1 /* $NetBSD: if_bge.c,v 1.167 2009/07/25 13:52:47 msaitoh Exp $ */
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
43 * Frank van der Linden <fvdl@wasabisystems.com>
44 * Jason Thorpe <thorpej@wasabisystems.com>
45 * Jonathan Stone <jonathan@dsg.stanford.edu>
47 * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48 * Senior Engineer, Wind River Systems
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.167 2009/07/25 13:52:47 msaitoh Exp $");
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
135 #include <dev/pci/if_bgereg.h>
136 #include <dev/pci/if_bgevar.h>
138 #include <uvm/uvm_extern.h>
139 #include <prop/proplib.h>
141 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
145 * Tunable thresholds for rx-side bge interrupt mitigation.
149 * The pairs of values below were obtained from empirical measurement
150 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
151 * interrupt for every N packets received, where N is, approximately,
152 * the second value (rx_max_bds) in each pair. The values are chosen
153 * such that moving from one pair to the succeeding pair was observed
154 * to roughly halve interrupt rate under sustained input packet load.
155 * The values were empirically chosen to avoid overflowing internal
156 * limits on the bcm5700: inreasing rx_ticks much beyond 600
157 * results in internal wrapping and higher interrupt rates.
158 * The limit of 46 frames was chosen to match NFS workloads.
160 * These values also work well on bcm5701, bcm5704C, and (less
161 * tested) bcm5703. On other chipsets, (including the Altima chip
162 * family), the larger values may overflow internal chip limits,
163 * leading to increasing interrupt rates rather than lower interrupt
166 * Applications using heavy interrupt mitigation (interrupting every
167 * 32 or 46 frames) in both directions may need to increase the TCP
168 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
169 * full link bandwidth, due to ACKs and window updates lingering
170 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
172 static const struct bge_load_rx_thresh
{
175 bge_rx_threshes
[] = {
183 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
185 /* XXX patchable; should be sysctl'able */
186 static int bge_auto_thresh
= 1;
187 static int bge_rx_thresh_lvl
;
189 static int bge_rxthresh_nodenum
;
191 typedef int (*bge_eaddr_fcn_t
)(struct bge_softc
*, u_int8_t
[]);
193 static int bge_probe(device_t
, cfdata_t
, void *);
194 static void bge_attach(device_t
, device_t
, void *);
195 static void bge_release_resources(struct bge_softc
*);
196 static void bge_txeof(struct bge_softc
*);
197 static void bge_rxeof(struct bge_softc
*);
199 static int bge_get_eaddr_mem(struct bge_softc
*, u_int8_t
[]);
200 static int bge_get_eaddr_nvram(struct bge_softc
*, u_int8_t
[]);
201 static int bge_get_eaddr_eeprom(struct bge_softc
*, u_int8_t
[]);
202 static int bge_get_eaddr(struct bge_softc
*, u_int8_t
[]);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc
*);
206 static int bge_encap(struct bge_softc
*, struct mbuf
*, u_int32_t
*);
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet
*);
210 static int bge_ioctl(struct ifnet
*, u_long
, void *);
211 static int bge_init(struct ifnet
*);
212 static void bge_stop(struct ifnet
*, int);
213 static void bge_watchdog(struct ifnet
*);
214 static int bge_ifmedia_upd(struct ifnet
*);
215 static void bge_ifmedia_sts(struct ifnet
*, struct ifmediareq
*);
217 static void bge_setmulti(struct bge_softc
*);
219 static void bge_handle_events(struct bge_softc
*);
220 static int bge_alloc_jumbo_mem(struct bge_softc
*);
222 static void bge_free_jumbo_mem(struct bge_softc
*);
224 static void *bge_jalloc(struct bge_softc
*);
225 static void bge_jfree(struct mbuf
*, void *, size_t, void *);
226 static int bge_newbuf_std(struct bge_softc
*, int, struct mbuf
*,
228 static int bge_newbuf_jumbo(struct bge_softc
*, int, struct mbuf
*);
229 static int bge_init_rx_ring_std(struct bge_softc
*);
230 static void bge_free_rx_ring_std(struct bge_softc
*);
231 static int bge_init_rx_ring_jumbo(struct bge_softc
*);
232 static void bge_free_rx_ring_jumbo(struct bge_softc
*);
233 static void bge_free_tx_ring(struct bge_softc
*);
234 static int bge_init_tx_ring(struct bge_softc
*);
236 static int bge_chipinit(struct bge_softc
*);
237 static int bge_blockinit(struct bge_softc
*);
238 static int bge_setpowerstate(struct bge_softc
*, int);
240 static void bge_reset(struct bge_softc
*);
241 static void bge_link_upd(struct bge_softc
*);
245 #define DPRINTF(x) if (bgedebug) printf x
246 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
247 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
249 int bge_tso_debug
= 0;
252 #define DPRINTFN(n,x)
253 #define BGE_TSO_PRINTF(x)
256 #ifdef BGE_EVENT_COUNTERS
257 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
258 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
259 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
261 #define BGE_EVCNT_INCR(ev) /* nothing */
262 #define BGE_EVCNT_ADD(ev, val) /* nothing */
263 #define BGE_EVCNT_UPD(ev, val) /* nothing */
266 static const struct bge_product
{
267 pci_vendor_id_t bp_vendor
;
268 pci_product_id_t bp_product
;
272 * The BCM5700 documentation seems to indicate that the hardware
273 * still has the Alteon vendor ID burned into it, though it
274 * should always be overridden by the value in the EEPROM. We'll
275 * check for it anyway.
278 PCI_PRODUCT_ALTEON_BCM5700
,
279 "Broadcom BCM5700 Gigabit Ethernet",
282 PCI_PRODUCT_ALTEON_BCM5701
,
283 "Broadcom BCM5701 Gigabit Ethernet",
286 PCI_PRODUCT_ALTIMA_AC1000
,
287 "Altima AC1000 Gigabit Ethernet",
290 PCI_PRODUCT_ALTIMA_AC1001
,
291 "Altima AC1001 Gigabit Ethernet",
294 PCI_PRODUCT_ALTIMA_AC9100
,
295 "Altima AC9100 Gigabit Ethernet",
297 { PCI_VENDOR_BROADCOM
,
298 PCI_PRODUCT_BROADCOM_BCM5700
,
299 "Broadcom BCM5700 Gigabit Ethernet",
301 { PCI_VENDOR_BROADCOM
,
302 PCI_PRODUCT_BROADCOM_BCM5701
,
303 "Broadcom BCM5701 Gigabit Ethernet",
305 { PCI_VENDOR_BROADCOM
,
306 PCI_PRODUCT_BROADCOM_BCM5702
,
307 "Broadcom BCM5702 Gigabit Ethernet",
309 { PCI_VENDOR_BROADCOM
,
310 PCI_PRODUCT_BROADCOM_BCM5702X
,
311 "Broadcom BCM5702X Gigabit Ethernet" },
312 { PCI_VENDOR_BROADCOM
,
313 PCI_PRODUCT_BROADCOM_BCM5703
,
314 "Broadcom BCM5703 Gigabit Ethernet",
316 { PCI_VENDOR_BROADCOM
,
317 PCI_PRODUCT_BROADCOM_BCM5703X
,
318 "Broadcom BCM5703X Gigabit Ethernet",
320 { PCI_VENDOR_BROADCOM
,
321 PCI_PRODUCT_BROADCOM_BCM5703_ALT
,
322 "Broadcom BCM5703 Gigabit Ethernet",
324 { PCI_VENDOR_BROADCOM
,
325 PCI_PRODUCT_BROADCOM_BCM5704C
,
326 "Broadcom BCM5704C Dual Gigabit Ethernet",
328 { PCI_VENDOR_BROADCOM
,
329 PCI_PRODUCT_BROADCOM_BCM5704S
,
330 "Broadcom BCM5704S Dual Gigabit Ethernet",
332 { PCI_VENDOR_BROADCOM
,
333 PCI_PRODUCT_BROADCOM_BCM5705
,
334 "Broadcom BCM5705 Gigabit Ethernet",
336 { PCI_VENDOR_BROADCOM
,
337 PCI_PRODUCT_BROADCOM_BCM5705K
,
338 "Broadcom BCM5705K Gigabit Ethernet",
340 { PCI_VENDOR_BROADCOM
,
341 PCI_PRODUCT_BROADCOM_BCM5705M
,
342 "Broadcom BCM5705M Gigabit Ethernet",
344 { PCI_VENDOR_BROADCOM
,
345 PCI_PRODUCT_BROADCOM_BCM5705M_ALT
,
346 "Broadcom BCM5705M Gigabit Ethernet",
348 { PCI_VENDOR_BROADCOM
,
349 PCI_PRODUCT_BROADCOM_BCM5714
,
350 "Broadcom BCM5714/5715 Gigabit Ethernet",
352 { PCI_VENDOR_BROADCOM
,
353 PCI_PRODUCT_BROADCOM_BCM5715
,
354 "Broadcom BCM5714/5715 Gigabit Ethernet",
356 { PCI_VENDOR_BROADCOM
,
357 PCI_PRODUCT_BROADCOM_BCM5789
,
358 "Broadcom BCM5789 Gigabit Ethernet",
360 { PCI_VENDOR_BROADCOM
,
361 PCI_PRODUCT_BROADCOM_BCM5721
,
362 "Broadcom BCM5721 Gigabit Ethernet",
364 { PCI_VENDOR_BROADCOM
,
365 PCI_PRODUCT_BROADCOM_BCM5722
,
366 "Broadcom BCM5722 Gigabit Ethernet",
368 { PCI_VENDOR_BROADCOM
,
369 PCI_PRODUCT_BROADCOM_BCM5750
,
370 "Broadcom BCM5750 Gigabit Ethernet",
372 { PCI_VENDOR_BROADCOM
,
373 PCI_PRODUCT_BROADCOM_BCM5750M
,
374 "Broadcom BCM5750M Gigabit Ethernet",
376 { PCI_VENDOR_BROADCOM
,
377 PCI_PRODUCT_BROADCOM_BCM5751
,
378 "Broadcom BCM5751 Gigabit Ethernet",
380 { PCI_VENDOR_BROADCOM
,
381 PCI_PRODUCT_BROADCOM_BCM5751M
,
382 "Broadcom BCM5751M Gigabit Ethernet",
384 { PCI_VENDOR_BROADCOM
,
385 PCI_PRODUCT_BROADCOM_BCM5752
,
386 "Broadcom BCM5752 Gigabit Ethernet",
388 { PCI_VENDOR_BROADCOM
,
389 PCI_PRODUCT_BROADCOM_BCM5752M
,
390 "Broadcom BCM5752M Gigabit Ethernet",
392 { PCI_VENDOR_BROADCOM
,
393 PCI_PRODUCT_BROADCOM_BCM5753
,
394 "Broadcom BCM5753 Gigabit Ethernet",
396 { PCI_VENDOR_BROADCOM
,
397 PCI_PRODUCT_BROADCOM_BCM5753M
,
398 "Broadcom BCM5753M Gigabit Ethernet",
400 { PCI_VENDOR_BROADCOM
,
401 PCI_PRODUCT_BROADCOM_BCM5754
,
402 "Broadcom BCM5754 Gigabit Ethernet",
404 { PCI_VENDOR_BROADCOM
,
405 PCI_PRODUCT_BROADCOM_BCM5754M
,
406 "Broadcom BCM5754M Gigabit Ethernet",
408 { PCI_VENDOR_BROADCOM
,
409 PCI_PRODUCT_BROADCOM_BCM5755
,
410 "Broadcom BCM5755 Gigabit Ethernet",
412 { PCI_VENDOR_BROADCOM
,
413 PCI_PRODUCT_BROADCOM_BCM5755M
,
414 "Broadcom BCM5755M Gigabit Ethernet",
416 { PCI_VENDOR_BROADCOM
,
417 PCI_PRODUCT_BROADCOM_BCM5780
,
418 "Broadcom BCM5780 Gigabit Ethernet",
420 { PCI_VENDOR_BROADCOM
,
421 PCI_PRODUCT_BROADCOM_BCM5780S
,
422 "Broadcom BCM5780S Gigabit Ethernet",
424 { PCI_VENDOR_BROADCOM
,
425 PCI_PRODUCT_BROADCOM_BCM5782
,
426 "Broadcom BCM5782 Gigabit Ethernet",
428 { PCI_VENDOR_BROADCOM
,
429 PCI_PRODUCT_BROADCOM_BCM5786
,
430 "Broadcom BCM5786 Gigabit Ethernet",
432 { PCI_VENDOR_BROADCOM
,
433 PCI_PRODUCT_BROADCOM_BCM5787
,
434 "Broadcom BCM5787 Gigabit Ethernet",
436 { PCI_VENDOR_BROADCOM
,
437 PCI_PRODUCT_BROADCOM_BCM5787M
,
438 "Broadcom BCM5787M Gigabit Ethernet",
440 { PCI_VENDOR_BROADCOM
,
441 PCI_PRODUCT_BROADCOM_BCM5788
,
442 "Broadcom BCM5788 Gigabit Ethernet",
444 { PCI_VENDOR_BROADCOM
,
445 PCI_PRODUCT_BROADCOM_BCM5789
,
446 "Broadcom BCM5789 Gigabit Ethernet",
448 { PCI_VENDOR_BROADCOM
,
449 PCI_PRODUCT_BROADCOM_BCM5901
,
450 "Broadcom BCM5901 Fast Ethernet",
452 { PCI_VENDOR_BROADCOM
,
453 PCI_PRODUCT_BROADCOM_BCM5901A2
,
454 "Broadcom BCM5901A2 Fast Ethernet",
456 { PCI_VENDOR_SCHNEIDERKOCH
,
457 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1
,
458 "SysKonnect SK-9Dx1 Gigabit Ethernet",
461 PCI_PRODUCT_3COM_3C996
,
462 "3Com 3c996 Gigabit Ethernet",
464 { PCI_VENDOR_BROADCOM
,
465 PCI_PRODUCT_BROADCOM_BCM5906
,
466 "Broadcom BCM5906 Fast Ethernet",
468 { PCI_VENDOR_BROADCOM
,
469 PCI_PRODUCT_BROADCOM_BCM5906M
,
470 "Broadcom BCM5906M Fast Ethernet",
478 * XXX: how to handle variants based on 5750 and derivatives:
479 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
480 * in general behave like a 5705, except with additional quirks.
