTW_SR_GET(sr
, RTW_SR_RFPARM
) & RTW_SR_RFPARM_DFLANTB
) != 0)
873 *flags
|= RTW_F_DFLANTB
;
875 *rcr
|= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr
, RTW_SR_RFPARM
),
876 RTW_SR_RFPARM_CS_MASK
), RTW_RCR_ENCS1
);
878 if ((RTW_SR_GET(sr
, RTW_SR_CONFIG0
) & RTW_CONFIG0_WEP104
) != 0)
879 *flags
|= RTW_C_RXWEP_104
;
881 *flags
|= RTW_C_RXWEP_40
; /* XXX */
883 *rfchipid
= RTW_SR_GET(sr
, RTW_SR_RFCHIPID
);
885 case RTW_RFCHIPID_GCT
: /* this combo seen in the wild */
886 rfname
= "GCT GRF5101";
887 paname
= "Winspring WS9901";
889 case RTW_RFCHIPID_MAXIM
:
890 rfname
= "Maxim MAX2820"; /* guess */
891 paname
= "Maxim MAX2422"; /* guess */
893 case RTW_RFCHIPID_INTERSIL
:
894 rfname
= "Intersil HFA3873"; /* guess */
895 paname
= "Intersil <unknown>";
897 case RTW_RFCHIPID_PHILIPS
: /* this combo seen in the wild */
898 rfname
= "Philips SA2400A";
899 paname
= "Philips SA2411";
901 case RTW_RFCHIPID_RFMD
:
902 /* this is the same front-end as an atw(4)! */
903 rfname
= "RFMD RF2948B, " /* mentioned in Realtek docs */
904 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
905 "SYN: Silicon Labs Si4126"; /* inferred from
908 paname
= "RFMD RF2189"; /* mentioned in Realtek docs */
910 case RTW_RFCHIPID_RESERVED
:
911 rfname
= paname
= "reserved";
914 snprintf(scratch
, sizeof(scratch
), "unknown 0x%02x", *rfchipid
);
915 rfname
= paname
= scratch
;
917 aprint_normal_dev(dev
, "RF: %s, PA: %s\n", rfname
, paname
);
919 switch (RTW_SR_GET(sr
, RTW_SR_CONFIG0
) & RTW_CONFIG0_GL_MASK
) {
920 case RTW_CONFIG0_GL_USA
:
921 case _RTW_CONFIG0_GL_USA
:
922 *locale
= RTW_LOCALE_USA
;
924 case RTW_CONFIG0_GL_EUROPE
:
925 *locale
= RTW_LOCALE_EUROPE
;
927 case RTW_CONFIG0_GL_JAPAN
:
928 *locale
= RTW_LOCALE_JAPAN
;
931 *locale
= RTW_LOCALE_UNKNOWN
;
937 /* Returns -1 on failure. */
939 rtw_srom_read(struct rtw_regs
*regs
, uint32_t flags
, struct rtw_srom
*sr
,
943 struct seeprom_descriptor sd
;
946 (void)memset(&sd
, 0, sizeof(sd
));
948 ecr
= RTW_READ8(regs
, RTW_9346CR
);
950 if ((flags
& RTW_F_9356SROM
) != 0) {
951 RTW_DPRINTF(RTW_DEBUG_ATTACH
, ("%s: 93c56 SROM\n",
956 RTW_DPRINTF(RTW_DEBUG_ATTACH
, ("%s: 93c46 SROM\n",
962 ecr
&= ~(RTW_9346CR_EEDI
| RTW_9346CR_EEDO
| RTW_9346CR_EESK
|
963 RTW_9346CR_EEM_MASK
| RTW_9346CR_EECS
);
964 ecr
|= RTW_9346CR_EEM_PROGRAM
;
966 RTW_WRITE8(regs
, RTW_9346CR
, ecr
);
968 sr
->sr_content
= malloc(sr
->sr_size
, M_DEVBUF
, M_NOWAIT
);
970 if (sr
->sr_content
== NULL
) {
971 aprint_error_dev(dev
, "unable to allocate SROM buffer\n");
975 (void)memset(sr
->sr_content
, 0, sr
->sr_size
);
977 /* RTL8180 has a single 8-bit register for controlling the
978 * 93cx6 SROM. There is no "ready" bit. The RTL8180
979 * input/output sense is the reverse of read_seeprom's.
981 sd
.sd_tag
= regs
->r_bt
;
982 sd
.sd_bsh
= regs
->r_bh
;
984 sd
.sd_control_offset
= RTW_9346CR
;
985 sd
.sd_status_offset
= RTW_9346CR
;
986 sd
.sd_dataout_offset
= RTW_9346CR
;
987 sd
.sd_CK
= RTW_9346CR_EESK
;
988 sd
.sd_CS
= RTW_9346CR_EECS
;
989 sd
.sd_DI
= RTW_9346CR_EEDO
;
990 sd
.sd_DO
= RTW_9346CR_EEDI
;
991 /* make read_seeprom enter EEPROM read/write mode */
995 /* TBD bus barriers */
996 if (!read_seeprom(&sd
, sr
->sr_content
, 0, sr
->sr_size
/2)) {
997 aprint_error_dev(dev
, "could not read SROM\n");
998 free(sr
->sr_content
, M_DEVBUF
);
999 sr
->sr_content
= NULL
;
1000 return -1; /* XXX */
1003 /* end EEPROM read/write mode */
1004 RTW_WRITE8(regs
, RTW_9346CR
,
1005 (ecr
& ~RTW_9346CR_EEM_MASK
) | RTW_9346CR_EEM_NORMAL
);
1006 RTW_WBRW(regs
, RTW_9346CR
, RTW_9346CR
);
1008 if ((rc
= rtw_recall_eeprom(regs
, dev
)) != 0)
1014 RTW_DPRINTF(RTW_DEBUG_ATTACH
,
1015 ("\n%s: serial ROM:\n\t", device_xname(dev
)));
1016 for (i
= 0; i
< sr
->sr_size
/2; i
++) {
1017 if (((i
% 8) == 0) && (i
!= 0))
1018 RTW_DPRINTF(RTW_DEBUG_ATTACH
, ("\n\t"));
1019 RTW_DPRINTF(RTW_DEBUG_ATTACH
,
1020 (" %04x", sr
->sr_content
[i
]));
1022 RTW_DPRINTF(RTW_DEBUG_ATTACH
, ("\n"));
1024 #endif /* RTW_DEBUG */
1029 rtw_set_rfprog(struct rtw_regs
*regs
, enum rtw_rfchipid rfchipid
,
1035 cfg4
= RTW_READ8(regs
, RTW_CONFIG4
) & ~RTW_CONFIG4_RFTYPE_MASK
;
1039 cfg4
|= __SHIFTIN(rtw_rfprog_fallback
, RTW_CONFIG4_RFTYPE_MASK
);
1040 method
= "fallback";
1042 case RTW_RFCHIPID_INTERSIL
:
1043 cfg4
|= RTW_CONFIG4_RFTYPE_INTERSIL
;
1044 method
= "Intersil";
1046 case RTW_RFCHIPID_PHILIPS
:
1047 cfg4
|= RTW_CONFIG4_RFTYPE_PHILIPS
;
1050 case RTW_RFCHIPID_GCT
: /* XXX a guess */
1051 case RTW_RFCHIPID_RFMD
:
1052 cfg4
|= RTW_CONFIG4_RFTYPE_RFMD
;
1057 RTW_WRITE8(regs
, RTW_CONFIG4
, cfg4
);
1059 RTW_WBR(regs
, RTW_CONFIG4
, RTW_CONFIG4
);
1061 RTW_DPRINTF(RTW_DEBUG_INIT
,
1062 ("%s: %s RF programming method, %#02x\n", device_xname(dev
), method
,
1063 RTW_READ8(regs
, RTW_CONFIG4
)));
1067 rtw_init_channels(enum rtw_locale locale
,
1068 struct ieee80211_channel (*chans
)[IEEE80211_CHAN_MAX
+1], device_t dev
)
1071 const char *name
= NULL
;
1072 #define ADD_CHANNEL(_chans, _chan) do { \
1073 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1074 (*_chans)[_chan].ic_freq = \
1075 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1079 case RTW_LOCALE_USA
: /* 1-11 */
1081 for (i
= 1; i
<= 11; i
++)
1082 ADD_CHANNEL(chans
, i
);
1084 case RTW_LOCALE_JAPAN
: /* 1-14 */
1086 ADD_CHANNEL(chans
, 14);
1087 for (i
= 1; i
<= 14; i
++)
1088 ADD_CHANNEL(chans
, i
);
1090 case RTW_LOCALE_EUROPE
: /* 1-13 */
1092 for (i
= 1; i
<= 13; i
++)
1093 ADD_CHANNEL(chans
, i
);
1095 default: /* 10-11 allowed by most countries */
1097 for (i
= 10; i
<= 11; i
++)
1098 ADD_CHANNEL(chans
, i
);
1101 aprint_normal_dev(dev
, "Geographic Location %s\n", name
);
1107 rtw_identify_country(struct rtw_regs
*regs
, enum rtw_locale
*locale
)
1109 uint8_t cfg0
= RTW_READ8(regs
, RTW_CONFIG0
);
1111 switch (cfg0
& RTW_CONFIG0_GL_MASK
) {
1112 case RTW_CONFIG0_GL_USA
:
1113 case _RTW_CONFIG0_GL_USA
:
1114 *locale
= RTW_LOCALE_USA
;
1116 case RTW_CONFIG0_GL_JAPAN
:
1117 *locale
= RTW_LOCALE_JAPAN
;
1119 case RTW_CONFIG0_GL_EUROPE
:
1120 *locale
= RTW_LOCALE_EUROPE
;
1123 *locale
= RTW_LOCALE_UNKNOWN
;
1129 rtw_identify_sta(struct rtw_regs
*regs
, uint8_t (*addr
)[IEEE80211_ADDR_LEN
],
1132 static const uint8_t empty_macaddr
[IEEE80211_ADDR_LEN
] = {
1133 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1135 uint32_t idr0
= RTW_READ(regs
, RTW_IDR0
),
1136 idr1
= RTW_READ(regs
, RTW_IDR1
);
1138 (*addr
)[0] = __SHIFTOUT(idr0
, __BITS(0, 7));
1139 (*addr
)[1] = __SHIFTOUT(idr0
, __BITS(8, 15));
1140 (*addr
)[2] = __SHIFTOUT(idr0
, __BITS(16, 23));
1141 (*addr
)[3] = __SHIFTOUT(idr0
, __BITS(24 ,31));
1143 (*addr
)[4] = __SHIFTOUT(idr1
, __BITS(0, 7));
1144 (*addr
)[5] = __SHIFTOUT(idr1
, __BITS(8, 15));
1146 if (IEEE80211_ADDR_EQ(addr
, empty_macaddr
)) {
1147 aprint_error_dev(dev
,
1148 "could not get mac address, attach failed\n");
1152 aprint_normal_dev(dev
, "802.11 address %s\n", ether_sprintf(*addr
));
1158 rtw_chan2txpower(struct rtw_srom
*sr
, struct ieee80211com
*ic
,
1159 struct ieee80211_channel
*chan
)
1161 u_int idx
= RTW_SR_TXPOWER1
+ ieee80211_chan2ieee(ic
, chan
) - 1;
1162 KASSERT(idx
>= RTW_SR_TXPOWER1
&& idx
<= RTW_SR_TXPOWER14
);
1163 return RTW_SR_GET(sr
, idx
);
1167 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk
*tdb
)
1170 /* nfree: the number of free descriptors in each ring.
1171 * The beacon ring is a special case: I do not let the
1172 * driver use all of the descriptors on the beacon ring.
1173 * The reasons are two-fold:
1175 * (1) A BEACON descriptor's OWN bit is (apparently) not
1176 * updated, so the driver cannot easily know if the descriptor
1177 * belongs to it, or if it is racing the NIC. If the NIC
1178 * does not OWN every descriptor, then the driver can safely
1179 * update the descriptors when RTW_TBDA points at tdb_next.
1181 * (2) I hope that the NIC will process more than one BEACON
1182 * descriptor in a single beacon interval, since that will
1183 * enable multiple-BSS support. Since the NIC does not
1184 * clear the OWN bit, there is no natural place for it to
1185 * stop processing BEACON desciptors. Maybe it will *not*
1186 * stop processing them! I do not want to chance the NIC
1187 * looping around and around a saturated beacon ring, so
1188 * I will leave one descriptor unOWNed at all times.
