1 /* $NetBSD: if_ale.c,v 1.8 2009/09/05 14:09:55 tsutsui Exp $ */
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.8 2009/09/05 14:09:55 tsutsui Exp $");
40 #include <sys/param.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
84 #include <dev/pci/if_alereg.h>
86 static int ale_match(device_t
, cfdata_t
, void *);
87 static void ale_attach(device_t
, device_t
, void *);
88 static int ale_detach(device_t
, int);
90 static int ale_miibus_readreg(device_t
, int, int);
91 static void ale_miibus_writereg(device_t
, int, int, int);
92 static void ale_miibus_statchg(device_t
);
94 static int ale_init(struct ifnet
*);
95 static void ale_start(struct ifnet
*);
96 static int ale_ioctl(struct ifnet
*, u_long
, void *);
97 static void ale_watchdog(struct ifnet
*);
98 static int ale_mediachange(struct ifnet
*);
99 static void ale_mediastatus(struct ifnet
*, struct ifmediareq
*);
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc
*sc
);
103 static void ale_rx_update_page(struct ale_softc
*, struct ale_rx_page
**,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc
*, struct mbuf
*, uint32_t);
106 static void ale_txeof(struct ale_softc
*);
108 static int ale_dma_alloc(struct ale_softc
*);
109 static void ale_dma_free(struct ale_softc
*);
110 static int ale_encap(struct ale_softc
*, struct mbuf
**);
111 static void ale_init_rx_pages(struct ale_softc
*);
112 static void ale_init_tx_ring(struct ale_softc
*);
114 static void ale_stop(struct ifnet
*, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc
*);
117 static void ale_mac_config(struct ale_softc
*);
118 static void ale_phy_reset(struct ale_softc
*);
119 static void ale_reset(struct ale_softc
*);
120 static void ale_rxfilter(struct ale_softc
*);
121 static void ale_rxvlan(struct ale_softc
*);
122 static void ale_stats_clear(struct ale_softc
*);
123 static void ale_stats_update(struct ale_softc
*);
124 static void ale_stop_mac(struct ale_softc
*);
126 CFATTACH_DECL_NEW(ale
, sizeof(struct ale_softc
),
127 ale_match
, ale_attach
, ale_detach
, NULL
);
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
136 ale_miibus_readreg(device_t dev
, int phy
, int reg
)
138 struct ale_softc
*sc
= device_private(dev
);
142 if (phy
!= sc
->ale_phyaddr
)
145 if (sc
->ale_flags
& ALE_FLAG_FASTETHER
) {
156 CSR_WRITE_4(sc
, ALE_MDIO
, MDIO_OP_EXECUTE
| MDIO_OP_READ
|
157 MDIO_SUP_PREAMBLE
| MDIO_CLK_25_4
| MDIO_REG_ADDR(reg
));
158 for (i
= ALE_PHY_TIMEOUT
; i
> 0; i
--) {
160 v
= CSR_READ_4(sc
, ALE_MDIO
);
161 if ((v
& (MDIO_OP_EXECUTE
| MDIO_OP_BUSY
)) == 0)
166 printf("%s: phy read timeout: phy %d, reg %d\n",
167 device_xname(sc
->sc_dev
), phy
, reg
);
171 return (v
& MDIO_DATA_MASK
) >> MDIO_DATA_SHIFT
;
175 ale_miibus_writereg(device_t dev
, int phy
, int reg
, int val
)
177 struct ale_softc
*sc
= device_private(dev
);
181 if (phy
!= sc
->ale_phyaddr
)
184 if (sc
->ale_flags
& ALE_FLAG_FASTETHER
) {
195 CSR_WRITE_4(sc
, ALE_MDIO
, MDIO_OP_EXECUTE
| MDIO_OP_WRITE
|
196 (val
& MDIO_DATA_MASK
) << MDIO_DATA_SHIFT
|
197 MDIO_SUP_PREAMBLE
| MDIO_CLK_25_4
| MDIO_REG_ADDR(reg
));
198 for (i
= ALE_PHY_TIMEOUT
; i
> 0; i
--) {
200 v
= CSR_READ_4(sc
, ALE_MDIO
);
201 if ((v
& (MDIO_OP_EXECUTE
| MDIO_OP_BUSY
)) == 0)
206 printf("%s: phy write timeout: phy %d, reg %d\n",
207 device_xname(sc
->sc_dev
), phy
, reg
);
211 ale_miibus_statchg(device_t dev
)
213 struct ale_softc
*sc
= device_private(dev
);
214 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
215 struct mii_data
*mii
;
218 if ((ifp
->if_flags
& IFF_RUNNING
) == 0)
221 mii
= &sc
->sc_miibus
;
223 sc
->ale_flags
&= ~ALE_FLAG_LINK
;
224 if ((mii
->mii_media_status
& (IFM_ACTIVE
| IFM_AVALID
)) ==
225 (IFM_ACTIVE
| IFM_AVALID
)) {
226 switch (IFM_SUBTYPE(mii
->mii_media_active
)) {
229 sc
->ale_flags
|= ALE_FLAG_LINK
;
233 if ((sc
->ale_flags
& ALE_FLAG_FASTETHER
) == 0)
234 sc
->ale_flags
|= ALE_FLAG_LINK
;
242 /* Stop Rx/Tx MACs. */
245 /* Program MACs with resolved speed/duplex/flow-control. */
246 if ((sc
->ale_flags
& ALE_FLAG_LINK
) != 0) {
248 /* Reenable Tx/Rx MACs. */
249 reg
= CSR_READ_4(sc
, ALE_MAC_CFG
);
250 reg
|= MAC_CFG_TX_ENB
| MAC_CFG_RX_ENB
;
251 CSR_WRITE_4(sc
, ALE_MAC_CFG
, reg
);
256 ale_mediastatus(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
258 struct ale_softc
*sc
= ifp
->if_softc
;
259 struct mii_data
*mii
= &sc
->sc_miibus
;
262 ifmr
->ifm_status
= mii
->mii_media_status
;
263 ifmr
->ifm_active
= mii
->mii_media_active
;
267 ale_mediachange(struct ifnet
*ifp
)
269 struct ale_softc
*sc
= ifp
->if_softc
;
270 struct mii_data
*mii
= &sc
->sc_miibus
;
273 if (mii
->mii_instance
!= 0) {
274 struct mii_softc
*miisc
;
276 LIST_FOREACH(miisc
, &mii
->mii_phys
, mii_list
)
277 mii_phy_reset(miisc
);
279 error
= mii_mediachg(mii
);
285 ale_match(device_t dev
, cfdata_t match
, void *aux
)
287 struct pci_attach_args
*pa
= aux
;
289 return (PCI_VENDOR(pa
->pa_id
) == PCI_VENDOR_ATTANSIC
&&
290 PCI_PRODUCT(pa
->pa_id
) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E
);
294 ale_get_macaddr(struct ale_softc
*sc
)
299 reg
= CSR_READ_4(sc
, ALE_SPI_CTRL
);
300 if ((reg
& SPI_VPD_ENB
) != 0) {
302 CSR_WRITE_4(sc
, ALE_SPI_CTRL
, reg
);
305 if (pci_get_capability(sc
->sc_pct
, sc
->sc_pcitag
, PCI_CAP_VPD
,
308 * PCI VPD capability found, let TWSI reload EEPROM.
309 * This will set ethernet address of controller.