481 * This driver's current handling of the 5721 is wrong;
482 * how we map ASIC revision to "quirks" needs more thought.
483 * (defined here until the thought is done).
485 #define BGE_IS_5714_FAMILY(sc) \
486 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
487 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
488 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
490 #define BGE_IS_5750_OR_BEYOND(sc) \
491 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
493 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
494 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
495 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
496 BGE_IS_5714_FAMILY(sc) )
498 #define BGE_IS_5705_OR_BEYOND(sc) \
499 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
500 (BGE_IS_5750_OR_BEYOND(sc)))
502 #define BGE_IS_JUMBO_CAPABLE(sc) \
503 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || \
504 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 || \
505 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || \
506 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
509 static const struct bge_revision
{
512 } bge_revisions
[] = {
513 { BGE_CHIPID_BCM5700_A0
, "BCM5700 A0" },
514 { BGE_CHIPID_BCM5700_A1
, "BCM5700 A1" },
515 { BGE_CHIPID_BCM5700_B0
, "BCM5700 B0" },
516 { BGE_CHIPID_BCM5700_B1
, "BCM5700 B1" },
517 { BGE_CHIPID_BCM5700_B2
, "BCM5700 B2" },
518 { BGE_CHIPID_BCM5700_B3
, "BCM5700 B3" },
519 /* This is treated like a BCM5700 Bx */
520 { BGE_CHIPID_BCM5700_ALTIMA
, "BCM5700 Altima" },
521 { BGE_CHIPID_BCM5700_C0
, "BCM5700 C0" },
522 { BGE_CHIPID_BCM5701_A0
, "BCM5701 A0" },
523 { BGE_CHIPID_BCM5701_B0
, "BCM5701 B0" },
524 { BGE_CHIPID_BCM5701_B2
, "BCM5701 B2" },
525 { BGE_CHIPID_BCM5701_B5
, "BCM5701 B5" },
526 { BGE_CHIPID_BCM5703_A0
, "BCM5703 A0" },
527 { BGE_CHIPID_BCM5703_A1
, "BCM5703 A1" },
528 { BGE_CHIPID_BCM5703_A2
, "BCM5703 A2" },
529 { BGE_CHIPID_BCM5703_A3
, "BCM5703 A3" },
530 { BGE_CHIPID_BCM5703_B0
, "BCM5703 B0" },
531 { BGE_CHIPID_BCM5704_A0
, "BCM5704 A0" },
532 { BGE_CHIPID_BCM5704_A1
, "BCM5704 A1" },
533 { BGE_CHIPID_BCM5704_A2
, "BCM5704 A2" },
534 { BGE_CHIPID_BCM5704_A3
, "BCM5704 A3" },
535 { BGE_CHIPID_BCM5704_B0
, "BCM5704 B0" },
536 { BGE_CHIPID_BCM5705_A0
, "BCM5705 A0" },
537 { BGE_CHIPID_BCM5705_A1
, "BCM5705 A1" },
538 { BGE_CHIPID_BCM5705_A2
, "BCM5705 A2" },
539 { BGE_CHIPID_BCM5705_A3
, "BCM5705 A3" },
540 { BGE_CHIPID_BCM5750_A0
, "BCM5750 A0" },
541 { BGE_CHIPID_BCM5750_A1
, "BCM5750 A1" },
542 { BGE_CHIPID_BCM5750_A3
, "BCM5750 A3" },
543 { BGE_CHIPID_BCM5750_B0
, "BCM5750 B0" },
544 { BGE_CHIPID_BCM5750_B1
, "BCM5750 B1" },
545 { BGE_CHIPID_BCM5750_C0
, "BCM5750 C0" },
546 { BGE_CHIPID_BCM5750_C1
, "BCM5750 C1" },
547 { BGE_CHIPID_BCM5750_C2
, "BCM5750 C2" },
548 { BGE_CHIPID_BCM5752_A0
, "BCM5752 A0" },
549 { BGE_CHIPID_BCM5752_A1
, "BCM5752 A1" },
550 { BGE_CHIPID_BCM5752_A2
, "BCM5752 A2" },
551 { BGE_CHIPID_BCM5714_A0
, "BCM5714 A0" },
552 { BGE_CHIPID_BCM5714_B0
, "BCM5714 B0" },
553 { BGE_CHIPID_BCM5714_B3
, "BCM5714 B3" },
554 { BGE_CHIPID_BCM5715_A0
, "BCM5715 A0" },
555 { BGE_CHIPID_BCM5715_A1
, "BCM5715 A1" },
556 { BGE_CHIPID_BCM5715_A3
, "BCM5715 A3" },
557 { BGE_CHIPID_BCM5755_A0
, "BCM5755 A0" },
558 { BGE_CHIPID_BCM5755_A1
, "BCM5755 A1" },
559 { BGE_CHIPID_BCM5755_A2
, "BCM5755 A2" },
560 { BGE_CHIPID_BCM5755_C0
, "BCM5755 C0" },
561 { BGE_CHIPID_BCM5787_A0
, "BCM5754/5787 A0" },
562 { BGE_CHIPID_BCM5787_A1
, "BCM5754/5787 A1" },
563 { BGE_CHIPID_BCM5787_A2
, "BCM5754/5787 A2" },
564 { BGE_CHIPID_BCM5906_A1
, "BCM5906 A1" },
565 { BGE_CHIPID_BCM5906_A2
, "BCM5906 A2" },
570 * Some defaults for major revisions, so that newer steppings
571 * that we don't know about have a shot at working.
573 static const struct bge_revision bge_majorrevs
[] = {
574 { BGE_ASICREV_BCM5700
, "unknown BCM5700" },
575 { BGE_ASICREV_BCM5701
, "unknown BCM5701" },
576 { BGE_ASICREV_BCM5703
, "unknown BCM5703" },
577 { BGE_ASICREV_BCM5704
, "unknown BCM5704" },
578 { BGE_ASICREV_BCM5705
, "unknown BCM5705" },
579 { BGE_ASICREV_BCM5750
, "unknown BCM5750" },
580 { BGE_ASICREV_BCM5714_A0
, "unknown BCM5714" },
581 { BGE_ASICREV_BCM5714
, "unknown BCM5714" },
582 { BGE_ASICREV_BCM5752
, "unknown BCM5752 family" },
583 { BGE_ASICREV_BCM5755
, "unknown BCM5755" },
584 { BGE_ASICREV_BCM5780
, "unknown BCM5780" },
585 /* 5754 and 5787 share the same ASIC ID */
586 { BGE_ASICREV_BCM5787
, "unknown BCM5754/5787" },
587 { BGE_ASICREV_BCM5906
, "unknown BCM5906" },
591 CFATTACH_DECL_NEW(bge
, sizeof(struct bge_softc
),
592 bge_probe
, bge_attach
, NULL
, NULL
);
595 bge_readmem_ind(struct bge_softc
*sc
, int off
)
599 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MEMWIN_BASEADDR
, off
);
600 val
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MEMWIN_DATA
);
605 bge_writemem_ind(struct bge_softc
*sc
, int off
, int val
)
607 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MEMWIN_BASEADDR
, off
);
608 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MEMWIN_DATA
, val
);
613 bge_readreg_ind(struct bge_softc
*sc
, int off
)
615 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_REG_BASEADDR
, off
);
616 return (pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_REG_DATA
));
621 bge_writereg_ind(struct bge_softc
*sc
, int off
, int val
)
623 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_REG_BASEADDR
, off
);
624 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_REG_DATA
, val
);
628 bge_writemem_direct(struct bge_softc
*sc
, int off
, int val
)
630 CSR_WRITE_4(sc
, off
, val
);
634 bge_writembx(struct bge_softc
*sc
, int off
, int val
)
636 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
)
637 off
+= BGE_LPMBX_IRQ0_HI
- BGE_MBX_IRQ0_HI
;
639 CSR_WRITE_4(sc
, off
, val
);
643 bge_nvram_getbyte(struct bge_softc
*sc
, int addr
, u_int8_t
*dest
)
645 u_int32_t access
, byte
= 0;
649 CSR_WRITE_4(sc
, BGE_NVRAM_SWARB
, BGE_NVRAMSWARB_SET1
);
650 for (i
= 0; i
< 8000; i
++) {
651 if (CSR_READ_4(sc
, BGE_NVRAM_SWARB
) & BGE_NVRAMSWARB_GNT1
)
659 access
= CSR_READ_4(sc
, BGE_NVRAM_ACCESS
);
660 CSR_WRITE_4(sc
, BGE_NVRAM_ACCESS
, access
| BGE_NVRAMACC_ENABLE
);
662 CSR_WRITE_4(sc
, BGE_NVRAM_ADDR
, addr
& 0xfffffffc);
663 CSR_WRITE_4(sc
, BGE_NVRAM_CMD
, BGE_NVRAM_READCMD
);
664 for (i
= 0; i
< BGE_TIMEOUT
* 10; i
++) {
666 if (CSR_READ_4(sc
, BGE_NVRAM_CMD
) & BGE_NVRAMCMD_DONE
) {
672 if (i
== BGE_TIMEOUT
* 10) {
673 aprint_error_dev(sc
->bge_dev
, "nvram read timed out\n");
678 byte
= CSR_READ_4(sc
, BGE_NVRAM_RDDATA
);
680 *dest
= (bswap32(byte
) >> ((addr
% 4) * 8)) & 0xFF;
682 /* Disable access. */
683 CSR_WRITE_4(sc
, BGE_NVRAM_ACCESS
, access
);
686 CSR_WRITE_4(sc
, BGE_NVRAM_SWARB
, BGE_NVRAMSWARB_CLR1
);
687 CSR_READ_4(sc
, BGE_NVRAM_SWARB
);
693 * Read a sequence of bytes from NVRAM.
696 bge_read_nvram(struct bge_softc
*sc
, u_int8_t
*dest
, int off
, int cnt
)
701 if (BGE_ASICREV(sc
->bge_chipid
) != BGE_ASICREV_BCM5906
)
704 for (i
= 0; i
< cnt
; i
++) {
705 err
= bge_nvram_getbyte(sc
, off
+ i
, &byte
);
711 return (err
? 1 : 0);
715 * Read a byte of data stored in the EEPROM at address 'addr.' The
716 * BCM570x supports both the traditional bitbang interface and an
717 * auto access interface for reading the EEPROM. We use the auto
721 bge_eeprom_getbyte(struct bge_softc
*sc
, int addr
, u_int8_t
*dest
)
727 * Enable use of auto EEPROM access so we can avoid
728 * having to use the bitbang method.
730 BGE_SETBIT(sc
, BGE_MISC_LOCAL_CTL
, BGE_MLC_AUTO_EEPROM
);
732 /* Reset the EEPROM, load the clock period. */
733 CSR_WRITE_4(sc
, BGE_EE_ADDR
,
734 BGE_EEADDR_RESET
| BGE_EEHALFCLK(BGE_HALFCLK_384SCL
));
737 /* Issue the read EEPROM command. */
738 CSR_WRITE_4(sc
, BGE_EE_ADDR
, BGE_EE_READCMD
| addr
);
740 /* Wait for completion */
741 for(i
= 0; i
< BGE_TIMEOUT
* 10; i
++) {
743 if (CSR_READ_4(sc
, BGE_EE_ADDR
) & BGE_EEADDR_DONE
)
747 if (i
== BGE_TIMEOUT
) {
748 aprint_error_dev(sc
->bge_dev
, "eeprom read timed out\n");
753 byte
= CSR_READ_4(sc
, BGE_EE_DATA
);
755 *dest
= (byte
>> ((addr
% 4) * 8)) & 0xFF;
761 * Read a sequence of bytes from the EEPROM.