1190 u_int nfree
[RTW_NTXPRI
] =
1191 {RTW_NTXDESCLO
, RTW_NTXDESCMD
, RTW_NTXDESCHI
,
1192 RTW_NTXDESCBCN
- 1};
1194 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1195 tdb
[pri
].tdb_nfree
= nfree
[pri
];
1196 tdb
[pri
].tdb_next
= 0;
1201 rtw_txsoft_blk_init(struct rtw_txsoft_blk
*tsb
)
1204 struct rtw_txsoft
*ts
;
1206 SIMPLEQ_INIT(&tsb
->tsb_dirtyq
);
1207 SIMPLEQ_INIT(&tsb
->tsb_freeq
);
1208 for (i
= 0; i
< tsb
->tsb_ndesc
; i
++) {
1209 ts
= &tsb
->tsb_desc
[i
];
1211 SIMPLEQ_INSERT_TAIL(&tsb
->tsb_freeq
, ts
, ts_q
);
1213 tsb
->tsb_tx_timer
= 0;
1218 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk
*tsb
)
1221 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++)
1222 rtw_txsoft_blk_init(&tsb
[pri
]);
1226 rtw_rxdescs_sync(struct rtw_rxdesc_blk
*rdb
, int desc0
, int nsync
, int ops
)
1228 KASSERT(nsync
<= rdb
->rdb_ndesc
);
1229 /* sync to end of ring */
1230 if (desc0
+ nsync
> rdb
->rdb_ndesc
) {
1231 bus_dmamap_sync(rdb
->rdb_dmat
, rdb
->rdb_dmamap
,
1232 offsetof(struct rtw_descs
, hd_rx
[desc0
]),
1233 sizeof(struct rtw_rxdesc
) * (rdb
->rdb_ndesc
- desc0
), ops
);
1234 nsync
-= (rdb
->rdb_ndesc
- desc0
);
1238 KASSERT(desc0
< rdb
->rdb_ndesc
);
1239 KASSERT(nsync
<= rdb
->rdb_ndesc
);
1240 KASSERT(desc0
+ nsync
<= rdb
->rdb_ndesc
);
1242 /* sync what remains */
1243 bus_dmamap_sync(rdb
->rdb_dmat
, rdb
->rdb_dmamap
,
1244 offsetof(struct rtw_descs
, hd_rx
[desc0
]),
1245 sizeof(struct rtw_rxdesc
) * nsync
, ops
);
1249 rtw_txdescs_sync(struct rtw_txdesc_blk
*tdb
, u_int desc0
, u_int nsync
, int ops
)
1251 /* sync to end of ring */
1252 if (desc0
+ nsync
> tdb
->tdb_ndesc
) {
1253 bus_dmamap_sync(tdb
->tdb_dmat
, tdb
->tdb_dmamap
,
1254 tdb
->tdb_ofs
+ sizeof(struct rtw_txdesc
) * desc0
,
1255 sizeof(struct rtw_txdesc
) * (tdb
->tdb_ndesc
- desc0
),
1257 nsync
-= (tdb
->tdb_ndesc
- desc0
);
1261 /* sync what remains */
1262 bus_dmamap_sync(tdb
->tdb_dmat
, tdb
->tdb_dmamap
,
1263 tdb
->tdb_ofs
+ sizeof(struct rtw_txdesc
) * desc0
,
1264 sizeof(struct rtw_txdesc
) * nsync
, ops
);
1268 rtw_txdescs_sync_all(struct rtw_txdesc_blk
*tdb
)
1271 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1272 rtw_txdescs_sync(&tdb
[pri
], 0, tdb
[pri
].tdb_ndesc
,
1273 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1278 rtw_rxbufs_release(bus_dma_tag_t dmat
, struct rtw_rxsoft
*desc
)
1281 struct rtw_rxsoft
*rs
;
1283 for (i
= 0; i
< RTW_RXQLEN
; i
++) {
1285 if (rs
->rs_mbuf
== NULL
)
1287 bus_dmamap_sync(dmat
, rs
->rs_dmamap
, 0,
1288 rs
->rs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1289 bus_dmamap_unload(dmat
, rs
->rs_dmamap
);
1290 m_freem(rs
->rs_mbuf
);
1296 rtw_rxsoft_alloc(bus_dma_tag_t dmat
, struct rtw_rxsoft
*rs
)
1301 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1305 MCLGET(m
, M_DONTWAIT
);
1306 if ((m
->m_flags
& M_EXT
) == 0) {
1311 m
->m_pkthdr
.len
= m
->m_len
= m
->m_ext
.ext_size
;
1313 if (rs
->rs_mbuf
!= NULL
)
1314 bus_dmamap_unload(dmat
, rs
->rs_dmamap
);
1318 rc
= bus_dmamap_load_mbuf(dmat
, rs
->rs_dmamap
, m
, BUS_DMA_NOWAIT
);
1330 rtw_rxsoft_init_all(bus_dma_tag_t dmat
, struct rtw_rxsoft
*desc
,
1331 int *ndesc
, device_t dev
)
1334 struct rtw_rxsoft
*rs
;
1336 for (i
= 0; i
< RTW_RXQLEN
; i
++) {
1338 /* we're in rtw_init, so there should be no mbufs allocated */
1339 KASSERT(rs
->rs_mbuf
== NULL
);
1341 if (i
== rtw_rxbufs_limit
) {
1342 aprint_error_dev(dev
, "TEST hit %d-buffer limit\n", i
);
1346 #endif /* RTW_DEBUG */
1347 if ((rc
= rtw_rxsoft_alloc(dmat
, rs
)) != 0) {
1348 aprint_error_dev(dev
,
1349 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1359 rtw_rxdesc_init(struct rtw_rxdesc_blk
*rdb
, struct rtw_rxsoft
*rs
,
1362 int is_last
= (idx
== rdb
->rdb_ndesc
- 1);
1363 uint32_t ctl
, octl
, obuf
;
1364 struct rtw_rxdesc
*rd
= &rdb
->rdb_desc
[idx
];
1366 /* sync the mbuf before the descriptor */
1367 bus_dmamap_sync(rdb
->rdb_dmat
, rs
->rs_dmamap
, 0,
1368 rs
->rs_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
1371 rd
->rd_buf
= htole32(rs
->rs_dmamap
->dm_segs
[0].ds_addr
);
1373 ctl
= __SHIFTIN(rs
->rs_mbuf
->m_len
, RTW_RXCTL_LENGTH_MASK
) |
1374 RTW_RXCTL_OWN
| RTW_RXCTL_FS
| RTW_RXCTL_LS
;
1377 ctl
|= RTW_RXCTL_EOR
;
1380 rd
->rd_ctl
= htole32(ctl
);
1383 kick
? (RTW_DEBUG_RECV_DESC
| RTW_DEBUG_IO_KICK
)
1384 : RTW_DEBUG_RECV_DESC
,
1385 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__
, rd
,
1386 le32toh(obuf
), le32toh(rd
->rd_buf
), le32toh(octl
),
1387 le32toh(rd
->rd_ctl
)));
1389 /* sync the descriptor */
1390 bus_dmamap_sync(rdb
->rdb_dmat
, rdb
->rdb_dmamap
,
1391 RTW_DESC_OFFSET(hd_rx
, idx
), sizeof(struct rtw_rxdesc
),
1392 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1396 rtw_rxdesc_init_all(struct rtw_rxdesc_blk
*rdb
, struct rtw_rxsoft
*ctl
, int kick
)
1399 struct rtw_rxdesc
*rd
;
1400 struct rtw_rxsoft
*rs
;
1402 for (i
= 0; i
< rdb
->rdb_ndesc
; i
++) {
1403 rd
= &rdb
->rdb_desc
[i
];
1405 rtw_rxdesc_init(rdb
, rs
, i
, kick
);
1410 rtw_io_enable(struct rtw_softc
*sc
, uint8_t flags
, int enable
)
1412 struct rtw_regs
*regs
= &sc
->sc_regs
;
1415 RTW_DPRINTF(RTW_DEBUG_IOSTATE
, ("%s: %s 0x%02x\n", __func__
,
1416 enable
? "enable" : "disable", flags
));
1418 cr
= RTW_READ8(regs
, RTW_CR
);
1420 /* XXX reference source does not enable MULRW */
1421 /* enable PCI Read/Write Multiple */
1424 /* The receive engine will always start at RDSAR. */
1425 if (enable
&& (flags
& ~cr
& RTW_CR_RE
)) {
1426 struct rtw_rxdesc_blk
*rdb
;
1427 rdb
= &sc
->sc_rxdesc_blk
;
1431 RTW_RBW(regs
, RTW_CR
, RTW_CR
); /* XXX paranoia? */
1436 RTW_WRITE8(regs
, RTW_CR
, cr
);
1437 RTW_SYNC(regs
, RTW_CR
, RTW_CR
);
1441 rtw_txring_fixup(sc
, __func__
, __LINE__
);
1443 if (cr
& RTW_CR_TE
) {
1444 rtw_tx_kick(&sc
->sc_regs
,
1445 RTW_TPPOLL_HPQ
| RTW_TPPOLL_NPQ
| RTW_TPPOLL_LPQ
);
1450 rtw_intr_rx(struct rtw_softc
*sc
, uint16_t isr
)
1452 #define IS_BEACON(__fc0) \
1453 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1454 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1456 static const int ratetbl
[4] = {2, 4, 11, 22}; /* convert rates:
1457 * hardware -> net80211
1459 u_int next
, nproc
= 0;
1460 int hwrate
, len
, rate
, rssi
, sq
;
1461 uint32_t hrssi
, hstat
, htsfth
, htsftl
;
1462 struct rtw_rxdesc
*rd
;
1463 struct rtw_rxsoft
*rs
;
1464 struct rtw_rxdesc_blk
*rdb
;
1466 struct ifnet
*ifp
= &sc
->sc_if
;
1468 struct ieee80211_node
*ni
;
1469 struct ieee80211_frame_min
*wh
;
1471 rdb
= &sc
->sc_rxdesc_blk
;
1473 for (next
= rdb
->rdb_next
; ; next
= rdb
->rdb_next
) {
1474 KASSERT(next
< rdb
->rdb_ndesc
);
1476 rtw_rxdescs_sync(rdb
, next
, 1,
1477 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1478 rd
= &rdb
->rdb_desc
[next
];
1479 rs
= &sc
->sc_rxsoft
[next
];
1481 hstat
= le32toh(rd
->rd_stat
);
1482 hrssi
= le32toh(rd
->rd_rssi
);
1483 htsfth
= le32toh(rd
->rd_tsfth
);
1484 htsftl
= le32toh(rd
->rd_tsftl
);
1486 RTW_DPRINTF(RTW_DEBUG_RECV_DESC
,
1487 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1488 __func__
, next
, hstat
, hrssi
, htsfth
, htsftl
));
1492 /* still belongs to NIC */
1493 if ((hstat
& RTW_RXSTAT_OWN
) != 0) {
1494 rtw_rxdescs_sync(rdb
, next
, 1, BUS_DMASYNC_PREREAD
);
1498 /* ieee80211_input() might reset the receive engine
1499 * (e.g. by indirectly calling rtw_tune()), so save
1500 * the next pointer here and retrieve it again on
1503 rdb
->rdb_next
= (next
+ 1) % rdb
->rdb_ndesc
;
1506 #define PRINTSTAT(flag) do { \
1507 if ((hstat & flag) != 0) { \
1508 printf("%s" #flag, delim); \
1512 if ((rtw_debug
& RTW_DEBUG_RECV_DESC
) != 0) {
1513 const char *delim
= "<";
1514 printf("%s: ", device_xname(sc
->sc_dev
));
1515 if ((hstat
& RTW_RXSTAT_DEBUG
) != 0) {
1516 printf("status %08x", hstat
);
1517 PRINTSTAT(RTW_RXSTAT_SPLCP
);
1518 PRINTSTAT(RTW_RXSTAT_MAR
);
1519 PRINTSTAT(RTW_RXSTAT_PAR
);
1520 PRINTSTAT(RTW_RXSTAT_BAR
);
1521 PRINTSTAT(RTW_RXSTAT_PWRMGT
);
1522 PRINTSTAT(RTW_RXSTAT_CRC32
);
1523 PRINTSTAT(RTW_RXSTAT_ICV
);
1527 #endif /* RTW_DEBUG */
1529 if ((hstat
& RTW_RXSTAT_IOERROR
) != 0) {
1530 aprint_error_dev(sc
->sc_dev
,
1531 "DMA error/FIFO overflow %08" PRIx32
", "
1532 "rx descriptor %d\n", hstat
, next
);
1537 len
= __SHIFTOUT(hstat
, RTW_RXSTAT_LENGTH_MASK
);
1538 if (len
< IEEE80211_MIN_LEN
) {
1539 sc
->sc_ic
.ic_stats
.is_rx_tooshort
++;
1542 if (len
> rs
->rs_mbuf
->m_len
) {
1543 aprint_error_dev(sc
->sc_dev
,
1544 "rx frame too long, %d > %d, %08" PRIx32
1546 len
, rs
->rs_mbuf
->m_len
, hstat
, next
);
1551 hwrate
= __SHIFTOUT(hstat
, RTW_RXSTAT_RATE_MASK
);
1552 if (hwrate
>= __arraycount(ratetbl
)) {
1553 aprint_error_dev(sc
->sc_dev
,
1554 "unknown rate #%" __PRIuBITS
"\n",
1555 __SHIFTOUT(hstat
, RTW_RXSTAT_RATE_MASK
));
1559 rate
= ratetbl
[hwrate
];
1562 RTW_DPRINTF(RTW_DEBUG_RECV_DESC
,
1563 ("rate %d.%d Mb/s, time %08x%08x\n", (rate
* 5) / 10,
1564 (rate
* 5) % 10, htsfth
, htsftl
));
1565 #endif /* RTW_DEBUG */
1567 /* if bad flags, skip descriptor */
1568 if ((hstat
& RTW_RXSTAT_ONESEG
) != RTW_RXSTAT_ONESEG
) {
1569 aprint_error_dev(sc
->sc_dev
, "too many rx segments, "
1570 "next=%d, %08" PRIx32
"\n", next
, hstat
);
1574 bus_dmamap_sync(sc
->sc_dmat
, rs
->rs_dmamap
, 0,
1575 rs
->rs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1579 /* if temporarily out of memory, re-use mbuf */
1580 switch (rtw_rxsoft_alloc(sc
->sc_dmat
, rs
)) {
1584 aprint_error_dev(sc
->sc_dev
,
1585 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1589 /* XXX shorten rx ring, instead? */
1590 aprint_error_dev(sc
->sc_dev
,
1591 "could not load DMA map\n");
1594 sq
= __SHIFTOUT(hrssi
, RTW_RXRSSI_SQ
);
1596 if (sc
->sc_rfchipid
== RTW_RFCHIPID_PHILIPS
)
1597 rssi
= UINT8_MAX
- sq
;
1599 rssi
= __SHIFTOUT(hrssi
, RTW_RXRSSI_IMR_RSSI
);
1600 /* TBD find out each front-end's LNA gain in the
1603 if ((hrssi
& RTW_RXRSSI_IMR_LNA
) == 0)
1607 /* Note well: now we cannot recycle the rs_mbuf unless
1608 * we restore its original length.