311 CSR_WRITE_4(sc
, ALE_TWSI_CTRL
, CSR_READ_4(sc
, ALE_TWSI_CTRL
) |
312 TWSI_CTRL_SW_LD_START
);
313 for (i
= 100; i
> 0; i
--) {
315 reg
= CSR_READ_4(sc
, ALE_TWSI_CTRL
);
316 if ((reg
& TWSI_CTRL_SW_LD_START
) == 0)
320 printf("%s: reloading EEPROM timeout!\n",
321 device_xname(sc
->sc_dev
));
324 printf("%s: PCI VPD capability not found!\n",
325 device_xname(sc
->sc_dev
));
328 ea
[0] = CSR_READ_4(sc
, ALE_PAR0
);
329 ea
[1] = CSR_READ_4(sc
, ALE_PAR1
);
330 sc
->ale_eaddr
[0] = (ea
[1] >> 8) & 0xFF;
331 sc
->ale_eaddr
[1] = (ea
[1] >> 0) & 0xFF;
332 sc
->ale_eaddr
[2] = (ea
[0] >> 24) & 0xFF;
333 sc
->ale_eaddr
[3] = (ea
[0] >> 16) & 0xFF;
334 sc
->ale_eaddr
[4] = (ea
[0] >> 8) & 0xFF;
335 sc
->ale_eaddr
[5] = (ea
[0] >> 0) & 0xFF;
339 ale_phy_reset(struct ale_softc
*sc
)
341 /* Reset magic from Linux. */
342 CSR_WRITE_2(sc
, ALE_GPHY_CTRL
,
343 GPHY_CTRL_HIB_EN
| GPHY_CTRL_HIB_PULSE
| GPHY_CTRL_SEL_ANA_RESET
|
344 GPHY_CTRL_PHY_PLL_ON
);
346 CSR_WRITE_2(sc
, ALE_GPHY_CTRL
,
347 GPHY_CTRL_EXT_RESET
| GPHY_CTRL_HIB_EN
| GPHY_CTRL_HIB_PULSE
|
348 GPHY_CTRL_SEL_ANA_RESET
| GPHY_CTRL_PHY_PLL_ON
);
351 #define ATPHY_DBG_ADDR 0x1D
352 #define ATPHY_DBG_DATA 0x1E
354 /* Enable hibernation mode. */
355 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
356 ATPHY_DBG_ADDR
, 0x0B);
357 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
358 ATPHY_DBG_DATA
, 0xBC00);
359 /* Set Class A/B for all modes. */
360 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
361 ATPHY_DBG_ADDR
, 0x00);
362 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
363 ATPHY_DBG_DATA
, 0x02EF);
364 /* Enable 10BT power saving. */
365 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
366 ATPHY_DBG_ADDR
, 0x12);
367 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
368 ATPHY_DBG_DATA
, 0x4C04);
369 /* Adjust 1000T power. */
370 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
371 ATPHY_DBG_ADDR
, 0x04);
372 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
373 ATPHY_DBG_ADDR
, 0x8BBB);
374 /* 10BT center tap voltage. */
375 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
376 ATPHY_DBG_ADDR
, 0x05);
377 ale_miibus_writereg(sc
->sc_dev
, sc
->ale_phyaddr
,
378 ATPHY_DBG_ADDR
, 0x2C46);
380 #undef ATPHY_DBG_ADDR
381 #undef ATPHY_DBG_DATA
386 ale_attach(device_t parent
, device_t self
, void *aux
)
388 struct ale_softc
*sc
= device_private(self
);
389 struct pci_attach_args
*pa
= aux
;
390 pci_chipset_tag_t pc
= pa
->pa_pc
;
391 pci_intr_handle_t ih
;
395 int mii_flags
, error
= 0;
396 uint32_t rxf_len
, txf_len
;
397 const char *chipname
;
400 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
403 sc
->sc_dmat
= pa
->pa_dmat
;
404 sc
->sc_pct
= pa
->pa_pc
;
405 sc
->sc_pcitag
= pa
->pa_tag
;
410 memtype
= pci_mapreg_type(sc
->sc_pct
, sc
->sc_pcitag
, ALE_PCIR_BAR
);
412 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT
:
413 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT_1M
:
414 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_64BIT
:
417 aprint_error_dev(self
, "invalid base address register\n");
421 if (pci_mapreg_map(pa
, ALE_PCIR_BAR
, memtype
, 0, &sc
->sc_mem_bt
,
422 &sc
->sc_mem_bh
, NULL
, &sc
->sc_mem_size
)) {
423 aprint_error_dev(self
, "could not map mem space\n");
427 if (pci_intr_map(pa
, &ih
) != 0) {
428 aprint_error_dev(self
, "could not map interrupt\n");
435 intrstr
= pci_intr_string(sc
->sc_pct
, ih
);
436 sc
->sc_irq_handle
= pci_intr_establish(pc
, ih
, IPL_NET
, ale_intr
, sc
);
437 if (sc
->sc_irq_handle
== NULL
) {
438 aprint_error_dev(self
, "could not establish interrupt");
440 aprint_error(" at %s", intrstr
);
445 /* Set PHY address. */
446 sc
->ale_phyaddr
= ALE_PHY_ADDR
;
451 /* Reset the ethernet controller. */
454 /* Get PCI and chip id/revision. */
455 sc
->ale_rev
= PCI_REVISION(pa
->pa_class
);
456 if (sc
->ale_rev
>= 0xF0) {
457 /* L2E Rev. B. AR8114 */
458 sc
->ale_flags
|= ALE_FLAG_FASTETHER
;
459 chipname
= "AR8114 (L2E RevB)";
461 if ((CSR_READ_4(sc
, ALE_PHY_STATUS
) & PHY_STATUS_100M
) != 0) {
463 sc
->ale_flags
|= ALE_FLAG_JUMBO
;
464 chipname
= "AR8121 (L1E)";
466 /* L2E Rev. A. AR8113 */
467 sc
->ale_flags
|= ALE_FLAG_FASTETHER
;
468 chipname
= "AR8113 (L2E RevA)";
471 aprint_normal_dev(self
, "%s, %s\n", chipname
, intrstr
);
474 * All known controllers seems to require 4 bytes alignment
475 * of Tx buffers to make Tx checksum offload with custom
476 * checksum generation method work.
478 sc
->ale_flags
|= ALE_FLAG_TXCSUM_BUG
;
481 * All known controllers seems to have issues on Rx checksum
482 * offload for fragmented IP datagrams.
484 sc
->ale_flags
|= ALE_FLAG_RXCSUM_BUG
;
487 * Don't use Tx CMB. It is known to cause RRS update failure
488 * under certain circumstances. Typical phenomenon of the
489 * issue would be unexpected sequence number encountered in
492 sc
->ale_flags
|= ALE_FLAG_TXCMB_BUG
;
493 sc
->ale_chip_rev
= CSR_READ_4(sc
, ALE_MASTER_CFG
) >>
494 MASTER_CHIP_REV_SHIFT
;
495 aprint_debug_dev(self
, "PCI device revision : 0x%04x\n", sc
->ale_rev
);
496 aprint_debug_dev(self
, "Chip id/revision : 0x%04x\n", sc
->ale_chip_rev
);
499 * Uninitialized hardware returns an invalid chip id/revision
500 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
502 txf_len
= CSR_READ_4(sc
, ALE_SRAM_TX_FIFO_LEN
);
503 rxf_len
= CSR_READ_4(sc
, ALE_SRAM_RX_FIFO_LEN
);
504 if (sc
->ale_chip_rev
== 0xFFFF || txf_len
== 0xFFFFFFFF ||
505 rxf_len
== 0xFFFFFFF) {
506 aprint_error_dev(self
, "chip revision : 0x%04x, %u Tx FIFO "
507 "%u Rx FIFO -- not initialized?\n",
508 sc
->ale_chip_rev
, txf_len
, rxf_len
);
513 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc
->sc_dev
),
517 /* Set max allowable DMA size. */
518 sc
->ale_dma_rd_burst
= DMA_CFG_RD_BURST_128
;
519 sc
->ale_dma_wr_burst
= DMA_CFG_WR_BURST_128
;
521 callout_init(&sc
->sc_tick_ch
, 0);
522 callout_setfunc(&sc
->sc_tick_ch
, ale_tick
, sc
);
524 error
= ale_dma_alloc(sc
);
528 /* Load station address. */
531 aprint_normal_dev(self
, "Ethernet address %s\n",
532 ether_sprintf(sc
->ale_eaddr
));
534 ifp
= &sc
->sc_ec
.ec_if
;
536 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
537 ifp
->if_init
= ale_init
;
538 ifp
->if_ioctl
= ale_ioctl
;
539 ifp
->if_start
= ale_start
;
540 ifp
->if_stop
= ale_stop
;
541 ifp
->if_watchdog
= ale_watchdog
;
542 IFQ_SET_MAXLEN(&ifp
->if_snd
, ALE_TX_RING_CNT
- 1);
543 IFQ_SET_READY(&ifp
->if_snd
);
544 strlcpy(ifp
->if_xname
, device_xname(sc
->sc_dev
), IFNAMSIZ
);
546 sc
->sc_ec
.ec_capabilities
= ETHERCAP_VLAN_MTU
;
549 ifp
->if_capabilities
|= IFCAP_CSUM_IPv4_Tx
| IFCAP_CSUM_IPv4_Rx
|
550 IFCAP_CSUM_TCPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
|
551 IFCAP_CSUM_UDPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
;
555 sc
->sc_ec
.ec_capabilities
|= ETHERCAP_VLAN_HWTAGGING
;
558 /* Set up MII bus. */
559 sc
->sc_miibus
.mii_ifp
= ifp
;
560 sc
->sc_miibus
.mii_readreg
= ale_miibus_readreg
;