764 bge_read_eeprom(struct bge_softc
*sc
, void *destv
, int off
, int cnt
)
770 for (i
= 0; i
< cnt
; i
++) {
771 err
= bge_eeprom_getbyte(sc
, off
+ i
, &byte
);
777 return (err
? 1 : 0);
781 bge_miibus_readreg(device_t dev
, int phy
, int reg
)
783 struct bge_softc
*sc
= device_private(dev
);
785 u_int32_t saved_autopoll
;
789 * Broadcom's own driver always assumes the internal
790 * PHY is at GMII address 1. On some chips, the PHY responds
791 * to accesses at all addresses, which could cause us to
792 * bogusly attach the PHY 32 times at probe type. Always
793 * restricting the lookup to address 1 is simpler than
794 * trying to figure out which chips revisions should be
800 /* Reading with autopolling on may trigger PCI errors */
801 saved_autopoll
= CSR_READ_4(sc
, BGE_MI_MODE
);
802 if (saved_autopoll
& BGE_MIMODE_AUTOPOLL
) {
803 BGE_STS_CLRBIT(sc
, BGE_STS_AUTOPOLL
);
804 CSR_WRITE_4(sc
, BGE_MI_MODE
,
805 saved_autopoll
&~ BGE_MIMODE_AUTOPOLL
);
809 CSR_WRITE_4(sc
, BGE_MI_COMM
, BGE_MICMD_READ
|BGE_MICOMM_BUSY
|
810 BGE_MIPHY(phy
)|BGE_MIREG(reg
));
812 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
813 val
= CSR_READ_4(sc
, BGE_MI_COMM
);
814 if (!(val
& BGE_MICOMM_BUSY
))
819 if (i
== BGE_TIMEOUT
) {
820 aprint_error_dev(sc
->bge_dev
, "PHY read timed out\n");
825 val
= CSR_READ_4(sc
, BGE_MI_COMM
);
828 if (saved_autopoll
& BGE_MIMODE_AUTOPOLL
) {
829 BGE_STS_SETBIT(sc
, BGE_STS_AUTOPOLL
);
830 CSR_WRITE_4(sc
, BGE_MI_MODE
, saved_autopoll
);
834 if (val
& BGE_MICOMM_READFAIL
)
837 return (val
& 0xFFFF);
841 bge_miibus_writereg(device_t dev
, int phy
, int reg
, int val
)
843 struct bge_softc
*sc
= device_private(dev
);
844 u_int32_t saved_autopoll
;
851 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
&&
852 (reg
== BRGPHY_MII_1000CTL
|| reg
== BRGPHY_MII_AUXCTL
)) {
856 /* Reading with autopolling on may trigger PCI errors */
857 saved_autopoll
= CSR_READ_4(sc
, BGE_MI_MODE
);
858 if (saved_autopoll
& BGE_MIMODE_AUTOPOLL
) {
860 BGE_STS_CLRBIT(sc
, BGE_STS_AUTOPOLL
);
861 CSR_WRITE_4(sc
, BGE_MI_MODE
,
862 saved_autopoll
& (~BGE_MIMODE_AUTOPOLL
));
863 delay(10); /* 40 usec is supposed to be adequate */
866 CSR_WRITE_4(sc
, BGE_MI_COMM
, BGE_MICMD_WRITE
| BGE_MICOMM_BUSY
|
867 BGE_MIPHY(phy
) | BGE_MIREG(reg
)|val
);
869 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
871 if (!(CSR_READ_4(sc
, BGE_MI_COMM
) & BGE_MICOMM_BUSY
)) {
873 CSR_READ_4(sc
, BGE_MI_COMM
);
878 if (saved_autopoll
& BGE_MIMODE_AUTOPOLL
) {
879 BGE_STS_SETBIT(sc
, BGE_STS_AUTOPOLL
);
880 CSR_WRITE_4(sc
, BGE_MI_MODE
, saved_autopoll
);
884 if (i
== BGE_TIMEOUT
)
885 aprint_error_dev(sc
->bge_dev
, "PHY read timed out\n");
889 bge_miibus_statchg(device_t dev
)
891 struct bge_softc
*sc
= device_private(dev
);
892 struct mii_data
*mii
= &sc
->bge_mii
;
895 * Get flow control negotiation result.
897 if (IFM_SUBTYPE(mii
->mii_media
.ifm_cur
->ifm_media
) == IFM_AUTO
&&
898 (mii
->mii_media_active
& IFM_ETH_FMASK
) != sc
->bge_flowflags
) {
899 sc
->bge_flowflags
= mii
->mii_media_active
& IFM_ETH_FMASK
;
900 mii
->mii_media_active
&= ~IFM_ETH_FMASK
;
903 BGE_CLRBIT(sc
, BGE_MAC_MODE
, BGE_MACMODE_PORTMODE
);
904 if (IFM_SUBTYPE(mii
->mii_media_active
) == IFM_1000_T
||
905 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_1000_SX
)
906 BGE_SETBIT(sc
, BGE_MAC_MODE
, BGE_PORTMODE_GMII
);
908 BGE_SETBIT(sc
, BGE_MAC_MODE
, BGE_PORTMODE_MII
);
910 if ((mii
->mii_media_active
& IFM_GMASK
) == IFM_FDX
)
911 BGE_CLRBIT(sc
, BGE_MAC_MODE
, BGE_MACMODE_HALF_DUPLEX
);
913 BGE_SETBIT(sc
, BGE_MAC_MODE
, BGE_MACMODE_HALF_DUPLEX
);
916 * 802.3x flow control
918 if (sc
->bge_flowflags
& IFM_ETH_RXPAUSE
)
919 BGE_SETBIT(sc
, BGE_RX_MODE
, BGE_RXMODE_FLOWCTL_ENABLE
);
921 BGE_CLRBIT(sc
, BGE_RX_MODE
, BGE_RXMODE_FLOWCTL_ENABLE
);
923 if (sc
->bge_flowflags
& IFM_ETH_TXPAUSE
)
924 BGE_SETBIT(sc
, BGE_TX_MODE
, BGE_TXMODE_FLOWCTL_ENABLE
);
926 BGE_CLRBIT(sc
, BGE_TX_MODE
, BGE_TXMODE_FLOWCTL_ENABLE
);
930 * Update rx threshold levels to values in a particular slot
931 * of the interrupt-mitigation table bge_rx_threshes.
934 bge_set_thresh(struct ifnet
*ifp
, int lvl
)
936 struct bge_softc
*sc
= ifp
->if_softc
;
939 /* For now, just save the new Rx-intr thresholds and record
940 * that a threshold update is pending. Updating the hardware
941 * registers here (even at splhigh()) is observed to
942 * occasionaly cause glitches where Rx-interrupts are not
943 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
946 sc
->bge_rx_coal_ticks
= bge_rx_threshes
[lvl
].rx_ticks
;
947 sc
->bge_rx_max_coal_bds
= bge_rx_threshes
[lvl
].rx_max_bds
;
948 sc
->bge_pending_rxintr_change
= 1;
956 * Update Rx thresholds of all bge devices
959 bge_update_all_threshes(int lvl
)
962 const char * const namebuf
= "bge";
967 else if( lvl
>= NBGE_RX_THRESH
)
968 lvl
= NBGE_RX_THRESH
- 1;
970 namelen
= strlen(namebuf
);
972 * Now search all the interfaces for this name/number
975 if (strncmp(ifp
->if_xname
, namebuf
, namelen
) != 0)
977 /* We got a match: update if doing auto-threshold-tuning */
979 bge_set_thresh(ifp
, lvl
);
984 * Handle events that have triggered interrupts.
987 bge_handle_events(struct bge_softc
*sc
)
994 * Memory management for jumbo frames.
998 bge_alloc_jumbo_mem(struct bge_softc
*sc
)
1001 bus_dma_segment_t seg
;
1002 int i
, rseg
, state
, error
;
1003 struct bge_jpool_entry
*entry
;
1007 /* Grab a big chunk o' storage. */
1008 if (bus_dmamem_alloc(sc
->bge_dmatag
, BGE_JMEM
, PAGE_SIZE
, 0,
1009 &seg
, 1, &rseg
, BUS_DMA_NOWAIT
)) {
1010 aprint_error_dev(sc
->bge_dev
, "can't alloc rx buffers\n");
1015 if (bus_dmamem_map(sc
->bge_dmatag
, &seg
, rseg
, BGE_JMEM
, (void **)&kva
,
1017 aprint_error_dev(sc
->bge_dev
,
1018 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM
);
1024 if (bus_dmamap_create(sc
->bge_dmatag
, BGE_JMEM
, 1, BGE_JMEM
, 0,
1025 BUS_DMA_NOWAIT
, &sc
->bge_cdata
.bge_rx_jumbo_map
)) {
1026 aprint_error_dev(sc
->bge_dev
, "can't create DMA map\n");
1032 if (bus_dmamap_load(sc
->bge_dmatag
, sc
->bge_cdata
.bge_rx_jumbo_map
,
1033 kva
, BGE_JMEM
, NULL
, BUS_DMA_NOWAIT
)) {
1034 aprint_error_dev(sc
->bge_dev
, "can't load DMA map\n");
1040 sc
->bge_cdata
.bge_jumbo_buf
= (void *)kva
;
1041 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc
->bge_cdata
.bge_jumbo_buf
));
1043 SLIST_INIT(&sc
->bge_jfree_listhead
);
1044 SLIST_INIT(&sc
->bge_jinuse_listhead
);
1047 * Now divide it up into 9K pieces and save the addresses
1050 ptr
= sc
->bge_cdata
.bge_jumbo_buf
;
1051 for (i
= 0; i
< BGE_JSLOTS
; i
++) {
1052 sc
->bge_cdata
.bge_jslots
[i
] = ptr
;
1054 entry
= malloc(sizeof(struct bge_jpool_entry
),
1055 M_DEVBUF
, M_NOWAIT
);
1056 if (entry
== NULL
) {
1057 aprint_error_dev(sc
->bge_dev
,
1058 "no memory for jumbo buffer queue!\n");
1063 SLIST_INSERT_HEAD(&sc
->bge_jfree_listhead
,
1064 entry
, jpool_entries
);
1070 bus_dmamap_unload(sc
->bge_dmatag
,
1071 sc
->bge_cdata
.bge_rx_jumbo_map
);
1073 bus_dmamap_destroy(sc
->bge_dmatag
,
1074 sc
->bge_cdata
.bge_rx_jumbo_map
);
1076 bus_dmamem_unmap(sc
->bge_dmatag
, kva
, BGE_JMEM
);
1078 bus_dmamem_free(sc
->bge_dmatag
, &seg
, rseg
);
1089 * Allocate a jumbo buffer.
1092 bge_jalloc(struct bge_softc
*sc
)
1094 struct bge_jpool_entry
*entry
;
1096 entry
= SLIST_FIRST(&sc
->bge_jfree_listhead
);
1098 if (entry
== NULL
) {
1099 aprint_error_dev(sc
->bge_dev
, "no free jumbo buffers\n");
1103 SLIST_REMOVE_HEAD(&sc
->bge_jfree_listhead
, jpool_entries
);
1104 SLIST_INSERT_HEAD(&sc
->bge_jinuse_listhead
, entry
, jpool_entries
);
1105 return (sc
->bge_cdata
.bge_jslots
[entry
->slot
]);
1109 * Release a jumbo buffer.
1112 bge_jfree(struct mbuf
*m
, void *buf
, size_t size
, void *arg
)
1114 struct bge_jpool_entry
*entry
;
1115 struct bge_softc
*sc
;
1118 /* Extract the softc struct pointer. */
1119 sc
= (struct bge_softc
*)arg
;
1122 panic("bge_jfree: can't find softc pointer!");
1124 /* calculate the slot this buffer belongs to */
1127 - (char *)sc
->bge_cdata
.bge_jumbo_buf
) / BGE_JLEN
;
1129 if ((i
< 0) || (i
>= BGE_JSLOTS
))
1130 panic("bge_jfree: asked to free buffer that we don't manage!");
1133 entry
= SLIST_FIRST(&sc
->bge_jinuse_listhead
);
1135 panic("bge_jfree: buffer not in use!");
1137 SLIST_REMOVE_HEAD(&sc
->bge_jinuse_listhead
, jpool_entries
);
1138 SLIST_INSERT_HEAD(&sc
->bge_jfree_listhead
, entry
, jpool_entries
);
1140 if (__predict_true(m
!= NULL
))
1141 pool_cache_put(mb_cache
, m
);
1147 * Intialize a standard receive ring descriptor.
1150 bge_newbuf_std(struct bge_softc
*sc
, int i
, struct mbuf
*m
, bus_dmamap_t dmamap
)
1152 struct mbuf
*m_new
= NULL
;
1153 struct bge_rx_bd
*r
;
1156 if (dmamap
== NULL
) {
1157 error
= bus_dmamap_create(sc
->bge_dmatag
, MCLBYTES
, 1,
1158 MCLBYTES
, 0, BUS_DMA_NOWAIT
, &dmamap
);
1163 sc
->bge_cdata
.bge_rx_std_map
[i
] = dmamap
;
1166 MGETHDR(m_new
, M_DONTWAIT
, MT_DATA
);
1170 MCLGET(m_new
, M_DONTWAIT
);
1171 if (!(m_new
->m_flags
& M_EXT
)) {
1175 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
1179 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
1180 m_new
->m_data
= m_new
->m_ext
.ext_buf
;
1182 if (!(sc
->bge_flags
& BGE_RX_ALIGNBUG
))
1183 m_adj(m_new
, ETHER_ALIGN
);
1184 if (bus_dmamap_load_mbuf(sc
->bge_dmatag
, dmamap
, m_new
,
1185 BUS_DMA_READ
|BUS_DMA_NOWAIT
))
1187 bus_dmamap_sync(sc
->bge_dmatag
, dmamap
, 0, dmamap
->dm_mapsize
,
1188 BUS_DMASYNC_PREREAD
);
1190 sc
->bge_cdata
.bge_rx_std_chain
[i
] = m_new
;
1191 r
= &sc
->bge_rdata
->bge_rx_std_ring
[i
];
1192 bge_set_hostaddr(&r
->bge_addr
,
1193 dmamap
->dm_segs
[0].ds_addr
);
1194 r
->bge_flags
= BGE_RXBDFLAG_END
;
1195 r
->bge_len
= m_new
->m_len
;
1198 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
1199 offsetof(struct bge_ring_data
, bge_rx_std_ring
) +
1200 i
* sizeof (struct bge_rx_bd
),
1201 sizeof (struct bge_rx_bd
),
1202 BUS_DMASYNC_PREWRITE
|BUS_DMASYNC_PREREAD
);
1208 * Initialize a jumbo receive ring descriptor. This allocates
1209 * a jumbo buffer from the pool managed internally by the driver.