1610 m
->m_pkthdr
.rcvif
= ifp
;
1611 m
->m_pkthdr
.len
= m
->m_len
= len
;
1613 wh
= mtod(m
, struct ieee80211_frame_min
*);
1615 if (!IS_BEACON(wh
->i_fc
[0]))
1616 sc
->sc_led_state
.ls_event
|= RTW_LED_S_RX
;
1618 sc
->sc_tsfth
= htsfth
;
1621 if ((ifp
->if_flags
& (IFF_DEBUG
|IFF_LINK2
)) ==
1622 (IFF_DEBUG
|IFF_LINK2
)) {
1623 ieee80211_dump_pkt(mtod(m
, uint8_t *), m
->m_pkthdr
.len
,
1626 #endif /* RTW_DEBUG */
1629 if (sc
->sc_radiobpf
!= NULL
) {
1630 struct rtw_rx_radiotap_header
*rr
= &sc
->sc_rxtap
;
1633 htole64(((uint64_t)htsfth
<< 32) | htsftl
);
1635 rr
->rr_flags
= IEEE80211_RADIOTAP_F_FCS
;
1637 if ((hstat
& RTW_RXSTAT_SPLCP
) != 0)
1638 rr
->rr_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
1639 if ((hstat
& RTW_RXSTAT_CRC32
) != 0)
1640 rr
->rr_flags
|= IEEE80211_RADIOTAP_F_BADFCS
;
1644 if (sc
->sc_rfchipid
== RTW_RFCHIPID_PHILIPS
)
1645 rr
->rr_u
.u_philips
.p_antsignal
= rssi
;
1647 rr
->rr_u
.u_other
.o_antsignal
= rssi
;
1648 rr
->rr_u
.u_other
.o_barker_lock
=
1649 htole16(UINT8_MAX
- sq
);
1652 bpf_mtap2(sc
->sc_radiobpf
, rr
,
1653 sizeof(sc
->sc_rxtapu
), m
);
1655 #endif /* NBPFILTER > 0 */
1657 if ((hstat
& RTW_RXSTAT_RES
) != 0) {
1662 /* CRC is included with the packet; trim it off. */
1663 m_adj(m
, -IEEE80211_CRC_LEN
);
1665 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1666 ni
= ieee80211_find_rxnode(&sc
->sc_ic
, wh
);
1667 ieee80211_input(&sc
->sc_ic
, m
, ni
, rssi
, htsftl
);
1668 ieee80211_free_node(ni
);
1670 rtw_rxdesc_init(rdb
, rs
, next
, 0);
1676 rtw_txsoft_release(bus_dma_tag_t dmat
, struct ieee80211com
*ic
,
1677 struct rtw_txsoft
*ts
)
1680 struct ieee80211_node
*ni
;
1685 KASSERT(ni
!= NULL
);
1689 bus_dmamap_sync(dmat
, ts
->ts_dmamap
, 0, ts
->ts_dmamap
->dm_mapsize
,
1690 BUS_DMASYNC_POSTWRITE
);
1691 bus_dmamap_unload(dmat
, ts
->ts_dmamap
);
1693 ieee80211_free_node(ni
);
1697 rtw_txsofts_release(bus_dma_tag_t dmat
, struct ieee80211com
*ic
,
1698 struct rtw_txsoft_blk
*tsb
)
1700 struct rtw_txsoft
*ts
;
1702 while ((ts
= SIMPLEQ_FIRST(&tsb
->tsb_dirtyq
)) != NULL
) {
1703 rtw_txsoft_release(dmat
, ic
, ts
);
1704 SIMPLEQ_REMOVE_HEAD(&tsb
->tsb_dirtyq
, ts_q
);
1705 SIMPLEQ_INSERT_TAIL(&tsb
->tsb_freeq
, ts
, ts_q
);
1707 tsb
->tsb_tx_timer
= 0;
1711 rtw_collect_txpkt(struct rtw_softc
*sc
, struct rtw_txdesc_blk
*tdb
,
1712 struct rtw_txsoft
*ts
, int ndesc
)
1715 int data_retry
, rts_retry
;
1716 struct rtw_txdesc
*tdn
;
1717 const char *condstring
;
1718 struct ifnet
*ifp
= &sc
->sc_if
;
1720 rtw_txsoft_release(sc
->sc_dmat
, &sc
->sc_ic
, ts
);
1722 tdb
->tdb_nfree
+= ndesc
;
1724 tdn
= &tdb
->tdb_desc
[ts
->ts_last
];
1726 hstat
= le32toh(tdn
->td_stat
);
1727 rts_retry
= __SHIFTOUT(hstat
, RTW_TXSTAT_RTSRETRY_MASK
);
1728 data_retry
= __SHIFTOUT(hstat
, RTW_TXSTAT_DRC_MASK
);
1730 ifp
->if_collisions
+= rts_retry
+ data_retry
;
1732 if ((hstat
& RTW_TXSTAT_TOK
) != 0)
1736 condstring
= "error";
1739 DPRINTF(sc
, RTW_DEBUG_XMIT_DESC
,
1740 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1741 device_xname(sc
->sc_dev
), ts
, ts
->ts_first
, ts
->ts_last
,
1742 condstring
, rts_retry
, data_retry
));
1746 rtw_reset_oactive(struct rtw_softc
*sc
)
1750 struct rtw_txsoft_blk
*tsb
;
1751 struct rtw_txdesc_blk
*tdb
;
1752 oflags
= sc
->sc_if
.if_flags
;
1753 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1754 tsb
= &sc
->sc_txsoft_blk
[pri
];
1755 tdb
= &sc
->sc_txdesc_blk
[pri
];
1756 if (!SIMPLEQ_EMPTY(&tsb
->tsb_freeq
) && tdb
->tdb_nfree
> 0)
1757 sc
->sc_if
.if_flags
&= ~IFF_OACTIVE
;
1759 if (oflags
!= sc
->sc_if
.if_flags
) {
1760 DPRINTF(sc
, RTW_DEBUG_OACTIVE
,
1761 ("%s: reset OACTIVE\n", __func__
));
1765 /* Collect transmitted packets. */
1767 rtw_collect_txring(struct rtw_softc
*sc
, struct rtw_txsoft_blk
*tsb
,
1768 struct rtw_txdesc_blk
*tdb
, int force
)
1770 bool collected
= false;
1772 struct rtw_txsoft
*ts
;
1778 while ((ts
= SIMPLEQ_FIRST(&tsb
->tsb_dirtyq
)) != NULL
) {
1779 /* If we're clearing a failed transmission, only clear
1780 up to the last packet the hardware has processed. */
1781 if (ts
->ts_first
== rtw_txring_next(&sc
->sc_regs
, tdb
))
1784 ndesc
= 1 + ts
->ts_last
- ts
->ts_first
;
1785 if (ts
->ts_last
< ts
->ts_first
)
1786 ndesc
+= tdb
->tdb_ndesc
;
1790 rtw_txdescs_sync(tdb
, ts
->ts_first
, ndesc
,
1791 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1796 printf("%s: clearing packet, stats", __func__
);
1798 for (next
= ts
->ts_first
; ;
1799 next
= RTW_NEXT_IDX(tdb
, next
)) {
1801 printf(" %" PRIx32
"/%" PRIx32
"/%" PRIx32
"/%" PRIu32
"/%" PRIx32
, le32toh(tdb
->tdb_desc
[next
].td_stat
), le32toh(tdb
->tdb_desc
[next
].td_ctl1
), le32toh(tdb
->tdb_desc
[next
].td_buf
), le32toh(tdb
->tdb_desc
[next
].td_len
), le32toh(tdb
->tdb_desc
[next
].td_next
));
1803 tdb
->tdb_desc
[next
].td_stat
&=
1804 ~htole32(RTW_TXSTAT_OWN
);
1805 if (next
== ts
->ts_last
)
1808 rtw_txdescs_sync(tdb
, ts
->ts_first
, ndesc
,
1809 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1811 next
= RTW_NEXT_IDX(tdb
, next
);
1812 printf(" -> end %u stat %" PRIx32
", was %u\n", next
,
1813 le32toh(tdb
->tdb_desc
[next
].td_stat
),
1814 rtw_txring_next(&sc
->sc_regs
, tdb
));
1816 } else if ((tdb
->tdb_desc
[ts
->ts_last
].td_stat
&
1817 htole32(RTW_TXSTAT_OWN
)) != 0) {
1818 rtw_txdescs_sync(tdb
, ts
->ts_last
, 1,
1819 BUS_DMASYNC_PREREAD
);
1825 rtw_collect_txpkt(sc
, tdb
, ts
, ndesc
);
1826 SIMPLEQ_REMOVE_HEAD(&tsb
->tsb_dirtyq
, ts_q
);
1827 SIMPLEQ_INSERT_TAIL(&tsb
->tsb_freeq
, ts
, ts_q
);
1830 /* no more pending transmissions, cancel watchdog */
1832 tsb
->tsb_tx_timer
= 0;
1833 rtw_reset_oactive(sc
);
1839 rtw_intr_tx(struct rtw_softc
*sc
, uint16_t isr
)
1842 struct rtw_txsoft_blk
*tsb
;
1843 struct rtw_txdesc_blk
*tdb
;
1844 struct ifnet
*ifp
= &sc
->sc_if
;
1846 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1847 tsb
= &sc
->sc_txsoft_blk
[pri
];
1848 tdb
= &sc
->sc_txdesc_blk
[pri
];
1849 rtw_collect_txring(sc
, tsb
, tdb
, 0);
1852 if ((isr
& RTW_INTR_TX
) != 0)
1859 rtw_intr_beacon(struct rtw_softc
*sc
, uint16_t isr
)
1862 uint32_t tsfth
, tsftl
;
1863 struct ieee80211com
*ic
;
1864 struct rtw_txdesc_blk
*tdb
= &sc
->sc_txdesc_blk
[RTW_TXPRIBCN
];
1865 struct rtw_txsoft_blk
*tsb
= &sc
->sc_txsoft_blk
[RTW_TXPRIBCN
];
1868 tsfth
= RTW_READ(&sc
->sc_regs
, RTW_TSFTRH
);
1869 tsftl
= RTW_READ(&sc
->sc_regs
, RTW_TSFTRL
);
1871 if ((isr
& (RTW_INTR_TBDOK
|RTW_INTR_TBDER
)) != 0) {
1872 next
= rtw_txring_next(&sc
->sc_regs
, tdb
);
1873 RTW_DPRINTF(RTW_DEBUG_BEACON
,
1874 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1875 ", next %u expected %u, %" PRIu64
"\n", __func__
,
1876 (next
== tdb
->tdb_next
) ? "" : "un", isr
, next
,
1877 tdb
->tdb_next
, (uint64_t)tsfth
<< 32 | tsftl
));
1878 if ((RTW_READ8(&sc
->sc_regs
, RTW_TPPOLL
) & RTW_TPPOLL_BQ
) == 0)
1879 rtw_collect_txring(sc
, tsb
, tdb
, 1);
1881 /* Start beacon transmission. */
1883 if ((isr
& RTW_INTR_BCNINT
) != 0 &&
1884 sc
->sc_ic
.ic_state
== IEEE80211_S_RUN
&&
1885 SIMPLEQ_EMPTY(&tsb
->tsb_dirtyq
)) {
1886 RTW_DPRINTF(RTW_DEBUG_BEACON
,
1887 ("%s: beacon prep. time, isr = %#04" PRIx16
1888 ", %16" PRIu64
"\n", __func__
, isr
,
1889 (uint64_t)tsfth
<< 32 | tsftl
));
1891 m
= rtw_beacon_alloc(sc
, ic
->ic_bss
);
1894 aprint_error_dev(sc
->sc_dev
,
1895 "could not allocate beacon\n");
1898 m
->m_pkthdr
.rcvif
= (void *)ieee80211_ref_node(ic
->ic_bss
);
1899 IF_ENQUEUE(&sc
->sc_beaconq
, m
);
1900 rtw_start(&sc
->sc_if
);
1905 rtw_intr_atim(struct rtw_softc
*sc
)
1913 rtw_dump_rings(struct rtw_softc
*sc
)
1915 struct rtw_txdesc_blk
*tdb
;
1916 struct rtw_rxdesc
*rd
;
1917 struct rtw_rxdesc_blk
*rdb
;
1920 if ((rtw_debug
& RTW_DEBUG_IO_KICK
) == 0)
1923 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1924 tdb
= &sc
->sc_txdesc_blk
[pri
];
1925 printf("%s: txpri %d ndesc %d nfree %d\n", __func__
, pri
,
1926 tdb
->tdb_ndesc
, tdb
->tdb_nfree
);
1927 for (desc
= 0; desc
< tdb
->tdb_ndesc
; desc
++)
1928 rtw_print_txdesc(sc
, ".", NULL
, tdb
, desc
);
1931 rdb
= &sc
->sc_rxdesc_blk
;
1933 for (desc
= 0; desc
< RTW_RXQLEN
; desc
++) {
1934 rd
= &rdb
->rdb_desc
[desc
];
1935 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1936 "rsvd1/tsfth %08x\n", __func__
,
1937 (desc
>= rdb
->rdb_ndesc
) ? "UNUSED " : "",
1938 le32toh(rd
->rd_ctl
), le32toh(rd
->rd_rssi
),
1939 le32toh(rd
->rd_buf
), le32toh(rd
->rd_tsfth
));
1942 #endif /* RTW_DEBUG */
1945 rtw_hwring_setup(struct rtw_softc
*sc
)
1948 struct rtw_regs
*regs
= &sc
->sc_regs
;
1949 struct rtw_txdesc_blk
*tdb
;
1951 sc
->sc_txdesc_blk
[RTW_TXPRILO
].tdb_basereg
= RTW_TLPDA
;
1952 sc
->sc_txdesc_blk
[RTW_TXPRILO
].tdb_base
= RTW_RING_BASE(sc
, hd_txlo
);
1953 sc
->sc_txdesc_blk
[RTW_TXPRIMD
].tdb_basereg
= RTW_TNPDA
;
1954 sc
->sc_txdesc_blk
[RTW_TXPRIMD
].tdb_base
= RTW_RING_BASE(sc
, hd_txmd
);
1955 sc
->sc_txdesc_blk
[RTW_TXPRIHI
].tdb_basereg
= RTW_THPDA
;
1956 sc
->sc_txdesc_blk
[RTW_TXPRIHI
].tdb_base
= RTW_RING_BASE(sc
, hd_txhi
);
1957 sc
->sc_txdesc_blk
[RTW_TXPRIBCN
].tdb_basereg
= RTW_TBDA
;
1958 sc
->sc_txdesc_blk
[RTW_TXPRIBCN
].tdb_base
= RTW_RING_BASE(sc
, hd_bcn
);
1960 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
1961 tdb
= &sc
->sc_txdesc_blk
[pri
];
1962 RTW_WRITE(regs
, tdb
->tdb_basereg
, tdb
->tdb_base
);
1963 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC
,
1964 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR
"\n", __func__
,
1965 (uintptr_t)tdb
->tdb_base
));
1968 RTW_WRITE(regs
, RTW_RDSAR
, RTW_RING_BASE(sc
, hd_rx
));
1970 RTW_DPRINTF(RTW_DEBUG_RECV_DESC
,
1971 ("%s: reg[RDSAR] <- %" PRIxPTR
"\n", __func__
,
1972 (uintptr_t)RTW_RING_BASE(sc
, hd_rx
)));
1974 RTW_SYNC(regs
, RTW_TLPDA
, RTW_RDSAR
);
1979 rtw_swring_setup(struct rtw_softc
*sc
)
1982 struct rtw_rxdesc_blk
*rdb
;
1984 rtw_txdesc_blk_init_all(&sc
->sc_txdesc_blk
[0]);
1986 rtw_txsoft_blk_init_all(&sc
->sc_txsoft_blk
[0]);
1988 rdb
= &sc
->sc_rxdesc_blk
;
1989 if ((rc
= rtw_rxsoft_init_all(sc
->sc_dmat
, sc
->sc_rxsoft
, &rdb
->rdb_ndesc
,
1990 sc
->sc_dev
)) != 0 && rdb
->rdb_ndesc
== 0) {
1991 aprint_error_dev(sc
->sc_dev
, "could not allocate rx buffers\n");
1995 rdb
= &sc
->sc_rxdesc_blk
;
1996 rtw_rxdescs_sync(rdb
, 0, rdb
->rdb_ndesc
,
1997 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1998 rtw_rxdesc_init_all(rdb
, sc
->sc_rxsoft
, 1);
2001 rtw_txdescs_sync_all(&sc
->sc_txdesc_blk
[0]);
2006 rtw_txdesc_blk_init(struct rtw_txdesc_blk
*tdb
)
2010 (void)memset(tdb
->tdb_desc
, 0,
2011 sizeof(tdb
->tdb_desc
[0]) * tdb
->tdb_ndesc
);
2012 for (i
= 0; i
< tdb
->tdb_ndesc
; i
++)
2013 tdb
->tdb_desc
[i
].td_next
= htole32(RTW_NEXT_DESC(tdb
, i
));
2017 rtw_txring_next(struct rtw_regs
*regs
, struct rtw_txdesc_blk
*tdb
)
2019 return (le32toh(RTW_READ(regs
, tdb
->tdb_basereg
)) - tdb
->tdb_base
) /
2020 sizeof(struct rtw_txdesc
);
2025 rtw_txring_fixup(struct rtw_softc
*sc
, const char *fn
, int ln
)
2029 struct rtw_txdesc_blk
*tdb
;
2030 struct rtw_regs
*regs
= &sc
->sc_regs
;
2032 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
2034 tdb
= &sc
->sc_txdesc_blk
[pri
];
2035 next
= rtw_txring_next(regs
, tdb
);
2036 if (tdb
->tdb_next
== next
)
2038 for (i
= 0; next
!= tdb
->tdb_next
;
2039 next
= RTW_NEXT_IDX(tdb
, next
), i
++) {
2040 if ((tdb
->tdb_desc
[next
].td_stat
& htole32(RTW_TXSTAT_OWN
)) == 0)
2043 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn
,
2044 ln
, pri
, tdb
->tdb_next
, next
, i
, tdb
->tdb_next
== next
? "okay" : "BAD");
2045 if (tdb
->tdb_next
== next
)
2047 tdb
->tdb_next
= MIN(next
, tdb
->tdb_ndesc
- 1);
2053 rtw_txdescs_reset(struct rtw_softc
*sc
)
2056 struct rtw_txsoft_blk
*tsb
;
2057 struct rtw_txdesc_blk
*tdb
;
2059 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
2060 tsb
= &sc
->sc_txsoft_blk
[pri
];
2061 tdb
= &sc
->sc_txdesc_blk
[pri
];
2062 rtw_collect_txring(sc
, tsb
, tdb
, 1);
2064 if (!SIMPLEQ_EMPTY(&tsb
->tsb_dirtyq
))
2065 printf("%s: packets left in ring %d\n", __func__
, pri
);
2071 rtw_intr_ioerror(struct rtw_softc
*sc
, uint16_t isr
)
2073 aprint_error_dev(sc
->sc_dev
, "tx fifo underflow\n");
2075 RTW_DPRINTF(RTW_DEBUG_BUGS
, ("%s: cleaning up xmit, isr %" PRIx16
2076 "\n", device_xname(sc
->sc_dev
), isr
));
2080 #endif /* RTW_DEBUG */
2082 /* Collect tx'd packets. XXX let's hope this stops the transmit
2085 rtw_txdescs_reset(sc
);
2089 #endif /* RTW_DEBUG */
2093 rtw_suspend_ticks(struct rtw_softc
*sc
)
2095 RTW_DPRINTF(RTW_DEBUG_TIMEOUT
,
2096 ("%s: suspending ticks\n", device_xname(sc
->sc_dev
)));
2101 rtw_resume_ticks(struct rtw_softc
*sc
)
2103 uint32_t tsftrl0
, tsftrl1
, next_tick
;
2105 tsftrl0
= RTW_READ(&sc
->sc_regs
, RTW_TSFTRL
);
2107 tsftrl1
= RTW_READ(&sc
->sc_regs
, RTW_TSFTRL
);
2108 next_tick
= tsftrl1
+ 1000000;
2109 RTW_WRITE(&sc
->sc_regs
, RTW_TINT
, next_tick
);
2113 RTW_DPRINTF(RTW_DEBUG_TIMEOUT
,
2114 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2115 device_xname(sc
->sc_dev
), tsftrl1
- tsftrl0
, tsftrl1
, next_tick
));
2119 rtw_intr_timeout(struct rtw_softc
*sc
)
2121 RTW_DPRINTF(RTW_DEBUG_TIMEOUT
, ("%s: timeout\n", device_xname(sc
->sc_dev
)));
2123 rtw_resume_ticks(sc
);
2131 struct rtw_softc
*sc
= arg
;
2132 struct rtw_regs
*regs
= &sc
->sc_regs
;
2134 struct ifnet
*ifp
= &sc
->sc_if
;
2137 * If the interface isn't running, the interrupt couldn't
2138 * possibly have come from us.
