Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / pci / if_age.c
blobee2b8fbd5891e4874205945aada4da6a86b1d9a3
1 /* $NetBSD: if_age.c,v 1.34 2009/10/08 08:57:19 cegger Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
4 /*-
5 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.34 2009/10/08 08:57:19 cegger Exp $");
36 #include "bpfilter.h"
37 #include "vlan.h"
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #endif
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
71 #include <sys/rnd.h>
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
80 #include <dev/pci/if_agereg.h>
82 static int age_match(device_t, cfdata_t, void *);
83 static void age_attach(device_t, device_t, void *);
84 static int age_detach(device_t, int);
86 static bool age_resume(device_t, pmf_qual_t);
88 static int age_miibus_readreg(device_t, int, int);
89 static void age_miibus_writereg(device_t, int, int, int);
90 static void age_miibus_statchg(device_t);
92 static int age_init(struct ifnet *);
93 static int age_ioctl(struct ifnet *, u_long, void *);
94 static void age_start(struct ifnet *);
95 static void age_watchdog(struct ifnet *);
96 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 static int age_mediachange(struct ifnet *);
99 static int age_intr(void *);
100 static int age_dma_alloc(struct age_softc *);
101 static void age_dma_free(struct age_softc *);
102 static void age_get_macaddr(struct age_softc *, uint8_t[]);
103 static void age_phy_reset(struct age_softc *);
105 static int age_encap(struct age_softc *, struct mbuf **);
106 static void age_init_tx_ring(struct age_softc *);
107 static int age_init_rx_ring(struct age_softc *);
108 static void age_init_rr_ring(struct age_softc *);
109 static void age_init_cmb_block(struct age_softc *);
110 static void age_init_smb_block(struct age_softc *);
111 static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
112 static void age_mac_config(struct age_softc *);
113 static void age_txintr(struct age_softc *, int);
114 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
115 static void age_rxintr(struct age_softc *, int);
116 static void age_tick(void *);
117 static void age_reset(struct age_softc *);
118 static void age_stop(struct ifnet *, int);
119 static void age_stats_update(struct age_softc *);
120 static void age_stop_txmac(struct age_softc *);
121 static void age_stop_rxmac(struct age_softc *);
122 static void age_rxvlan(struct age_softc *sc);
123 static void age_rxfilter(struct age_softc *);
125 CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
126 age_match, age_attach, age_detach, NULL);
128 int agedebug = 0;
129 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 static int
135 age_match(device_t dev, cfdata_t match, void *aux)
137 struct pci_attach_args *pa = aux;
139 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
140 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
143 static void
144 age_attach(device_t parent, device_t self, void *aux)
146 struct age_softc *sc = device_private(self);
147 struct pci_attach_args *pa = aux;
148 pci_intr_handle_t ih;
149 const char *intrstr;
150 struct ifnet *ifp = &sc->sc_ec.ec_if;
151 pcireg_t memtype;
152 int error = 0;
154 aprint_naive("\n");
155 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 sc->sc_dev = self;
158 sc->sc_dmat = pa->pa_dmat;
159 sc->sc_pct = pa->pa_pc;
160 sc->sc_pcitag = pa->pa_tag;
163 * Allocate IO memory
165 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
166 switch (memtype) {
167 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
168 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
169 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
170 break;
171 default:
172 aprint_error_dev(self, "invalid base address register\n");
173 break;
176 if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
177 &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
178 aprint_error_dev(self, "could not map mem space\n");
179 return;
182 if (pci_intr_map(pa, &ih) != 0) {
183 aprint_error_dev(self, "could not map interrupt\n");
184 goto fail;
188 * Allocate IRQ
190 intrstr = pci_intr_string(sc->sc_pct, ih);
191 sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
192 age_intr, sc);
193 if (sc->sc_irq_handle == NULL) {
194 aprint_error_dev(self, "could not establish interrupt");
195 if (intrstr != NULL)
196 aprint_error(" at %s", intrstr);
197 aprint_error("\n");
198 goto fail;
200 aprint_normal_dev(self, "%s\n", intrstr);
202 /* Set PHY address. */
203 sc->age_phyaddr = AGE_PHY_ADDR;
205 /* Reset PHY. */
206 age_phy_reset(sc);
208 /* Reset the ethernet controller. */
209 age_reset(sc);
211 /* Get PCI and chip id/revision. */
212 sc->age_rev = PCI_REVISION(pa->pa_class);
213 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
214 MASTER_CHIP_REV_SHIFT;
216 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
217 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 if (agedebug) {
220 aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
221 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
222 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
225 /* Set max allowable DMA size. */
226 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
227 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 /* Allocate DMA stuffs */
230 error = age_dma_alloc(sc);
231 if (error)
232 goto fail;
234 callout_init(&sc->sc_tick_ch, 0);
235 callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 /* Load station address. */
238 age_get_macaddr(sc, sc->sc_enaddr);
240 aprint_normal_dev(self, "Ethernet address %s\n",
241 ether_sprintf(sc->sc_enaddr));
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = age_init;
246 ifp->if_ioctl = age_ioctl;
247 ifp->if_start = age_start;
248 ifp->if_stop = age_stop;
249 ifp->if_watchdog = age_watchdog;
250 ifp->if_baudrate = IF_Gbps(1);
251 IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 IFQ_SET_READY(&ifp->if_snd);
253 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
255 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
257 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
258 IFCAP_CSUM_TCPv4_Rx |
259 IFCAP_CSUM_UDPv4_Rx;
260 #ifdef AGE_CHECKSUM
261 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
262 IFCAP_CSUM_TCPv4_Tx |
263 IFCAP_CSUM_UDPv4_Tx;
264 #endif
266 #if NVLAN > 0
267 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
268 #endif
270 /* Set up MII bus. */
271 sc->sc_miibus.mii_ifp = ifp;
272 sc->sc_miibus.mii_readreg = age_miibus_readreg;
273 sc->sc_miibus.mii_writereg = age_miibus_writereg;
274 sc->sc_miibus.mii_statchg = age_miibus_statchg;
276 sc->sc_ec.ec_mii = &sc->sc_miibus;
277 ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
278 age_mediastatus);
279 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
280 MII_OFFSET_ANY, MIIF_DOPAUSE);
282 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
283 aprint_error_dev(self, "no PHY found!\n");
284 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
285 0, NULL);
286 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
287 } else
288 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
290 if_attach(ifp);
291 ether_ifattach(ifp, sc->sc_enaddr);
293 if (pmf_device_register(self, NULL, age_resume))
294 pmf_class_network_register(self, ifp);
295 else
296 aprint_error_dev(self, "couldn't establish power handler\n");
298 return;
300 fail:
301 age_dma_free(sc);
302 if (sc->sc_irq_handle != NULL) {
303 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 sc->sc_irq_handle = NULL;
306 if (sc->sc_mem_size) {
307 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 sc->sc_mem_size = 0;
312 static int
313 age_detach(device_t self, int flags)
315 struct age_softc *sc = device_private(self);
316 struct ifnet *ifp = &sc->sc_ec.ec_if;
317 int s;
319 pmf_device_deregister(self);
320 s = splnet();
321 age_stop(ifp, 0);
322 splx(s);
324 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
326 /* Delete all remaining media. */
327 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331 age_dma_free(sc);
333 if (sc->sc_irq_handle != NULL) {
334 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 sc->sc_irq_handle = NULL;
337 if (sc->sc_mem_size) {
338 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
339 sc->sc_mem_size = 0;
341 return 0;
345 * Read a PHY register on the MII of the L1.