1212 bge_newbuf_jumbo(struct bge_softc
*sc
, int i
, struct mbuf
*m
)
1214 struct mbuf
*m_new
= NULL
;
1215 struct bge_rx_bd
*r
;
1220 /* Allocate the mbuf. */
1221 MGETHDR(m_new
, M_DONTWAIT
, MT_DATA
);
1225 /* Allocate the jumbo buffer */
1226 buf
= bge_jalloc(sc
);
1229 aprint_error_dev(sc
->bge_dev
,
1230 "jumbo allocation failed -- packet dropped!\n");
1234 /* Attach the buffer to the mbuf. */
1235 m_new
->m_len
= m_new
->m_pkthdr
.len
= BGE_JUMBO_FRAMELEN
;
1236 MEXTADD(m_new
, buf
, BGE_JUMBO_FRAMELEN
, M_DEVBUF
,
1238 m_new
->m_flags
|= M_EXT_RW
;
1241 buf
= m_new
->m_data
= m_new
->m_ext
.ext_buf
;
1242 m_new
->m_ext
.ext_size
= BGE_JUMBO_FRAMELEN
;
1244 if (!(sc
->bge_flags
& BGE_RX_ALIGNBUG
))
1245 m_adj(m_new
, ETHER_ALIGN
);
1246 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_cdata
.bge_rx_jumbo_map
,
1247 mtod(m_new
, char *) - (char *)sc
->bge_cdata
.bge_jumbo_buf
, BGE_JLEN
,
1248 BUS_DMASYNC_PREREAD
);
1249 /* Set up the descriptor. */
1250 r
= &sc
->bge_rdata
->bge_rx_jumbo_ring
[i
];
1251 sc
->bge_cdata
.bge_rx_jumbo_chain
[i
] = m_new
;
1252 bge_set_hostaddr(&r
->bge_addr
, BGE_JUMBO_DMA_ADDR(sc
, m_new
));
1253 r
->bge_flags
= BGE_RXBDFLAG_END
|BGE_RXBDFLAG_JUMBO_RING
;
1254 r
->bge_len
= m_new
->m_len
;
1257 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
1258 offsetof(struct bge_ring_data
, bge_rx_jumbo_ring
) +
1259 i
* sizeof (struct bge_rx_bd
),
1260 sizeof (struct bge_rx_bd
),
1261 BUS_DMASYNC_PREWRITE
|BUS_DMASYNC_PREREAD
);
1267 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1268 * that's 1MB or memory, which is a lot. For now, we fill only the first
1269 * 256 ring entries and hope that our CPU is fast enough to keep up with
1273 bge_init_rx_ring_std(struct bge_softc
*sc
)
1277 if (sc
->bge_flags
& BGE_RXRING_VALID
)
1280 for (i
= 0; i
< BGE_SSLOTS
; i
++) {
1281 if (bge_newbuf_std(sc
, i
, NULL
, 0) == ENOBUFS
)
1285 sc
->bge_std
= i
- 1;
1286 bge_writembx(sc
, BGE_MBX_RX_STD_PROD_LO
, sc
->bge_std
);
1288 sc
->bge_flags
|= BGE_RXRING_VALID
;
1294 bge_free_rx_ring_std(struct bge_softc
*sc
)
1298 if (!(sc
->bge_flags
& BGE_RXRING_VALID
))
1301 for (i
= 0; i
< BGE_STD_RX_RING_CNT
; i
++) {
1302 if (sc
->bge_cdata
.bge_rx_std_chain
[i
] != NULL
) {
1303 m_freem(sc
->bge_cdata
.bge_rx_std_chain
[i
]);
1304 sc
->bge_cdata
.bge_rx_std_chain
[i
] = NULL
;
1305 bus_dmamap_destroy(sc
->bge_dmatag
,
1306 sc
->bge_cdata
.bge_rx_std_map
[i
]);
1308 memset((char *)&sc
->bge_rdata
->bge_rx_std_ring
[i
], 0,
1309 sizeof(struct bge_rx_bd
));
1312 sc
->bge_flags
&= ~BGE_RXRING_VALID
;
1316 bge_init_rx_ring_jumbo(struct bge_softc
*sc
)
1319 volatile struct bge_rcb
*rcb
;
1321 if (sc
->bge_flags
& BGE_JUMBO_RXRING_VALID
)
1324 for (i
= 0; i
< BGE_JUMBO_RX_RING_CNT
; i
++) {
1325 if (bge_newbuf_jumbo(sc
, i
, NULL
) == ENOBUFS
)
1329 sc
->bge_jumbo
= i
- 1;
1330 sc
->bge_flags
|= BGE_JUMBO_RXRING_VALID
;
1332 rcb
= &sc
->bge_rdata
->bge_info
.bge_jumbo_rx_rcb
;
1333 rcb
->bge_maxlen_flags
= 0;
1334 CSR_WRITE_4(sc
, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS
, rcb
->bge_maxlen_flags
);
1336 bge_writembx(sc
, BGE_MBX_RX_JUMBO_PROD_LO
, sc
->bge_jumbo
);
1342 bge_free_rx_ring_jumbo(struct bge_softc
*sc
)
1346 if (!(sc
->bge_flags
& BGE_JUMBO_RXRING_VALID
))
1349 for (i
= 0; i
< BGE_JUMBO_RX_RING_CNT
; i
++) {
1350 if (sc
->bge_cdata
.bge_rx_jumbo_chain
[i
] != NULL
) {
1351 m_freem(sc
->bge_cdata
.bge_rx_jumbo_chain
[i
]);
1352 sc
->bge_cdata
.bge_rx_jumbo_chain
[i
] = NULL
;
1354 memset((char *)&sc
->bge_rdata
->bge_rx_jumbo_ring
[i
], 0,
1355 sizeof(struct bge_rx_bd
));
1358 sc
->bge_flags
&= ~BGE_JUMBO_RXRING_VALID
;
1362 bge_free_tx_ring(struct bge_softc
*sc
)
1365 struct txdmamap_pool_entry
*dma
;
1367 if (!(sc
->bge_flags
& BGE_TXRING_VALID
))
1372 for (i
= 0; i
< BGE_TX_RING_CNT
; i
++) {
1373 if (sc
->bge_cdata
.bge_tx_chain
[i
] != NULL
) {
1375 m_freem(sc
->bge_cdata
.bge_tx_chain
[i
]);
1376 sc
->bge_cdata
.bge_tx_chain
[i
] = NULL
;
1377 SLIST_INSERT_HEAD(&sc
->txdma_list
, sc
->txdma
[i
],
1381 memset((char *)&sc
->bge_rdata
->bge_tx_ring
[i
], 0,
1382 sizeof(struct bge_tx_bd
));
1385 while ((dma
= SLIST_FIRST(&sc
->txdma_list
))) {
1386 SLIST_REMOVE_HEAD(&sc
->txdma_list
, link
);
1387 bus_dmamap_destroy(sc
->bge_dmatag
, dma
->dmamap
);
1388 free(dma
, M_DEVBUF
);
1391 sc
->bge_flags
&= ~BGE_TXRING_VALID
;
1395 bge_init_tx_ring(struct bge_softc
*sc
)
1398 bus_dmamap_t dmamap
;
1399 struct txdmamap_pool_entry
*dma
;
1401 if (sc
->bge_flags
& BGE_TXRING_VALID
)
1405 sc
->bge_tx_saved_considx
= 0;
1407 /* Initialize transmit producer index for host-memory send ring. */
1408 sc
->bge_tx_prodidx
= 0;
1409 bge_writembx(sc
, BGE_MBX_TX_HOST_PROD0_LO
, sc
->bge_tx_prodidx
);
1410 /* 5700 b2 errata */
1411 if (BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5700_BX
)
1412 bge_writembx(sc
, BGE_MBX_TX_HOST_PROD0_LO
, sc
->bge_tx_prodidx
);
1414 /* NIC-memory send ring not used; initialize to zero. */
1415 bge_writembx(sc
, BGE_MBX_TX_NIC_PROD0_LO
, 0);
1416 /* 5700 b2 errata */
1417 if (BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5700_BX
)
1418 bge_writembx(sc
, BGE_MBX_TX_NIC_PROD0_LO
, 0);
1420 SLIST_INIT(&sc
->txdma_list
);
1421 for (i
= 0; i
< BGE_RSLOTS
; i
++) {
1422 if (bus_dmamap_create(sc
->bge_dmatag
, BGE_TXDMA_MAX
,
1423 BGE_NTXSEG
, ETHER_MAX_LEN_JUMBO
, 0, BUS_DMA_NOWAIT
,
1427 panic("dmamap NULL in bge_init_tx_ring");
1428 dma
= malloc(sizeof(*dma
), M_DEVBUF
, M_NOWAIT
);
1430 aprint_error_dev(sc
->bge_dev
,
1431 "can't alloc txdmamap_pool_entry\n");
1432 bus_dmamap_destroy(sc
->bge_dmatag
, dmamap
);
1435 dma
->dmamap
= dmamap
;
1436 SLIST_INSERT_HEAD(&sc
->txdma_list
, dma
, link
);
1439 sc
->bge_flags
|= BGE_TXRING_VALID
;
1445 bge_setmulti(struct bge_softc
*sc
)
1447 struct ethercom
*ac
= &sc
->ethercom
;
1448 struct ifnet
*ifp
= &ac
->ec_if
;
1449 struct ether_multi
*enm
;
1450 struct ether_multistep step
;
1451 u_int32_t hashes
[4] = { 0, 0, 0, 0 };
1455 if (ifp
->if_flags
& IFF_PROMISC
)
1458 /* Now program new ones. */
1459 ETHER_FIRST_MULTI(step
, ac
, enm
);
1460 while (enm
!= NULL
) {
1461 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
, ETHER_ADDR_LEN
)) {
1463 * We must listen to a range of multicast addresses.
1464 * For now, just accept all multicasts, rather than
1465 * trying to set only those filter bits needed to match
1466 * the range. (At this time, the only use of address
1467 * ranges is for IP multicast routing, for which the
1468 * range is big enough to require all bits set.)
1473 h
= ether_crc32_le(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
1475 /* Just want the 7 least-significant bits. */
1478 hashes
[(h
& 0x60) >> 5] |= 1 << (h
& 0x1F);
1479 ETHER_NEXT_MULTI(step
, enm
);
1482 ifp
->if_flags
&= ~IFF_ALLMULTI
;
1486 ifp
->if_flags
|= IFF_ALLMULTI
;
1487 hashes
[0] = hashes
[1] = hashes
[2] = hashes
[3] = 0xffffffff;
1490 for (i
= 0; i
< 4; i
++)
1491 CSR_WRITE_4(sc
, BGE_MAR0
+ (i
* 4), hashes
[i
]);
1494 const int bge_swapbits
[] = {
1496 BGE_MODECTL_BYTESWAP_DATA
,
1497 BGE_MODECTL_WORDSWAP_DATA
,
1498 BGE_MODECTL_BYTESWAP_NONFRAME
,
1499 BGE_MODECTL_WORDSWAP_NONFRAME
,
1501 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_WORDSWAP_DATA
,
1502 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_BYTESWAP_NONFRAME
,
1503 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_WORDSWAP_NONFRAME
,
1505 BGE_MODECTL_WORDSWAP_DATA
|BGE_MODECTL_BYTESWAP_NONFRAME
,
1506 BGE_MODECTL_WORDSWAP_DATA
|BGE_MODECTL_WORDSWAP_NONFRAME
,
1508 BGE_MODECTL_BYTESWAP_NONFRAME
|BGE_MODECTL_WORDSWAP_NONFRAME
,
1510 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_WORDSWAP_DATA
|
1511 BGE_MODECTL_BYTESWAP_NONFRAME
,
1512 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_WORDSWAP_DATA
|
1513 BGE_MODECTL_WORDSWAP_NONFRAME
,
1514 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_BYTESWAP_NONFRAME
|
1515 BGE_MODECTL_WORDSWAP_NONFRAME
,
1516 BGE_MODECTL_WORDSWAP_DATA
|BGE_MODECTL_BYTESWAP_NONFRAME
|
1517 BGE_MODECTL_WORDSWAP_NONFRAME
,
1519 BGE_MODECTL_BYTESWAP_DATA
|BGE_MODECTL_WORDSWAP_DATA
|
1520 BGE_MODECTL_BYTESWAP_NONFRAME
|BGE_MODECTL_WORDSWAP_NONFRAME
,
1523 int bge_swapindex
= 0;
1526 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1527 * self-test results.