2140 if ((ifp
->if_flags
& IFF_RUNNING
) == 0 ||
2141 !device_activation(sc
->sc_dev
, DEVACT_LEVEL_DRIVER
)) {
2142 RTW_DPRINTF(RTW_DEBUG_INTR
, ("%s: stray interrupt\n",
2143 device_xname(sc
->sc_dev
)));
2147 for (i
= 0; i
< 10; i
++) {
2148 isr
= RTW_READ16(regs
, RTW_ISR
);
2150 RTW_WRITE16(regs
, RTW_ISR
, isr
);
2151 RTW_WBR(regs
, RTW_ISR
, RTW_ISR
);
2153 if (sc
->sc_intr_ack
!= NULL
)
2154 (*sc
->sc_intr_ack
)(regs
);
2160 #define PRINTINTR(flag) do { \
2161 if ((isr & flag) != 0) { \
2162 printf("%s" #flag, delim); \
2167 if ((rtw_debug
& RTW_DEBUG_INTR
) != 0 && isr
!= 0) {
2168 const char *delim
= "<";
2170 printf("%s: reg[ISR] = %x", device_xname(sc
->sc_dev
),
2173 PRINTINTR(RTW_INTR_TXFOVW
);
2174 PRINTINTR(RTW_INTR_TIMEOUT
);
2175 PRINTINTR(RTW_INTR_BCNINT
);
2176 PRINTINTR(RTW_INTR_ATIMINT
);
2177 PRINTINTR(RTW_INTR_TBDER
);
2178 PRINTINTR(RTW_INTR_TBDOK
);
2179 PRINTINTR(RTW_INTR_THPDER
);
2180 PRINTINTR(RTW_INTR_THPDOK
);
2181 PRINTINTR(RTW_INTR_TNPDER
);
2182 PRINTINTR(RTW_INTR_TNPDOK
);
2183 PRINTINTR(RTW_INTR_RXFOVW
);
2184 PRINTINTR(RTW_INTR_RDU
);
2185 PRINTINTR(RTW_INTR_TLPDER
);
2186 PRINTINTR(RTW_INTR_TLPDOK
);
2187 PRINTINTR(RTW_INTR_RER
);
2188 PRINTINTR(RTW_INTR_ROK
);
2193 #endif /* RTW_DEBUG */
2195 if ((isr
& RTW_INTR_RX
) != 0)
2196 rtw_intr_rx(sc
, isr
);
2197 if ((isr
& RTW_INTR_TX
) != 0)
2198 rtw_intr_tx(sc
, isr
);
2199 if ((isr
& RTW_INTR_BEACON
) != 0)
2200 rtw_intr_beacon(sc
, isr
);
2201 if ((isr
& RTW_INTR_ATIMINT
) != 0)
2203 if ((isr
& RTW_INTR_IOERROR
) != 0)
2204 rtw_intr_ioerror(sc
, isr
);
2205 if ((isr
& RTW_INTR_TIMEOUT
) != 0)
2206 rtw_intr_timeout(sc
);
2212 /* Must be called at splnet. */
2214 rtw_stop(struct ifnet
*ifp
, int disable
)
2217 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
2218 struct ieee80211com
*ic
= &sc
->sc_ic
;
2219 struct rtw_regs
*regs
= &sc
->sc_regs
;
2221 rtw_suspend_ticks(sc
);
2223 ieee80211_new_state(ic
, IEEE80211_S_INIT
, -1);
2225 if (device_has_power(sc
->sc_dev
)) {
2226 /* Disable interrupts. */
2227 RTW_WRITE16(regs
, RTW_IMR
, 0);
2229 RTW_WBW(regs
, RTW_TPPOLL
, RTW_IMR
);
2231 /* Stop the transmit and receive processes. First stop DMA,
2232 * then disable receiver and transmitter.
2234 RTW_WRITE8(regs
, RTW_TPPOLL
, RTW_TPPOLL_SALL
);
2236 RTW_SYNC(regs
, RTW_TPPOLL
, RTW_IMR
);
2238 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 0);
2241 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
2242 rtw_txsofts_release(sc
->sc_dmat
, &sc
->sc_ic
,
2243 &sc
->sc_txsoft_blk
[pri
]);
2246 rtw_rxbufs_release(sc
->sc_dmat
, &sc
->sc_rxsoft
[0]);
2248 /* Mark the interface as not running. Cancel the watchdog timer. */
2249 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
2253 pmf_device_suspend(sc
->sc_dev
, &sc
->sc_qual
);
2259 rtw_pwrstate_string(enum rtw_pwrstate power
)
2273 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2274 * reference driver, plus a magic Maxim "ON" value that comes from
2275 * the Realtek document "Windows PG for Rtl8180."
2278 rtw_maxim_pwrstate(struct rtw_regs
*regs
, enum rtw_pwrstate power
,
2279 int before_rf
, int digphy
)
2283 anaparm
= RTW_READ(regs
, RTW_ANAPARM
);
2284 anaparm
&= ~(RTW_ANAPARM_RFPOW_MASK
| RTW_ANAPARM_TXDACOFF
);
2290 anaparm
|= RTW_ANAPARM_RFPOW_MAXIM_OFF
;
2291 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2296 anaparm
|= RTW_ANAPARM_RFPOW_MAXIM_SLEEP
;
2297 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2302 anaparm
|= RTW_ANAPARM_RFPOW_MAXIM_ON
;
2305 RTW_DPRINTF(RTW_DEBUG_PWR
,
2306 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2307 __func__
, rtw_pwrstate_string(power
),
2308 (before_rf
) ? "before" : "after", anaparm
));
2310 RTW_WRITE(regs
, RTW_ANAPARM
, anaparm
);
2311 RTW_SYNC(regs
, RTW_ANAPARM
, RTW_ANAPARM
);
2314 /* XXX I am using the RFMD settings gleaned from the reference
2315 * driver. They agree
2318 rtw_rfmd_pwrstate(struct rtw_regs
*regs
, enum rtw_pwrstate power
,
2319 int before_rf
, int digphy
)
2323 anaparm
= RTW_READ(regs
, RTW_ANAPARM
);
2324 anaparm
&= ~(RTW_ANAPARM_RFPOW_MASK
| RTW_ANAPARM_TXDACOFF
);
2330 anaparm
|= RTW_ANAPARM_RFPOW_RFMD_OFF
;
2331 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2336 anaparm
|= RTW_ANAPARM_RFPOW_RFMD_SLEEP
;
2337 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2342 anaparm
|= RTW_ANAPARM_RFPOW_RFMD_ON
;
2345 RTW_DPRINTF(RTW_DEBUG_PWR
,
2346 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2347 __func__
, rtw_pwrstate_string(power
),
2348 (before_rf
) ? "before" : "after", anaparm
));
2350 RTW_WRITE(regs
, RTW_ANAPARM
, anaparm
);
2351 RTW_SYNC(regs
, RTW_ANAPARM
, RTW_ANAPARM
);
2355 rtw_philips_pwrstate(struct rtw_regs
*regs
, enum rtw_pwrstate power
,
2356 int before_rf
, int digphy
)
2360 anaparm
= RTW_READ(regs
, RTW_ANAPARM
);
2361 anaparm
&= ~(RTW_ANAPARM_RFPOW_MASK
| RTW_ANAPARM_TXDACOFF
);
2367 anaparm
|= RTW_ANAPARM_RFPOW_PHILIPS_OFF
;
2368 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2373 anaparm
|= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP
;
2374 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2380 anaparm
|= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON
;
2382 anaparm
|= RTW_ANAPARM_TXDACOFF
;
2384 anaparm
|= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON
;
2387 RTW_DPRINTF(RTW_DEBUG_PWR
,
2388 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2389 __func__
, rtw_pwrstate_string(power
),
2390 (before_rf
) ? "before" : "after", anaparm
));
2392 RTW_WRITE(regs
, RTW_ANAPARM
, anaparm
);
2393 RTW_SYNC(regs
, RTW_ANAPARM
, RTW_ANAPARM
);
2397 rtw_pwrstate0(struct rtw_softc
*sc
, enum rtw_pwrstate power
, int before_rf
,
2400 struct rtw_regs
*regs
= &sc
->sc_regs
;
2402 rtw_set_access(regs
, RTW_ACCESS_ANAPARM
);
2404 (*sc
->sc_pwrstate_cb
)(regs
, power
, before_rf
, digphy
);
2406 rtw_set_access(regs
, RTW_ACCESS_NONE
);
2412 rtw_pwrstate(struct rtw_softc
*sc
, enum rtw_pwrstate power
)
2416 RTW_DPRINTF(RTW_DEBUG_PWR
,
2417 ("%s: %s->%s\n", __func__
,
2418 rtw_pwrstate_string(sc
->sc_pwrstate
), rtw_pwrstate_string(power
)));
2420 if (sc
->sc_pwrstate
== power
)
2423 rtw_pwrstate0(sc
, power
, 1, sc
->sc_flags
& RTW_F_DIGPHY
);
2424 rc
= rtw_rf_pwrstate(sc
->sc_rf
, power
);
2425 rtw_pwrstate0(sc
, power
, 0, sc
->sc_flags
& RTW_F_DIGPHY
);
2439 sc
->sc_pwrstate
= power
;
2441 sc
->sc_pwrstate
= RTW_OFF
;
2446 rtw_tune(struct rtw_softc
*sc
)
2448 struct ieee80211com
*ic
= &sc
->sc_ic
;
2449 struct rtw_tx_radiotap_header
*rt
= &sc
->sc_txtap
;
2450 struct rtw_rx_radiotap_header
*rr
= &sc
->sc_rxtap
;
2453 int antdiv
= sc
->sc_flags
& RTW_F_ANTDIV
,
2454 dflantb
= sc
->sc_flags
& RTW_F_DFLANTB
;
2456 chan
= ieee80211_chan2ieee(ic
, ic
->ic_curchan
);
2457 KASSERT(chan
!= IEEE80211_CHAN_ANY
);
2459 rt
->rt_chan_freq
= htole16(ic
->ic_curchan
->ic_freq
);
2460 rt
->rt_chan_flags
= htole16(ic
->ic_curchan
->ic_flags
);
2462 rr
->rr_chan_freq
= htole16(ic
->ic_curchan
->ic_freq
);
2463 rr
->rr_chan_flags
= htole16(ic
->ic_curchan
->ic_flags
);
2465 if (chan
== sc
->sc_cur_chan
) {
2466 RTW_DPRINTF(RTW_DEBUG_TUNE
,
2467 ("%s: already tuned chan #%d\n", __func__
, chan
));
2471 rtw_suspend_ticks(sc
);
2473 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 0);
2475 /* TBD wait for Tx to complete */
2477 KASSERT(device_has_power(sc
->sc_dev
));
2479 if ((rc
= rtw_phy_init(&sc
->sc_regs
, sc
->sc_rf
,
2480 rtw_chan2txpower(&sc
->sc_srom
, ic
, ic
->ic_curchan
), sc
->sc_csthr
,
2481 ic
->ic_curchan
->ic_freq
, antdiv
, dflantb
, RTW_ON
)) != 0) {
2482 /* XXX condition on powersaving */
2483 aprint_error_dev(sc
->sc_dev
, "phy init failed\n");
2486 sc
->sc_cur_chan
= chan
;
2488 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 1);
2490 rtw_resume_ticks(sc
);
2496 rtw_suspend(device_t self PMF_FN_ARGS
)
2499 struct rtw_softc
*sc
= device_private(self
);
2501 sc
->sc_flags
&= ~RTW_F_DK_VALID
;
2503 if (!device_has_power(self
))
2507 if ((rc
= rtw_pwrstate(sc
, RTW_OFF
)) != 0) {
2508 aprint_error_dev(self
, "failed to turn off PHY (%d)\n", rc
);
2512 rtw_disable_interrupts(&sc
->sc_regs
);
2518 rtw_resume(device_t self PMF_FN_ARGS
)
2520 struct rtw_softc
*sc
= device_private(self
);
2522 /* Power may have been removed, resetting WEP keys.
2524 sc
->sc_flags
&= ~RTW_F_DK_VALID
;
2525 rtw_enable_interrupts(sc
);
2531 rtw_transmit_config(struct rtw_regs
*regs
)
2535 tcr
= RTW_READ(regs
, RTW_TCR
);
2537 tcr
|= RTW_TCR_CWMIN
;
2538 tcr
&= ~RTW_TCR_MXDMA_MASK
;
2539 tcr
|= RTW_TCR_MXDMA_256
;
2540 tcr
|= RTW_TCR_SAT
; /* send ACK as fast as possible */
2541 tcr
&= ~RTW_TCR_LBK_MASK
;
2542 tcr
|= RTW_TCR_LBK_NORMAL
; /* normal operating mode */
2544 /* set short/long retry limits */
2545 tcr
&= ~(RTW_TCR_SRL_MASK
|RTW_TCR_LRL_MASK
);
2546 tcr
|= __SHIFTIN(4, RTW_TCR_SRL_MASK
) | __SHIFTIN(4, RTW_TCR_LRL_MASK
);
2548 tcr
&= ~RTW_TCR_CRC
; /* NIC appends CRC32 */
2550 RTW_WRITE(regs
, RTW_TCR
, tcr
);
2551 RTW_SYNC(regs
, RTW_TCR
, RTW_TCR
);
2555 rtw_disable_interrupts(struct rtw_regs
*regs
)
2557 RTW_WRITE16(regs
, RTW_IMR
, 0);
2558 RTW_WBW(regs
, RTW_IMR
, RTW_ISR
);
2559 RTW_WRITE16(regs
, RTW_ISR
, 0xffff);
2560 RTW_SYNC(regs
, RTW_IMR
, RTW_ISR
);
2564 rtw_enable_interrupts(struct rtw_softc
*sc
)
2566 struct rtw_regs
*regs
= &sc
->sc_regs
;
2568 sc
->sc_inten
= RTW_INTR_RX
|RTW_INTR_TX
|RTW_INTR_BEACON
|RTW_INTR_ATIMINT
;
2569 sc
->sc_inten
|= RTW_INTR_IOERROR
|RTW_INTR_TIMEOUT
;
2571 RTW_WRITE16(regs
, RTW_IMR
, sc
->sc_inten
);
2572 RTW_WBW(regs
, RTW_IMR
, RTW_ISR
);
2573 RTW_WRITE16(regs
, RTW_ISR
, 0xffff);
2574 RTW_SYNC(regs
, RTW_IMR
, RTW_ISR
);
2576 /* XXX necessary? */
2577 if (sc
->sc_intr_ack
!= NULL
)
2578 (*sc
->sc_intr_ack
)(regs
);
2582 rtw_set_nettype(struct rtw_softc
*sc
, enum ieee80211_opmode opmode
)
2586 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2587 rtw_set_access(&sc
->sc_regs
, RTW_ACCESS_CONFIG
);
2589 msr
= RTW_READ8(&sc
->sc_regs
, RTW_MSR
) & ~RTW_MSR_NETYPE_MASK
;
2592 case IEEE80211_M_AHDEMO
:
2593 case IEEE80211_M_IBSS
:
2594 msr
|= RTW_MSR_NETYPE_ADHOC_OK
;
2596 case IEEE80211_M_HOSTAP
:
2597 msr
|= RTW_MSR_NETYPE_AP_OK
;
2599 case IEEE80211_M_MONITOR
:
2601 msr
|= RTW_MSR_NETYPE_NOLINK
;
2603 case IEEE80211_M_STA
:
2604 msr
|= RTW_MSR_NETYPE_INFRA_OK
;
2607 RTW_WRITE8(&sc
->sc_regs
, RTW_MSR
, msr
);
2609 rtw_set_access(&sc
->sc_regs
, RTW_ACCESS_NONE
);
2612 #define rtw_calchash(addr) \
2613 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2616 rtw_pktfilt_load(struct rtw_softc
*sc
)
2618 struct rtw_regs
*regs
= &sc
->sc_regs
;
2619 struct ieee80211com
*ic
= &sc
->sc_ic
;
2620 struct ethercom
*ec
= &sc
->sc_ec
;
2621 struct ifnet
*ifp
= &sc
->sc_if
;
2623 uint32_t hashes
[2] = { 0, 0 };
2624 struct ether_multi
*enm
;
2625 struct ether_multistep step
;
2627 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2629 sc
->sc_rcr
&= ~RTW_RCR_PKTFILTER_MASK
;
2630 sc
->sc_rcr
&= ~(RTW_RCR_MXDMA_MASK
| RTW_RCR_RXFTH_MASK
);
2632 sc
->sc_rcr
|= RTW_RCR_PKTFILTER_DEFAULT
;
2633 /* MAC auto-reset PHY (huh?) */
2634 sc
->sc_rcr
|= RTW_RCR_ENMARP
;
2635 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2636 sc
->sc_rcr
|= RTW_RCR_MXDMA_1024
| RTW_RCR_RXFTH_WHOLE
;
2638 switch (ic
->ic_opmode
) {
2639 case IEEE80211_M_MONITOR
:
2640 sc
->sc_rcr
|= RTW_RCR_MONITOR
;
2642 case IEEE80211_M_AHDEMO
:
2643 case IEEE80211_M_IBSS
:
2644 /* receive broadcasts in our BSS */
2645 sc
->sc_rcr
|= RTW_RCR_ADD3
;
2651 ifp
->if_flags
&= ~IFF_ALLMULTI
;
2654 * Program the 64-bit multicast hash filter.