561 sc
->sc_miibus
.mii_writereg
= ale_miibus_writereg
;
562 sc
->sc_miibus
.mii_statchg
= ale_miibus_statchg
;
564 sc
->sc_ec
.ec_mii
= &sc
->sc_miibus
;
565 ifmedia_init(&sc
->sc_miibus
.mii_media
, 0, ale_mediachange
,
568 if ((sc
->ale_flags
& ALE_FLAG_JUMBO
) != 0)
569 mii_flags
|= MIIF_DOPAUSE
;
570 mii_attach(self
, &sc
->sc_miibus
, 0xffffffff, MII_PHY_ANY
,
571 MII_OFFSET_ANY
, mii_flags
);
573 if (LIST_FIRST(&sc
->sc_miibus
.mii_phys
) == NULL
) {
574 aprint_error_dev(self
, "no PHY found!\n");
575 ifmedia_add(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_MANUAL
,
577 ifmedia_set(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_MANUAL
);
579 ifmedia_set(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_AUTO
);
582 ether_ifattach(ifp
, sc
->ale_eaddr
);
584 if (pmf_device_register(self
, NULL
, NULL
))
585 pmf_class_network_register(self
, ifp
);
587 aprint_error_dev(self
, "couldn't establish power handler\n");
592 if (sc
->sc_irq_handle
!= NULL
) {
593 pci_intr_disestablish(pc
, sc
->sc_irq_handle
);
594 sc
->sc_irq_handle
= NULL
;
596 if (sc
->sc_mem_size
) {
597 bus_space_unmap(sc
->sc_mem_bt
, sc
->sc_mem_bh
, sc
->sc_mem_size
);
603 ale_detach(device_t self
, int flags
)
605 struct ale_softc
*sc
= device_private(self
);
606 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
609 pmf_device_deregister(self
);
614 mii_detach(&sc
->sc_miibus
, MII_PHY_ANY
, MII_OFFSET_ANY
);
616 /* Delete all remaining media. */
617 ifmedia_delete_instance(&sc
->sc_miibus
.mii_media
, IFM_INST_ANY
);
623 if (sc
->sc_irq_handle
!= NULL
) {
624 pci_intr_disestablish(sc
->sc_pct
, sc
->sc_irq_handle
);
625 sc
->sc_irq_handle
= NULL
;
627 if (sc
->sc_mem_size
) {
628 bus_space_unmap(sc
->sc_mem_bt
, sc
->sc_mem_bh
, sc
->sc_mem_size
);
637 ale_dma_alloc(struct ale_softc
*sc
)
639 struct ale_txdesc
*txd
;
640 int nsegs
, error
, guard_size
, i
;
642 if ((sc
->ale_flags
& ALE_FLAG_JUMBO
) != 0)
643 guard_size
= ALE_JUMBO_FRAMELEN
;
645 guard_size
= ALE_MAX_FRAMELEN
;
646 sc
->ale_pagesize
= roundup(guard_size
+ ALE_RX_PAGE_SZ
,
650 * Create DMA stuffs for TX ring
652 error
= bus_dmamap_create(sc
->sc_dmat
, ALE_TX_RING_SZ
, 1,
653 ALE_TX_RING_SZ
, 0, BUS_DMA_NOWAIT
, &sc
->ale_cdata
.ale_tx_ring_map
);
655 sc
->ale_cdata
.ale_tx_ring_map
= NULL
;
659 /* Allocate DMA'able memory for TX ring */
660 error
= bus_dmamem_alloc(sc
->sc_dmat
, ALE_TX_RING_SZ
,
661 0, 0, &sc
->ale_cdata
.ale_tx_ring_seg
, 1,
662 &nsegs
, BUS_DMA_WAITOK
);
664 printf("%s: could not allocate DMA'able memory for Tx ring, "
665 "error = %i\n", device_xname(sc
->sc_dev
), error
);
669 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->ale_cdata
.ale_tx_ring_seg
,
670 nsegs
, ALE_TX_RING_SZ
, (void **)&sc
->ale_cdata
.ale_tx_ring
,
675 memset(sc
->ale_cdata
.ale_tx_ring
, 0, ALE_TX_RING_SZ
);
677 /* Load the DMA map for Tx ring. */
678 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_ring_map
,
679 sc
->ale_cdata
.ale_tx_ring
, ALE_TX_RING_SZ
, NULL
, BUS_DMA_WAITOK
);
681 printf("%s: could not load DMA'able memory for Tx ring.\n",
682 device_xname(sc
->sc_dev
));
683 bus_dmamem_free(sc
->sc_dmat
,
684 &sc
->ale_cdata
.ale_tx_ring_seg
, 1);
687 sc
->ale_cdata
.ale_tx_ring_paddr
=
688 sc
->ale_cdata
.ale_tx_ring_map
->dm_segs
[0].ds_addr
;
690 for (i
= 0; i
< ALE_RX_PAGES
; i
++) {
692 * Create DMA stuffs for RX pages
694 error
= bus_dmamap_create(sc
->sc_dmat
, sc
->ale_pagesize
, 1,
695 sc
->ale_pagesize
, 0, BUS_DMA_NOWAIT
,
696 &sc
->ale_cdata
.ale_rx_page
[i
].page_map
);
698 sc
->ale_cdata
.ale_rx_page
[i
].page_map
= NULL
;
702 /* Allocate DMA'able memory for RX pages */
703 error
= bus_dmamem_alloc(sc
->sc_dmat
, sc
->ale_pagesize
,
704 ETHER_ALIGN
, 0, &sc
->ale_cdata
.ale_rx_page
[i
].page_seg
,
705 1, &nsegs
, BUS_DMA_WAITOK
);
707 printf("%s: could not allocate DMA'able memory for "
708 "Rx ring.\n", device_xname(sc
->sc_dev
));
711 error
= bus_dmamem_map(sc
->sc_dmat
,
712 &sc
->ale_cdata
.ale_rx_page
[i
].page_seg
, nsegs
,
714 (void **)&sc
->ale_cdata
.ale_rx_page
[i
].page_addr
,
719 memset(sc
->ale_cdata
.ale_rx_page
[i
].page_addr
, 0,
722 /* Load the DMA map for Rx pages. */
723 error
= bus_dmamap_load(sc
->sc_dmat
,
724 sc
->ale_cdata
.ale_rx_page
[i
].page_map
,
725 sc
->ale_cdata
.ale_rx_page
[i
].page_addr
,
726 sc
->ale_pagesize
, NULL
, BUS_DMA_WAITOK
);
728 printf("%s: could not load DMA'able memory for "
729 "Rx pages.\n", device_xname(sc
->sc_dev
));
730 bus_dmamem_free(sc
->sc_dmat
,
731 &sc
->ale_cdata
.ale_rx_page
[i
].page_seg
, 1);
734 sc
->ale_cdata
.ale_rx_page
[i
].page_paddr
=
735 sc
->ale_cdata
.ale_rx_page
[i
].page_map
->dm_segs
[0].ds_addr
;
739 * Create DMA stuffs for Tx CMB.
741 error
= bus_dmamap_create(sc
->sc_dmat
, ALE_TX_CMB_SZ
, 1,
742 ALE_TX_CMB_SZ
, 0, BUS_DMA_NOWAIT
, &sc
->ale_cdata
.ale_tx_cmb_map
);
744 sc
->ale_cdata
.ale_tx_cmb_map
= NULL
;
748 /* Allocate DMA'able memory for Tx CMB. */
749 error
= bus_dmamem_alloc(sc
->sc_dmat
, ALE_TX_CMB_SZ
, ETHER_ALIGN
, 0,
750 &sc
->ale_cdata
.ale_tx_cmb_seg
, 1, &nsegs
, BUS_DMA_WAITOK
);
753 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 device_xname(sc
->sc_dev
));
758 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->ale_cdata
.ale_tx_cmb_seg
,
759 nsegs
, ALE_TX_CMB_SZ
, (void **)&sc
->ale_cdata
.ale_tx_cmb
,
764 memset(sc
->ale_cdata
.ale_tx_cmb
, 0, ALE_TX_CMB_SZ
);
766 /* Load the DMA map for Tx CMB. */
767 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_cmb_map
,
768 sc
->ale_cdata
.ale_tx_cmb
, ALE_TX_CMB_SZ
, NULL
, BUS_DMA_WAITOK
);
770 printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 device_xname(sc
->sc_dev
));
772 bus_dmamem_free(sc
->sc_dmat
,
773 &sc
->ale_cdata
.ale_tx_cmb_seg
, 1);
777 sc
->ale_cdata
.ale_tx_cmb_paddr
=
778 sc
->ale_cdata
.ale_tx_cmb_map
->dm_segs
[0].ds_addr
;
780 for (i
= 0; i
< ALE_RX_PAGES
; i
++) {
782 * Create DMA stuffs for Rx CMB.
784 error
= bus_dmamap_create(sc
->sc_dmat
, ALE_RX_CMB_SZ
, 1,
785 ALE_RX_CMB_SZ
, 0, BUS_DMA_NOWAIT
,
786 &sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
);
788 sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
= NULL
;
792 /* Allocate DMA'able memory for Rx CMB */
793 error
= bus_dmamem_alloc(sc
->sc_dmat
, ALE_RX_CMB_SZ
,
794 ETHER_ALIGN
, 0, &sc
->ale_cdata
.ale_rx_page
[i
].cmb_seg
, 1,
795 &nsegs
, BUS_DMA_WAITOK
);
797 printf("%s: could not allocate DMA'able memory for "
798 "Rx CMB\n", device_xname(sc
->sc_dev
));
801 error
= bus_dmamem_map(sc
->sc_dmat
,
802 &sc
->ale_cdata
.ale_rx_page
[i
].cmb_seg
, nsegs
,
804 (void **)&sc
->ale_cdata
.ale_rx_page
[i
].cmb_addr
,
809 memset(sc
->ale_cdata
.ale_rx_page
[i
].cmb_addr
, 0, ALE_RX_CMB_SZ
);
811 /* Load the DMA map for Rx CMB */
812 error
= bus_dmamap_load(sc
->sc_dmat
,
813 sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
,
814 sc
->ale_cdata
.ale_rx_page
[i
].cmb_addr
,
815 ALE_RX_CMB_SZ
, NULL
, BUS_DMA_WAITOK
);