347 static int
348 age_miibus_readreg(device_t dev, int phy, int reg)
350 struct age_softc *sc = device_private(dev);
351 uint32_t v;
352 int i;
354 if (phy != sc->age_phyaddr)
355 return 0;
357 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
358 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
359 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
360 DELAY(1);
361 v = CSR_READ_4(sc, AGE_MDIO);
362 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
363 break;
366 if (i == 0) {
367 printf("%s: phy read timeout: phy %d, reg %d\n",
368 device_xname(sc->sc_dev), phy, reg);
369 return 0;
372 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
376 * Write a PHY register on the MII of the L1.
378 static void
379 age_miibus_writereg(device_t dev, int phy, int reg, int val)
381 struct age_softc *sc = device_private(dev);
382 uint32_t v;
383 int i;
385 if (phy != sc->age_phyaddr)
386 return;
388 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
389 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
390 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
392 for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
393 DELAY(1);
394 v = CSR_READ_4(sc, AGE_MDIO);
395 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
396 break;
399 if (i == 0) {
400 printf("%s: phy write timeout: phy %d, reg %d\n",
401 device_xname(sc->sc_dev), phy, reg);
406 * Callback from MII layer when media changes.
408 static void
409 age_miibus_statchg(device_t dev)
411 struct age_softc *sc = device_private(dev);
412 struct ifnet *ifp = &sc->sc_ec.ec_if;
413 struct mii_data *mii;
415 if ((ifp->if_flags & IFF_RUNNING) == 0)
416 return;
418 mii = &sc->sc_miibus;
420 sc->age_flags &= ~AGE_FLAG_LINK;
421 if ((mii->mii_media_status & IFM_AVALID) != 0) {
422 switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 case IFM_10_T:
424 case IFM_100_TX:
425 case IFM_1000_T:
426 sc->age_flags |= AGE_FLAG_LINK;
427 break;
428 default:
429 break;
433 /* Stop Rx/Tx MACs. */
434 age_stop_rxmac(sc);
435 age_stop_txmac(sc);
437 /* Program MACs with resolved speed/duplex/flow-control. */
438 if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
439 uint32_t reg;
441 age_mac_config(sc);
442 reg = CSR_READ_4(sc, AGE_MAC_CFG);
443 /* Restart DMA engine and Tx/Rx MAC. */
444 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
445 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
446 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
447 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
452 * Get the current interface media status.
454 static void
455 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
457 struct age_softc *sc = ifp->if_softc;
458 struct mii_data *mii = &sc->sc_miibus;
460 mii_pollstat(mii);
461 ifmr->ifm_status = mii->mii_media_status;
462 ifmr->ifm_active = mii->mii_media_active;
466 * Set hardware to newly-selected media.
468 static int
469 age_mediachange(struct ifnet *ifp)
471 struct age_softc *sc = ifp->if_softc;
472 struct mii_data *mii = &sc->sc_miibus;
473 int error;
475 if (mii->mii_instance != 0) {
476 struct mii_softc *miisc;
478 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
479 mii_phy_reset(miisc);
481 error = mii_mediachg(mii);
483 return error;
486 static int
487 age_intr(void *arg)
489 struct age_softc *sc = arg;
490 struct ifnet *ifp = &sc->sc_ec.ec_if;
491 struct cmb *cmb;
492 uint32_t status;
494 status = CSR_READ_4(sc, AGE_INTR_STATUS);
495 if (status == 0 || (status & AGE_INTRS) == 0)
496 return 0;
498 cmb = sc->age_rdata.age_cmb_block;
499 if (cmb == NULL) {
500 /* Happens when bringing up the interface
501 * w/o having a carrier. Ack. the interrupt.
503 CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
504 return 0;
507 /* Disable interrupts. */
508 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
510 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
511 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
512 status = le32toh(cmb->intr_status);
513 if ((status & AGE_INTRS) == 0)
514 goto back;
516 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
517 TPD_CONS_SHIFT;
518 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
519 RRD_PROD_SHIFT;
521 /* Let hardware know CMB was served. */
522 cmb->intr_status = 0;
523 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
524 sc->age_cdata.age_cmb_block_map->dm_mapsize,
525 BUS_DMASYNC_PREWRITE);
527 if (ifp->if_flags & IFF_RUNNING) {
528 if (status & INTR_CMB_RX)
529 age_rxintr(sc, sc->age_rr_prod);
531 if (status & INTR_CMB_TX)
532 age_txintr(sc, sc->age_tpd_cons);
534 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
535 if (status & INTR_DMA_RD_TO_RST)
536 printf("%s: DMA read error! -- resetting\n",
537 device_xname(sc->sc_dev));
538 if (status & INTR_DMA_WR_TO_RST)
539 printf("%s: DMA write error! -- resetting\n",
540 device_xname(sc->sc_dev));
541 age_init(ifp);
544 if (!IFQ_IS_EMPTY(&ifp->if_snd))
545 age_start(ifp);
547 if (status & INTR_SMB)
548 age_stats_update(sc);
551 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
552 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
553 sc->age_cdata.age_cmb_block_map->dm_mapsize,
554 BUS_DMASYNC_POSTREAD);
556 back:
557 /* Re-enable interrupts. */
558 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
560 return 1;
563 static void
564 age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
566 uint32_t ea[2], reg;
567 int i, vpdc;
569 reg = CSR_READ_4(sc, AGE_SPI_CTRL);
570 if ((reg & SPI_VPD_ENB) != 0) {
571 /* Get VPD stored in TWSI EEPROM. */
572 reg &= ~SPI_VPD_ENB;
573 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
576 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
577 PCI_CAP_VPD, &vpdc, NULL)) {
579 * PCI VPD capability found, let TWSI reload EEPROM.
580 * This will set Ethernet address of controller.