2656 ETHER_FIRST_MULTI(step
, ec
, enm
);
2657 while (enm
!= NULL
) {
2659 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
,
2660 ETHER_ADDR_LEN
) != 0) {
2661 ifp
->if_flags
|= IFF_ALLMULTI
;
2665 hash
= rtw_calchash(enm
->enm_addrlo
);
2666 hashes
[hash
>> 5] |= (1 << (hash
& 0x1f));
2667 ETHER_NEXT_MULTI(step
, enm
);
2670 /* XXX accept all broadcast if scanning */
2671 if ((ifp
->if_flags
& IFF_BROADCAST
) != 0)
2672 sc
->sc_rcr
|= RTW_RCR_AB
; /* accept all broadcast */
2674 if (ifp
->if_flags
& IFF_PROMISC
) {
2675 sc
->sc_rcr
|= RTW_RCR_AB
; /* accept all broadcast */
2676 sc
->sc_rcr
|= RTW_RCR_ACRC32
; /* accept frames failing CRC */
2677 sc
->sc_rcr
|= RTW_RCR_AICV
; /* accept frames failing ICV */
2678 ifp
->if_flags
|= IFF_ALLMULTI
;
2681 if (ifp
->if_flags
& IFF_ALLMULTI
)
2682 hashes
[0] = hashes
[1] = 0xffffffff;
2684 if ((hashes
[0] | hashes
[1]) != 0)
2685 sc
->sc_rcr
|= RTW_RCR_AM
; /* accept multicast */
2687 RTW_WRITE(regs
, RTW_MAR0
, hashes
[0]);
2688 RTW_WRITE(regs
, RTW_MAR1
, hashes
[1]);
2689 RTW_WRITE(regs
, RTW_RCR
, sc
->sc_rcr
);
2690 RTW_SYNC(regs
, RTW_MAR0
, RTW_RCR
); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2692 DPRINTF(sc
, RTW_DEBUG_PKTFILT
,
2693 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2694 device_xname(sc
->sc_dev
), RTW_READ(regs
, RTW_MAR0
),
2695 RTW_READ(regs
, RTW_MAR1
), RTW_READ(regs
, RTW_RCR
)));
2698 static struct mbuf
*
2699 rtw_beacon_alloc(struct rtw_softc
*sc
, struct ieee80211_node
*ni
)
2701 struct ieee80211com
*ic
= &sc
->sc_ic
;
2703 struct ieee80211_beacon_offsets boff
;
2705 if ((m
= ieee80211_beacon_alloc(ic
, ni
, &boff
)) != NULL
) {
2706 RTW_DPRINTF(RTW_DEBUG_BEACON
,
2707 ("%s: m %p len %u\n", __func__
, m
, m
->m_len
));
2712 /* Must be called at splnet. */
2714 rtw_init(struct ifnet
*ifp
)
2716 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
2717 struct ieee80211com
*ic
= &sc
->sc_ic
;
2718 struct rtw_regs
*regs
= &sc
->sc_regs
;
2721 if (device_is_active(sc
->sc_dev
)) {
2722 /* Cancel pending I/O and reset. */
2724 } else if (!pmf_device_resume(sc
->sc_dev
, &sc
->sc_qual
) ||
2725 !device_is_active(sc
->sc_dev
))
2728 DPRINTF(sc
, RTW_DEBUG_TUNE
, ("%s: channel %d freq %d flags 0x%04x\n",
2729 __func__
, ieee80211_chan2ieee(ic
, ic
->ic_curchan
),
2730 ic
->ic_curchan
->ic_freq
, ic
->ic_curchan
->ic_flags
));
2732 if ((rc
= rtw_pwrstate(sc
, RTW_OFF
)) != 0)
2735 if ((rc
= rtw_swring_setup(sc
)) != 0)
2738 rtw_transmit_config(regs
);
2740 rtw_set_access(regs
, RTW_ACCESS_CONFIG
);
2742 RTW_WRITE8(regs
, RTW_MSR
, 0x0); /* no link */
2743 RTW_WBW(regs
, RTW_MSR
, RTW_BRSR
);
2745 /* long PLCP header, 1Mb/2Mb basic rate */
2746 RTW_WRITE16(regs
, RTW_BRSR
, RTW_BRSR_MBR8180_2MBPS
);
2747 RTW_SYNC(regs
, RTW_BRSR
, RTW_BRSR
);
2749 rtw_set_access(regs
, RTW_ACCESS_ANAPARM
);
2750 rtw_set_access(regs
, RTW_ACCESS_NONE
);
2752 /* XXX from reference sources */
2753 RTW_WRITE(regs
, RTW_FEMR
, 0xffff);
2754 RTW_SYNC(regs
, RTW_FEMR
, RTW_FEMR
);
2756 rtw_set_rfprog(regs
, sc
->sc_rfchipid
, sc
->sc_dev
);
2758 RTW_WRITE8(regs
, RTW_PHYDELAY
, sc
->sc_phydelay
);
2759 /* from Linux driver */
2760 RTW_WRITE8(regs
, RTW_CRCOUNT
, RTW_CRCOUNT_MAGIC
);
2762 RTW_SYNC(regs
, RTW_PHYDELAY
, RTW_CRCOUNT
);
2764 rtw_enable_interrupts(sc
);
2766 rtw_pktfilt_load(sc
);
2768 rtw_hwring_setup(sc
);
2770 rtw_wep_setkeys(sc
, ic
->ic_nw_keys
, ic
->ic_def_txkey
);
2772 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 1);
2774 ifp
->if_flags
|= IFF_RUNNING
;
2775 ic
->ic_state
= IEEE80211_S_INIT
;
2777 RTW_WRITE16(regs
, RTW_BSSID16
, 0x0);
2778 RTW_WRITE(regs
, RTW_BSSID32
, 0x0);
2780 rtw_resume_ticks(sc
);
2782 rtw_set_nettype(sc
, IEEE80211_M_MONITOR
);
2784 if (ic
->ic_opmode
== IEEE80211_M_MONITOR
)
2785 return ieee80211_new_state(ic
, IEEE80211_S_RUN
, -1);
2787 return ieee80211_new_state(ic
, IEEE80211_S_SCAN
, -1);
2790 aprint_error_dev(sc
->sc_dev
, "interface not running\n");
2795 rtw_led_init(struct rtw_regs
*regs
)
2799 rtw_set_access(regs
, RTW_ACCESS_CONFIG
);
2801 cfg0
= RTW_READ8(regs
, RTW_CONFIG0
);
2802 cfg0
|= RTW_CONFIG0_LEDGPOEN
;
2803 RTW_WRITE8(regs
, RTW_CONFIG0
, cfg0
);
2805 cfg1
= RTW_READ8(regs
, RTW_CONFIG1
);
2806 RTW_DPRINTF(RTW_DEBUG_LED
,
2807 ("%s: read %" PRIx8
" from reg[CONFIG1]\n", __func__
, cfg1
));
2809 cfg1
&= ~RTW_CONFIG1_LEDS_MASK
;
2810 cfg1
|= RTW_CONFIG1_LEDS_TX_RX
;
2811 RTW_WRITE8(regs
, RTW_CONFIG1
, cfg1
);
2813 rtw_set_access(regs
, RTW_ACCESS_NONE
);
2817 * IEEE80211_S_INIT: LED1 off
2820 * IEEE80211_S_ASSOC,
2821 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2823 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2826 rtw_led_newstate(struct rtw_softc
*sc
, enum ieee80211_state nstate
)
2828 struct rtw_led_state
*ls
;
2830 ls
= &sc
->sc_led_state
;
2833 case IEEE80211_S_INIT
:
2834 rtw_led_init(&sc
->sc_regs
);
2835 aprint_debug_dev(sc
->sc_dev
, "stopping blink\n");
2836 callout_stop(&ls
->ls_slow_ch
);
2837 callout_stop(&ls
->ls_fast_ch
);
2838 ls
->ls_slowblink
= 0;
2839 ls
->ls_actblink
= 0;
2842 case IEEE80211_S_SCAN
:
2843 aprint_debug_dev(sc
->sc_dev
, "scheduling blink\n");
2844 callout_schedule(&ls
->ls_slow_ch
, RTW_LED_SLOW_TICKS
);
2845 callout_schedule(&ls
->ls_fast_ch
, RTW_LED_FAST_TICKS
);
2847 case IEEE80211_S_AUTH
:
2848 case IEEE80211_S_ASSOC
:
2849 ls
->ls_default
= RTW_LED1
;
2850 ls
->ls_actblink
= RTW_LED1
;
2851 ls
->ls_slowblink
= RTW_LED1
;
2853 case IEEE80211_S_RUN
:
2854 ls
->ls_slowblink
= 0;
2857 rtw_led_set(ls
, &sc
->sc_regs
, sc
->sc_hwverid
);
2861 rtw_led_set(struct rtw_led_state
*ls
, struct rtw_regs
*regs
, int hwverid
)
2863 uint8_t led_condition
;
2865 uint8_t mask
, newval
, val
;
2867 led_condition
= ls
->ls_default
;
2869 if (ls
->ls_state
& RTW_LED_S_SLOW
)
2870 led_condition
^= ls
->ls_slowblink
;
2871 if (ls
->ls_state
& (RTW_LED_S_RX
|RTW_LED_S_TX
))
2872 led_condition
^= ls
->ls_actblink
;
2874 RTW_DPRINTF(RTW_DEBUG_LED
,
2875 ("%s: LED condition %" PRIx8
"\n", __func__
, led_condition
));
2881 newval
= mask
= RTW_PSR_LEDGPO0
| RTW_PSR_LEDGPO1
;
2882 if (led_condition
& RTW_LED0
)
2883 newval
&= ~RTW_PSR_LEDGPO0
;
2884 if (led_condition
& RTW_LED1
)
2885 newval
&= ~RTW_PSR_LEDGPO1
;
2889 mask
= RTW_9346CR_EEM_MASK
| RTW_9346CR_EEDI
| RTW_9346CR_EECS
;
2890 newval
= RTW_9346CR_EEM_PROGRAM
;
2891 if (led_condition
& RTW_LED0
)
2892 newval
|= RTW_9346CR_EEDI
;
2893 if (led_condition
& RTW_LED1
)
2894 newval
|= RTW_9346CR_EECS
;
2897 val
= RTW_READ8(regs
, ofs
);
2898 RTW_DPRINTF(RTW_DEBUG_LED
,
2899 ("%s: read %" PRIx8
" from reg[%#02" PRIxPTR
"]\n", __func__
, val
,
2903 RTW_WRITE8(regs
, ofs
, val
);
2904 RTW_DPRINTF(RTW_DEBUG_LED
,
2905 ("%s: wrote %" PRIx8
" to reg[%#02" PRIxPTR
"]\n", __func__
, val
,
2907 RTW_SYNC(regs
, ofs
, ofs
);
2911 rtw_led_fastblink(void *arg
)
2914 struct rtw_softc
*sc
= (struct rtw_softc
*)arg
;
2915 struct rtw_led_state
*ls
= &sc
->sc_led_state
;
2918 ostate
= ls
->ls_state
;
2919 ls
->ls_state
^= ls
->ls_event
;
2921 if ((ls
->ls_event
& RTW_LED_S_TX
) == 0)
2922 ls
->ls_state
&= ~RTW_LED_S_TX
;
2924 if ((ls
->ls_event
& RTW_LED_S_RX
) == 0)
2925 ls
->ls_state
&= ~RTW_LED_S_RX
;
2929 if (ostate
!= ls
->ls_state
)
2930 rtw_led_set(ls
, &sc
->sc_regs
, sc
->sc_hwverid
);
2933 aprint_debug_dev(sc
->sc_dev
, "scheduling fast blink\n");
2934 callout_schedule(&ls
->ls_fast_ch
, RTW_LED_FAST_TICKS
);
2938 rtw_led_slowblink(void *arg
)
2941 struct rtw_softc
*sc
= (struct rtw_softc
*)arg
;
2942 struct rtw_led_state
*ls
= &sc
->sc_led_state
;
2945 ls
->ls_state
^= RTW_LED_S_SLOW
;
2946 rtw_led_set(ls
, &sc
->sc_regs
, sc
->sc_hwverid
);
2948 aprint_debug_dev(sc
->sc_dev
, "scheduling slow blink\n");
2949 callout_schedule(&ls
->ls_slow_ch
, RTW_LED_SLOW_TICKS
);
2953 rtw_led_detach(struct rtw_led_state
*ls
)
2955 callout_destroy(&ls
->ls_fast_ch
);
2956 callout_destroy(&ls
->ls_slow_ch
);
2960 rtw_led_attach(struct rtw_led_state
*ls
, void *arg
)
2962 callout_init(&ls
->ls_fast_ch
, 0);
2963 callout_init(&ls
->ls_slow_ch
, 0);
2964 callout_setfunc(&ls
->ls_fast_ch
, rtw_led_fastblink
, arg
);
2965 callout_setfunc(&ls
->ls_slow_ch
, rtw_led_slowblink
, arg
);
2969 rtw_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
2972 struct rtw_softc
*sc
= ifp
->if_softc
;
2975 if (cmd
== SIOCSIFFLAGS
) {
2976 if ((rc
= ifioctl_common(ifp
, cmd
, data
)) != 0)
2978 else switch (ifp
->if_flags
& (IFF_UP
|IFF_RUNNING
)) {
2981 RTW_PRINT_REGS(&sc
->sc_regs
, ifp
->if_xname
, __func__
);
2983 case IFF_UP
|IFF_RUNNING
:
2984 if (device_activation(sc
->sc_dev
, DEVACT_LEVEL_DRIVER
))
2985 rtw_pktfilt_load(sc
);
2986 RTW_PRINT_REGS(&sc
->sc_regs
, ifp
->if_xname
, __func__
);
2989 RTW_PRINT_REGS(&sc
->sc_regs
, ifp
->if_xname
, __func__
);
2995 } else if ((rc
= ieee80211_ioctl(&sc
->sc_ic
, cmd
, data
)) != ENETRESET
)
2996 ; /* nothing to do */
2997 else if (cmd
== SIOCADDMULTI
|| cmd
== SIOCDELMULTI
) {
2998 /* reload packet filter if running */
2999 if (ifp
->if_flags
& IFF_RUNNING
)
3000 rtw_pktfilt_load(sc
);
3002 } else if ((ifp
->if_flags
& IFF_UP
) != 0)
3010 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3011 * Return 0 on success, -1 on failure.