1530 bge_chipinit(struct bge_softc
*sc
)
1533 u_int32_t dma_rw_ctl
;
1536 /* Set endianness before we access any non-PCI registers. */
1537 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MISC_CTL
,
1540 /* Set power state to D0. */
1541 bge_setpowerstate(sc
, 0);
1544 * Check the 'ROM failed' bit on the RX CPU to see if
1545 * self-tests passed.
1547 if (CSR_READ_4(sc
, BGE_RXCPU_MODE
) & BGE_RXCPUMODE_ROMFAIL
) {
1548 aprint_error_dev(sc
->bge_dev
,
1549 "RX CPU self-diagnostics failed!\n");
1553 /* Clear the MAC control register */
1554 CSR_WRITE_4(sc
, BGE_MAC_MODE
, 0);
1557 * Clear the MAC statistics block in the NIC's
1560 for (i
= BGE_STATS_BLOCK
;
1561 i
< BGE_STATS_BLOCK_END
+ 1; i
+= sizeof(u_int32_t
))
1562 BGE_MEMWIN_WRITE(sc
->sc_pc
, sc
->sc_pcitag
, i
, 0);
1564 for (i
= BGE_STATUS_BLOCK
;
1565 i
< BGE_STATUS_BLOCK_END
+ 1; i
+= sizeof(u_int32_t
))
1566 BGE_MEMWIN_WRITE(sc
->sc_pc
, sc
->sc_pcitag
, i
, 0);
1568 /* Set up the PCI DMA control register. */
1569 dma_rw_ctl
= BGE_PCI_READ_CMD
| BGE_PCI_WRITE_CMD
;
1570 if (sc
->bge_flags
& BGE_PCIE
) {
1571 /* Read watermark not used, 128 bytes for write. */
1572 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1573 device_xname(sc
->bge_dev
)));
1574 dma_rw_ctl
|= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT
);
1575 } else if (sc
->bge_flags
& BGE_PCIX
){
1576 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1577 device_xname(sc
->bge_dev
)));
1579 dma_rw_ctl
|= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT
) |
1580 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT
) |
1583 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1584 * for hardware bugs, which means we should also clear
1585 * the low-order MINDMA bits. In addition, the 5704
1586 * uses a different encoding of read/write watermarks.
1588 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
) {
1589 dma_rw_ctl
= BGE_PCI_READ_CMD
|BGE_PCI_WRITE_CMD
|
1590 /* should be 0x1f0000 */
1591 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT
) |
1592 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT
);
1593 dma_rw_ctl
|= BGE_PCIDMARWCTL_ONEDMA_ATONCE
;
1595 else if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5703
) {
1596 dma_rw_ctl
&= 0xfffffff0;
1597 dma_rw_ctl
|= BGE_PCIDMARWCTL_ONEDMA_ATONCE
;
1599 else if (BGE_IS_5714_FAMILY(sc
)) {
1600 dma_rw_ctl
= BGE_PCI_READ_CMD
|BGE_PCI_WRITE_CMD
;
1601 dma_rw_ctl
&= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE
; /* XXX */
1602 /* XXX magic values, Broadcom-supplied Linux driver */
1603 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5780
)
1604 dma_rw_ctl
|= (1 << 20) | (1 << 18) |
1605 BGE_PCIDMARWCTL_ONEDMA_ATONCE
;
1607 dma_rw_ctl
|= (1<<20) | (1<<18) | (1 << 15);
1610 /* Conventional PCI bus */
1611 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1612 device_xname(sc
->bge_dev
)));
1613 dma_rw_ctl
= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT
) |
1614 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT
);
1615 if (BGE_ASICREV(sc
->bge_chipid
) != BGE_ASICREV_BCM5705
&&
1616 BGE_ASICREV(sc
->bge_chipid
) != BGE_ASICREV_BCM5750
)
1620 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5700
||
1621 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5701
)
1622 dma_rw_ctl
|= BGE_PCIDMARWCTL_USE_MRM
|
1623 BGE_PCIDMARWCTL_ASRT_ALL_BE
;
1625 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5703
||
1626 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
)
1627 dma_rw_ctl
&= ~BGE_PCIDMARWCTL_MINDMA
;
1629 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_DMA_RW_CTL
, dma_rw_ctl
);
1632 * Set up general mode register.
1634 CSR_WRITE_4(sc
, BGE_MODE_CTL
, BGE_DMA_SWAP_OPTIONS
|
1635 BGE_MODECTL_MAC_ATTN_INTR
| BGE_MODECTL_HOST_SEND_BDS
|
1636 BGE_MODECTL_TX_NO_PHDR_CSUM
| BGE_MODECTL_RX_NO_PHDR_CSUM
);
1639 * Disable memory write invalidate. Apparently it is not supported
1640 * properly by these devices.
1642 PCI_CLRBIT(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_CMD
, PCIM_CMD_MWIEN
);
1645 #ifdef __brokenalpha__
1647 * Must insure that we do not cross an 8K (bytes) boundary
1648 * for DMA reads. Our highest limit is 1K bytes. This is a
1649 * restriction on some ALPHA platforms with early revision
1650 * 21174 PCI chipsets, such as the AlphaPC 164lx
1652 PCI_SETBIT(sc
, BGE_PCI_DMA_RW_CTL
, BGE_PCI_READ_BNDRY_1024
, 4);
1655 /* Set the timer prescaler (always 66MHz) */
1656 CSR_WRITE_4(sc
, BGE_MISC_CFG
, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1658 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
1659 DELAY(40); /* XXX */
1661 /* Put PHY into ready state */
1662 BGE_CLRBIT(sc
, BGE_MISC_CFG
, BGE_MISCCFG_EPHY_IDDQ
);
1663 CSR_READ_4(sc
, BGE_MISC_CFG
); /* Flush */
1671 bge_blockinit(struct bge_softc
*sc
)
1673 volatile struct bge_rcb
*rcb
;
1674 bus_size_t rcb_addr
;
1676 struct ifnet
*ifp
= &sc
->ethercom
.ec_if
;
1681 * Initialize the memory window pointer register so that
1682 * we can access the first 32K of internal NIC RAM. This will
1683 * allow us to set up the TX send ring RCBs and the RX return
1684 * ring RCBs, plus other things which live in NIC memory.
1687 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MEMWIN_BASEADDR
, 0);
1689 /* Configure mbuf memory pool */
1690 if (!(BGE_IS_5705_OR_BEYOND(sc
))) {
1691 if (sc
->bge_extram
) {
1692 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_BASEADDR
,
1694 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
)
1695 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_LEN
, 0x10000);
1697 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_LEN
, 0x18000);
1699 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_BASEADDR
,
1701 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
)
1702 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_LEN
, 0x10000);
1704 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_LEN
, 0x18000);
1707 /* Configure DMA resource pool */
1708 CSR_WRITE_4(sc
, BGE_BMAN_DMA_DESCPOOL_BASEADDR
,
1709 BGE_DMA_DESCRIPTORS
);
1710 CSR_WRITE_4(sc
, BGE_BMAN_DMA_DESCPOOL_LEN
, 0x2000);
1713 /* Configure mbuf pool watermarks */
1714 #ifdef ORIG_WPAUL_VALUES
1715 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_READDMA_LOWAT
, 24);
1716 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_MACRX_LOWAT
, 24);
1717 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_HIWAT
, 48);
1720 /* new broadcom docs strongly recommend these: */
1721 if (!BGE_IS_5705_OR_BEYOND(sc
)) {
1722 if (ifp
->if_mtu
> ETHER_MAX_LEN
) {
1723 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_READDMA_LOWAT
, 0x50);
1724 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_MACRX_LOWAT
, 0x20);
1725 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_HIWAT
, 0x60);
1727 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_READDMA_LOWAT
, 304);
1728 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_MACRX_LOWAT
, 152);
1729 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_HIWAT
, 380);
1731 } else if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
1732 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_READDMA_LOWAT
, 0x0);
1733 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_MACRX_LOWAT
, 0x04);
1734 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_HIWAT
, 0x10);
1736 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_READDMA_LOWAT
, 0x0);
1737 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_MACRX_LOWAT
, 0x10);
1738 CSR_WRITE_4(sc
, BGE_BMAN_MBUFPOOL_HIWAT
, 0x60);
1742 /* Configure DMA resource watermarks */
1743 CSR_WRITE_4(sc
, BGE_BMAN_DMA_DESCPOOL_LOWAT
, 5);
1744 CSR_WRITE_4(sc
, BGE_BMAN_DMA_DESCPOOL_HIWAT
, 10);
1746 /* Enable buffer manager */
1747 if (!BGE_IS_5705_OR_BEYOND(sc
)) {
1748 CSR_WRITE_4(sc
, BGE_BMAN_MODE
,
1749 BGE_BMANMODE_ENABLE
| BGE_BMANMODE_LOMBUF_ATTN
);
1751 /* Poll for buffer manager start indication */
1752 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
1753 if (CSR_READ_4(sc
, BGE_BMAN_MODE
) & BGE_BMANMODE_ENABLE
)
1758 if (i
== BGE_TIMEOUT
) {
1759 aprint_error_dev(sc
->bge_dev
,
1760 "buffer manager failed to start\n");
1765 /* Enable flow-through queues */
1766 CSR_WRITE_4(sc
, BGE_FTQ_RESET
, 0xFFFFFFFF);
1767 CSR_WRITE_4(sc
, BGE_FTQ_RESET
, 0);
1769 /* Wait until queue initialization is complete */
1770 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
1771 if (CSR_READ_4(sc
, BGE_FTQ_RESET
) == 0)
1776 if (i
== BGE_TIMEOUT
) {
1777 aprint_error_dev(sc
->bge_dev
,
1778 "flow-through queue init failed\n");
1782 /* Initialize the standard RX ring control block */
1783 rcb
= &sc
->bge_rdata
->bge_info
.bge_std_rx_rcb
;
1784 bge_set_hostaddr(&rcb
->bge_hostaddr
,
1785 BGE_RING_DMA_ADDR(sc
, bge_rx_std_ring
));
1786 if (BGE_IS_5705_OR_BEYOND(sc
))
1787 rcb
->bge_maxlen_flags
= BGE_RCB_MAXLEN_FLAGS(512, 0);
1789 rcb
->bge_maxlen_flags
=
1790 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN
, 0);
1792 rcb
->bge_nicaddr
= BGE_EXT_STD_RX_RINGS
;
1794 rcb
->bge_nicaddr
= BGE_STD_RX_RINGS
;
1795 CSR_WRITE_4(sc
, BGE_RX_STD_RCB_HADDR_HI
, rcb
->bge_hostaddr
.bge_addr_hi
);
1796 CSR_WRITE_4(sc
, BGE_RX_STD_RCB_HADDR_LO
, rcb
->bge_hostaddr
.bge_addr_lo
);
1797 CSR_WRITE_4(sc
, BGE_RX_STD_RCB_MAXLEN_FLAGS
, rcb
->bge_maxlen_flags
);
1798 CSR_WRITE_4(sc
, BGE_RX_STD_RCB_NICADDR
, rcb
->bge_nicaddr
);
1800 if (BGE_IS_5705_OR_BEYOND(sc
))
1801 sc
->bge_return_ring_cnt
= BGE_RETURN_RING_CNT_5705
;
1803 sc
->bge_return_ring_cnt
= BGE_RETURN_RING_CNT
;
1806 * Initialize the jumbo RX ring control block
1807 * We set the 'ring disabled' bit in the flags
1808 * field until we're actually ready to start
1809 * using this ring (i.e. once we set the MTU
1810 * high enough to require it).
1812 if (BGE_IS_JUMBO_CAPABLE(sc
)) {
1813 rcb
= &sc
->bge_rdata
->bge_info
.bge_jumbo_rx_rcb
;
1814 bge_set_hostaddr(&rcb
->bge_hostaddr
,
1815 BGE_RING_DMA_ADDR(sc
, bge_rx_jumbo_ring
));
1816 rcb
->bge_maxlen_flags
=
1817 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN
,
1818 BGE_RCB_FLAG_RING_DISABLED
);
1820 rcb
->bge_nicaddr
= BGE_EXT_JUMBO_RX_RINGS
;
1822 rcb
->bge_nicaddr
= BGE_JUMBO_RX_RINGS
;
1824 CSR_WRITE_4(sc
, BGE_RX_JUMBO_RCB_HADDR_HI
,
1825 rcb
->bge_hostaddr
.bge_addr_hi
);
1826 CSR_WRITE_4(sc
, BGE_RX_JUMBO_RCB_HADDR_LO
,
1827 rcb
->bge_hostaddr
.bge_addr_lo
);
1828 CSR_WRITE_4(sc
, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS
,
1829 rcb
->bge_maxlen_flags
);
1830 CSR_WRITE_4(sc
, BGE_RX_JUMBO_RCB_NICADDR
, rcb
->bge_nicaddr
);
1832 /* Set up dummy disabled mini ring RCB */
1833 rcb
= &sc
->bge_rdata
->bge_info
.bge_mini_rx_rcb
;
1834 rcb
->bge_maxlen_flags
= BGE_RCB_MAXLEN_FLAGS(0,
1835 BGE_RCB_FLAG_RING_DISABLED
);
1836 CSR_WRITE_4(sc
, BGE_RX_MINI_RCB_MAXLEN_FLAGS
,
1837 rcb
->bge_maxlen_flags
);
1839 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
1840 offsetof(struct bge_ring_data
, bge_info
),
1841 sizeof (struct bge_gib
),
1842 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1846 * Set the BD ring replenish thresholds. The recommended
1847 * values are 1/8th the number of descriptors allocated to
1850 i
= BGE_STD_RX_RING_CNT
/ 8;
1853 * Use a value of 8 for the following chips to workaround HW errata.