582 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
583 TWSI_CTRL_SW_LD_START);
584 for (i = 100; i > 0; i++) {
585 DELAY(1000);
586 reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
587 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
588 break;
590 if (i == 0)
591 printf("%s: reloading EEPROM timeout!\n",
592 device_xname(sc->sc_dev));
593 } else {
594 if (agedebug)
595 printf("%s: PCI VPD capability not found!\n",
596 device_xname(sc->sc_dev));
599 ea[0] = CSR_READ_4(sc, AGE_PAR0);
600 ea[1] = CSR_READ_4(sc, AGE_PAR1);
602 eaddr[0] = (ea[1] >> 8) & 0xFF;
603 eaddr[1] = (ea[1] >> 0) & 0xFF;
604 eaddr[2] = (ea[0] >> 24) & 0xFF;
605 eaddr[3] = (ea[0] >> 16) & 0xFF;
606 eaddr[4] = (ea[0] >> 8) & 0xFF;
607 eaddr[5] = (ea[0] >> 0) & 0xFF;
610 static void
611 age_phy_reset(struct age_softc *sc)
613 uint16_t reg, pn;
614 int i, linkup;
616 /* Reset PHY. */
617 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
618 DELAY(2000);
619 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
620 DELAY(2000);
622 #define ATPHY_DBG_ADDR 0x1D
623 #define ATPHY_DBG_DATA 0x1E
624 #define ATPHY_CDTC 0x16
625 #define PHY_CDTC_ENB 0x0001
626 #define PHY_CDTC_POFF 8
627 #define ATPHY_CDTS 0x1C
628 #define PHY_CDTS_STAT_OK 0x0000
629 #define PHY_CDTS_STAT_SHORT 0x0100
630 #define PHY_CDTS_STAT_OPEN 0x0200
631 #define PHY_CDTS_STAT_INVAL 0x0300
632 #define PHY_CDTS_STAT_MASK 0x0300
634 /* Check power saving mode. Magic from Linux. */
635 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
636 for (linkup = 0, pn = 0; pn < 4; pn++) {
637 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
638 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
639 for (i = 200; i > 0; i--) {
640 DELAY(1000);
641 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
642 ATPHY_CDTC);
643 if ((reg & PHY_CDTC_ENB) == 0)
644 break;
646 DELAY(1000);
647 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
648 ATPHY_CDTS);
649 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
650 linkup++;
651 break;
654 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
655 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
656 if (linkup == 0) {
657 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
658 ATPHY_DBG_ADDR, 0);
659 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
660 ATPHY_DBG_DATA, 0x124E);
661 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
662 ATPHY_DBG_ADDR, 1);
663 reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
664 ATPHY_DBG_DATA);
665 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
666 ATPHY_DBG_DATA, reg | 0x03);
667 /* XXX */
668 DELAY(1500 * 1000);
669 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
670 ATPHY_DBG_ADDR, 0);
671 age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
672 ATPHY_DBG_DATA, 0x024E);
675 #undef ATPHY_DBG_ADDR
676 #undef ATPHY_DBG_DATA
677 #undef ATPHY_CDTC
678 #undef PHY_CDTC_ENB
679 #undef PHY_CDTC_POFF
680 #undef ATPHY_CDTS
681 #undef PHY_CDTS_STAT_OK
682 #undef PHY_CDTS_STAT_SHORT
683 #undef PHY_CDTS_STAT_OPEN
684 #undef PHY_CDTS_STAT_INVAL
685 #undef PHY_CDTS_STAT_MASK
688 static int
689 age_dma_alloc(struct age_softc *sc)
691 struct age_txdesc *txd;
692 struct age_rxdesc *rxd;
693 int nsegs, error, i;
696 * Create DMA stuffs for TX ring
698 error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
699 AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
700 if (error) {
701 sc->age_cdata.age_tx_ring_map = NULL;
702 return ENOBUFS;
705 /* Allocate DMA'able memory for TX ring */
706 error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
707 ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
708 &nsegs, BUS_DMA_WAITOK);
709 if (error) {
710 printf("%s: could not allocate DMA'able memory for Tx ring, "
711 "error = %i\n", device_xname(sc->sc_dev), error);
712 return error;
715 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
716 nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
717 BUS_DMA_NOWAIT);
718 if (error)
719 return ENOBUFS;
721 memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
723 /* Load the DMA map for Tx ring. */
724 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
725 sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
726 if (error) {
727 printf("%s: could not load DMA'able memory for Tx ring, "
728 "error = %i\n", device_xname(sc->sc_dev), error);
729 bus_dmamem_free(sc->sc_dmat,
730 &sc->age_rdata.age_tx_ring_seg, 1);
731 return error;
734 sc->age_rdata.age_tx_ring_paddr =
735 sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
738 * Create DMA stuffs for RX ring
740 error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
741 AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
742 if (error) {
743 sc->age_cdata.age_rx_ring_map = NULL;
744 return ENOBUFS;
747 /* Allocate DMA'able memory for RX ring */
748 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
749 ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
750 &nsegs, BUS_DMA_WAITOK);
751 if (error) {
752 printf("%s: could not allocate DMA'able memory for Rx ring, "
753 "error = %i.\n", device_xname(sc->sc_dev), error);
754 return error;
757 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
758 nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
759 BUS_DMA_NOWAIT);
760 if (error)
761 return ENOBUFS;
763 memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
765 /* Load the DMA map for Rx ring. */
766 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
767 sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
768 if (error) {
769 printf("%s: could not load DMA'able memory for Rx ring, "
770 "error = %i.\n", device_xname(sc->sc_dev), error);
771 bus_dmamem_free(sc->sc_dmat,
772 &sc->age_rdata.age_rx_ring_seg, 1);
773 return error;
776 sc->age_rdata.age_rx_ring_paddr =
777 sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
780 * Create DMA stuffs for RX return ring
782 error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
783 AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
784 if (error) {
785 sc->age_cdata.age_rr_ring_map = NULL;
786 return ENOBUFS;
789 /* Allocate DMA'able memory for RX return ring */
790 error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
791 ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
792 &nsegs, BUS_DMA_WAITOK);
793 if (error) {
794 printf("%s: could not allocate DMA'able memory for Rx "
795 "return ring, error = %i.\n",
796 device_xname(sc->sc_dev), error);
797 return error;
800 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
801 nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
802 BUS_DMA_NOWAIT);
803 if (error)
804 return ENOBUFS;
806 memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
808 /* Load the DMA map for Rx return ring. */
809 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
810 sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
811 if (error) {
812 printf("%s: could not load DMA'able memory for Rx return ring, "
813 "error = %i\n", device_xname(sc->sc_dev), error);
814 bus_dmamem_free(sc->sc_dmat,
815 &sc->age_rdata.age_rr_ring_seg, 1);
816 return error;
819 sc->age_rdata.age_rr_ring_paddr =
820 sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
823 * Create DMA stuffs for CMB block
825 error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
826 AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
827 &sc->age_cdata.age_cmb_block_map);
828 if (error) {
829 sc->age_cdata.age_cmb_block_map = NULL;
830 return ENOBUFS;
833 /* Allocate DMA'able memory for CMB block */
834 error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
835 ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
836 &nsegs, BUS_DMA_WAITOK);
837 if (error) {
838 printf("%s: could not allocate DMA'able memory for "
839 "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
840 return error;
843 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
844 nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
845 BUS_DMA_NOWAIT);
846 if (error)
847 return ENOBUFS;
849 memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
851 /* Load the DMA map for CMB block. */
852 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
853 sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
854 BUS_DMA_WAITOK);
855 if (error) {
856 printf("%s: could not load DMA'able memory for CMB block, "
857 "error = %i\n", device_xname(sc->sc_dev), error);
858 bus_dmamem_free(sc->sc_dmat,
859 &sc->age_rdata.age_cmb_block_seg, 1);
860 return error;
863 sc->age_rdata.age_cmb_block_paddr =