3014 rtw_txring_choose(struct rtw_softc
*sc
, struct rtw_txsoft_blk
**tsbp
,
3015 struct rtw_txdesc_blk
**tdbp
, int pri
)
3017 struct rtw_txsoft_blk
*tsb
;
3018 struct rtw_txdesc_blk
*tdb
;
3020 KASSERT(pri
>= 0 && pri
< RTW_NTXPRI
);
3022 tsb
= &sc
->sc_txsoft_blk
[pri
];
3023 tdb
= &sc
->sc_txdesc_blk
[pri
];
3025 if (SIMPLEQ_EMPTY(&tsb
->tsb_freeq
) || tdb
->tdb_nfree
== 0) {
3026 if (tsb
->tsb_tx_timer
== 0)
3027 tsb
->tsb_tx_timer
= 5;
3037 static inline struct mbuf
*
3038 rtw_80211_dequeue(struct rtw_softc
*sc
, struct ifqueue
*ifq
, int pri
,
3039 struct rtw_txsoft_blk
**tsbp
, struct rtw_txdesc_blk
**tdbp
,
3040 struct ieee80211_node
**nip
, short *if_flagsp
)
3044 if (IF_IS_EMPTY(ifq
))
3046 if (rtw_txring_choose(sc
, tsbp
, tdbp
, pri
) == -1) {
3047 DPRINTF(sc
, RTW_DEBUG_XMIT_RSRC
, ("%s: no ring %d descriptor\n",
3049 *if_flagsp
|= IFF_OACTIVE
;
3050 sc
->sc_if
.if_timer
= 1;
3054 *nip
= (struct ieee80211_node
*)m
->m_pkthdr
.rcvif
;
3055 m
->m_pkthdr
.rcvif
= NULL
;
3056 KASSERT(*nip
!= NULL
);
3060 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3061 * at the driver's selection of transmit control block for the packet.
3064 rtw_dequeue(struct ifnet
*ifp
, struct rtw_txsoft_blk
**tsbp
,
3065 struct rtw_txdesc_blk
**tdbp
, struct mbuf
**mp
,
3066 struct ieee80211_node
**nip
)
3069 struct ether_header
*eh
;
3071 struct rtw_softc
*sc
;
3076 sc
= (struct rtw_softc
*)ifp
->if_softc
;
3078 DPRINTF(sc
, RTW_DEBUG_XMIT
,
3079 ("%s: enter %s\n", device_xname(sc
->sc_dev
), __func__
));
3081 if_flagsp
= &ifp
->if_flags
;
3083 if (sc
->sc_ic
.ic_state
== IEEE80211_S_RUN
&&
3084 (*mp
= rtw_80211_dequeue(sc
, &sc
->sc_beaconq
, RTW_TXPRIBCN
, tsbp
,
3085 tdbp
, nip
, if_flagsp
)) != NULL
) {
3086 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: dequeue beacon frame\n",
3091 if ((*mp
= rtw_80211_dequeue(sc
, &sc
->sc_ic
.ic_mgtq
, RTW_TXPRIMD
, tsbp
,
3092 tdbp
, nip
, if_flagsp
)) != NULL
) {
3093 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: dequeue mgt frame\n",
3098 if (sc
->sc_ic
.ic_state
!= IEEE80211_S_RUN
) {
3099 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: not running\n", __func__
));
3103 IFQ_POLL(&ifp
->if_snd
, m0
);
3105 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: no frame ready\n",
3110 pri
= ((m0
->m_flags
& M_PWR_SAV
) != 0) ? RTW_TXPRIHI
: RTW_TXPRIMD
;
3112 if (rtw_txring_choose(sc
, tsbp
, tdbp
, pri
) == -1) {
3113 DPRINTF(sc
, RTW_DEBUG_XMIT_RSRC
, ("%s: no ring %d descriptor\n",
3115 *if_flagsp
|= IFF_OACTIVE
;
3116 sc
->sc_if
.if_timer
= 1;
3120 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
3122 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: no frame ready\n",
3126 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: dequeue data frame\n", __func__
));
3130 bpf_mtap(ifp
->if_bpf
, m0
);
3132 eh
= mtod(m0
, struct ether_header
*);
3133 *nip
= ieee80211_find_txnode(&sc
->sc_ic
, eh
->ether_dhost
);
3135 /* NB: ieee80211_find_txnode does stat+msg */
3139 if ((m0
= ieee80211_encap(&sc
->sc_ic
, m0
, *nip
)) == NULL
) {
3140 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: encap error\n", __func__
));
3144 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: leave\n", __func__
));
3150 rtw_seg_too_short(bus_dmamap_t dmamap
)
3153 for (i
= 0; i
< dmamap
->dm_nsegs
; i
++) {
3154 if (dmamap
->dm_segs
[i
].ds_len
< 4)
3160 /* TBD factor with atw_start */
3161 static struct mbuf
*
3162 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat
, bus_dmamap_t dmam
, struct mbuf
*chain
,
3163 u_int ndescfree
, device_t dev
)
3166 struct mbuf
*m
, *m0
;
3171 * Load the DMA map. Copy and try (once) again if the packet
3172 * didn't fit in the alloted number of segments.
3175 ((rc
= bus_dmamap_load_mbuf(dmat
, dmam
, m0
,
3176 BUS_DMA_WRITE
|BUS_DMA_NOWAIT
)) != 0 ||
3177 dmam
->dm_nsegs
> ndescfree
|| rtw_seg_too_short(dmam
)) && first
;
3181 if (rtw_seg_too_short(dmam
)) {
3182 printf("%s: short segment, mbuf lengths:", __func__
);
3183 for (m
= m0
; m
; m
= m
->m_next
)
3184 printf(" %d", m
->m_len
);
3188 bus_dmamap_unload(dmat
, dmam
);
3190 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
3192 aprint_error_dev(dev
, "unable to allocate Tx mbuf\n");
3195 if (m0
->m_pkthdr
.len
> MHLEN
) {
3196 MCLGET(m
, M_DONTWAIT
);
3197 if ((m
->m_flags
& M_EXT
) == 0) {
3198 aprint_error_dev(dev
,
3199 "cannot allocate Tx cluster\n");
3204 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, mtod(m
, void *));
3205 m
->m_pkthdr
.len
= m
->m_len
= m0
->m_pkthdr
.len
;
3211 aprint_error_dev(dev
, "cannot load Tx buffer, rc = %d\n", rc
);
3214 } else if (rtw_seg_too_short(dmam
)) {
3215 aprint_error_dev(dev
,
3216 "cannot load Tx buffer, segment too short\n");
3217 bus_dmamap_unload(dmat
, dmam
);
3220 } else if (dmam
->dm_nsegs
> ndescfree
) {
3221 aprint_error_dev(dev
, "too many tx segments\n");
3222 bus_dmamap_unload(dmat
, dmam
);
3231 rtw_print_txdesc(struct rtw_softc
*sc
, const char *action
,
3232 struct rtw_txsoft
*ts
, struct rtw_txdesc_blk
*tdb
, int desc
)
3234 struct rtw_txdesc
*td
= &tdb
->tdb_desc
[desc
];
3235 DPRINTF(sc
, RTW_DEBUG_XMIT_DESC
, ("%s: %p %s txdesc[%d] next %#08x "
3236 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3237 device_xname(sc
->sc_dev
), ts
, action
, desc
,
3238 le32toh(td
->td_buf
), le32toh(td
->td_next
),
3239 le32toh(td
->td_ctl0
), le32toh(td
->td_ctl1
),
3240 le32toh(td
->td_len
)));
3242 #endif /* RTW_DEBUG */
3245 rtw_start(struct ifnet
*ifp
)
3247 int desc
, i
, lastdesc
, npkt
, rate
;
3248 uint32_t proto_ctl0
, ctl0
, ctl1
;
3249 bus_dmamap_t dmamap
;
3250 struct ieee80211com
*ic
;
3251 struct ieee80211_duration
*d0
;
3252 struct ieee80211_frame_min
*wh
;
3253 struct ieee80211_node
*ni
= NULL
; /* XXX: GCC */
3255 struct rtw_softc
*sc
;
3256 struct rtw_txsoft_blk
*tsb
= NULL
; /* XXX: GCC */
3257 struct rtw_txdesc_blk
*tdb
= NULL
; /* XXX: GCC */
3258 struct rtw_txsoft
*ts
;
3259 struct rtw_txdesc
*td
;
3260 struct ieee80211_key
*k
;
3262 sc
= (struct rtw_softc
*)ifp
->if_softc
;
3265 DPRINTF(sc
, RTW_DEBUG_XMIT
,
3266 ("%s: enter %s\n", device_xname(sc
->sc_dev
), __func__
));
3268 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
)
3271 /* XXX do real rate control */
3272 proto_ctl0
= RTW_TXCTL0_RTSRATE_1MBPS
;
3274 if ((ic
->ic_flags
& IEEE80211_F_SHPREAMBLE
) != 0)
3275 proto_ctl0
|= RTW_TXCTL0_SPLCP
;
3278 if (rtw_dequeue(ifp
, &tsb
, &tdb
, &m0
, &ni
) == -1)
3283 wh
= mtod(m0
, struct ieee80211_frame_min
*);
3285 if ((wh
->i_fc
[1] & IEEE80211_FC1_WEP
) != 0 &&
3286 (k
= ieee80211_crypto_encap(ic
, ni
, m0
)) == NULL
) {
3292 ts
= SIMPLEQ_FIRST(&tsb
->tsb_freeq
);
3294 dmamap
= ts
->ts_dmamap
;
3296 m0
= rtw_dmamap_load_txbuf(sc
->sc_dmat
, dmamap
, m0
,
3297 tdb
->tdb_nfree
, sc
->sc_dev
);
3299 if (m0
== NULL
|| dmamap
->dm_nsegs
== 0) {
3300 DPRINTF(sc
, RTW_DEBUG_XMIT
,
3301 ("%s: fail dmamap load\n", __func__
));
3302 goto post_dequeue_err
;
3305 /* Note well: rtw_dmamap_load_txbuf may have created
3306 * a new chain, so we must find the header once
3309 wh
= mtod(m0
, struct ieee80211_frame_min
*);
3311 /* XXX do real rate control */
3312 if ((wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
) ==
3313 IEEE80211_FC0_TYPE_MGT
)
3316 rate
= MAX(2, ieee80211_get_rate(ni
));
3319 if ((ifp
->if_flags
& (IFF_DEBUG
|IFF_LINK2
)) ==
3320 (IFF_DEBUG
|IFF_LINK2
)) {
3321 ieee80211_dump_pkt(mtod(m0
, uint8_t *),
3322 (dmamap
->dm_nsegs
== 1) ? m0
->m_pkthdr
.len
3326 #endif /* RTW_DEBUG */
3328 __SHIFTIN(m0
->m_pkthdr
.len
, RTW_TXCTL0_TPKTSIZE_MASK
);
3333 ctl0
|= RTW_TXCTL0_RATE_1MBPS
;
3336 ctl0
|= RTW_TXCTL0_RATE_2MBPS
;
3339 ctl0
|= RTW_TXCTL0_RATE_5MBPS
;
3342 ctl0
|= RTW_TXCTL0_RATE_11MBPS
;
3345 /* XXX >= ? Compare after fragmentation? */
3346 if (m0
->m_pkthdr
.len
> ic
->ic_rtsthreshold
)
3347 ctl0
|= RTW_TXCTL0_RTSEN
;
3349 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3350 * seem to care, since we don't activate h/w Tx
3354 k
->wk_cipher
->ic_cipher
== IEEE80211_CIPHER_WEP
) {
3355 ctl0
|= __SHIFTIN(k
->wk_keyix
, RTW_TXCTL0_KEYID_MASK
) &
3356 RTW_TXCTL0_KEYID_MASK
;
3359 if ((wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
) ==
3360 IEEE80211_FC0_TYPE_MGT
) {
3361 ctl0
&= ~(RTW_TXCTL0_SPLCP
| RTW_TXCTL0_RTSEN
);
3362 if ((wh
->i_fc
[0] & IEEE80211_FC0_SUBTYPE_MASK
) ==
3363 IEEE80211_FC0_SUBTYPE_BEACON
)
3364 ctl0
|= RTW_TXCTL0_BEACON
;
3367 if (ieee80211_compute_duration(wh
, k
, m0
->m_pkthdr
.len
,
3368 ic
->ic_flags
, ic
->ic_fragthreshold
,
3369 rate
, &ts
->ts_d0
, &ts
->ts_dn
, &npkt
,
3370 (ifp
->if_flags
& (IFF_DEBUG
|IFF_LINK2
)) ==
3371 (IFF_DEBUG
|IFF_LINK2
)) == -1) {
3372 DPRINTF(sc
, RTW_DEBUG_XMIT
,
3373 ("%s: fail compute duration\n", __func__
));
3379 *(uint16_t*)wh
->i_dur
= htole16(d0
->d_data_dur
);
3381 ctl1
= __SHIFTIN(d0
->d_plcp_len
, RTW_TXCTL1_LENGTH_MASK
) |
3382 __SHIFTIN(d0
->d_rts_dur
, RTW_TXCTL1_RTSDUR_MASK
);
3385 ctl1
|= RTW_TXCTL1_LENGEXT
;
3387 /* TBD fragmentation */
3389 ts
->ts_first
= tdb
->tdb_next
;
3391 rtw_txdescs_sync(tdb
, ts
->ts_first
, dmamap
->dm_nsegs
,
3392 BUS_DMASYNC_PREWRITE
);
3394 KASSERT(ts
->ts_first
< tdb
->tdb_ndesc
);
3397 if (ic
->ic_rawbpf
!= NULL
)
3398 bpf_mtap((void *)ic
->ic_rawbpf
, m0
);
3400 if (sc
->sc_radiobpf
!= NULL
) {
3401 struct rtw_tx_radiotap_header
*rt
= &sc
->sc_txtap
;
3405 bpf_mtap2(sc
->sc_radiobpf
, (void *)rt
,
3406 sizeof(sc
->sc_txtapu
), m0
);
3408 #endif /* NBPFILTER > 0 */
3410 for (i
= 0, lastdesc
= desc
= ts
->ts_first
;
3411 i
< dmamap
->dm_nsegs
;
3412 i
++, desc
= RTW_NEXT_IDX(tdb
, desc
)) {
3413 if (dmamap
->dm_segs
[i
].ds_len
> RTW_TXLEN_LENGTH_MASK
) {
3414 DPRINTF(sc
, RTW_DEBUG_XMIT_DESC
,
3415 ("%s: seg too long\n", __func__
));
3418 td
= &tdb
->tdb_desc
[desc
];
3419 td
->td_ctl0
= htole32(ctl0
);
3420 td
->td_ctl1
= htole32(ctl1
);
3421 td
->td_buf
= htole32(dmamap
->dm_segs
[i
].ds_addr
);
3422 td
->td_len
= htole32(dmamap
->dm_segs
[i
].ds_len
);
3423 td
->td_next
= htole32(RTW_NEXT_DESC(tdb
, desc
));
3425 td
->td_ctl0
|= htole32(RTW_TXCTL0_OWN
);
3428 rtw_print_txdesc(sc
, "load", ts
, tdb
, desc
);
3429 #endif /* RTW_DEBUG */
3432 KASSERT(desc
< tdb
->tdb_ndesc
);
3435 KASSERT(ni
!= NULL
);
3437 ts
->ts_last
= lastdesc
;
3438 tdb
->tdb_desc
[ts
->ts_last
].td_ctl0
|= htole32(RTW_TXCTL0_LS
);
3439 tdb
->tdb_desc
[ts
->ts_first
].td_ctl0
|=
3440 htole32(RTW_TXCTL0_FS
);
3443 rtw_print_txdesc(sc
, "FS on", ts
, tdb
, ts
->ts_first
);
3444 rtw_print_txdesc(sc
, "LS on", ts
, tdb
, ts
->ts_last
);
3445 #endif /* RTW_DEBUG */
3447 tdb
->tdb_nfree
-= dmamap
->dm_nsegs
;
3448 tdb
->tdb_next
= desc
;
3450 rtw_txdescs_sync(tdb
, ts
->ts_first
, dmamap
->dm_nsegs
,
3451 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
3453 tdb
->tdb_desc
[ts
->ts_first
].td_ctl0
|=
3454 htole32(RTW_TXCTL0_OWN
);
3457 rtw_print_txdesc(sc
, "OWN on", ts
, tdb
, ts
->ts_first
);
3458 #endif /* RTW_DEBUG */
3460 rtw_txdescs_sync(tdb
, ts
->ts_first
, 1,
3461 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
3463 SIMPLEQ_REMOVE_HEAD(&tsb
->tsb_freeq
, ts_q
);
3464 SIMPLEQ_INSERT_TAIL(&tsb
->tsb_dirtyq
, ts
, ts_q
);
3466 if (tsb
!= &sc
->sc_txsoft_blk
[RTW_TXPRIBCN
])
3467 sc
->sc_led_state
.ls_event
|= RTW_LED_S_TX
;
3468 tsb
->tsb_tx_timer
= 5;
3470 rtw_tx_kick(&sc
->sc_regs
, tsb
->tsb_poll
);
3473 DPRINTF(sc
, RTW_DEBUG_XMIT
, ("%s: leave\n", __func__
));
3476 bus_dmamap_unload(sc
->sc_dmat
, dmamap
);
3479 ieee80211_free_node(ni
);
3484 rtw_idle(struct rtw_regs
*regs
)
3489 /* request stop DMA; wait for packets to stop transmitting. */
3491 RTW_WRITE8(regs
, RTW_TPPOLL
, RTW_TPPOLL_SALL
);
3492 RTW_WBR(regs
, RTW_TPPOLL
, RTW_TPPOLL
);
3494 for (active
= 0; active
< 300 &&
3495 (tppoll
= RTW_READ8(regs
, RTW_TPPOLL
) & RTW_TPPOLL_ACTIVE
) != 0;
3498 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8
"\n", __func__
,
3499 active
* 10, tppoll
);
3503 rtw_watchdog(struct ifnet
*ifp
)
3505 int pri
, tx_timeouts
= 0;
3506 struct rtw_softc
*sc
;
3507 struct rtw_txsoft_blk
*tsb
;
3513 if (!device_is_active(sc
->sc_dev
))
3516 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
3517 tsb
= &sc
->sc_txsoft_blk
[pri
];
3519 if (tsb
->tsb_tx_timer
== 0)
3521 else if (--tsb
->tsb_tx_timer
== 0) {
3522 if (SIMPLEQ_EMPTY(&tsb
->tsb_dirtyq
))
3524 else if (rtw_collect_txring(sc
, tsb
,
3525 &sc
->sc_txdesc_blk
[pri
], 0))
3527 printf("%s: transmit timeout, priority %d\n",
3528 ifp
->if_xname
, pri
);
3530 if (pri
!= RTW_TXPRIBCN
)
3536 if (tx_timeouts
> 0) {
3537 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3538 * reset s/w tx-ring pointers, and start transmission.