817 printf("%s: could not load DMA'able memory for Rx CMB"
818 "\n", device_xname(sc
->sc_dev
));
819 bus_dmamem_free(sc
->sc_dmat
,
820 &sc
->ale_cdata
.ale_rx_page
[i
].cmb_seg
, 1);
823 sc
->ale_cdata
.ale_rx_page
[i
].cmb_paddr
=
824 sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
->dm_segs
[0].ds_addr
;
828 /* Create DMA maps for Tx buffers. */
829 for (i
= 0; i
< ALE_TX_RING_CNT
; i
++) {
830 txd
= &sc
->ale_cdata
.ale_txdesc
[i
];
832 txd
->tx_dmamap
= NULL
;
833 error
= bus_dmamap_create(sc
->sc_dmat
, ALE_TSO_MAXSIZE
,
834 ALE_MAXTXSEGS
, ALE_TSO_MAXSEGSIZE
, 0, BUS_DMA_NOWAIT
,
837 txd
->tx_dmamap
= NULL
;
838 printf("%s: could not create Tx dmamap.\n",
839 device_xname(sc
->sc_dev
));
848 ale_dma_free(struct ale_softc
*sc
)
850 struct ale_txdesc
*txd
;
854 for (i
= 0; i
< ALE_TX_RING_CNT
; i
++) {
855 txd
= &sc
->ale_cdata
.ale_txdesc
[i
];
856 if (txd
->tx_dmamap
!= NULL
) {
857 bus_dmamap_destroy(sc
->sc_dmat
, txd
->tx_dmamap
);
858 txd
->tx_dmamap
= NULL
;
862 /* Tx descriptor ring. */
863 if (sc
->ale_cdata
.ale_tx_ring_map
!= NULL
)
864 bus_dmamap_unload(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_ring_map
);
865 if (sc
->ale_cdata
.ale_tx_ring_map
!= NULL
&&
866 sc
->ale_cdata
.ale_tx_ring
!= NULL
)
867 bus_dmamem_free(sc
->sc_dmat
,
868 &sc
->ale_cdata
.ale_tx_ring_seg
, 1);
869 sc
->ale_cdata
.ale_tx_ring
= NULL
;
870 sc
->ale_cdata
.ale_tx_ring_map
= NULL
;
873 for (i
= 0; i
< ALE_RX_PAGES
; i
++) {
874 if (sc
->ale_cdata
.ale_rx_page
[i
].page_map
!= NULL
)
875 bus_dmamap_unload(sc
->sc_dmat
,
876 sc
->ale_cdata
.ale_rx_page
[i
].page_map
);
877 if (sc
->ale_cdata
.ale_rx_page
[i
].page_map
!= NULL
&&
878 sc
->ale_cdata
.ale_rx_page
[i
].page_addr
!= NULL
)
879 bus_dmamem_free(sc
->sc_dmat
,
880 &sc
->ale_cdata
.ale_rx_page
[i
].page_seg
, 1);
881 sc
->ale_cdata
.ale_rx_page
[i
].page_addr
= NULL
;
882 sc
->ale_cdata
.ale_rx_page
[i
].page_map
= NULL
;
886 for (i
= 0; i
< ALE_RX_PAGES
; i
++) {
887 if (sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
!= NULL
)
888 bus_dmamap_unload(sc
->sc_dmat
,
889 sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
);
890 if (sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
!= NULL
&&
891 sc
->ale_cdata
.ale_rx_page
[i
].cmb_addr
!= NULL
)
892 bus_dmamem_free(sc
->sc_dmat
,
893 &sc
->ale_cdata
.ale_rx_page
[i
].cmb_seg
, 1);
894 sc
->ale_cdata
.ale_rx_page
[i
].cmb_addr
= NULL
;
895 sc
->ale_cdata
.ale_rx_page
[i
].cmb_map
= NULL
;
899 if (sc
->ale_cdata
.ale_tx_cmb_map
!= NULL
)
900 bus_dmamap_unload(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_cmb_map
);
901 if (sc
->ale_cdata
.ale_tx_cmb_map
!= NULL
&&
902 sc
->ale_cdata
.ale_tx_cmb
!= NULL
)
903 bus_dmamem_free(sc
->sc_dmat
,
904 &sc
->ale_cdata
.ale_tx_cmb_seg
, 1);
905 sc
->ale_cdata
.ale_tx_cmb
= NULL
;
906 sc
->ale_cdata
.ale_tx_cmb_map
= NULL
;
911 ale_encap(struct ale_softc
*sc
, struct mbuf
**m_head
)
913 struct ale_txdesc
*txd
, *txd_last
;
914 struct tx_desc
*desc
;
917 uint32_t cflags
, poff
, vtag
;
918 int error
, i
, nsegs
, prod
;
927 prod
= sc
->ale_cdata
.ale_tx_prod
;
928 txd
= &sc
->ale_cdata
.ale_txdesc
[prod
];
930 map
= txd
->tx_dmamap
;
932 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, *m_head
, BUS_DMA_NOWAIT
);
933 if (error
== EFBIG
) {
936 *m_head
= m_pullup(*m_head
, MHLEN
);
937 if (*m_head
== NULL
) {
938 printf("%s: can't defrag TX mbuf\n",
939 device_xname(sc
->sc_dev
));
943 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, *m_head
,
947 printf("%s: could not load defragged TX mbuf\n",
948 device_xname(sc
->sc_dev
));
954 printf("%s: could not load TX mbuf\n", device_xname(sc
->sc_dev
));
958 nsegs
= map
->dm_nsegs
;
966 /* Check descriptor overrun. */
967 if (sc
->ale_cdata
.ale_tx_cnt
+ nsegs
>= ALE_TX_RING_CNT
- 2) {
968 bus_dmamap_unload(sc
->sc_dmat
, map
);
971 bus_dmamap_sync(sc
->sc_dmat
, map
, 0, map
->dm_mapsize
,
972 BUS_DMASYNC_PREWRITE
);
975 /* Configure Tx checksum offload. */
976 if ((m
->m_pkthdr
.csum_flags
& ALE_CSUM_FEATURES
) != 0) {
978 * AR81xx supports Tx custom checksum offload feature
979 * that offloads single 16bit checksum computation.
980 * So you can choose one among IP, TCP and UDP.
981 * Normally driver sets checksum start/insertion
982 * position from the information of TCP/UDP frame as
983 * TCP/UDP checksum takes more time than that of IP.
984 * However it seems that custom checksum offload
985 * requires 4 bytes aligned Tx buffers due to hardware
987 * AR81xx also supports explicit Tx checksum computation
988 * if it is told that the size of IP header and TCP
989 * header(for UDP, the header size does not matter
990 * because it's fixed length). However with this scheme
991 * TSO does not work so you have to choose one either
992 * TSO or explicit Tx checksum offload. I chosen TSO
993 * plus custom checksum offload with work-around which
994 * will cover most common usage for this consumer
995 * ethernet controller. The work-around takes a lot of
996 * CPU cycles if Tx buffer is not aligned on 4 bytes
999 cflags
|= ALE_TD_CXSUM
;
1000 /* Set checksum start offset. */
1001 cflags
|= (poff
<< ALE_TD_CSUM_PLOADOFFSET_SHIFT
);
1005 /* Configure VLAN hardware tag insertion. */
1006 if ((mtag
= VLAN_OUTPUT_TAG(&sc
->sc_ec
, m
))) {
1007 vtag
= ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag
)));
1008 vtag
= ((vtag
<< ALE_TD_VLAN_SHIFT
) & ALE_TD_VLAN_MASK
);
1009 cflags
|= ALE_TD_INSERT_VLAN_TAG
;
1014 for (i
= 0; i
< nsegs
; i
++) {
1015 desc
= &sc
->ale_cdata
.ale_tx_ring
[prod
];
1016 desc
->addr
= htole64(map
->dm_segs
[i
].ds_addr
);
1018 htole32(ALE_TX_BYTES(map
->dm_segs
[i
].ds_len
) | vtag
);
1019 desc
->flags
= htole32(cflags
);
1020 sc
->ale_cdata
.ale_tx_cnt
++;
1021 ALE_DESC_INC(prod
, ALE_TX_RING_CNT
);
1023 /* Update producer index. */
1024 sc
->ale_cdata
.ale_tx_prod
= prod
;
1026 /* Finally set EOP on the last descriptor. */
1027 prod
= (prod
+ ALE_TX_RING_CNT
- 1) % ALE_TX_RING_CNT
;
1028 desc
= &sc
->ale_cdata
.ale_tx_ring
[prod
];
1029 desc
->flags
|= htole32(ALE_TD_EOP
);
1031 /* Swap dmamap of the first and the last. */
1032 txd
= &sc
->ale_cdata
.ale_txdesc
[prod
];
1033 map
= txd_last
->tx_dmamap
;
1034 txd_last
->tx_dmamap
= txd
->tx_dmamap
;
1035 txd
->tx_dmamap
= map
;
1038 /* Sync descriptors. */
1039 bus_dmamap_sync(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_ring_map
, 0,
1040 sc
->ale_cdata
.ale_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1046 ale_start(struct ifnet
*ifp
)
1048 struct ale_softc
*sc
= ifp
->if_softc
;
1049 struct mbuf
*m_head
;
1052 if ((ifp
->if_flags
& (IFF_RUNNING
| IFF_OACTIVE
)) != IFF_RUNNING
)
1055 /* Reclaim transmitted frames. */
1056 if (sc
->ale_cdata
.ale_tx_cnt
>= ALE_TX_DESC_HIWAT
)
1061 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
1066 * Pack the data into the transmit ring. If we
1067 * don't have room, set the OACTIVE flag and wait
1068 * for the NIC to drain the ring.