864 sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
867 * Create DMA stuffs for SMB block
869 error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
870 AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
871 &sc->age_cdata.age_smb_block_map);
872 if (error) {
873 sc->age_cdata.age_smb_block_map = NULL;
874 return ENOBUFS;
877 /* Allocate DMA'able memory for SMB block */
878 error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
879 ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
880 &nsegs, BUS_DMA_WAITOK);
881 if (error) {
882 printf("%s: could not allocate DMA'able memory for "
883 "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
884 return error;
887 error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
888 nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
889 BUS_DMA_NOWAIT);
890 if (error)
891 return ENOBUFS;
893 memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
895 /* Load the DMA map for SMB block */
896 error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
897 sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
898 BUS_DMA_WAITOK);
899 if (error) {
900 printf("%s: could not load DMA'able memory for SMB block, "
901 "error = %i\n", device_xname(sc->sc_dev), error);
902 bus_dmamem_free(sc->sc_dmat,
903 &sc->age_rdata.age_smb_block_seg, 1);
904 return error;
907 sc->age_rdata.age_smb_block_paddr =
908 sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
910 /* Create DMA maps for Tx buffers. */
911 for (i = 0; i < AGE_TX_RING_CNT; i++) {
912 txd = &sc->age_cdata.age_txdesc[i];
913 txd->tx_m = NULL;
914 txd->tx_dmamap = NULL;
915 error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
916 AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
917 &txd->tx_dmamap);
918 if (error) {
919 txd->tx_dmamap = NULL;
920 printf("%s: could not create Tx dmamap, error = %i.\n",
921 device_xname(sc->sc_dev), error);
922 return error;
926 /* Create DMA maps for Rx buffers. */
927 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
928 BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
929 if (error) {
930 sc->age_cdata.age_rx_sparemap = NULL;
931 printf("%s: could not create spare Rx dmamap, error = %i.\n",
932 device_xname(sc->sc_dev), error);
933 return error;
935 for (i = 0; i < AGE_RX_RING_CNT; i++) {
936 rxd = &sc->age_cdata.age_rxdesc[i];
937 rxd->rx_m = NULL;
938 rxd->rx_dmamap = NULL;
939 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
940 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
941 if (error) {
942 rxd->rx_dmamap = NULL;
943 printf("%s: could not create Rx dmamap, error = %i.\n",
944 device_xname(sc->sc_dev), error);
945 return error;
949 return 0;
952 static void
953 age_dma_free(struct age_softc *sc)
955 struct age_txdesc *txd;
956 struct age_rxdesc *rxd;
957 int i;
959 /* Tx buffers */
960 for (i = 0; i < AGE_TX_RING_CNT; i++) {
961 txd = &sc->age_cdata.age_txdesc[i];
962 if (txd->tx_dmamap != NULL) {
963 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
964 txd->tx_dmamap = NULL;
967 /* Rx buffers */
968 for (i = 0; i < AGE_RX_RING_CNT; i++) {
969 rxd = &sc->age_cdata.age_rxdesc[i];
970 if (rxd->rx_dmamap != NULL) {
971 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
972 rxd->rx_dmamap = NULL;
975 if (sc->age_cdata.age_rx_sparemap != NULL) {
976 bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
977 sc->age_cdata.age_rx_sparemap = NULL;
980 /* Tx ring. */
981 if (sc->age_cdata.age_tx_ring_map != NULL)
982 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
983 if (sc->age_cdata.age_tx_ring_map != NULL &&
984 sc->age_rdata.age_tx_ring != NULL)
985 bus_dmamem_free(sc->sc_dmat,
986 &sc->age_rdata.age_tx_ring_seg, 1);
987 sc->age_rdata.age_tx_ring = NULL;
988 sc->age_cdata.age_tx_ring_map = NULL;
990 /* Rx ring. */
991 if (sc->age_cdata.age_rx_ring_map != NULL)
992 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
993 if (sc->age_cdata.age_rx_ring_map != NULL &&
994 sc->age_rdata.age_rx_ring != NULL)
995 bus_dmamem_free(sc->sc_dmat,
996 &sc->age_rdata.age_rx_ring_seg, 1);
997 sc->age_rdata.age_rx_ring = NULL;
998 sc->age_cdata.age_rx_ring_map = NULL;
1000 /* Rx return ring. */
1001 if (sc->age_cdata.age_rr_ring_map != NULL)
1002 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
1003 if (sc->age_cdata.age_rr_ring_map != NULL &&
1004 sc->age_rdata.age_rr_ring != NULL)
1005 bus_dmamem_free(sc->sc_dmat,
1006 &sc->age_rdata.age_rr_ring_seg, 1);
1007 sc->age_rdata.age_rr_ring = NULL;
1008 sc->age_cdata.age_rr_ring_map = NULL;
1010 /* CMB block */
1011 if (sc->age_cdata.age_cmb_block_map != NULL)
1012 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
1013 if (sc->age_cdata.age_cmb_block_map != NULL &&
1014 sc->age_rdata.age_cmb_block != NULL)
1015 bus_dmamem_free(sc->sc_dmat,
1016 &sc->age_rdata.age_cmb_block_seg, 1);
1017 sc->age_rdata.age_cmb_block = NULL;
1018 sc->age_cdata.age_cmb_block_map = NULL;
1020 /* SMB block */
1021 if (sc->age_cdata.age_smb_block_map != NULL)
1022 bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1023 if (sc->age_cdata.age_smb_block_map != NULL &&
1024 sc->age_rdata.age_smb_block != NULL)
1025 bus_dmamem_free(sc->sc_dmat,
1026 &sc->age_rdata.age_smb_block_seg, 1);
1027 sc->age_rdata.age_smb_block = NULL;
1028 sc->age_cdata.age_smb_block_map = NULL;
1031 static void
1032 age_start(struct ifnet *ifp)
1034 struct age_softc *sc = ifp->if_softc;
1035 struct mbuf *m_head;
1036 int enq;
1038 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1039 return;
1041 enq = 0;
1042 for (;;) {
1043 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1044 if (m_head == NULL)
1045 break;
1048 * Pack the data into the transmit ring. If we
1049 * don't have room, set the OACTIVE flag and wait
1050 * for the NIC to drain the ring.
1052 if (age_encap(sc, &m_head)) {
1053 if (m_head == NULL)
1054 break;
1055 IF_PREPEND(&ifp->if_snd, m_head);
1056 ifp->if_flags |= IFF_OACTIVE;
1057 break;
1059 enq = 1;
1061 #if NBPFILTER > 0
1063 * If there's a BPF listener, bounce a copy of this frame
1064 * to him.
1066 if (ifp->if_bpf != NULL)
1067 bpf_mtap(ifp->if_bpf, m_head);
1068 #endif
1071 if (enq) {
1072 /* Update mbox. */
1073 AGE_COMMIT_MBOX(sc);
1074 /* Set a timeout in case the chip goes out to lunch. */
1075 ifp->if_timer = AGE_TX_TIMEOUT;
1079 static void
1080 age_watchdog(struct ifnet *ifp)
1082 struct age_softc *sc = ifp->if_softc;
1084 if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1085 printf("%s: watchdog timeout (missed link)\n",
1086 device_xname(sc->sc_dev));
1087 ifp->if_oerrors++;
1088 age_init(ifp);
1089 return;
1092 if (sc->age_cdata.age_tx_cnt == 0) {
1093 printf("%s: watchdog timeout (missed Tx interrupts) "
1094 "-- recovering\n", device_xname(sc->sc_dev));
1095 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1096 age_start(ifp);
1097 return;
1100 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1101 ifp->if_oerrors++;
1102 age_init(ifp);
1104 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1105 age_start(ifp);
1108 static int
1109 age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1111 struct age_softc *sc = ifp->if_softc;
1112 int s, error;
1114 s = splnet();
1116 error = ether_ioctl(ifp, cmd, data);
1117 if (error == ENETRESET) {
1118 if (ifp->if_flags & IFF_RUNNING)
1119 age_rxfilter(sc);
1120 error = 0;
1123 splx(s);
1124 return error;
1127 static void
1128 age_mac_config(struct age_softc *sc)
1130 struct mii_data *mii;
1131 uint32_t reg;
1133 mii = &sc->sc_miibus;
1135 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1136 reg &= ~MAC_CFG_FULL_DUPLEX;
1137 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1138 reg &= ~MAC_CFG_SPEED_MASK;
1140 /* Reprogram MAC with resolved speed/duplex. */
1141 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1142 case IFM_10_T:
1143 case IFM_100_TX:
1144 reg |= MAC_CFG_SPEED_10_100;
1145 break;
1146 case IFM_1000_T:
1147 reg |= MAC_CFG_SPEED_1000;
1148 break;
1150 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1151 reg |= MAC_CFG_FULL_DUPLEX;
1152 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1153 reg |= MAC_CFG_TX_FC;
1154 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1155 reg |= MAC_CFG_RX_FC;
1158 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1161 static bool
1162 age_resume(device_t dv, pmf_qual_t qual)
1164 struct age_softc *sc = device_private(dv);
1165 uint16_t cmd;
1168 * Clear INTx emulation disable for hardware that
1169 * is set in resume event. From Linux.