3540 * TBD Stop/restart just the broken rings?
3542 rtw_idle(&sc
->sc_regs
);
3543 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 0);
3544 rtw_txdescs_reset(sc
);
3545 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 1);
3548 ieee80211_watchdog(&sc
->sc_ic
);
3553 rtw_next_scan(void *arg
)
3555 struct ieee80211com
*ic
= arg
;
3558 /* don't call rtw_start w/o network interrupts blocked */
3560 if (ic
->ic_state
== IEEE80211_S_SCAN
)
3561 ieee80211_next_scan(ic
);
3566 rtw_join_bss(struct rtw_softc
*sc
, uint8_t *bssid
, uint16_t intval0
)
3568 uint16_t bcnitv
, bintritv
, intval
;
3570 struct rtw_regs
*regs
= &sc
->sc_regs
;
3572 for (i
= 0; i
< IEEE80211_ADDR_LEN
; i
++)
3573 RTW_WRITE8(regs
, RTW_BSSID
+ i
, bssid
[i
]);
3575 RTW_SYNC(regs
, RTW_BSSID16
, RTW_BSSID32
);
3577 rtw_set_access(regs
, RTW_ACCESS_CONFIG
);
3579 intval
= MIN(intval0
, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK
));
3581 bcnitv
= RTW_READ16(regs
, RTW_BCNITV
) & ~RTW_BCNITV_BCNITV_MASK
;
3582 bcnitv
|= __SHIFTIN(intval
, RTW_BCNITV_BCNITV_MASK
);
3583 RTW_WRITE16(regs
, RTW_BCNITV
, bcnitv
);
3584 /* interrupt host 1ms before the TBTT */
3585 bintritv
= RTW_READ16(regs
, RTW_BINTRITV
) & ~RTW_BINTRITV_BINTRITV
;
3586 bintritv
|= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV
);
3587 RTW_WRITE16(regs
, RTW_BINTRITV
, bintritv
);
3588 /* magic from Linux */
3589 RTW_WRITE16(regs
, RTW_ATIMWND
, __SHIFTIN(1, RTW_ATIMWND_ATIMWND
));
3590 RTW_WRITE16(regs
, RTW_ATIMTRITV
, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV
));
3591 rtw_set_access(regs
, RTW_ACCESS_NONE
);
3593 rtw_io_enable(sc
, RTW_CR_RE
| RTW_CR_TE
, 1);
3596 /* Synchronize the hardware state with the software state. */
3598 rtw_newstate(struct ieee80211com
*ic
, enum ieee80211_state nstate
, int arg
)
3600 struct ifnet
*ifp
= ic
->ic_ifp
;
3601 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
3602 enum ieee80211_state ostate
;
3605 ostate
= ic
->ic_state
;
3607 aprint_debug_dev(sc
->sc_dev
, "%s: l.%d\n", __func__
, __LINE__
);
3608 rtw_led_newstate(sc
, nstate
);
3610 aprint_debug_dev(sc
->sc_dev
, "%s: l.%d\n", __func__
, __LINE__
);
3611 if (nstate
== IEEE80211_S_INIT
) {
3612 callout_stop(&sc
->sc_scan_ch
);
3613 sc
->sc_cur_chan
= IEEE80211_CHAN_ANY
;
3614 return (*sc
->sc_mtbl
.mt_newstate
)(ic
, nstate
, arg
);
3617 if (ostate
== IEEE80211_S_INIT
&& nstate
!= IEEE80211_S_INIT
)
3618 rtw_pwrstate(sc
, RTW_ON
);
3620 if ((error
= rtw_tune(sc
)) != 0)
3624 case IEEE80211_S_INIT
:
3625 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__
);
3627 case IEEE80211_S_SCAN
:
3628 if (ostate
!= IEEE80211_S_SCAN
) {
3629 (void)memset(ic
->ic_bss
->ni_bssid
, 0,
3630 IEEE80211_ADDR_LEN
);
3631 rtw_set_nettype(sc
, IEEE80211_M_MONITOR
);
3634 callout_reset(&sc
->sc_scan_ch
, rtw_dwelltime
* hz
/ 1000,
3638 case IEEE80211_S_RUN
:
3639 switch (ic
->ic_opmode
) {
3640 case IEEE80211_M_HOSTAP
:
3641 case IEEE80211_M_IBSS
:
3642 rtw_set_nettype(sc
, IEEE80211_M_MONITOR
);
3644 case IEEE80211_M_AHDEMO
:
3645 case IEEE80211_M_STA
:
3646 rtw_join_bss(sc
, ic
->ic_bss
->ni_bssid
,
3647 ic
->ic_bss
->ni_intval
);
3649 case IEEE80211_M_MONITOR
:
3652 rtw_set_nettype(sc
, ic
->ic_opmode
);
3654 case IEEE80211_S_ASSOC
:
3655 case IEEE80211_S_AUTH
:
3659 if (nstate
!= IEEE80211_S_SCAN
)
3660 callout_stop(&sc
->sc_scan_ch
);
3662 return (*sc
->sc_mtbl
.mt_newstate
)(ic
, nstate
, arg
);
3665 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3667 rtw_tsf_extend(struct rtw_regs
*regs
, uint32_t rstamp
)
3669 uint32_t tsftl
, tsfth
;
3671 tsfth
= RTW_READ(regs
, RTW_TSFTRH
);
3672 tsftl
= RTW_READ(regs
, RTW_TSFTRL
);
3673 if (tsftl
< rstamp
) /* Compensate for rollover. */
3675 return ((uint64_t)tsfth
<< 32) | rstamp
;
3679 rtw_recv_mgmt(struct ieee80211com
*ic
, struct mbuf
*m
,
3680 struct ieee80211_node
*ni
, int subtype
, int rssi
, uint32_t rstamp
)
3682 struct ifnet
*ifp
= ic
->ic_ifp
;
3683 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
3685 (*sc
->sc_mtbl
.mt_recv_mgmt
)(ic
, m
, ni
, subtype
, rssi
, rstamp
);
3688 case IEEE80211_FC0_SUBTYPE_PROBE_RESP
:
3689 case IEEE80211_FC0_SUBTYPE_BEACON
:
3690 if (ic
->ic_opmode
== IEEE80211_M_IBSS
&&
3691 ic
->ic_state
== IEEE80211_S_RUN
&&
3692 device_is_active(sc
->sc_dev
)) {
3693 uint64_t tsf
= rtw_tsf_extend(&sc
->sc_regs
, rstamp
);
3694 if (le64toh(ni
->ni_tstamp
.tsf
) >= tsf
)
3695 (void)ieee80211_ibss_merge(ni
);
3704 static struct ieee80211_node
*
3705 rtw_node_alloc(struct ieee80211_node_table
*nt
)
3707 struct ifnet
*ifp
= nt
->nt_ic
->ic_ifp
;
3708 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
3709 struct ieee80211_node
*ni
= (*sc
->sc_mtbl
.mt_node_alloc
)(nt
);
3711 DPRINTF(sc
, RTW_DEBUG_NODE
,
3712 ("%s: alloc node %p\n", device_xname(sc
->sc_dev
), ni
));
3717 rtw_node_free(struct ieee80211_node
*ni
)
3719 struct ieee80211com
*ic
= ni
->ni_ic
;
3720 struct ifnet
*ifp
= ic
->ic_ifp
;
3721 struct rtw_softc
*sc
= (struct rtw_softc
*)ifp
->if_softc
;
3723 DPRINTF(sc
, RTW_DEBUG_NODE
,
3724 ("%s: freeing node %p %s\n", device_xname(sc
->sc_dev
), ni
,
3725 ether_sprintf(ni
->ni_bssid
)));
3726 (*sc
->sc_mtbl
.mt_node_free
)(ni
);
3730 rtw_media_change(struct ifnet
*ifp
)
3734 error
= ieee80211_media_change(ifp
);
3735 if (error
== ENETRESET
) {
3736 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_UP
)) ==
3737 (IFF_RUNNING
|IFF_UP
))
3738 rtw_init(ifp
); /* XXX lose error */
3745 rtw_media_status(struct ifnet
*ifp
, struct ifmediareq
*imr
)
3747 struct rtw_softc
*sc
= ifp
->if_softc
;
3749 if (!device_is_active(sc
->sc_dev
)) {
3750 imr
->ifm_active
= IFM_IEEE80211
| IFM_NONE
;
3751 imr
->ifm_status
= 0;
3754 ieee80211_media_status(ifp
, imr
);
3758 rtw_setifprops(struct ifnet
*ifp
, const char *dvname
, void *softc
)
3760 (void)strlcpy(ifp
->if_xname
, dvname
, IFNAMSIZ
);
3761 ifp
->if_softc
= softc
;
3762 ifp
->if_flags
= IFF_SIMPLEX
| IFF_BROADCAST
| IFF_MULTICAST
|
3764 ifp
->if_ioctl
= rtw_ioctl
;
3765 ifp
->if_start
= rtw_start
;
3766 ifp
->if_watchdog
= rtw_watchdog
;
3767 ifp
->if_init
= rtw_init
;
3768 ifp
->if_stop
= rtw_stop
;
3772 rtw_set80211props(struct ieee80211com
*ic
)
3775 ic
->ic_phytype
= IEEE80211_T_DS
;
3776 ic
->ic_opmode
= IEEE80211_M_STA
;
3777 ic
->ic_caps
= IEEE80211_C_PMGT
| IEEE80211_C_IBSS
|
3778 IEEE80211_C_HOSTAP
| IEEE80211_C_MONITOR
| IEEE80211_C_WEP
;
3781 ic
->ic_sup_rates
[IEEE80211_MODE_11B
].rs_rates
[nrate
++] =
3782 IEEE80211_RATE_BASIC
| 2;
3783 ic
->ic_sup_rates
[IEEE80211_MODE_11B
].rs_rates
[nrate
++] =
3784 IEEE80211_RATE_BASIC
| 4;
3785 ic
->ic_sup_rates
[IEEE80211_MODE_11B
].rs_rates
[nrate
++] = 11;
3786 ic
->ic_sup_rates
[IEEE80211_MODE_11B
].rs_rates
[nrate
++] = 22;
3787 ic
->ic_sup_rates
[IEEE80211_MODE_11B
].rs_nrates
= nrate
;
3791 rtw_set80211methods(struct rtw_mtbl
*mtbl
, struct ieee80211com
*ic
)
3793 mtbl
->mt_newstate
= ic
->ic_newstate
;
3794 ic
->ic_newstate
= rtw_newstate
;
3796 mtbl
->mt_recv_mgmt
= ic
->ic_recv_mgmt
;
3797 ic
->ic_recv_mgmt
= rtw_recv_mgmt
;
3799 mtbl
->mt_node_free
= ic
->ic_node_free
;
3800 ic
->ic_node_free
= rtw_node_free
;
3802 mtbl
->mt_node_alloc
= ic
->ic_node_alloc
;
3803 ic
->ic_node_alloc
= rtw_node_alloc
;
3805 ic
->ic_crypto
.cs_key_delete
= rtw_key_delete
;
3806 ic
->ic_crypto
.cs_key_set
= rtw_key_set
;
3807 ic
->ic_crypto
.cs_key_update_begin
= rtw_key_update_begin
;
3808 ic
->ic_crypto
.cs_key_update_end
= rtw_key_update_end
;
3812 rtw_init_radiotap(struct rtw_softc
*sc
)
3816 memset(&sc
->sc_rxtapu
, 0, sizeof(sc
->sc_rxtapu
));
3817 sc
->sc_rxtap
.rr_ihdr
.it_len
= htole16(sizeof(sc
->sc_rxtapu
));
3819 if (sc
->sc_rfchipid
== RTW_RFCHIPID_PHILIPS
)
3820 present
= htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT
);
3822 present
= htole32(RTW_RX_RADIOTAP_PRESENT
);
3823 sc
->sc_rxtap
.rr_ihdr
.it_present
= present
;
3825 memset(&sc
->sc_txtapu
, 0, sizeof(sc
->sc_txtapu
));
3826 sc
->sc_txtap
.rt_ihdr
.it_len
= htole16(sizeof(sc
->sc_txtapu
));
3827 sc
->sc_txtap
.rt_ihdr
.it_present
= htole32(RTW_TX_RADIOTAP_PRESENT
);
3831 rtw_txsoft_blk_setup(struct rtw_txsoft_blk
*tsb
, u_int qlen
)
3833 SIMPLEQ_INIT(&tsb
->tsb_dirtyq
);
3834 SIMPLEQ_INIT(&tsb
->tsb_freeq
);
3835 tsb
->tsb_ndesc
= qlen
;
3836 tsb
->tsb_desc
= malloc(qlen
* sizeof(*tsb
->tsb_desc
), M_DEVBUF
,
3838 if (tsb
->tsb_desc
== NULL
)
3844 rtw_txsoft_blk_cleanup_all(struct rtw_softc
*sc
)
3847 struct rtw_txsoft_blk
*tsb
;
3849 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
3850 tsb
= &sc
->sc_txsoft_blk
[pri
];
3851 free(tsb
->tsb_desc
, M_DEVBUF
);
3852 tsb
->tsb_desc
= NULL
;
3857 rtw_txsoft_blk_setup_all(struct rtw_softc
*sc
)
3860 int qlen
[RTW_NTXPRI
] =
3861 {RTW_TXQLENLO
, RTW_TXQLENMD
, RTW_TXQLENHI
, RTW_TXQLENBCN
};
3862 struct rtw_txsoft_blk
*tsbs
;
3864 tsbs
= sc
->sc_txsoft_blk
;
3866 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
3867 rc
= rtw_txsoft_blk_setup(&tsbs
[pri
], qlen
[pri
]);
3871 tsbs
[RTW_TXPRILO
].tsb_poll
= RTW_TPPOLL_LPQ
| RTW_TPPOLL_SLPQ
;
3872 tsbs
[RTW_TXPRIMD
].tsb_poll
= RTW_TPPOLL_NPQ
| RTW_TPPOLL_SNPQ
;
3873 tsbs
[RTW_TXPRIHI
].tsb_poll
= RTW_TPPOLL_HPQ
| RTW_TPPOLL_SHPQ
;
3874 tsbs
[RTW_TXPRIBCN
].tsb_poll
= RTW_TPPOLL_BQ
| RTW_TPPOLL_SBQ
;
3879 rtw_txdesc_blk_setup(struct rtw_txdesc_blk
*tdb
, struct rtw_txdesc
*desc
,
3880 u_int ndesc
, bus_addr_t ofs
, bus_addr_t physbase
)
3882 tdb
->tdb_ndesc
= ndesc
;
3883 tdb
->tdb_desc
= desc
;
3884 tdb
->tdb_physbase
= physbase
;
3887 (void)memset(tdb
->tdb_desc
, 0,
3888 sizeof(tdb
->tdb_desc
[0]) * tdb
->tdb_ndesc
);
3890 rtw_txdesc_blk_init(tdb
);
3895 rtw_txdesc_blk_setup_all(struct rtw_softc
*sc
)
3897 rtw_txdesc_blk_setup(&sc
->sc_txdesc_blk
[RTW_TXPRILO
],
3898 &sc
->sc_descs
->hd_txlo
[0], RTW_NTXDESCLO
,
3899 RTW_RING_OFFSET(hd_txlo
), RTW_RING_BASE(sc
, hd_txlo
));
3901 rtw_txdesc_blk_setup(&sc
->sc_txdesc_blk
[RTW_TXPRIMD
],
3902 &sc
->sc_descs
->hd_txmd
[0], RTW_NTXDESCMD
,
3903 RTW_RING_OFFSET(hd_txmd
), RTW_RING_BASE(sc
, hd_txmd
));
3905 rtw_txdesc_blk_setup(&sc
->sc_txdesc_blk
[RTW_TXPRIHI
],
3906 &sc
->sc_descs
->hd_txhi
[0], RTW_NTXDESCHI
,
3907 RTW_RING_OFFSET(hd_txhi
), RTW_RING_BASE(sc
, hd_txhi
));
3909 rtw_txdesc_blk_setup(&sc
->sc_txdesc_blk
[RTW_TXPRIBCN
],
3910 &sc
->sc_descs
->hd_bcn
[0], RTW_NTXDESCBCN
,
3911 RTW_RING_OFFSET(hd_bcn
), RTW_RING_BASE(sc
, hd_bcn
));
3914 static struct rtw_rf
*
3915 rtw_rf_attach(struct rtw_softc
*sc
, enum rtw_rfchipid rfchipid
, int digphy
)
3917 rtw_rf_write_t rf_write
;
3922 rf_write
= rtw_rf_hostwrite
;
3924 case RTW_RFCHIPID_INTERSIL
:
3925 case RTW_RFCHIPID_PHILIPS
:
3926 case RTW_RFCHIPID_GCT
: /* XXX a guess */
3927 case RTW_RFCHIPID_RFMD
:
3928 rf_write
= (rtw_host_rfio
) ? rtw_rf_hostwrite
: rtw_rf_macwrite
;
3933 case RTW_RFCHIPID_GCT
:
3934 rf
= rtw_grf5101_create(&sc
->sc_regs
, rf_write
, 0);
3935 sc
->sc_pwrstate_cb
= rtw_maxim_pwrstate
;
3937 case RTW_RFCHIPID_MAXIM
:
3938 rf
= rtw_max2820_create(&sc
->sc_regs
, rf_write
, 0);
3939 sc
->sc_pwrstate_cb
= rtw_maxim_pwrstate
;
3941 case RTW_RFCHIPID_PHILIPS
:
3942 rf
= rtw_sa2400_create(&sc
->sc_regs
, rf_write
, digphy
);
3943 sc
->sc_pwrstate_cb
= rtw_philips_pwrstate
;
3945 case RTW_RFCHIPID_RFMD
:
3946 /* XXX RFMD has no RF constructor */
3947 sc
->sc_pwrstate_cb
= rtw_rfmd_pwrstate
;
3952 rf
->rf_continuous_tx_cb
=
3953 (rtw_continuous_tx_cb_t
)rtw_continuous_tx_enable
;
3954 rf
->rf_continuous_tx_arg
= (void *)sc
;
3958 /* Revision C and later use a different PHY delay setting than
3959 * revisions A and B.