1854 * Some of these chips have been added based on empirical
1855 * evidence (they don't work unless this is done).
1857 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5750
||
1858 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5752
||
1859 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5755
||
1860 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5787
||
1861 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
)
1864 CSR_WRITE_4(sc
, BGE_RBDI_STD_REPL_THRESH
, i
);
1865 CSR_WRITE_4(sc
, BGE_RBDI_JUMBO_REPL_THRESH
, BGE_JUMBO_RX_RING_CNT
/ 8);
1868 * Disable all unused send rings by setting the 'ring disabled'
1869 * bit in the flags field of all the TX send ring control blocks.
1870 * These are located in NIC memory.
1872 rcb_addr
= BGE_MEMWIN_START
+ BGE_SEND_RING_RCB
;
1873 for (i
= 0; i
< BGE_TX_RINGS_EXTSSRAM_MAX
; i
++) {
1874 RCB_WRITE_4(sc
, rcb_addr
, bge_maxlen_flags
,
1875 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED
));
1876 RCB_WRITE_4(sc
, rcb_addr
, bge_nicaddr
, 0);
1877 rcb_addr
+= sizeof(struct bge_rcb
);
1880 /* Configure TX RCB 0 (we use only the first ring) */
1881 rcb_addr
= BGE_MEMWIN_START
+ BGE_SEND_RING_RCB
;
1882 bge_set_hostaddr(&taddr
, BGE_RING_DMA_ADDR(sc
, bge_tx_ring
));
1883 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_hi
, taddr
.bge_addr_hi
);
1884 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_lo
, taddr
.bge_addr_lo
);
1885 RCB_WRITE_4(sc
, rcb_addr
, bge_nicaddr
,
1886 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT
));
1887 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
1888 RCB_WRITE_4(sc
, rcb_addr
, bge_maxlen_flags
,
1889 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT
, 0));
1891 /* Disable all unused RX return rings */
1892 rcb_addr
= BGE_MEMWIN_START
+ BGE_RX_RETURN_RING_RCB
;
1893 for (i
= 0; i
< BGE_RX_RINGS_MAX
; i
++) {
1894 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_hi
, 0);
1895 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_lo
, 0);
1896 RCB_WRITE_4(sc
, rcb_addr
, bge_maxlen_flags
,
1897 BGE_RCB_MAXLEN_FLAGS(sc
->bge_return_ring_cnt
,
1898 BGE_RCB_FLAG_RING_DISABLED
));
1899 RCB_WRITE_4(sc
, rcb_addr
, bge_nicaddr
, 0);
1900 bge_writembx(sc
, BGE_MBX_RX_CONS0_LO
+
1901 (i
* (sizeof(u_int64_t
))), 0);
1902 rcb_addr
+= sizeof(struct bge_rcb
);
1905 /* Initialize RX ring indexes */
1906 bge_writembx(sc
, BGE_MBX_RX_STD_PROD_LO
, 0);
1907 bge_writembx(sc
, BGE_MBX_RX_JUMBO_PROD_LO
, 0);
1908 bge_writembx(sc
, BGE_MBX_RX_MINI_PROD_LO
, 0);
1911 * Set up RX return ring 0
1912 * Note that the NIC address for RX return rings is 0x00000000.
1913 * The return rings live entirely within the host, so the
1914 * nicaddr field in the RCB isn't used.
1916 rcb_addr
= BGE_MEMWIN_START
+ BGE_RX_RETURN_RING_RCB
;
1917 bge_set_hostaddr(&taddr
, BGE_RING_DMA_ADDR(sc
, bge_rx_return_ring
));
1918 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_hi
, taddr
.bge_addr_hi
);
1919 RCB_WRITE_4(sc
, rcb_addr
, bge_hostaddr
.bge_addr_lo
, taddr
.bge_addr_lo
);
1920 RCB_WRITE_4(sc
, rcb_addr
, bge_nicaddr
, 0x00000000);
1921 RCB_WRITE_4(sc
, rcb_addr
, bge_maxlen_flags
,
1922 BGE_RCB_MAXLEN_FLAGS(sc
->bge_return_ring_cnt
, 0));
1924 /* Set random backoff seed for TX */
1925 CSR_WRITE_4(sc
, BGE_TX_RANDOM_BACKOFF
,
1926 CLLADDR(ifp
->if_sadl
)[0] + CLLADDR(ifp
->if_sadl
)[1] +
1927 CLLADDR(ifp
->if_sadl
)[2] + CLLADDR(ifp
->if_sadl
)[3] +
1928 CLLADDR(ifp
->if_sadl
)[4] + CLLADDR(ifp
->if_sadl
)[5] +
1929 BGE_TX_BACKOFF_SEED_MASK
);
1931 /* Set inter-packet gap */
1932 CSR_WRITE_4(sc
, BGE_TX_LENGTHS
, 0x2620);
1935 * Specify which ring to use for packets that don't match
1938 CSR_WRITE_4(sc
, BGE_RX_RULES_CFG
, 0x08);
1941 * Configure number of RX lists. One interrupt distribution
1942 * list, sixteen active lists, one bad frames class.
1944 CSR_WRITE_4(sc
, BGE_RXLP_CFG
, 0x181);
1946 /* Inialize RX list placement stats mask. */
1947 CSR_WRITE_4(sc
, BGE_RXLP_STATS_ENABLE_MASK
, 0x007FFFFF);
1948 CSR_WRITE_4(sc
, BGE_RXLP_STATS_CTL
, 0x1);
1950 /* Disable host coalescing until we get it set up */
1951 CSR_WRITE_4(sc
, BGE_HCC_MODE
, 0x00000000);
1953 /* Poll to make sure it's shut down. */
1954 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
1955 if (!(CSR_READ_4(sc
, BGE_HCC_MODE
) & BGE_HCCMODE_ENABLE
))
1960 if (i
== BGE_TIMEOUT
) {
1961 aprint_error_dev(sc
->bge_dev
,
1962 "host coalescing engine failed to idle\n");
1966 /* Set up host coalescing defaults */
1967 CSR_WRITE_4(sc
, BGE_HCC_RX_COAL_TICKS
, sc
->bge_rx_coal_ticks
);
1968 CSR_WRITE_4(sc
, BGE_HCC_TX_COAL_TICKS
, sc
->bge_tx_coal_ticks
);
1969 CSR_WRITE_4(sc
, BGE_HCC_RX_MAX_COAL_BDS
, sc
->bge_rx_max_coal_bds
);
1970 CSR_WRITE_4(sc
, BGE_HCC_TX_MAX_COAL_BDS
, sc
->bge_tx_max_coal_bds
);
1971 if (!(BGE_IS_5705_OR_BEYOND(sc
))) {
1972 CSR_WRITE_4(sc
, BGE_HCC_RX_COAL_TICKS_INT
, 0);
1973 CSR_WRITE_4(sc
, BGE_HCC_TX_COAL_TICKS_INT
, 0);
1975 CSR_WRITE_4(sc
, BGE_HCC_RX_MAX_COAL_BDS_INT
, 0);
1976 CSR_WRITE_4(sc
, BGE_HCC_TX_MAX_COAL_BDS_INT
, 0);
1978 /* Set up address of statistics block */
1979 if (!(BGE_IS_5705_OR_BEYOND(sc
))) {
1980 bge_set_hostaddr(&taddr
,
1981 BGE_RING_DMA_ADDR(sc
, bge_info
.bge_stats
));
1982 CSR_WRITE_4(sc
, BGE_HCC_STATS_TICKS
, sc
->bge_stat_ticks
);
1983 CSR_WRITE_4(sc
, BGE_HCC_STATS_BASEADDR
, BGE_STATS_BLOCK
);
1984 CSR_WRITE_4(sc
, BGE_HCC_STATS_ADDR_HI
, taddr
.bge_addr_hi
);
1985 CSR_WRITE_4(sc
, BGE_HCC_STATS_ADDR_LO
, taddr
.bge_addr_lo
);
1988 /* Set up address of status block */
1989 bge_set_hostaddr(&taddr
, BGE_RING_DMA_ADDR(sc
, bge_status_block
));
1990 CSR_WRITE_4(sc
, BGE_HCC_STATUSBLK_BASEADDR
, BGE_STATUS_BLOCK
);
1991 CSR_WRITE_4(sc
, BGE_HCC_STATUSBLK_ADDR_HI
, taddr
.bge_addr_hi
);
1992 CSR_WRITE_4(sc
, BGE_HCC_STATUSBLK_ADDR_LO
, taddr
.bge_addr_lo
);
1993 sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_rx_prod_idx
= 0;
1994 sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_tx_cons_idx
= 0;
1996 /* Turn on host coalescing state machine */
1997 CSR_WRITE_4(sc
, BGE_HCC_MODE
, BGE_HCCMODE_ENABLE
);
1999 /* Turn on RX BD completion state machine and enable attentions */
2000 CSR_WRITE_4(sc
, BGE_RBDC_MODE
,
2001 BGE_RBDCMODE_ENABLE
| BGE_RBDCMODE_ATTN
);
2003 /* Turn on RX list placement state machine */
2004 CSR_WRITE_4(sc
, BGE_RXLP_MODE
, BGE_RXLPMODE_ENABLE
);
2006 /* Turn on RX list selector state machine. */
2007 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
2008 CSR_WRITE_4(sc
, BGE_RXLS_MODE
, BGE_RXLSMODE_ENABLE
);
2010 val
= BGE_MACMODE_TXDMA_ENB
| BGE_MACMODE_RXDMA_ENB
|
2011 BGE_MACMODE_RX_STATS_CLEAR
| BGE_MACMODE_TX_STATS_CLEAR
|
2012 BGE_MACMODE_RX_STATS_ENB
| BGE_MACMODE_TX_STATS_ENB
|
2013 BGE_MACMODE_FRMHDR_DMA_ENB
;
2015 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
)
2016 val
|= BGE_PORTMODE_TBI
;
2017 else if (sc
->bge_flags
& BGE_PHY_FIBER_MII
)
2018 val
|= BGE_PORTMODE_GMII
;
2020 val
|= BGE_PORTMODE_MII
;
2022 /* Turn on DMA, clear stats */
2023 CSR_WRITE_4(sc
, BGE_MAC_MODE
, val
);
2026 /* Set misc. local control, enable interrupts on attentions */
2027 sc
->bge_local_ctrl_reg
= BGE_MLC_INTR_ONATTN
| BGE_MLC_AUTO_EEPROM
;
2030 /* Assert GPIO pins for PHY reset */
2031 BGE_SETBIT(sc
, BGE_MISC_LOCAL_CTL
, BGE_MLC_MISCIO_OUT0
|
2032 BGE_MLC_MISCIO_OUT1
|BGE_MLC_MISCIO_OUT2
);
2033 BGE_SETBIT(sc
, BGE_MISC_LOCAL_CTL
, BGE_MLC_MISCIO_OUTEN0
|
2034 BGE_MLC_MISCIO_OUTEN1
|BGE_MLC_MISCIO_OUTEN2
);
2037 #if defined(not_quite_yet)
2038 /* Linux driver enables enable gpio pin #1 on 5700s */
2039 if (sc
->bge_chipid
== BGE_CHIPID_BCM5700
) {
2040 sc
->bge_local_ctrl_reg
|=
2041 (BGE_MLC_MISCIO_OUT1
|BGE_MLC_MISCIO_OUTEN1
);
2044 CSR_WRITE_4(sc
, BGE_MISC_LOCAL_CTL
, sc
->bge_local_ctrl_reg
);
2046 /* Turn on DMA completion state machine */
2047 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
2048 CSR_WRITE_4(sc
, BGE_DMAC_MODE
, BGE_DMACMODE_ENABLE
);
2050 /* Turn on write DMA state machine */
2052 uint32_t bge_wdma_mode
=
2053 BGE_WDMAMODE_ENABLE
|BGE_WDMAMODE_ALL_ATTNS
;
2055 /* Enable host coalescing bug fix; see Linux tg3.c */
2056 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5755
||
2057 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5787
)
2058 bge_wdma_mode
|= (1 << 29);
2060 CSR_WRITE_4(sc
, BGE_WDMA_MODE
, bge_wdma_mode
);
2063 /* Turn on read DMA state machine */
2065 uint32_t dma_read_modebits
;
2068 BGE_RDMAMODE_ENABLE
| BGE_RDMAMODE_ALL_ATTNS
;
2070 if ((sc
->bge_flags
& BGE_PCIE
) && 0) {
2071 dma_read_modebits
|= BGE_RDMA_MODE_FIFO_LONG_BURST
;
2072 } else if (BGE_IS_5705_OR_BEYOND(sc
)) {
2073 dma_read_modebits
|= BGE_RDMA_MODE_FIFO_SIZE_128
;
2076 /* XXX broadcom-supplied linux driver; undocumented */
2077 if (BGE_IS_5750_OR_BEYOND(sc
)) {
2079 * XXX: magic values.
2080 * From Broadcom-supplied Linux driver; apparently
2081 * required to workaround a DMA bug affecting TSO
2082 * on bcm575x/bcm5721?