1171 cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1172 if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
1173 cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
1174 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1175 PCI_COMMAND_STATUS_REG, cmd);
1178 return true;
1181 static int
1182 age_encap(struct age_softc *sc, struct mbuf **m_head)
1184 struct age_txdesc *txd, *txd_last;
1185 struct tx_desc *desc;
1186 struct mbuf *m;
1187 bus_dmamap_t map;
1188 uint32_t cflags, poff, vtag;
1189 int error, i, nsegs, prod;
1190 #if NVLAN > 0
1191 struct m_tag *mtag;
1192 #endif
1194 m = *m_head;
1195 cflags = vtag = 0;
1196 poff = 0;
1198 prod = sc->age_cdata.age_tx_prod;
1199 txd = &sc->age_cdata.age_txdesc[prod];
1200 txd_last = txd;
1201 map = txd->tx_dmamap;
1203 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1205 if (error == EFBIG) {
1206 error = 0;
1208 *m_head = m_pullup(*m_head, MHLEN);
1209 if (*m_head == NULL) {
1210 printf("%s: can't defrag TX mbuf\n",
1211 device_xname(sc->sc_dev));
1212 return ENOBUFS;
1215 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1216 BUS_DMA_NOWAIT);
1218 if (error != 0) {
1219 printf("%s: could not load defragged TX mbuf\n",
1220 device_xname(sc->sc_dev));
1221 m_freem(*m_head);
1222 *m_head = NULL;
1223 return error;
1225 } else if (error) {
1226 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1227 return error;
1230 nsegs = map->dm_nsegs;
1232 if (nsegs == 0) {
1233 m_freem(*m_head);
1234 *m_head = NULL;
1235 return EIO;
1238 /* Check descriptor overrun. */
1239 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1240 bus_dmamap_unload(sc->sc_dmat, map);
1241 return ENOBUFS;
1244 m = *m_head;
1245 /* Configure Tx IP/TCP/UDP checksum offload. */
1246 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1247 cflags |= AGE_TD_CSUM;
1248 if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1249 cflags |= AGE_TD_TCPCSUM;
1250 if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1251 cflags |= AGE_TD_UDPCSUM;
1252 /* Set checksum start offset. */
1253 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1256 #if NVLAN > 0
1257 /* Configure VLAN hardware tag insertion. */
1258 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1259 vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1260 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1261 cflags |= AGE_TD_INSERT_VLAN_TAG;
1263 #endif
1265 desc = NULL;
1266 for (i = 0; i < nsegs; i++) {
1267 desc = &sc->age_rdata.age_tx_ring[prod];
1268 desc->addr = htole64(map->dm_segs[i].ds_addr);
1269 desc->len =
1270 htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1271 desc->flags = htole32(cflags);
1272 sc->age_cdata.age_tx_cnt++;
1273 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1276 /* Update producer index. */
1277 sc->age_cdata.age_tx_prod = prod;
1279 /* Set EOP on the last descriptor. */
1280 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1281 desc = &sc->age_rdata.age_tx_ring[prod];
1282 desc->flags |= htole32(AGE_TD_EOP);
1284 /* Swap dmamap of the first and the last. */
1285 txd = &sc->age_cdata.age_txdesc[prod];
1286 map = txd_last->tx_dmamap;
1287 txd_last->tx_dmamap = txd->tx_dmamap;
1288 txd->tx_dmamap = map;
1289 txd->tx_m = m;
1291 /* Sync descriptors. */
1292 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1293 BUS_DMASYNC_PREWRITE);
1294 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1295 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1297 return 0;
1300 static void
1301 age_txintr(struct age_softc *sc, int tpd_cons)
1303 struct ifnet *ifp = &sc->sc_ec.ec_if;
1304 struct age_txdesc *txd;
1305 int cons, prog;
1307 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1308 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1311 * Go through our Tx list and free mbufs for those
1312 * frames which have been transmitted.
1314 cons = sc->age_cdata.age_tx_cons;
1315 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1316 if (sc->age_cdata.age_tx_cnt <= 0)
1317 break;
1318 prog++;
1319 ifp->if_flags &= ~IFF_OACTIVE;
1320 sc->age_cdata.age_tx_cnt--;
1321 txd = &sc->age_cdata.age_txdesc[cons];
1323 * Clear Tx descriptors, it's not required but would
1324 * help debugging in case of Tx issues.
1326 txd->tx_desc->addr = 0;
1327 txd->tx_desc->len = 0;
1328 txd->tx_desc->flags = 0;
1330 if (txd->tx_m == NULL)
1331 continue;
1332 /* Reclaim transmitted mbufs. */
1333 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1334 m_freem(txd->tx_m);
1335 txd->tx_m = NULL;
1338 if (prog > 0) {
1339 sc->age_cdata.age_tx_cons = cons;
1342 * Unarm watchdog timer only when there are no pending
1343 * Tx descriptors in queue.
1345 if (sc->age_cdata.age_tx_cnt == 0)
1346 ifp->if_timer = 0;
1348 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1349 sc->age_cdata.age_tx_ring_map->dm_mapsize,
1350 BUS_DMASYNC_PREWRITE);
1354 /* Receive a frame. */
1355 static void
1356 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1358 struct ifnet *ifp = &sc->sc_ec.ec_if;
1359 struct age_rxdesc *rxd;
1360 struct rx_desc *desc;
1361 struct mbuf *mp, *m;
1362 uint32_t status, index;
1363 int count, nsegs, pktlen;
1364 int rx_cons;
1366 status = le32toh(rxrd->flags);
1367 index = le32toh(rxrd->index);
1368 rx_cons = AGE_RX_CONS(index);
1369 nsegs = AGE_RX_NSEGS(index);
1371 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1372 if ((status & AGE_RRD_ERROR) != 0 &&
1373 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1374 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1376 * We want to pass the following frames to upper
1377 * layer regardless of error status of Rx return
1378 * ring.
1380 * o IP/TCP/UDP checksum is bad.
1381 * o frame length and protocol specific length
1382 * does not match.
1384 sc->age_cdata.age_rx_cons += nsegs;
1385 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1386 return;
1389 pktlen = 0;
1390 for (count = 0; count < nsegs; count++,
1391 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1392 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1393 mp = rxd->rx_m;
1394 desc = rxd->rx_desc;
1395 /* Add a new receive buffer to the ring. */
1396 if (age_newbuf(sc, rxd, 0) != 0) {
1397 ifp->if_iqdrops++;
1398 /* Reuse Rx buffers. */
1399 if (sc->age_cdata.age_rxhead != NULL) {
1400 m_freem(sc->age_cdata.age_rxhead);
1401 AGE_RXCHAIN_RESET(sc);
1403 break;
1406 /* The length of the first mbuf is computed last. */
1407 if (count != 0) {
1408 mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1409 pktlen += mp->m_len;
1412 /* Chain received mbufs. */
1413 if (sc->age_cdata.age_rxhead == NULL) {
1414 sc->age_cdata.age_rxhead = mp;
1415 sc->age_cdata.age_rxtail = mp;
1416 } else {
1417 mp->m_flags &= ~M_PKTHDR;
1418 sc->age_cdata.age_rxprev_tail =
1419 sc->age_cdata.age_rxtail;
1420 sc->age_cdata.age_rxtail->m_next = mp;
1421 sc->age_cdata.age_rxtail = mp;
1424 if (count == nsegs - 1) {
1426 * It seems that L1 controller has no way
1427 * to tell hardware to strip CRC bytes.
1429 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1430 if (nsegs > 1) {
1431 /* Remove the CRC bytes in chained mbufs. */
1432 pktlen -= ETHER_CRC_LEN;
1433 if (mp->m_len <= ETHER_CRC_LEN) {
1434 sc->age_cdata.age_rxtail =
1435 sc->age_cdata.age_rxprev_tail;
1436 sc->age_cdata.age_rxtail->m_len -=
1437 (ETHER_CRC_LEN - mp->m_len);
1438 sc->age_cdata.age_rxtail->m_next = NULL;
1439 m_freem(mp);
1440 } else {
1441 mp->m_len -= ETHER_CRC_LEN;
1445 m = sc->age_cdata.age_rxhead;
1446 m->m_flags |= M_PKTHDR;
1447 m->m_pkthdr.rcvif = ifp;
1448 m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1449 /* Set the first mbuf length. */
1450 m->m_len = sc->age_cdata.age_rxlen - pktlen;
1453 * Set checksum information.