1070 if (ale_encap(sc
, &m_head
)) {
1073 IF_PREPEND(&ifp
->if_snd
, m_head
);
1074 ifp
->if_flags
|= IFF_OACTIVE
;
1081 * If there's a BPF listener, bounce a copy of this frame
1084 if (ifp
->if_bpf
!= NULL
)
1085 bpf_mtap(ifp
->if_bpf
, m_head
);
1091 CSR_WRITE_4(sc
, ALE_MBOX_TPD_PROD_IDX
,
1092 sc
->ale_cdata
.ale_tx_prod
);
1094 /* Set a timeout in case the chip goes out to lunch. */
1095 ifp
->if_timer
= ALE_TX_TIMEOUT
;
1100 ale_watchdog(struct ifnet
*ifp
)
1102 struct ale_softc
*sc
= ifp
->if_softc
;
1104 if ((sc
->ale_flags
& ALE_FLAG_LINK
) == 0) {
1105 printf("%s: watchdog timeout (missed link)\n",
1106 device_xname(sc
->sc_dev
));
1112 printf("%s: watchdog timeout\n", device_xname(sc
->sc_dev
));
1116 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
1121 ale_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
1123 struct ale_softc
*sc
= ifp
->if_softc
;
1128 error
= ether_ioctl(ifp
, cmd
, data
);
1129 if (error
== ENETRESET
) {
1130 if (ifp
->if_flags
& IFF_RUNNING
)
1140 ale_mac_config(struct ale_softc
*sc
)
1142 struct mii_data
*mii
;
1145 mii
= &sc
->sc_miibus
;
1146 reg
= CSR_READ_4(sc
, ALE_MAC_CFG
);
1147 reg
&= ~(MAC_CFG_FULL_DUPLEX
| MAC_CFG_TX_FC
| MAC_CFG_RX_FC
|
1148 MAC_CFG_SPEED_MASK
);
1150 /* Reprogram MAC with resolved speed/duplex. */
1151 switch (IFM_SUBTYPE(mii
->mii_media_active
)) {
1154 reg
|= MAC_CFG_SPEED_10_100
;
1157 reg
|= MAC_CFG_SPEED_1000
;
1160 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_FDX
) != 0) {
1161 reg
|= MAC_CFG_FULL_DUPLEX
;
1162 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_ETH_TXPAUSE
) != 0)
1163 reg
|= MAC_CFG_TX_FC
;
1164 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_ETH_RXPAUSE
) != 0)
1165 reg
|= MAC_CFG_RX_FC
;
1167 CSR_WRITE_4(sc
, ALE_MAC_CFG
, reg
);
1171 ale_stats_clear(struct ale_softc
*sc
)
1177 for (reg
= &sb
.rx_frames
, i
= 0; reg
<= &sb
.rx_pkts_filtered
; reg
++) {
1178 CSR_READ_4(sc
, ALE_RX_MIB_BASE
+ i
);
1179 i
+= sizeof(uint32_t);
1181 /* Read Tx statistics. */
1182 for (reg
= &sb
.tx_frames
, i
= 0; reg
<= &sb
.tx_mcast_bytes
; reg
++) {
1183 CSR_READ_4(sc
, ALE_TX_MIB_BASE
+ i
);
1184 i
+= sizeof(uint32_t);
1189 ale_stats_update(struct ale_softc
*sc
)
1191 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1192 struct ale_hw_stats
*stat
;
1193 struct smb sb
, *smb
;
1197 stat
= &sc
->ale_stats
;
1200 /* Read Rx statistics. */
1201 for (reg
= &sb
.rx_frames
, i
= 0; reg
<= &sb
.rx_pkts_filtered
; reg
++) {
1202 *reg
= CSR_READ_4(sc
, ALE_RX_MIB_BASE
+ i
);
1203 i
+= sizeof(uint32_t);
1205 /* Read Tx statistics. */
1206 for (reg
= &sb
.tx_frames
, i
= 0; reg
<= &sb
.tx_mcast_bytes
; reg
++) {
1207 *reg
= CSR_READ_4(sc
, ALE_TX_MIB_BASE
+ i
);
1208 i
+= sizeof(uint32_t);
1212 stat
->rx_frames
+= smb
->rx_frames
;
1213 stat
->rx_bcast_frames
+= smb
->rx_bcast_frames
;
1214 stat
->rx_mcast_frames
+= smb
->rx_mcast_frames
;
1215 stat
->rx_pause_frames
+= smb
->rx_pause_frames
;
1216 stat
->rx_control_frames
+= smb
->rx_control_frames
;
1217 stat
->rx_crcerrs
+= smb
->rx_crcerrs
;
1218 stat
->rx_lenerrs
+= smb
->rx_lenerrs
;
1219 stat
->rx_bytes
+= smb
->rx_bytes
;
1220 stat
->rx_runts
+= smb
->rx_runts
;
1221 stat
->rx_fragments
+= smb
->rx_fragments
;
1222 stat
->rx_pkts_64
+= smb
->rx_pkts_64
;
1223 stat
->rx_pkts_65_127
+= smb
->rx_pkts_65_127
;
1224 stat
->rx_pkts_128_255
+= smb
->rx_pkts_128_255
;
1225 stat
->rx_pkts_256_511
+= smb
->rx_pkts_256_511
;
1226 stat
->rx_pkts_512_1023
+= smb
->rx_pkts_512_1023
;
1227 stat
->rx_pkts_1024_1518
+= smb
->rx_pkts_1024_1518
;
1228 stat
->rx_pkts_1519_max
+= smb
->rx_pkts_1519_max
;
1229 stat
->rx_pkts_truncated
+= smb
->rx_pkts_truncated
;
1230 stat
->rx_fifo_oflows
+= smb
->rx_fifo_oflows
;
1231 stat
->rx_rrs_errs
+= smb
->rx_rrs_errs
;
1232 stat
->rx_alignerrs
+= smb
->rx_alignerrs
;
1233 stat
->rx_bcast_bytes
+= smb
->rx_bcast_bytes
;
1234 stat
->rx_mcast_bytes
+= smb
->rx_mcast_bytes
;
1235 stat
->rx_pkts_filtered
+= smb
->rx_pkts_filtered
;
1238 stat
->tx_frames
+= smb
->tx_frames
;
1239 stat
->tx_bcast_frames
+= smb
->tx_bcast_frames
;
1240 stat
->tx_mcast_frames
+= smb
->tx_mcast_frames
;
1241 stat
->tx_pause_frames
+= smb
->tx_pause_frames
;
1242 stat
->tx_excess_defer
+= smb
->tx_excess_defer
;
1243 stat
->tx_control_frames
+= smb
->tx_control_frames
;
1244 stat
->tx_deferred
+= smb
->tx_deferred
;
1245 stat
->tx_bytes
+= smb
->tx_bytes
;
1246 stat
->tx_pkts_64
+= smb
->tx_pkts_64
;
1247 stat
->tx_pkts_65_127
+= smb
->tx_pkts_65_127
;
1248 stat
->tx_pkts_128_255
+= smb
->tx_pkts_128_255
;
1249 stat
->tx_pkts_256_511
+= smb
->tx_pkts_256_511
;
1250 stat
->tx_pkts_512_1023
+= smb
->tx_pkts_512_1023
;
1251 stat
->tx_pkts_1024_1518
+= smb
->tx_pkts_1024_1518
;
1252 stat
->tx_pkts_1519_max
+= smb
->tx_pkts_1519_max
;
1253 stat
->tx_single_colls
+= smb
->tx_single_colls
;
1254 stat
->tx_multi_colls
+= smb
->tx_multi_colls
;
1255 stat
->tx_late_colls
+= smb
->tx_late_colls
;
1256 stat
->tx_excess_colls
+= smb
->tx_excess_colls
;
1257 stat
->tx_abort
+= smb
->tx_abort
;
1258 stat
->tx_underrun
+= smb
->tx_underrun
;
1259 stat
->tx_desc_underrun
+= smb
->tx_desc_underrun
;
1260 stat
->tx_lenerrs
+= smb
->tx_lenerrs
;
1261 stat
->tx_pkts_truncated
+= smb
->tx_pkts_truncated
;
1262 stat
->tx_bcast_bytes
+= smb
->tx_bcast_bytes
;
1263 stat
->tx_mcast_bytes
+= smb
->tx_mcast_bytes
;
1265 /* Update counters in ifnet. */
1266 ifp
->if_opackets
+= smb
->tx_frames
;
1268 ifp
->if_collisions
+= smb
->tx_single_colls
+
1269 smb
->tx_multi_colls
* 2 + smb
->tx_late_colls
+
1270 smb
->tx_abort
* HDPX_CFG_RETRY_DEFAULT
;
1274 * tx_pkts_truncated counter looks suspicious. It constantly
1275 * increments with no sign of Tx errors. This may indicate
1276 * the counter name is not correct one so I've removed the
1277 * counter in output errors.
1279 ifp
->if_oerrors
+= smb
->tx_abort
+ smb
->tx_late_colls
+
1282 ifp
->if_ipackets
+= smb
->rx_frames
;
1284 ifp
->if_ierrors
+= smb
->rx_crcerrs
+ smb
->rx_lenerrs
+
1285 smb
->rx_runts
+ smb
->rx_pkts_truncated
+
1286 smb
->rx_fifo_oflows
+ smb
->rx_rrs_errs
+
1293 struct ale_softc
*sc
= xsc
;
1294 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1297 status
= CSR_READ_4(sc
, ALE_INTR_STATUS
);
1298 if ((status
& ALE_INTRS
) == 0)
1301 /* Acknowledge and disable interrupts. */
1302 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, status
| INTR_DIS_INT
);
1304 if (ifp
->if_flags
& IFF_RUNNING
) {
1307 error
= ale_rxeof(sc
);
1309 sc
->ale_stats
.reset_brk_seq
++;
1314 if (status
& (INTR_DMA_RD_TO_RST
| INTR_DMA_WR_TO_RST
)) {
1315 if (status
& INTR_DMA_RD_TO_RST
)
1316 printf("%s: DMA read error! -- resetting\n",
1317 device_xname(sc
->sc_dev
));
1318 if (status
& INTR_DMA_WR_TO_RST
)
1319 printf("%s: DMA write error! -- resetting\n",
1320 device_xname(sc
->sc_dev
));
1326 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
1330 /* Re-enable interrupts. */
1331 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, 0x7FFFFFFF);
1336 ale_txeof(struct ale_softc
*sc
)
1338 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1339 struct ale_txdesc
*txd
;
1340 uint32_t cons
, prod
;
1343 if (sc
->ale_cdata
.ale_tx_cnt
== 0)
1346 bus_dmamap_sync(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_ring_map
, 0,
1347 sc
->ale_cdata
.ale_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1348 if ((sc
->ale_flags
& ALE_FLAG_TXCMB_BUG
) == 0) {
1349 bus_dmamap_sync(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_cmb_map
, 0,
1350 sc
->ale_cdata
.ale_tx_cmb_map
->dm_mapsize
,
1351 BUS_DMASYNC_POSTREAD
);
1352 prod
= *sc
->ale_cdata
.ale_tx_cmb
& TPD_CNT_MASK
;
1354 prod
= CSR_READ_2(sc
, ALE_TPD_CONS_IDX
);
1355 cons
= sc
->ale_cdata
.ale_tx_cons
;
1357 * Go through our Tx list and free mbufs for those
1358 * frames which have been transmitted.
1360 for (prog
= 0; cons
!= prod
; prog
++,
1361 ALE_DESC_INC(cons
, ALE_TX_RING_CNT
)) {
1362 if (sc
->ale_cdata
.ale_tx_cnt
<= 0)
1365 ifp
->if_flags
&= ~IFF_OACTIVE
;
1366 sc
->ale_cdata
.ale_tx_cnt
--;
1367 txd
= &sc
->ale_cdata
.ale_txdesc
[cons
];
1368 if (txd
->tx_m
!= NULL
) {
1369 /* Reclaim transmitted mbufs. */
1370 bus_dmamap_unload(sc
->sc_dmat
, txd
->tx_dmamap
);
1377 sc
->ale_cdata
.ale_tx_cons
= cons
;
1379 * Unarm watchdog timer only when there is no pending
1380 * Tx descriptors in queue.