2084 dma_read_modebits
|= (1 << 27);
2086 CSR_WRITE_4(sc
, BGE_RDMA_MODE
, dma_read_modebits
);
2089 /* Turn on RX data completion state machine */
2090 CSR_WRITE_4(sc
, BGE_RDC_MODE
, BGE_RDCMODE_ENABLE
);
2092 /* Turn on RX BD initiator state machine */
2093 CSR_WRITE_4(sc
, BGE_RBDI_MODE
, BGE_RBDIMODE_ENABLE
);
2095 /* Turn on RX data and RX BD initiator state machine */
2096 CSR_WRITE_4(sc
, BGE_RDBDI_MODE
, BGE_RDBDIMODE_ENABLE
);
2098 /* Turn on Mbuf cluster free state machine */
2099 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
2100 CSR_WRITE_4(sc
, BGE_MBCF_MODE
, BGE_MBCFMODE_ENABLE
);
2102 /* Turn on send BD completion state machine */
2103 CSR_WRITE_4(sc
, BGE_SBDC_MODE
, BGE_SBDCMODE_ENABLE
);
2105 /* Turn on send data completion state machine */
2106 CSR_WRITE_4(sc
, BGE_SDC_MODE
, BGE_SDCMODE_ENABLE
);
2108 /* Turn on send data initiator state machine */
2109 if (BGE_IS_5750_OR_BEYOND(sc
)) {
2110 /* XXX: magic value from Linux driver */
2111 CSR_WRITE_4(sc
, BGE_SDI_MODE
, BGE_SDIMODE_ENABLE
| 0x08);
2113 CSR_WRITE_4(sc
, BGE_SDI_MODE
, BGE_SDIMODE_ENABLE
);
2116 /* Turn on send BD initiator state machine */
2117 CSR_WRITE_4(sc
, BGE_SBDI_MODE
, BGE_SBDIMODE_ENABLE
);
2119 /* Turn on send BD selector state machine */
2120 CSR_WRITE_4(sc
, BGE_SRS_MODE
, BGE_SRSMODE_ENABLE
);
2122 CSR_WRITE_4(sc
, BGE_SDI_STATS_ENABLE_MASK
, 0x007FFFFF);
2123 CSR_WRITE_4(sc
, BGE_SDI_STATS_CTL
,
2124 BGE_SDISTATSCTL_ENABLE
| BGE_SDISTATSCTL_FASTER
);
2126 /* ack/clear link change events */
2127 CSR_WRITE_4(sc
, BGE_MAC_STS
, BGE_MACSTAT_SYNC_CHANGED
|
2128 BGE_MACSTAT_CFG_CHANGED
| BGE_MACSTAT_MI_COMPLETE
|
2129 BGE_MACSTAT_CFG_CHANGED
);
2130 CSR_WRITE_4(sc
, BGE_MI_STS
, 0);
2132 /* Enable PHY auto polling (for MII/GMII only) */
2133 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
2134 CSR_WRITE_4(sc
, BGE_MI_STS
, BGE_MISTS_LINK
);
2136 BGE_STS_SETBIT(sc
, BGE_STS_AUTOPOLL
);
2137 BGE_SETBIT(sc
, BGE_MI_MODE
, BGE_MIMODE_AUTOPOLL
| (10 << 16));
2138 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5700
)
2139 CSR_WRITE_4(sc
, BGE_MAC_EVT_ENB
,
2140 BGE_EVTENB_MI_INTERRUPT
);
2144 * Clear any pending link state attention.
2145 * Otherwise some link state change events may be lost until attention
2146 * is cleared by bge_intr() -> bge_link_upd() sequence.
2147 * It's not necessary on newer BCM chips - perhaps enabling link
2148 * state change attentions implies clearing pending attention.
2150 CSR_WRITE_4(sc
, BGE_MAC_STS
, BGE_MACSTAT_SYNC_CHANGED
|
2151 BGE_MACSTAT_CFG_CHANGED
| BGE_MACSTAT_MI_COMPLETE
|
2152 BGE_MACSTAT_LINK_CHANGED
);
2154 /* Enable link state change attentions. */
2155 BGE_SETBIT(sc
, BGE_MAC_EVT_ENB
, BGE_EVTENB_LINK_CHANGED
);
2160 static const struct bge_revision
*
2161 bge_lookup_rev(uint32_t chipid
)
2163 const struct bge_revision
*br
;
2165 for (br
= bge_revisions
; br
->br_name
!= NULL
; br
++) {
2166 if (br
->br_chipid
== chipid
)
2170 for (br
= bge_majorrevs
; br
->br_name
!= NULL
; br
++) {
2171 if (br
->br_chipid
== BGE_ASICREV(chipid
))
2178 static const struct bge_product
*
2179 bge_lookup(const struct pci_attach_args
*pa
)
2181 const struct bge_product
*bp
;
2183 for (bp
= bge_products
; bp
->bp_name
!= NULL
; bp
++) {
2184 if (PCI_VENDOR(pa
->pa_id
) == bp
->bp_vendor
&&
2185 PCI_PRODUCT(pa
->pa_id
) == bp
->bp_product
)
2193 bge_setpowerstate(struct bge_softc
*sc
, int powerlevel
)
2196 u_int32_t pm_ctl
= 0;
2198 /* XXX FIXME: make sure indirect accesses enabled? */
2199 pm_ctl
= pci_conf_read(sc
->bge_dev
, BGE_PCI_MISC_CTL
, 4);
2200 pm_ctl
|= BGE_PCIMISCCTL_INDIRECT_ACCESS
;
2201 pci_write_config(sc
->bge_dev
, BGE_PCI_MISC_CTL
, pm_ctl
, 4);
2203 /* clear the PME_assert bit and power state bits, enable PME */
2204 pm_ctl
= pci_conf_read(sc
->bge_dev
, BGE_PCI_PWRMGMT_CMD
, 2);
2205 pm_ctl
&= ~PCIM_PSTAT_DMASK
;
2208 if (powerlevel
== 0) {
2209 pm_ctl
|= PCIM_PSTAT_D0
;
2210 pci_write_config(sc
->bge_dev
, BGE_PCI_PWRMGMT_CMD
,
2213 CSR_WRITE_4(sc
, BGE_MISC_LOCAL_CTL
, sc
->bge_local_ctrl_reg
);
2217 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2218 bge_miibus_writereg(sc
->bge_dev
, 1, 0x18, 0x02);
2220 DELAY(40); DELAY(40); DELAY(40);
2221 DELAY(10000); /* above not quite adequate on 5700 */
2227 * Entering ACPI power states D1-D3 is achieved by wiggling
2228 * GMII gpio pins. Example code assumes all hardware vendors
2229 * followed Broadom's sample pcb layout. Until we verify that
2230 * for all supported OEM cards, states D1-D3 are unsupported.
2232 aprint_error_dev(sc
->bge_dev
,
2233 "power state %d unimplemented; check GPIO pins\n",
2241 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2242 * against our list and return its name if we find a match. Note
2243 * that since the Broadcom controller contains VPD support, we
2244 * can get the device name string from the controller itself instead
2245 * of the compiled-in string. This is a little slow, but it guarantees
2246 * we'll always announce the right product name.
2249 bge_probe(device_t parent
, cfdata_t match
, void *aux
)
2251 struct pci_attach_args
*pa
= (struct pci_attach_args
*)aux
;
2253 if (bge_lookup(pa
) != NULL
)
2260 bge_attach(device_t parent
, device_t self
, void *aux
)
2262 struct bge_softc
*sc
= device_private(self
);
2263 struct pci_attach_args
*pa
= aux
;
2264 prop_dictionary_t dict
;
2265 const struct bge_product
*bp
;
2266 const struct bge_revision
*br
;
2267 pci_chipset_tag_t pc
;
2268 pci_intr_handle_t ih
;
2269 const char *intrstr
= NULL
;
2270 bus_dma_segment_t seg
;
2272 u_int32_t hwcfg
= 0;
2277 u_char eaddr
[ETHER_ADDR_LEN
];
2283 bp
= bge_lookup(pa
);
2284 KASSERT(bp
!= NULL
);
2286 sc
->sc_pc
= pa
->pa_pc
;
2287 sc
->sc_pcitag
= pa
->pa_tag
;
2290 aprint_naive(": Ethernet controller\n");
2291 aprint_normal(": %s\n", bp
->bp_name
);
2294 * Map control/status registers.
2296 DPRINTFN(5, ("Map control/status regs\n"));
2298 command
= pci_conf_read(pc
, sc
->sc_pcitag
, PCI_COMMAND_STATUS_REG
);
2299 command
|= PCI_COMMAND_MEM_ENABLE
| PCI_COMMAND_MASTER_ENABLE
;
2300 pci_conf_write(pc
, sc
->sc_pcitag
, PCI_COMMAND_STATUS_REG
, command
);
2301 command
= pci_conf_read(pc
, sc
->sc_pcitag
, PCI_COMMAND_STATUS_REG
);
2303 if (!(command
& PCI_COMMAND_MEM_ENABLE
)) {
2304 aprint_error_dev(sc
->bge_dev
,
2305 "failed to enable memory mapping!\n");
2309 DPRINTFN(5, ("pci_mem_find\n"));
2310 memtype
= pci_mapreg_type(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_BAR0
);
2312 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT
:
2313 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_64BIT
:
2314 if (pci_mapreg_map(pa
, BGE_PCI_BAR0
,
2315 memtype
, 0, &sc
->bge_btag
, &sc
->bge_bhandle
,
2316 &memaddr
, &memsize
) == 0)
2319 aprint_error_dev(sc
->bge_dev
, "can't find mem space\n");
2323 DPRINTFN(5, ("pci_intr_map\n"));
2324 if (pci_intr_map(pa
, &ih
)) {
2325 aprint_error_dev(sc
->bge_dev
, "couldn't map interrupt\n");
2329 DPRINTFN(5, ("pci_intr_string\n"));
2330 intrstr
= pci_intr_string(pc
, ih
);
2332 DPRINTFN(5, ("pci_intr_establish\n"));
2333 sc
->bge_intrhand
= pci_intr_establish(pc
, ih
, IPL_NET
, bge_intr
, sc
);
2335 if (sc
->bge_intrhand
== NULL
) {
2336 aprint_error_dev(sc
->bge_dev
,
2337 "couldn't establish interrupt%s%s\n",
2338 intrstr
? " at " : "", intrstr
? intrstr
: "");
2341 aprint_normal_dev(sc
->bge_dev
, "interrupting at %s\n", intrstr
);
2344 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2345 * can clobber the chip's PCI config-space power control registers,
2346 * leaving the card in D3 powersave state.
2347 * We do not have memory-mapped registers in this state,
2348 * so force device into D0 state before starting initialization.
2350 pm_ctl
= pci_conf_read(pc
, sc
->sc_pcitag
, BGE_PCI_PWRMGMT_CMD
);
2351 pm_ctl
&= ~(PCI_PWR_D0
|PCI_PWR_D1
|PCI_PWR_D2
|PCI_PWR_D3
);
2352 pm_ctl
|= (1 << 8) | PCI_PWR_D0
; /* D0 state */
2353 pci_conf_write(pc
, sc
->sc_pcitag
, BGE_PCI_PWRMGMT_CMD
, pm_ctl
);
2354 DELAY(1000); /* 27 usec is allegedly sufficent */
2360 pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MISC_CTL
) &
2361 BGE_PCIMISCCTL_ASICREV
;
2364 * Detect PCI-Express devices
2365 * XXX: guessed from Linux/FreeBSD; no documentation
2367 if (pci_get_capability(sc
->sc_pc
, sc
->sc_pcitag
, PCI_CAP_PCIEXPRESS
,
2369 sc
->bge_flags
|= BGE_PCIE
;
2374 if ((pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_PCISTATE
) &
2375 BGE_PCISTATE_PCI_BUSMODE
) == 0)
2376 sc
->bge_flags
|= BGE_PCIX
;
2378 if (sc
->bge_chipid
== BGE_CHIPID_BCM5701_A0
||
2379 sc
->bge_chipid
== BGE_CHIPID_BCM5701_B0
)
2380 sc
->bge_flags
|= BGE_PHY_CRC_BUG
;
2381 if (BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5703_AX
||
2382 BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5704_AX
)
2383 sc
->bge_flags
|= BGE_PHY_ADC_BUG
;
2384 if (sc
->bge_chipid
== BGE_CHIPID_BCM5704_A0
)
2385 sc
->bge_flags
|= BGE_PHY_5704_A0_BUG
;
2387 if (BGE_IS_5705_OR_BEYOND(sc
)) {
2388 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5755
||
2389 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5787
) {
2390 if (PCI_PRODUCT(pa
->pa_id
) != PCI_PRODUCT_BROADCOM_BCM5722
&&
2391 PCI_PRODUCT(pa
->pa_id
) != PCI_PRODUCT_BROADCOM_BCM5756
)
2392 sc
->bge_flags
|= BGE_PHY_JITTER_BUG
;
2393 if (PCI_PRODUCT(pa
->pa_id
) == PCI_PRODUCT_BROADCOM_BCM5755M
)
2394 sc
->bge_flags
|= BGE_PHY_ADJUST_TRIM
;
2395 } else if (BGE_ASICREV(sc
->bge_chipid
) != BGE_ASICREV_BCM5906
)
2396 sc
->bge_flags
|= BGE_PHY_BER_BUG
;
2399 /* Try to reset the chip. */
2400 DPRINTFN(5, ("bge_reset\n"));
2403 if (bge_chipinit(sc
)) {
2404 aprint_error_dev(sc
->bge_dev
, "chip initialization failed\n");
2405 bge_release_resources(sc
);
2410 * Get station address from the EEPROM.