1454 * It seems that L1 controller can compute partial
1455 * checksum. The partial checksum value can be used
1456 * to accelerate checksum computation for fragmented
1457 * TCP/UDP packets. Upper network stack already
1458 * takes advantage of the partial checksum value in
1459 * IP reassembly stage. But I'm not sure the
1460 * correctness of the partial hardware checksum
1461 * assistance due to lack of data sheet. If it is
1462 * proven to work on L1 I'll enable it.
1464 if (status & AGE_RRD_IPV4) {
1465 if (status & AGE_RRD_IPCSUM_NOK)
1466 m->m_pkthdr.csum_flags |=
1467 M_CSUM_IPv4_BAD;
1468 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1469 (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
1470 m->m_pkthdr.csum_flags |=
1471 M_CSUM_TCP_UDP_BAD;
1474 * Don't mark bad checksum for TCP/UDP frames
1475 * as fragmented frames may always have set
1476 * bad checksummed bit of descriptor status.
1479 #if NVLAN > 0
1480 /* Check for VLAN tagged frames. */
1481 if (status & AGE_RRD_VLAN) {
1482 uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1483 VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1484 continue);
1486 #endif
1488 #if NBPFILTER > 0
1489 if (ifp->if_bpf)
1490 bpf_mtap(ifp->if_bpf, m);
1491 #endif
1492 /* Pass it on. */
1493 ether_input(ifp, m);
1495 /* Reset mbuf chains. */
1496 AGE_RXCHAIN_RESET(sc);
1500 if (count != nsegs) {
1501 sc->age_cdata.age_rx_cons += nsegs;
1502 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1503 } else
1504 sc->age_cdata.age_rx_cons = rx_cons;
1507 static void
1508 age_rxintr(struct age_softc *sc, int rr_prod)
1510 struct rx_rdesc *rxrd;
1511 int rr_cons, nsegs, pktlen, prog;
1513 rr_cons = sc->age_cdata.age_rr_cons;
1514 if (rr_cons == rr_prod)
1515 return;
1517 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1518 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1519 BUS_DMASYNC_POSTREAD);
1521 for (prog = 0; rr_cons != rr_prod; prog++) {
1522 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1523 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1524 if (nsegs == 0)
1525 break;
1527 * Check number of segments against received bytes
1528 * Non-matching value would indicate that hardware
1529 * is still trying to update Rx return descriptors.
1530 * I'm not sure whether this check is really needed.
1532 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1533 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1534 (MCLBYTES - ETHER_ALIGN)))
1535 break;
1537 /* Received a frame. */
1538 age_rxeof(sc, rxrd);
1540 /* Clear return ring. */
1541 rxrd->index = 0;
1542 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1545 if (prog > 0) {
1546 /* Update the consumer index. */
1547 sc->age_cdata.age_rr_cons = rr_cons;
1549 /* Sync descriptors. */
1550 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1551 sc->age_cdata.age_rr_ring_map->dm_mapsize,
1552 BUS_DMASYNC_PREWRITE);
1554 /* Notify hardware availability of new Rx buffers. */
1555 AGE_COMMIT_MBOX(sc);
1559 static void
1560 age_tick(void *xsc)
1562 struct age_softc *sc = xsc;
1563 struct mii_data *mii = &sc->sc_miibus;
1564 int s;
1566 s = splnet();
1567 mii_tick(mii);
1568 splx(s);
1570 callout_schedule(&sc->sc_tick_ch, hz);
1573 static void
1574 age_reset(struct age_softc *sc)
1576 uint32_t reg;
1577 int i;
1579 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1580 CSR_READ_4(sc, AGE_MASTER_CFG);
1581 DELAY(1000);
1582 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1583 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1584 break;
1585 DELAY(10);
1588 if (i == 0)
1589 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1590 reg);
1592 /* Initialize PCIe module. From Linux. */
1593 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1594 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1597 static int
1598 age_init(struct ifnet *ifp)
1600 struct age_softc *sc = ifp->if_softc;
1601 struct mii_data *mii;
1602 uint8_t eaddr[ETHER_ADDR_LEN];
1603 bus_addr_t paddr;
1604 uint32_t reg, fsize;
1605 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1606 int error;
1609 * Cancel any pending I/O.
1611 age_stop(ifp, 0);
1614 * Reset the chip to a known state.
1616 age_reset(sc);
1618 /* Initialize descriptors. */
1619 error = age_init_rx_ring(sc);
1620 if (error != 0) {
1621 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1622 age_stop(ifp, 0);
1623 return error;
1625 age_init_rr_ring(sc);
1626 age_init_tx_ring(sc);
1627 age_init_cmb_block(sc);
1628 age_init_smb_block(sc);
1630 /* Reprogram the station address. */
1631 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1632 CSR_WRITE_4(sc, AGE_PAR0,
1633 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1634 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1636 /* Set descriptor base addresses. */
1637 paddr = sc->age_rdata.age_tx_ring_paddr;
1638 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1639 paddr = sc->age_rdata.age_rx_ring_paddr;
1640 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1641 paddr = sc->age_rdata.age_rr_ring_paddr;
1642 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1643 paddr = sc->age_rdata.age_tx_ring_paddr;
1644 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1645 paddr = sc->age_rdata.age_cmb_block_paddr;
1646 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1647 paddr = sc->age_rdata.age_smb_block_paddr;
1648 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1650 /* Set Rx/Rx return descriptor counter. */
1651 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1652 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1653 DESC_RRD_CNT_MASK) |
1654 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1656 /* Set Tx descriptor counter. */
1657 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1658 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1660 /* Tell hardware that we're ready to load descriptors. */
1661 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1664 * Initialize mailbox register.
1665 * Updated producer/consumer index information is exchanged
1666 * through this mailbox register. However Tx producer and
1667 * Rx return consumer/Rx producer are all shared such that
1668 * it's hard to separate code path between Tx and Rx without
1669 * locking. If L1 hardware have a separate mail box register
1670 * for Tx and Rx consumer/producer management we could have
1671 * indepent Tx/Rx handler which in turn Rx handler could have
1672 * been run without any locking.
1674 AGE_COMMIT_MBOX(sc);
1676 /* Configure IPG/IFG parameters. */
1677 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1678 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1679 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1680 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1681 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1683 /* Set parameters for half-duplex media. */
1684 CSR_WRITE_4(sc, AGE_HDPX_CFG,
1685 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1686 HDPX_CFG_LCOL_MASK) |
1687 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1688 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1689 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1690 HDPX_CFG_ABEBT_MASK) |
1691 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1692 HDPX_CFG_JAMIPG_MASK));
1694 /* Configure interrupt moderation timer. */
1695 sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1696 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1697 reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1698 reg &= ~MASTER_MTIMER_ENB;
1699 if (AGE_USECS(sc->age_int_mod) == 0)
1700 reg &= ~MASTER_ITIMER_ENB;
1701 else
1702 reg |= MASTER_ITIMER_ENB;
1703 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1704 if (agedebug)
1705 printf("%s: interrupt moderation is %d us.\n",
1706 device_xname(sc->sc_dev), sc->age_int_mod);
1707 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1709 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1710 if (ifp->if_mtu < ETHERMTU)
1711 sc->age_max_frame_size = ETHERMTU;
1712 else
1713 sc->age_max_frame_size = ifp->if_mtu;
1714 sc->age_max_frame_size += ETHER_HDR_LEN +
1715 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1716 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1718 /* Configure jumbo frame. */
1719 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1720 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1721 (((fsize / sizeof(uint64_t)) <<
1722 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1723 ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1724 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1725 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1726 RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1728 /* Configure flow-control parameters. From Linux. */
1729 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1731 * Magic workaround for old-L1.