3962 rtw_check_phydelay(struct rtw_regs
*regs
, uint32_t old_rcr
)
3964 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3965 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3967 uint8_t phydelay
= __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY
);
3969 RTW_WRITE(regs
, RTW_RCR
, REVAB
);
3970 RTW_WBW(regs
, RTW_RCR
, RTW_RCR
);
3971 RTW_WRITE(regs
, RTW_RCR
, REVC
);
3973 RTW_WBR(regs
, RTW_RCR
, RTW_RCR
);
3974 if ((RTW_READ(regs
, RTW_RCR
) & REVC
) == REVC
)
3975 phydelay
|= RTW_PHYDELAY_REVC_MAGIC
;
3977 RTW_WRITE(regs
, RTW_RCR
, old_rcr
); /* restore RCR */
3978 RTW_SYNC(regs
, RTW_RCR
, RTW_RCR
);
3985 rtw_attach(struct rtw_softc
*sc
)
3987 struct ifnet
*ifp
= &sc
->sc_if
;
3988 struct ieee80211com
*ic
= &sc
->sc_ic
;
3989 struct rtw_txsoft_blk
*tsb
;
3992 pmf_self_suspensor_init(sc
->sc_dev
, &sc
->sc_suspensor
, &sc
->sc_qual
);
3994 rtw_cipher_wep
= ieee80211_cipher_wep
;
3995 rtw_cipher_wep
.ic_decap
= rtw_wep_decap
;
3997 NEXT_ATTACH_STATE(sc
, DETACHED
);
3999 switch (RTW_READ(&sc
->sc_regs
, RTW_TCR
) & RTW_TCR_HWVERID_MASK
) {
4000 case RTW_TCR_HWVERID_F
:
4001 sc
->sc_hwverid
= 'F';
4003 case RTW_TCR_HWVERID_D
:
4004 sc
->sc_hwverid
= 'D';
4007 sc
->sc_hwverid
= '?';
4010 aprint_verbose_dev(sc
->sc_dev
, "hardware version %c\n",
4013 rc
= bus_dmamem_alloc(sc
->sc_dmat
, sizeof(struct rtw_descs
),
4014 RTW_DESC_ALIGNMENT
, 0, &sc
->sc_desc_segs
, 1, &sc
->sc_desc_nsegs
,
4018 aprint_error_dev(sc
->sc_dev
,
4019 "could not allocate hw descriptors, error %d\n", rc
);
4023 NEXT_ATTACH_STATE(sc
, FINISH_DESC_ALLOC
);
4025 rc
= bus_dmamem_map(sc
->sc_dmat
, &sc
->sc_desc_segs
,
4026 sc
->sc_desc_nsegs
, sizeof(struct rtw_descs
),
4027 (void **)&sc
->sc_descs
, BUS_DMA_COHERENT
);
4030 aprint_error_dev(sc
->sc_dev
,
4031 "could not map hw descriptors, error %d\n", rc
);
4034 NEXT_ATTACH_STATE(sc
, FINISH_DESC_MAP
);
4036 rc
= bus_dmamap_create(sc
->sc_dmat
, sizeof(struct rtw_descs
), 1,
4037 sizeof(struct rtw_descs
), 0, 0, &sc
->sc_desc_dmamap
);
4040 aprint_error_dev(sc
->sc_dev
,
4041 "could not create DMA map for hw descriptors, error %d\n",
4045 NEXT_ATTACH_STATE(sc
, FINISH_DESCMAP_CREATE
);
4047 sc
->sc_rxdesc_blk
.rdb_dmat
= sc
->sc_dmat
;
4048 sc
->sc_rxdesc_blk
.rdb_dmamap
= sc
->sc_desc_dmamap
;
4050 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
4051 sc
->sc_txdesc_blk
[pri
].tdb_dmat
= sc
->sc_dmat
;
4052 sc
->sc_txdesc_blk
[pri
].tdb_dmamap
= sc
->sc_desc_dmamap
;
4055 rc
= bus_dmamap_load(sc
->sc_dmat
, sc
->sc_desc_dmamap
, sc
->sc_descs
,
4056 sizeof(struct rtw_descs
), NULL
, 0);
4059 aprint_error_dev(sc
->sc_dev
,
4060 "could not load DMA map for hw descriptors, error %d\n",
4064 NEXT_ATTACH_STATE(sc
, FINISH_DESCMAP_LOAD
);
4066 if (rtw_txsoft_blk_setup_all(sc
) != 0)
4068 NEXT_ATTACH_STATE(sc
, FINISH_TXCTLBLK_SETUP
);
4070 rtw_txdesc_blk_setup_all(sc
);
4072 NEXT_ATTACH_STATE(sc
, FINISH_TXDESCBLK_SETUP
);
4074 sc
->sc_rxdesc_blk
.rdb_desc
= &sc
->sc_descs
->hd_rx
[0];
4076 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
4077 tsb
= &sc
->sc_txsoft_blk
[pri
];
4079 if ((rc
= rtw_txdesc_dmamaps_create(sc
->sc_dmat
,
4080 &tsb
->tsb_desc
[0], tsb
->tsb_ndesc
)) != 0) {
4081 aprint_error_dev(sc
->sc_dev
,
4082 "could not load DMA map for hw tx descriptors, "
4088 NEXT_ATTACH_STATE(sc
, FINISH_TXMAPS_CREATE
);
4089 if ((rc
= rtw_rxdesc_dmamaps_create(sc
->sc_dmat
, &sc
->sc_rxsoft
[0],
4090 RTW_RXQLEN
)) != 0) {
4091 aprint_error_dev(sc
->sc_dev
,
4092 "could not load DMA map for hw rx descriptors, error %d\n",
4096 NEXT_ATTACH_STATE(sc
, FINISH_RXMAPS_CREATE
);
4098 /* Reset the chip to a known state. */
4099 if (rtw_reset(sc
) != 0)
4101 NEXT_ATTACH_STATE(sc
, FINISH_RESET
);
4103 sc
->sc_rcr
= RTW_READ(&sc
->sc_regs
, RTW_RCR
);
4105 if ((sc
->sc_rcr
& RTW_RCR_9356SEL
) != 0)
4106 sc
->sc_flags
|= RTW_F_9356SROM
;
4108 if (rtw_srom_read(&sc
->sc_regs
, sc
->sc_flags
, &sc
->sc_srom
,
4112 NEXT_ATTACH_STATE(sc
, FINISH_READ_SROM
);
4114 if (rtw_srom_parse(&sc
->sc_srom
, &sc
->sc_flags
, &sc
->sc_csthr
,
4115 &sc
->sc_rfchipid
, &sc
->sc_rcr
, &sc
->sc_locale
,
4117 aprint_error_dev(sc
->sc_dev
,
4118 "attach failed, malformed serial ROM\n");
4122 aprint_verbose_dev(sc
->sc_dev
, "%s PHY\n",
4123 ((sc
->sc_flags
& RTW_F_DIGPHY
) != 0) ? "digital" : "analog");
4125 aprint_verbose_dev(sc
->sc_dev
, "carrier-sense threshold %u\n",
4128 NEXT_ATTACH_STATE(sc
, FINISH_PARSE_SROM
);
4130 sc
->sc_rf
= rtw_rf_attach(sc
, sc
->sc_rfchipid
,
4131 sc
->sc_flags
& RTW_F_DIGPHY
);
4133 if (sc
->sc_rf
== NULL
) {
4134 aprint_verbose_dev(sc
->sc_dev
,
4135 "attach failed, could not attach RF\n");
4139 NEXT_ATTACH_STATE(sc
, FINISH_RF_ATTACH
);
4141 sc
->sc_phydelay
= rtw_check_phydelay(&sc
->sc_regs
, sc
->sc_rcr
);
4143 RTW_DPRINTF(RTW_DEBUG_ATTACH
,
4144 ("%s: PHY delay %d\n", device_xname(sc
->sc_dev
), sc
->sc_phydelay
));
4146 if (sc
->sc_locale
== RTW_LOCALE_UNKNOWN
)
4147 rtw_identify_country(&sc
->sc_regs
, &sc
->sc_locale
);
4149 rtw_init_channels(sc
->sc_locale
, &sc
->sc_ic
.ic_channels
, sc
->sc_dev
);
4151 if (rtw_identify_sta(&sc
->sc_regs
, &sc
->sc_ic
.ic_myaddr
,
4154 NEXT_ATTACH_STATE(sc
, FINISH_ID_STA
);
4156 rtw_setifprops(ifp
, device_xname(sc
->sc_dev
), (void*)sc
);
4158 IFQ_SET_READY(&ifp
->if_snd
);
4160 sc
->sc_ic
.ic_ifp
= ifp
;
4161 rtw_set80211props(&sc
->sc_ic
);
4163 rtw_led_attach(&sc
->sc_led_state
, (void *)sc
);
4166 * Call MI attach routines.
4169 ieee80211_ifattach(&sc
->sc_ic
);
4171 rtw_set80211methods(&sc
->sc_mtbl
, &sc
->sc_ic
);
4173 /* possibly we should fill in our own sc_send_prresp, since
4174 * the RTL8180 is probably sending probe responses in ad hoc
4178 /* complete initialization */
4179 ieee80211_media_init(&sc
->sc_ic
, rtw_media_change
, rtw_media_status
);
4180 callout_init(&sc
->sc_scan_ch
, 0);
4182 rtw_init_radiotap(sc
);
4185 bpfattach2(ifp
, DLT_IEEE802_11_RADIO
,
4186 sizeof(struct ieee80211_frame
) + 64, &sc
->sc_radiobpf
);
4189 NEXT_ATTACH_STATE(sc
, FINISHED
);
4191 ieee80211_announce(ic
);
4199 rtw_detach(struct rtw_softc
*sc
)
4201 struct ifnet
*ifp
= &sc
->sc_if
;
4206 switch (sc
->sc_attach_state
) {
4210 pmf_device_deregister(sc
->sc_dev
);
4211 callout_stop(&sc
->sc_scan_ch
);
4212 ieee80211_ifdetach(&sc
->sc_ic
);
4214 rtw_led_detach(&sc
->sc_led_state
);
4217 case FINISH_RF_ATTACH
:
4218 rtw_rf_destroy(sc
->sc_rf
);
4221 case FINISH_PARSE_SROM
:
4222 case FINISH_READ_SROM
:
4223 rtw_srom_free(&sc
->sc_srom
);
4226 case FINISH_RXMAPS_CREATE
:
4227 rtw_rxdesc_dmamaps_destroy(sc
->sc_dmat
, &sc
->sc_rxsoft
[0],
4230 case FINISH_TXMAPS_CREATE
:
4231 for (pri
= 0; pri
< RTW_NTXPRI
; pri
++) {
4232 rtw_txdesc_dmamaps_destroy(sc
->sc_dmat
,
4233 sc
->sc_txsoft_blk
[pri
].tsb_desc
,
4234 sc
->sc_txsoft_blk
[pri
].tsb_ndesc
);
4237 case FINISH_TXDESCBLK_SETUP
:
4238 case FINISH_TXCTLBLK_SETUP
:
4239 rtw_txsoft_blk_cleanup_all(sc
);
4241 case FINISH_DESCMAP_LOAD
:
4242 bus_dmamap_unload(sc
->sc_dmat
, sc
->sc_desc_dmamap
);
4244 case FINISH_DESCMAP_CREATE
:
4245 bus_dmamap_destroy(sc
->sc_dmat
, sc
->sc_desc_dmamap
);
4247 case FINISH_DESC_MAP
:
4248 bus_dmamem_unmap(sc
->sc_dmat
, (void *)sc
->sc_descs
,
4249 sizeof(struct rtw_descs
));
4251 case FINISH_DESC_ALLOC
:
4252 bus_dmamem_free(sc
->sc_dmat
, &sc
->sc_desc_segs
,
4256 NEXT_ATTACH_STATE(sc
, DETACHED
);