1382 if (sc
->ale_cdata
.ale_tx_cnt
== 0)
1388 ale_rx_update_page(struct ale_softc
*sc
, struct ale_rx_page
**page
,
1389 uint32_t length
, uint32_t *prod
)
1391 struct ale_rx_page
*rx_page
;
1394 /* Update consumer position. */
1395 rx_page
->cons
+= roundup(length
+ sizeof(struct rx_rs
),
1397 if (rx_page
->cons
>= ALE_RX_PAGE_SZ
) {
1399 * End of Rx page reached, let hardware reuse
1403 *rx_page
->cmb_addr
= 0;
1404 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->cmb_map
, 0,
1405 rx_page
->cmb_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1406 CSR_WRITE_1(sc
, ALE_RXF0_PAGE0
+ sc
->ale_cdata
.ale_rx_curp
,
1408 /* Switch to alternate Rx page. */
1409 sc
->ale_cdata
.ale_rx_curp
^= 1;
1411 &sc
->ale_cdata
.ale_rx_page
[sc
->ale_cdata
.ale_rx_curp
];
1412 /* Page flipped, sync CMB and Rx page. */
1413 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->page_map
, 0,
1414 rx_page
->page_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1415 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->cmb_map
, 0,
1416 rx_page
->cmb_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1417 /* Sync completed, cache updated producer index. */
1418 *prod
= *rx_page
->cmb_addr
;
1424 * It seems that AR81xx controller can compute partial checksum.
1425 * The partial checksum value can be used to accelerate checksum
1426 * computation for fragmented TCP/UDP packets. Upper network stack
1427 * already takes advantage of the partial checksum value in IP
1428 * reassembly stage. But I'm not sure the correctness of the
1429 * partial hardware checksum assistance due to lack of data sheet.
1430 * In addition, the Rx feature of controller that requires copying
1431 * for every frames effectively nullifies one of most nice offload
1432 * capability of controller.
1435 ale_rxcsum(struct ale_softc
*sc
, struct mbuf
*m
, uint32_t status
)
1437 if (status
& ALE_RD_IPCSUM_NOK
)
1438 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4_BAD
;
1440 if ((sc
->ale_flags
& ALE_FLAG_RXCSUM_BUG
) == 0) {
1441 if (((status
& ALE_RD_IPV4_FRAG
) == 0) &&
1442 ((status
& (ALE_RD_TCP
| ALE_RD_UDP
)) != 0) &&
1443 (status
& ALE_RD_TCP_UDPCSUM_NOK
))
1445 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCP_UDP_BAD
;
1448 if ((status
& (ALE_RD_TCP
| ALE_RD_UDP
)) != 0) {
1449 if (status
& ALE_RD_TCP_UDPCSUM_NOK
) {
1450 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCP_UDP_BAD
;
1455 * Don't mark bad checksum for TCP/UDP frames
1456 * as fragmented frames may always have set
1457 * bad checksummed bit of frame status.
1461 /* Process received frames. */
1463 ale_rxeof(struct ale_softc
*sc
)
1465 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1466 struct ale_rx_page
*rx_page
;
1469 uint32_t length
, prod
, seqno
, status
;
1472 rx_page
= &sc
->ale_cdata
.ale_rx_page
[sc
->ale_cdata
.ale_rx_curp
];
1473 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->cmb_map
, 0,
1474 rx_page
->cmb_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1475 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->page_map
, 0,
1476 rx_page
->page_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1478 * Don't directly access producer index as hardware may
1479 * update it while Rx handler is in progress. It would
1480 * be even better if there is a way to let hardware
1481 * know how far driver processed its received frames.
1482 * Alternatively, hardware could provide a way to disable
1483 * CMB updates until driver acknowledges the end of CMB
1486 prod
= *rx_page
->cmb_addr
;
1487 for (prog
= 0; ; prog
++) {
1488 if (rx_page
->cons
>= prod
)
1490 rs
= (struct rx_rs
*)(rx_page
->page_addr
+ rx_page
->cons
);
1491 seqno
= ALE_RX_SEQNO(le32toh(rs
->seqno
));
1492 if (sc
->ale_cdata
.ale_rx_seqno
!= seqno
) {
1494 * Normally I believe this should not happen unless
1495 * severe driver bug or corrupted memory. However
1496 * it seems to happen under certain conditions which
1497 * is triggered by abrupt Rx events such as initiation
1498 * of bulk transfer of remote host. It's not easy to
1499 * reproduce this and I doubt it could be related
1500 * with FIFO overflow of hardware or activity of Tx
1501 * CMB updates. I also remember similar behaviour
1502 * seen on RealTek 8139 which uses resembling Rx
1506 printf("%s: garbled seq: %u, expected: %u -- "
1507 "resetting!\n", device_xname(sc
->sc_dev
),
1508 seqno
, sc
->ale_cdata
.ale_rx_seqno
);
1511 /* Frame received. */
1512 sc
->ale_cdata
.ale_rx_seqno
++;
1513 length
= ALE_RX_BYTES(le32toh(rs
->length
));
1514 status
= le32toh(rs
->flags
);
1515 if (status
& ALE_RD_ERROR
) {
1517 * We want to pass the following frames to upper
1518 * layer regardless of error status of Rx return
1521 * o IP/TCP/UDP checksum is bad.
1522 * o frame length and protocol specific length
1525 if (status
& (ALE_RD_CRC
| ALE_RD_CODE
|
1526 ALE_RD_DRIBBLE
| ALE_RD_RUNT
| ALE_RD_OFLOW
|
1528 ale_rx_update_page(sc
, &rx_page
, length
, &prod
);
1533 * m_devget(9) is major bottle-neck of ale(4)(It comes
1534 * from hardware limitation). For jumbo frames we could
1535 * get a slightly better performance if driver use
1536 * m_getjcl(9) with proper buffer size argument. However
1537 * that would make code more complicated and I don't
1538 * think users would expect good Rx performance numbers
1539 * on these low-end consumer ethernet controller.
1541 m
= m_devget((char *)(rs
+ 1), length
- ETHER_CRC_LEN
,
1545 ale_rx_update_page(sc
, &rx_page
, length
, &prod
);
1548 if (status
& ALE_RD_IPV4
)
1549 ale_rxcsum(sc
, m
, status
);
1551 if (status
& ALE_RD_VLAN
) {
1552 uint32_t vtags
= ALE_RX_VLAN(le32toh(rs
->vtags
));
1553 VLAN_INPUT_TAG(ifp
, m
, ALE_RX_VLAN_TAG(vtags
), );
1560 bpf_mtap(ifp
->if_bpf
, m
);
1563 /* Pass it to upper layer. */
1564 ether_input(ifp
, m
);
1566 ale_rx_update_page(sc
, &rx_page
, length
, &prod
);
1575 struct ale_softc
*sc
= xsc
;
1576 struct mii_data
*mii
= &sc
->sc_miibus
;
1581 ale_stats_update(sc
);
1584 callout_schedule(&sc
->sc_tick_ch
, hz
);
1588 ale_reset(struct ale_softc
*sc
)
1593 /* Initialize PCIe module. From Linux. */
1594 CSR_WRITE_4(sc
, 0x1008, CSR_READ_4(sc
, 0x1008) | 0x8000);
1596 CSR_WRITE_4(sc
, ALE_MASTER_CFG
, MASTER_RESET
);
1597 for (i
= ALE_RESET_TIMEOUT
; i
> 0; i
--) {
1599 if ((CSR_READ_4(sc
, ALE_MASTER_CFG
) & MASTER_RESET
) == 0)
1603 printf("%s: master reset timeout!\n", device_xname(sc
->sc_dev
));
1605 for (i
= ALE_RESET_TIMEOUT
; i
> 0; i
--) {
1606 if ((reg
= CSR_READ_4(sc
, ALE_IDLE_STATUS
)) == 0)
1612 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc
->sc_dev
),
1617 ale_init(struct ifnet
*ifp
)
1619 struct ale_softc
*sc
= ifp
->if_softc
;
1620 struct mii_data
*mii
;
1621 uint8_t eaddr
[ETHER_ADDR_LEN
];
1623 uint32_t reg
, rxf_hi
, rxf_lo
;
1626 * Cancel any pending I/O.
1631 * Reset the chip to a known state.
1635 /* Initialize Tx descriptors, DMA memory blocks. */
1636 ale_init_rx_pages(sc
);
1637 ale_init_tx_ring(sc
);
1639 /* Reprogram the station address. */
1640 memcpy(eaddr
, CLLADDR(ifp
->if_sadl
), ETHER_ADDR_LEN
);
1641 CSR_WRITE_4(sc
, ALE_PAR0
,
1642 eaddr
[2] << 24 | eaddr
[3] << 16 | eaddr
[4] << 8 | eaddr
[5]);
1643 CSR_WRITE_4(sc
, ALE_PAR1
, eaddr
[0] << 8 | eaddr
[1]);
1646 * Clear WOL status and disable all WOL feature as WOL
1647 * would interfere Rx operation under normal environments.
1649 CSR_READ_4(sc
, ALE_WOL_CFG
);
1650 CSR_WRITE_4(sc
, ALE_WOL_CFG
, 0);
1653 * Set Tx descriptor/RXF0/CMB base addresses. They share
1654 * the same high address part of DMAable region.