1732 * Don't know which hw revision requires this magic.
1734 CSR_WRITE_4(sc, 0x12FC, 0x6500);
1736 * Another magic workaround for flow-control mode
1737 * change. From Linux.
1739 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1742 * TODO
1743 * Should understand pause parameter relationships between FIFO
1744 * size and number of Rx descriptors and Rx return descriptors.
1746 * Magic parameters came from Linux.
1748 switch (sc->age_chip_rev) {
1749 case 0x8001:
1750 case 0x9001:
1751 case 0x9002:
1752 case 0x9003:
1753 rxf_hi = AGE_RX_RING_CNT / 16;
1754 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1755 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1756 rrd_lo = AGE_RR_RING_CNT / 16;
1757 break;
1758 default:
1759 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1760 rxf_lo = reg / 16;
1761 if (rxf_lo < 192)
1762 rxf_lo = 192;
1763 rxf_hi = (reg * 7) / 8;
1764 if (rxf_hi < rxf_lo)
1765 rxf_hi = rxf_lo + 16;
1766 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1767 rrd_lo = reg / 8;
1768 rrd_hi = (reg * 7) / 8;
1769 if (rrd_lo < 2)
1770 rrd_lo = 2;
1771 if (rrd_hi < rrd_lo)
1772 rrd_hi = rrd_lo + 3;
1773 break;
1775 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1776 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1777 RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1778 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1779 RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1780 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1781 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1782 RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1783 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1784 RXQ_RRD_PAUSE_THRESH_HI_MASK));
1786 /* Configure RxQ. */
1787 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1788 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1789 RXQ_CFG_RD_BURST_MASK) |
1790 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1791 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1792 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1793 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1794 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1796 /* Configure TxQ. */
1797 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1798 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1799 TXQ_CFG_TPD_BURST_MASK) |
1800 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1801 TXQ_CFG_TX_FIFO_BURST_MASK) |
1802 ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1803 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1804 TXQ_CFG_ENB);
1806 /* Configure DMA parameters. */
1807 CSR_WRITE_4(sc, AGE_DMA_CFG,
1808 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1809 sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1810 sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1812 /* Configure CMB DMA write threshold. */
1813 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1814 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1815 CMB_WR_THRESH_RRD_MASK) |
1816 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1817 CMB_WR_THRESH_TPD_MASK));
1819 /* Set CMB/SMB timer and enable them. */
1820 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1821 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1822 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1824 /* Request SMB updates for every seconds. */
1825 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1826 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1829 * Disable all WOL bits as WOL can interfere normal Rx
1830 * operation.
1832 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1835 * Configure Tx/Rx MACs.
1836 * - Auto-padding for short frames.
1837 * - Enable CRC generation.
1838 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1839 * of MAC is followed after link establishment.
1841 CSR_WRITE_4(sc, AGE_MAC_CFG,
1842 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1843 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1844 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1845 MAC_CFG_PREAMBLE_MASK));
1847 /* Set up the receive filter. */
1848 age_rxfilter(sc);
1849 age_rxvlan(sc);
1851 reg = CSR_READ_4(sc, AGE_MAC_CFG);
1852 reg |= MAC_CFG_RXCSUM_ENB;
1854 /* Ack all pending interrupts and clear it. */
1855 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1856 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1858 /* Finally enable Tx/Rx MAC. */
1859 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1861 sc->age_flags &= ~AGE_FLAG_LINK;
1863 /* Switch to the current media. */
1864 mii = &sc->sc_miibus;
1865 mii_mediachg(mii);
1867 callout_schedule(&sc->sc_tick_ch, hz);
1869 ifp->if_flags |= IFF_RUNNING;
1870 ifp->if_flags &= ~IFF_OACTIVE;
1872 return 0;
1875 static void
1876 age_stop(struct ifnet *ifp, int disable)
1878 struct age_softc *sc = ifp->if_softc;
1879 struct age_txdesc *txd;
1880 struct age_rxdesc *rxd;
1881 uint32_t reg;
1882 int i;
1884 callout_stop(&sc->sc_tick_ch);
1887 * Mark the interface down and cancel the watchdog timer.
1889 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1890 ifp->if_timer = 0;
1892 sc->age_flags &= ~AGE_FLAG_LINK;
1894 mii_down(&sc->sc_miibus);
1897 * Disable interrupts.
1899 CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1900 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1902 /* Stop CMB/SMB updates. */
1903 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1905 /* Stop Rx/Tx MAC. */
1906 age_stop_rxmac(sc);
1907 age_stop_txmac(sc);
1909 /* Stop DMA. */
1910 CSR_WRITE_4(sc, AGE_DMA_CFG,
1911 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1913 /* Stop TxQ/RxQ. */
1914 CSR_WRITE_4(sc, AGE_TXQ_CFG,
1915 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1916 CSR_WRITE_4(sc, AGE_RXQ_CFG,
1917 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1918 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1919 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1920 break;
1921 DELAY(10);
1923 if (i == 0)
1924 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1925 device_xname(sc->sc_dev), reg);
1927 /* Reclaim Rx buffers that have been processed. */
1928 if (sc->age_cdata.age_rxhead != NULL)
1929 m_freem(sc->age_cdata.age_rxhead);
1930 AGE_RXCHAIN_RESET(sc);
1933 * Free RX and TX mbufs still in the queues.
1935 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1936 rxd = &sc->age_cdata.age_rxdesc[i];
1937 if (rxd->rx_m != NULL) {
1938 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1939 m_freem(rxd->rx_m);
1940 rxd->rx_m = NULL;
1943 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1944 txd = &sc->age_cdata.age_txdesc[i];
1945 if (txd->tx_m != NULL) {
1946 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1947 m_freem(txd->tx_m);
1948 txd->tx_m = NULL;
1953 static void
1954 age_stats_update(struct age_softc *sc)
1956 struct ifnet *ifp = &sc->sc_ec.ec_if;
1957 struct age_stats *stat;
1958 struct smb *smb;
1960 stat = &sc->age_stat;
1962 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1963 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1965 smb = sc->age_rdata.age_smb_block;
1966 if (smb->updated == 0)
1967 return;
1969 /* Rx stats. */
1970 stat->rx_frames += smb->rx_frames;
1971 stat->rx_bcast_frames += smb->rx_bcast_frames;
1972 stat->rx_mcast_frames += smb->rx_mcast_frames;
1973 stat->rx_pause_frames += smb->rx_pause_frames;
1974 stat->rx_control_frames += smb->rx_control_frames;
1975 stat->rx_crcerrs += smb->rx_crcerrs;
1976 stat->rx_lenerrs += smb->rx_lenerrs;
1977 stat->rx_bytes += smb->rx_bytes;
1978 stat->rx_runts += smb->rx_runts;
1979 stat->rx_fragments += smb->rx_fragments;
1980 stat->rx_pkts_64 += smb->rx_pkts_64;
1981 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1982 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1983 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1984 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1985 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1986 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1987 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1988 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1989 stat->rx_desc_oflows += smb->rx_desc_oflows;
1990 stat->rx_alignerrs += smb->rx_alignerrs;
1991 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1992 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1993 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1995 /* Tx stats. */
1996 stat->tx_frames += smb->tx_frames;
1997 stat->tx_bcast_frames += smb->tx_bcast_frames;
1998 stat->tx_mcast_frames += smb->tx_mcast_frames;
1999 stat->tx_pause_frames += smb->tx_pause_frames;
2000 stat->tx_excess_defer += smb->tx_excess_defer;
2001 stat->tx_control_frames += smb->tx_control_frames;
2002 stat->tx_deferred += smb->tx_deferred;
2003 stat->tx_bytes += smb->tx_bytes;
2004 stat->tx_pkts_64 += smb->tx_pkts_64;
2005 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2006 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2007 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2008 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2009 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2010 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2011 stat->tx_single_colls += smb->tx_single_colls;
2012 stat->tx_multi_colls += smb->tx_multi_colls;
2013 stat->tx_late_colls += smb->tx_late_colls;
2014 stat->tx_excess_colls += smb->tx_excess_colls;
2015 stat->tx_underrun += smb->tx_underrun;
2016 stat->tx_desc_underrun += smb->tx_desc_underrun;
2017 stat->tx_lenerrs += smb->tx_lenerrs;
2018 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2019 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2020 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2022 /* Update counters in ifnet. */
2023 ifp->if_opackets += smb->tx_frames;
2025 ifp->if_collisions += smb->tx_single_colls +
2026 smb->tx_multi_colls + smb->tx_late_colls +
2027 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2029 ifp->if_oerrors += smb->tx_excess_colls +
2030 smb->tx_late_colls + smb->tx_underrun +
2031 smb->tx_pkts_truncated;
2033 ifp->if_ipackets += smb->rx_frames;
2035 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2036 smb->rx_runts + smb->rx_pkts_truncated +
2037 smb->rx_fifo_oflows + smb->rx_desc_oflows +
2038 smb->rx_alignerrs;
2040 /* Update done, clear. */
2041 smb->updated = 0;
2043 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2044 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2047 static void
2048 age_stop_txmac(struct age_softc *sc)
2050 uint32_t reg;
2051 int i;
2053 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2054 if ((reg & MAC_CFG_TX_ENB) != 0) {
2055 reg &= ~MAC_CFG_TX_ENB;
2056 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2058 /* Stop Tx DMA engine. */
2059 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2060 if ((reg & DMA_CFG_RD_ENB) != 0) {
2061 reg &= ~DMA_CFG_RD_ENB;
2062 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2064 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2065 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2066 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2067 break;
2068 DELAY(10);
2070 if (i == 0)
2071 printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2074 static void
2075 age_stop_rxmac(struct age_softc *sc)
2077 uint32_t reg;
2078 int i;
2080 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2081 if ((reg & MAC_CFG_RX_ENB) != 0) {
2082 reg &= ~MAC_CFG_RX_ENB;
2083 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2085 /* Stop Rx DMA engine. */
2086 reg = CSR_READ_4(sc, AGE_DMA_CFG);
2087 if ((reg & DMA_CFG_WR_ENB) != 0) {
2088 reg &= ~DMA_CFG_WR_ENB;
2089 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2091 for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2092 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2093 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2094 break;
2095 DELAY(10);
2097 if (i == 0)
2098 printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2101 static void
2102 age_init_tx_ring(struct age_softc *sc)
2104 struct age_ring_data *rd;
2105 struct age_txdesc *txd;
2106 int i;
2108 sc->age_cdata.age_tx_prod = 0;
2109 sc->age_cdata.age_tx_cons = 0;
2110 sc->age_cdata.age_tx_cnt = 0;
2112 rd = &sc->age_rdata;
2113 memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2114 for (i = 0; i < AGE_TX_RING_CNT; i++) {
2115 txd = &sc->age_cdata.age_txdesc[i];
2116 txd->tx_desc = &rd->age_tx_ring[i];
2117 txd->tx_m = NULL;
2119 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2120 sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2123 static int
2124 age_init_rx_ring(struct age_softc *sc)
2126 struct age_ring_data *rd;
2127 struct age_rxdesc *rxd;
2128 int i;
2130 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2131 rd = &sc->age_rdata;
2132 memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2133 for (i = 0; i < AGE_RX_RING_CNT; i++) {
2134 rxd = &sc->age_cdata.age_rxdesc[i];
2135 rxd->rx_m = NULL;
2136 rxd->rx_desc = &rd->age_rx_ring[i];
2137 if (age_newbuf(sc, rxd, 1) != 0)
2138 return ENOBUFS;
2141 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2142 sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2144 return 0;
2147 static void
2148 age_init_rr_ring(struct age_softc *sc)
2150 struct age_ring_data *rd;
2152 sc->age_cdata.age_rr_cons = 0;
2153 AGE_RXCHAIN_RESET(sc);
2155 rd = &sc->age_rdata;
2156 memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2157 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2158 sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2161 static void
2162 age_init_cmb_block(struct age_softc *sc)
2164 struct age_ring_data *rd;
2166 rd = &sc->age_rdata;
2167 memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2168 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2169 sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2172 static void
2173 age_init_smb_block(struct age_softc *sc)
2175 struct age_ring_data *rd;
2177 rd = &sc->age_rdata;
2178 memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2179 bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2180 sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2183 static int
2184 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2186 struct rx_desc *desc;
2187 struct mbuf *m;
2188 bus_dmamap_t map;
2189 int error;
2191 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2192 if (m == NULL)
2193 return ENOBUFS;
2194 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2195 if (!(m->m_flags & M_EXT)) {
2196 m_freem(m);
2197 return ENOBUFS;
2200 m->m_len = m->m_pkthdr.len = MCLBYTES;
2201 m_adj(m, ETHER_ALIGN);
2203 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2204 sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2206 if (error != 0) {
2207 if (!error) {
2208 bus_dmamap_unload(sc->sc_dmat,
2209 sc->age_cdata.age_rx_sparemap);
2210 error = EFBIG;
2211 printf("%s: too many segments?!\n",
2212 device_xname(sc->sc_dev));
2214 m_freem(m);
2216 if (init)
2217 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2218 return error;
2221 if (rxd->rx_m != NULL) {
2222 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2223 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2224 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2226 map = rxd->rx_dmamap;
2227 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2228 sc->age_cdata.age_rx_sparemap = map;
2229 rxd->rx_m = m;
2231 desc = rxd->rx_desc;
2232 desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2233 desc->len =
2234 htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2235 AGE_RD_LEN_SHIFT);
2237 return 0;
2240 static void
2241 age_rxvlan(struct age_softc *sc)
2243 uint32_t reg;
2245 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2246 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2247 if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2248 reg |= MAC_CFG_VLAN_TAG_STRIP;
2249 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2252 static void
2253 age_rxfilter(struct age_softc *sc)
2255 struct ethercom *ec = &sc->sc_ec;
2256 struct ifnet *ifp = &sc->sc_ec.ec_if;
2257 struct ether_multi *enm;
2258 struct ether_multistep step;
2259 uint32_t crc;
2260 uint32_t mchash[2];
2261 uint32_t rxcfg;
2263 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2264 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2265 ifp->if_flags &= ~IFF_ALLMULTI;
2268 * Always accept broadcast frames.
2270 rxcfg |= MAC_CFG_BCAST;
2272 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2273 ifp->if_flags |= IFF_ALLMULTI;
2274 if (ifp->if_flags & IFF_PROMISC)
2275 rxcfg |= MAC_CFG_PROMISC;
2276 else
2277 rxcfg |= MAC_CFG_ALLMULTI;
2278 mchash[0] = mchash[1] = 0xFFFFFFFF;
2279 } else {
2280 /* Program new filter. */
2281 memset(mchash, 0, sizeof(mchash));
2283 ETHER_FIRST_MULTI(step, ec, enm);
2284 while (enm != NULL) {
2285 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2286 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2287 ETHER_NEXT_MULTI(step, enm);
2291 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2292 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2293 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);