1656 paddr
= sc
->ale_cdata
.ale_tx_ring_paddr
;
1657 CSR_WRITE_4(sc
, ALE_TPD_ADDR_HI
, ALE_ADDR_HI(paddr
));
1658 CSR_WRITE_4(sc
, ALE_TPD_ADDR_LO
, ALE_ADDR_LO(paddr
));
1659 CSR_WRITE_4(sc
, ALE_TPD_CNT
,
1660 (ALE_TX_RING_CNT
<< TPD_CNT_SHIFT
) & TPD_CNT_MASK
);
1662 /* Set Rx page base address, note we use single queue. */
1663 paddr
= sc
->ale_cdata
.ale_rx_page
[0].page_paddr
;
1664 CSR_WRITE_4(sc
, ALE_RXF0_PAGE0_ADDR_LO
, ALE_ADDR_LO(paddr
));
1665 paddr
= sc
->ale_cdata
.ale_rx_page
[1].page_paddr
;
1666 CSR_WRITE_4(sc
, ALE_RXF0_PAGE1_ADDR_LO
, ALE_ADDR_LO(paddr
));
1668 /* Set Tx/Rx CMB addresses. */
1669 paddr
= sc
->ale_cdata
.ale_tx_cmb_paddr
;
1670 CSR_WRITE_4(sc
, ALE_TX_CMB_ADDR_LO
, ALE_ADDR_LO(paddr
));
1671 paddr
= sc
->ale_cdata
.ale_rx_page
[0].cmb_paddr
;
1672 CSR_WRITE_4(sc
, ALE_RXF0_CMB0_ADDR_LO
, ALE_ADDR_LO(paddr
));
1673 paddr
= sc
->ale_cdata
.ale_rx_page
[1].cmb_paddr
;
1674 CSR_WRITE_4(sc
, ALE_RXF0_CMB1_ADDR_LO
, ALE_ADDR_LO(paddr
));
1676 /* Mark RXF0 is valid. */
1677 CSR_WRITE_1(sc
, ALE_RXF0_PAGE0
, RXF_VALID
);
1678 CSR_WRITE_1(sc
, ALE_RXF0_PAGE1
, RXF_VALID
);
1680 * No need to initialize RFX1/RXF2/RXF3. We don't use
1684 /* Set Rx page size, excluding guard frame size. */
1685 CSR_WRITE_4(sc
, ALE_RXF_PAGE_SIZE
, ALE_RX_PAGE_SZ
);
1687 /* Tell hardware that we're ready to load DMA blocks. */
1688 CSR_WRITE_4(sc
, ALE_DMA_BLOCK
, DMA_BLOCK_LOAD
);
1690 /* Set Rx/Tx interrupt trigger threshold. */
1691 CSR_WRITE_4(sc
, ALE_INT_TRIG_THRESH
, (1 << INT_TRIG_RX_THRESH_SHIFT
) |
1692 (4 << INT_TRIG_TX_THRESH_SHIFT
));
1695 * Set interrupt trigger timer, its purpose and relation
1696 * with interrupt moderation mechanism is not clear yet.
1698 CSR_WRITE_4(sc
, ALE_INT_TRIG_TIMER
,
1699 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT
) |
1700 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT
)));
1702 /* Configure interrupt moderation timer. */
1703 sc
->ale_int_rx_mod
= ALE_IM_RX_TIMER_DEFAULT
;
1704 sc
->ale_int_tx_mod
= ALE_IM_TX_TIMER_DEFAULT
;
1705 reg
= ALE_USECS(sc
->ale_int_rx_mod
) << IM_TIMER_RX_SHIFT
;
1706 reg
|= ALE_USECS(sc
->ale_int_tx_mod
) << IM_TIMER_TX_SHIFT
;
1707 CSR_WRITE_4(sc
, ALE_IM_TIMER
, reg
);
1708 reg
= CSR_READ_4(sc
, ALE_MASTER_CFG
);
1709 reg
&= ~(MASTER_CHIP_REV_MASK
| MASTER_CHIP_ID_MASK
);
1710 reg
&= ~(MASTER_IM_RX_TIMER_ENB
| MASTER_IM_TX_TIMER_ENB
);
1711 if (ALE_USECS(sc
->ale_int_rx_mod
) != 0)
1712 reg
|= MASTER_IM_RX_TIMER_ENB
;
1713 if (ALE_USECS(sc
->ale_int_tx_mod
) != 0)
1714 reg
|= MASTER_IM_TX_TIMER_ENB
;
1715 CSR_WRITE_4(sc
, ALE_MASTER_CFG
, reg
);
1716 CSR_WRITE_2(sc
, ALE_INTR_CLR_TIMER
, ALE_USECS(1000));
1718 /* Set Maximum frame size of controller. */
1719 if (ifp
->if_mtu
< ETHERMTU
)
1720 sc
->ale_max_frame_size
= ETHERMTU
;
1722 sc
->ale_max_frame_size
= ifp
->if_mtu
;
1723 sc
->ale_max_frame_size
+= ETHER_HDR_LEN
+ ETHER_VLAN_ENCAP_LEN
+ ETHER_CRC_LEN
;
1724 CSR_WRITE_4(sc
, ALE_FRAME_SIZE
, sc
->ale_max_frame_size
);
1726 /* Configure IPG/IFG parameters. */
1727 CSR_WRITE_4(sc
, ALE_IPG_IFG_CFG
,
1728 ((IPG_IFG_IPGT_DEFAULT
<< IPG_IFG_IPGT_SHIFT
) & IPG_IFG_IPGT_MASK
) |
1729 ((IPG_IFG_MIFG_DEFAULT
<< IPG_IFG_MIFG_SHIFT
) & IPG_IFG_MIFG_MASK
) |
1730 ((IPG_IFG_IPG1_DEFAULT
<< IPG_IFG_IPG1_SHIFT
) & IPG_IFG_IPG1_MASK
) |
1731 ((IPG_IFG_IPG2_DEFAULT
<< IPG_IFG_IPG2_SHIFT
) & IPG_IFG_IPG2_MASK
));
1733 /* Set parameters for half-duplex media. */
1734 CSR_WRITE_4(sc
, ALE_HDPX_CFG
,
1735 ((HDPX_CFG_LCOL_DEFAULT
<< HDPX_CFG_LCOL_SHIFT
) &
1736 HDPX_CFG_LCOL_MASK
) |
1737 ((HDPX_CFG_RETRY_DEFAULT
<< HDPX_CFG_RETRY_SHIFT
) &
1738 HDPX_CFG_RETRY_MASK
) | HDPX_CFG_EXC_DEF_EN
|
1739 ((HDPX_CFG_ABEBT_DEFAULT
<< HDPX_CFG_ABEBT_SHIFT
) &
1740 HDPX_CFG_ABEBT_MASK
) |
1741 ((HDPX_CFG_JAMIPG_DEFAULT
<< HDPX_CFG_JAMIPG_SHIFT
) &
1742 HDPX_CFG_JAMIPG_MASK
));
1744 /* Configure Tx jumbo frame parameters. */
1745 if ((sc
->ale_flags
& ALE_FLAG_JUMBO
) != 0) {
1746 if (ifp
->if_mtu
< ETHERMTU
)
1747 reg
= sc
->ale_max_frame_size
;
1748 else if (ifp
->if_mtu
< 6 * 1024)
1749 reg
= (sc
->ale_max_frame_size
* 2) / 3;
1751 reg
= sc
->ale_max_frame_size
/ 2;
1752 CSR_WRITE_4(sc
, ALE_TX_JUMBO_THRESH
,
1753 roundup(reg
, TX_JUMBO_THRESH_UNIT
) >>
1754 TX_JUMBO_THRESH_UNIT_SHIFT
);
1757 /* Configure TxQ. */
1758 reg
= (128 << (sc
->ale_dma_rd_burst
>> DMA_CFG_RD_BURST_SHIFT
))
1759 << TXQ_CFG_TX_FIFO_BURST_SHIFT
;
1760 reg
|= (TXQ_CFG_TPD_BURST_DEFAULT
<< TXQ_CFG_TPD_BURST_SHIFT
) &
1761 TXQ_CFG_TPD_BURST_MASK
;
1762 CSR_WRITE_4(sc
, ALE_TXQ_CFG
, reg
| TXQ_CFG_ENHANCED_MODE
| TXQ_CFG_ENB
);
1764 /* Configure Rx jumbo frame & flow control parameters. */
1765 if ((sc
->ale_flags
& ALE_FLAG_JUMBO
) != 0) {
1766 reg
= roundup(sc
->ale_max_frame_size
, RX_JUMBO_THRESH_UNIT
);
1767 CSR_WRITE_4(sc
, ALE_RX_JUMBO_THRESH
,
1768 (((reg
>> RX_JUMBO_THRESH_UNIT_SHIFT
) <<
1769 RX_JUMBO_THRESH_MASK_SHIFT
) & RX_JUMBO_THRESH_MASK
) |
1770 ((RX_JUMBO_LKAH_DEFAULT
<< RX_JUMBO_LKAH_SHIFT
) &
1771 RX_JUMBO_LKAH_MASK
));
1772 reg
= CSR_READ_4(sc
, ALE_SRAM_RX_FIFO_LEN
);
1773 rxf_hi
= (reg
* 7) / 10;
1774 rxf_lo
= (reg
* 3)/ 10;
1775 CSR_WRITE_4(sc
, ALE_RX_FIFO_PAUSE_THRESH
,
1776 ((rxf_lo
<< RX_FIFO_PAUSE_THRESH_LO_SHIFT
) &
1777 RX_FIFO_PAUSE_THRESH_LO_MASK
) |
1778 ((rxf_hi
<< RX_FIFO_PAUSE_THRESH_HI_SHIFT
) &
1779 RX_FIFO_PAUSE_THRESH_HI_MASK
));
1783 CSR_WRITE_4(sc
, ALE_RSS_IDT_TABLE0
, 0);
1784 CSR_WRITE_4(sc
, ALE_RSS_CPU
, 0);
1786 /* Configure RxQ. */
1787 CSR_WRITE_4(sc
, ALE_RXQ_CFG
,
1788 RXQ_CFG_ALIGN_32
| RXQ_CFG_CUT_THROUGH_ENB
| RXQ_CFG_ENB
);
1790 /* Configure DMA parameters. */
1792 if ((sc
->ale_flags
& ALE_FLAG_TXCMB_BUG
) == 0)
1793 reg
|= DMA_CFG_TXCMB_ENB
;
1794 CSR_WRITE_4(sc
, ALE_DMA_CFG
,
1795 DMA_CFG_OUT_ORDER
| DMA_CFG_RD_REQ_PRI
| DMA_CFG_RCB_64
|
1796 sc
->ale_dma_rd_burst
| reg
|
1797 sc
->ale_dma_wr_burst
| DMA_CFG_RXCMB_ENB
|
1798 ((DMA_CFG_RD_DELAY_CNT_DEFAULT
<< DMA_CFG_RD_DELAY_CNT_SHIFT
) &
1799 DMA_CFG_RD_DELAY_CNT_MASK
) |
1800 ((DMA_CFG_WR_DELAY_CNT_DEFAULT
<< DMA_CFG_WR_DELAY_CNT_SHIFT
) &
1801 DMA_CFG_WR_DELAY_CNT_MASK
));
1804 * Hardware can be configured to issue SMB interrupt based
1805 * on programmed interval. Since there is a callout that is
1806 * invoked for every hz in driver we use that instead of
1807 * relying on periodic SMB interrupt.
1809 CSR_WRITE_4(sc
, ALE_SMB_STAT_TIMER
, ALE_USECS(0));
1811 /* Clear MAC statistics. */
1812 ale_stats_clear(sc
);
1815 * Configure Tx/Rx MACs.
1816 * - Auto-padding for short frames.
1817 * - Enable CRC generation.
1818 * Actual reconfiguration of MAC for resolved speed/duplex
1819 * is followed after detection of link establishment.
1820 * AR81xx always does checksum computation regardless of
1821 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1822 * cause Rx handling issue for fragmented IP datagrams due
1825 reg
= MAC_CFG_TX_CRC_ENB
| MAC_CFG_TX_AUTO_PAD
| MAC_CFG_FULL_DUPLEX
|
1826 ((MAC_CFG_PREAMBLE_DEFAULT
<< MAC_CFG_PREAMBLE_SHIFT
) &
1827 MAC_CFG_PREAMBLE_MASK
);
1828 if ((sc
->ale_flags
& ALE_FLAG_FASTETHER
) != 0)
1829 reg
|= MAC_CFG_SPEED_10_100
;
1831 reg
|= MAC_CFG_SPEED_1000
;
1832 CSR_WRITE_4(sc
, ALE_MAC_CFG
, reg
);
1834 /* Set up the receive filter. */
1838 /* Acknowledge all pending interrupts and clear it. */
1839 CSR_WRITE_4(sc
, ALE_INTR_MASK
, ALE_INTRS
);
1840 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, 0xFFFFFFFF);
1841 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, 0);
1843 sc
->ale_flags
&= ~ALE_FLAG_LINK
;
1845 /* Switch to the current media. */
1846 mii
= &sc
->sc_miibus
;
1849 callout_schedule(&sc
->sc_tick_ch
, hz
);
1851 ifp
->if_flags
|= IFF_RUNNING
;
1852 ifp
->if_flags
&= ~IFF_OACTIVE
;
1858 ale_stop(struct ifnet
*ifp
, int disable
)
1860 struct ale_softc
*sc
= ifp
->if_softc
;
1861 struct ale_txdesc
*txd
;
1865 callout_stop(&sc
->sc_tick_ch
);
1868 * Mark the interface down and cancel the watchdog timer.
1870 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
1873 sc
->ale_flags
&= ~ALE_FLAG_LINK
;
1875 ale_stats_update(sc
);
1877 mii_down(&sc
->sc_miibus
);
1879 /* Disable interrupts. */
1880 CSR_WRITE_4(sc
, ALE_INTR_MASK
, 0);
1881 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, 0xFFFFFFFF);
1883 /* Disable queue processing and DMA. */
1884 reg
= CSR_READ_4(sc
, ALE_TXQ_CFG
);
1885 reg
&= ~TXQ_CFG_ENB
;
1886 CSR_WRITE_4(sc
, ALE_TXQ_CFG
, reg
);
1887 reg
= CSR_READ_4(sc
, ALE_RXQ_CFG
);
1888 reg
&= ~RXQ_CFG_ENB
;
1889 CSR_WRITE_4(sc
, ALE_RXQ_CFG
, reg
);
1890 reg
= CSR_READ_4(sc
, ALE_DMA_CFG
);
1891 reg
&= ~(DMA_CFG_TXCMB_ENB
| DMA_CFG_RXCMB_ENB
);
1892 CSR_WRITE_4(sc
, ALE_DMA_CFG
, reg
);
1895 /* Stop Rx/Tx MACs. */
1898 /* Disable interrupts again? XXX */
1899 CSR_WRITE_4(sc
, ALE_INTR_STATUS
, 0xFFFFFFFF);
1902 * Free TX mbufs still in the queues.
1904 for (i
= 0; i
< ALE_TX_RING_CNT
; i
++) {
1905 txd
= &sc
->ale_cdata
.ale_txdesc
[i
];
1906 if (txd
->tx_m
!= NULL
) {
1907 bus_dmamap_unload(sc
->sc_dmat
, txd
->tx_dmamap
);
1915 ale_stop_mac(struct ale_softc
*sc
)
1920 reg
= CSR_READ_4(sc
, ALE_MAC_CFG
);
1921 if ((reg
& (MAC_CFG_TX_ENB
| MAC_CFG_RX_ENB
)) != 0) {
1922 reg
&= ~MAC_CFG_TX_ENB
| MAC_CFG_RX_ENB
;
1923 CSR_WRITE_4(sc
, ALE_MAC_CFG
, reg
);
1926 for (i
= ALE_TIMEOUT
; i
> 0; i
--) {
1927 reg
= CSR_READ_4(sc
, ALE_IDLE_STATUS
);
1933 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1934 device_xname(sc
->sc_dev
), reg
);
1938 ale_init_tx_ring(struct ale_softc
*sc
)
1940 struct ale_txdesc
*txd
;
1943 sc
->ale_cdata
.ale_tx_prod
= 0;
1944 sc
->ale_cdata
.ale_tx_cons
= 0;
1945 sc
->ale_cdata
.ale_tx_cnt
= 0;
1947 memset(sc
->ale_cdata
.ale_tx_ring
, 0, ALE_TX_RING_SZ
);
1948 memset(sc
->ale_cdata
.ale_tx_cmb
, 0, ALE_TX_CMB_SZ
);
1949 for (i
= 0; i
< ALE_TX_RING_CNT
; i
++) {
1950 txd
= &sc
->ale_cdata
.ale_txdesc
[i
];
1953 *sc
->ale_cdata
.ale_tx_cmb
= 0;
1954 bus_dmamap_sync(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_cmb_map
, 0,
1955 sc
->ale_cdata
.ale_tx_cmb_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1956 bus_dmamap_sync(sc
->sc_dmat
, sc
->ale_cdata
.ale_tx_ring_map
, 0,
1957 sc
->ale_cdata
.ale_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1961 ale_init_rx_pages(struct ale_softc
*sc
)
1963 struct ale_rx_page
*rx_page
;
1966 sc
->ale_cdata
.ale_rx_seqno
= 0;
1967 sc
->ale_cdata
.ale_rx_curp
= 0;
1969 for (i
= 0; i
< ALE_RX_PAGES
; i
++) {
1970 rx_page
= &sc
->ale_cdata
.ale_rx_page
[i
];
1971 memset(rx_page
->page_addr
, 0, sc
->ale_pagesize
);
1972 memset(rx_page
->cmb_addr
, 0, ALE_RX_CMB_SZ
);
1974 *rx_page
->cmb_addr
= 0;
1975 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->page_map
, 0,
1976 rx_page
->page_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1977 bus_dmamap_sync(sc
->sc_dmat
, rx_page
->cmb_map
, 0,
1978 rx_page
->cmb_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1983 ale_rxvlan(struct ale_softc
*sc
)
1985 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1988 reg
= CSR_READ_4(sc
, ALE_MAC_CFG
);
1989 reg
&= ~MAC_CFG_VLAN_TAG_STRIP
;
1990 if (ifp
->if_capabilities
& ETHERCAP_VLAN_HWTAGGING
)
1991 reg
|= MAC_CFG_VLAN_TAG_STRIP
;
1992 CSR_WRITE_4(sc
, ALE_MAC_CFG
, reg
);
1996 ale_rxfilter(struct ale_softc
*sc
)
1998 struct ethercom
*ec
= &sc
->sc_ec
;
1999 struct ifnet
*ifp
= &ec
->ec_if
;
2000 struct ether_multi
*enm
;
2001 struct ether_multistep step
;
2006 rxcfg
= CSR_READ_4(sc
, ALE_MAC_CFG
);
2007 rxcfg
&= ~(MAC_CFG_ALLMULTI
| MAC_CFG_BCAST
| MAC_CFG_PROMISC
);
2008 ifp
->if_flags
&= ~IFF_ALLMULTI
;
2011 * Always accept broadcast frames.
2013 rxcfg
|= MAC_CFG_BCAST
;
2015 if (ifp
->if_flags
& IFF_PROMISC
|| ec
->ec_multicnt
> 0) {
2016 ifp
->if_flags
|= IFF_ALLMULTI
;
2017 if (ifp
->if_flags
& IFF_PROMISC
)
2018 rxcfg
|= MAC_CFG_PROMISC
;
2020 rxcfg
|= MAC_CFG_ALLMULTI
;
2021 mchash
[0] = mchash
[1] = 0xFFFFFFFF;
2023 /* Program new filter. */
2024 memset(mchash
, 0, sizeof(mchash
));
2026 ETHER_FIRST_MULTI(step
, ec
, enm
);
2027 while (enm
!= NULL
) {
2028 crc
= ether_crc32_le(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
2029 mchash
[crc
>> 31] |= 1 << ((crc
>> 26) & 0x1f);
2030 ETHER_NEXT_MULTI(step
, enm
);
2034 CSR_WRITE_4(sc
, ALE_MAR0
, mchash
[0]);
2035 CSR_WRITE_4(sc
, ALE_MAR1
, mchash
[1]);
2036 CSR_WRITE_4(sc
, ALE_MAC_CFG
, rxcfg
);