2412 if (bge_get_eaddr(sc
, eaddr
)) {
2413 aprint_error_dev(sc
->bge_dev
,
2414 "failed to reade station address\n");
2415 bge_release_resources(sc
);
2419 br
= bge_lookup_rev(sc
->bge_chipid
);
2422 aprint_normal_dev(sc
->bge_dev
, "unknown ASIC (0x%04x)",
2423 sc
->bge_chipid
>> 16);
2425 aprint_normal_dev(sc
->bge_dev
, "ASIC %s (0x%04x)",
2426 br
->br_name
, sc
->bge_chipid
>> 16);
2428 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr
));
2430 /* Allocate the general information block and ring buffers. */
2431 if (pci_dma64_available(pa
))
2432 sc
->bge_dmatag
= pa
->pa_dmat64
;
2434 sc
->bge_dmatag
= pa
->pa_dmat
;
2435 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2436 if (bus_dmamem_alloc(sc
->bge_dmatag
, sizeof(struct bge_ring_data
),
2437 PAGE_SIZE
, 0, &seg
, 1, &rseg
, BUS_DMA_NOWAIT
)) {
2438 aprint_error_dev(sc
->bge_dev
, "can't alloc rx buffers\n");
2441 DPRINTFN(5, ("bus_dmamem_map\n"));
2442 if (bus_dmamem_map(sc
->bge_dmatag
, &seg
, rseg
,
2443 sizeof(struct bge_ring_data
), &kva
,
2445 aprint_error_dev(sc
->bge_dev
,
2446 "can't map DMA buffers (%zu bytes)\n",
2447 sizeof(struct bge_ring_data
));
2448 bus_dmamem_free(sc
->bge_dmatag
, &seg
, rseg
);
2451 DPRINTFN(5, ("bus_dmamem_create\n"));
2452 if (bus_dmamap_create(sc
->bge_dmatag
, sizeof(struct bge_ring_data
), 1,
2453 sizeof(struct bge_ring_data
), 0,
2454 BUS_DMA_NOWAIT
, &sc
->bge_ring_map
)) {
2455 aprint_error_dev(sc
->bge_dev
, "can't create DMA map\n");
2456 bus_dmamem_unmap(sc
->bge_dmatag
, kva
,
2457 sizeof(struct bge_ring_data
));
2458 bus_dmamem_free(sc
->bge_dmatag
, &seg
, rseg
);
2461 DPRINTFN(5, ("bus_dmamem_load\n"));
2462 if (bus_dmamap_load(sc
->bge_dmatag
, sc
->bge_ring_map
, kva
,
2463 sizeof(struct bge_ring_data
), NULL
,
2465 bus_dmamap_destroy(sc
->bge_dmatag
, sc
->bge_ring_map
);
2466 bus_dmamem_unmap(sc
->bge_dmatag
, kva
,
2467 sizeof(struct bge_ring_data
));
2468 bus_dmamem_free(sc
->bge_dmatag
, &seg
, rseg
);
2472 DPRINTFN(5, ("bzero\n"));
2473 sc
->bge_rdata
= (struct bge_ring_data
*)kva
;
2475 memset(sc
->bge_rdata
, 0, sizeof(struct bge_ring_data
));
2477 /* Try to allocate memory for jumbo buffers. */
2478 if (BGE_IS_JUMBO_CAPABLE(sc
)) {
2479 if (bge_alloc_jumbo_mem(sc
)) {
2480 aprint_error_dev(sc
->bge_dev
,
2481 "jumbo buffer allocation failed\n");
2483 sc
->ethercom
.ec_capabilities
|= ETHERCAP_JUMBO_MTU
;
2486 /* Set default tuneable values. */
2487 sc
->bge_stat_ticks
= BGE_TICKS_PER_SEC
;
2488 sc
->bge_rx_coal_ticks
= 150;
2489 sc
->bge_rx_max_coal_bds
= 64;
2490 #ifdef ORIG_WPAUL_VALUES
2491 sc
->bge_tx_coal_ticks
= 150;
2492 sc
->bge_tx_max_coal_bds
= 128;
2494 sc
->bge_tx_coal_ticks
= 300;
2495 sc
->bge_tx_max_coal_bds
= 400;
2497 if (BGE_IS_5705_OR_BEYOND(sc
)) {
2498 sc
->bge_tx_coal_ticks
= (12 * 5);
2499 sc
->bge_tx_max_coal_bds
= (12 * 5);
2500 aprint_verbose_dev(sc
->bge_dev
,
2501 "setting short Tx thresholds\n");
2504 /* Set up ifnet structure */
2505 ifp
= &sc
->ethercom
.ec_if
;
2507 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
2508 ifp
->if_ioctl
= bge_ioctl
;
2509 ifp
->if_stop
= bge_stop
;
2510 ifp
->if_start
= bge_start
;
2511 ifp
->if_init
= bge_init
;
2512 ifp
->if_watchdog
= bge_watchdog
;
2513 IFQ_SET_MAXLEN(&ifp
->if_snd
, max(BGE_TX_RING_CNT
- 1, IFQ_MAXLEN
));
2514 IFQ_SET_READY(&ifp
->if_snd
);
2515 DPRINTFN(5, ("strcpy if_xname\n"));
2516 strcpy(ifp
->if_xname
, device_xname(sc
->bge_dev
));
2518 if (sc
->bge_chipid
!= BGE_CHIPID_BCM5700_B0
)
2519 sc
->ethercom
.ec_if
.if_capabilities
|=
2520 IFCAP_CSUM_IPv4_Tx
| IFCAP_CSUM_IPv4_Rx
|
2521 IFCAP_CSUM_TCPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
|
2522 IFCAP_CSUM_UDPv4_Tx
| IFCAP_CSUM_UDPv4_Rx
;
2523 sc
->ethercom
.ec_capabilities
|=
2524 ETHERCAP_VLAN_HWTAGGING
| ETHERCAP_VLAN_MTU
;
2526 if (sc
->bge_flags
& BGE_PCIE
)
2527 sc
->ethercom
.ec_if
.if_capabilities
|= IFCAP_TSOv4
;
2532 DPRINTFN(5, ("mii setup\n"));
2533 sc
->bge_mii
.mii_ifp
= ifp
;
2534 sc
->bge_mii
.mii_readreg
= bge_miibus_readreg
;
2535 sc
->bge_mii
.mii_writereg
= bge_miibus_writereg
;
2536 sc
->bge_mii
.mii_statchg
= bge_miibus_statchg
;
2539 * Figure out what sort of media we have by checking the
2540 * hardware config word in the first 32k of NIC internal memory,
2541 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2542 * cards, this value appears to be unset. If that's the
2543 * case, we have to rely on identifying the NIC by its PCI
2544 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2546 if (bge_readmem_ind(sc
, BGE_SOFTWARE_GENCOMM_SIG
) == BGE_MAGIC_NUMBER
) {
2547 hwcfg
= bge_readmem_ind(sc
, BGE_SOFTWARE_GENCOMM_NICCFG
);
2549 bge_read_eeprom(sc
, (void *)&hwcfg
,
2550 BGE_EE_HWCFG_OFFSET
, sizeof(hwcfg
));
2551 hwcfg
= be32toh(hwcfg
);
2553 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2554 if (PCI_PRODUCT(pa
->pa_id
) == SK_SUBSYSID_9D41
||
2555 (hwcfg
& BGE_HWCFG_MEDIA
) == BGE_MEDIA_FIBER
) {
2556 if (BGE_IS_5714_FAMILY(sc
))
2557 sc
->bge_flags
|= BGE_PHY_FIBER_MII
;
2559 sc
->bge_flags
|= BGE_PHY_FIBER_TBI
;
2562 /* set phyflags before mii_attach() */
2563 dict
= device_properties(self
);
2564 prop_dictionary_set_uint32(dict
, "phyflags", sc
->bge_flags
);
2566 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
2567 ifmedia_init(&sc
->bge_ifmedia
, IFM_IMASK
, bge_ifmedia_upd
,
2569 ifmedia_add(&sc
->bge_ifmedia
, IFM_ETHER
|IFM_1000_SX
, 0, NULL
);
2570 ifmedia_add(&sc
->bge_ifmedia
, IFM_ETHER
|IFM_1000_SX
|IFM_FDX
,
2572 ifmedia_add(&sc
->bge_ifmedia
, IFM_ETHER
|IFM_AUTO
, 0, NULL
);
2573 ifmedia_set(&sc
->bge_ifmedia
, IFM_ETHER
|IFM_AUTO
);
2574 /* Pretend the user requested this setting */
2575 sc
->bge_ifmedia
.ifm_media
= sc
->bge_ifmedia
.ifm_cur
->ifm_media
;
2578 * Do transceiver setup.
2580 ifmedia_init(&sc
->bge_mii
.mii_media
, 0, bge_ifmedia_upd
,
2582 mii_attach(sc
->bge_dev
, &sc
->bge_mii
, 0xffffffff,
2583 MII_PHY_ANY
, MII_OFFSET_ANY
,
2584 MIIF_FORCEANEG
|MIIF_DOPAUSE
);
2586 if (LIST_EMPTY(&sc
->bge_mii
.mii_phys
)) {
2587 aprint_error_dev(sc
->bge_dev
, "no PHY found!\n");
2588 ifmedia_add(&sc
->bge_mii
.mii_media
,
2589 IFM_ETHER
|IFM_MANUAL
, 0, NULL
);
2590 ifmedia_set(&sc
->bge_mii
.mii_media
,
2591 IFM_ETHER
|IFM_MANUAL
);
2593 ifmedia_set(&sc
->bge_mii
.mii_media
,
2594 IFM_ETHER
|IFM_AUTO
);
2598 * When using the BCM5701 in PCI-X mode, data corruption has
2599 * been observed in the first few bytes of some received packets.
2600 * Aligning the packet buffer in memory eliminates the corruption.
2601 * Unfortunately, this misaligns the packet payloads. On platforms
2602 * which do not support unaligned accesses, we will realign the
2603 * payloads by copying the received packets.
2605 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5701
&&
2606 sc
->bge_flags
& BGE_PCIX
)
2607 sc
->bge_flags
|= BGE_RX_ALIGNBUG
;
2609 misccfg
= CSR_READ_4(sc
, BGE_MISC_CFG
);
2610 misccfg
&= BGE_MISCCFG_BOARD_ID_MASK
;
2612 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5705
&&
2613 (misccfg
== BGE_MISCCFG_BOARD_ID_5788
||
2614 misccfg
== BGE_MISCCFG_BOARD_ID_5788M
))
2615 sc
->bge_flags
|= BGE_IS_5788
;
2618 * Call MI attach routine.
2620 DPRINTFN(5, ("if_attach\n"));
2622 DPRINTFN(5, ("ether_ifattach\n"));
2623 ether_ifattach(ifp
, eaddr
);
2625 rnd_attach_source(&sc
->rnd_source
, device_xname(sc
->bge_dev
),
2628 #ifdef BGE_EVENT_COUNTERS
2630 * Attach event counters.
2632 evcnt_attach_dynamic(&sc
->bge_ev_intr
, EVCNT_TYPE_INTR
,
2633 NULL
, device_xname(sc
->bge_dev
), "intr");
2634 evcnt_attach_dynamic(&sc
->bge_ev_tx_xoff
, EVCNT_TYPE_MISC
,
2635 NULL
, device_xname(sc
->bge_dev
), "tx_xoff");
2636 evcnt_attach_dynamic(&sc
->bge_ev_tx_xon
, EVCNT_TYPE_MISC
,
2637 NULL
, device_xname(sc
->bge_dev
), "tx_xon");
2638 evcnt_attach_dynamic(&sc
->bge_ev_rx_xoff
, EVCNT_TYPE_MISC
,
2639 NULL
, device_xname(sc
->bge_dev
), "rx_xoff");
2640 evcnt_attach_dynamic(&sc
->bge_ev_rx_xon
, EVCNT_TYPE_MISC
,
2641 NULL
, device_xname(sc
->bge_dev
), "rx_xon");
2642 evcnt_attach_dynamic(&sc
->bge_ev_rx_macctl
, EVCNT_TYPE_MISC
,
2643 NULL
, device_xname(sc
->bge_dev
), "rx_macctl");
2644 evcnt_attach_dynamic(&sc
->bge_ev_xoffentered
, EVCNT_TYPE_MISC
,
2645 NULL
, device_xname(sc
->bge_dev
), "xoffentered");
2646 #endif /* BGE_EVENT_COUNTERS */
2647 DPRINTFN(5, ("callout_init\n"));
2648 callout_init(&sc
->bge_timeout
, 0);
2650 if (pmf_device_register(self
, NULL
, NULL
))
2651 pmf_class_network_register(self
, ifp
);
2653 aprint_error_dev(self
, "couldn't establish power handler\n");
2657 bge_release_resources(struct bge_softc
*sc
)
2659 if (sc
->bge_vpd_prodname
!= NULL
)
2660 free(sc
->bge_vpd_prodname
, M_DEVBUF
);
2662 if (sc
->bge_vpd_readonly
!= NULL
)
2663 free(sc
->bge_vpd_readonly
, M_DEVBUF
);
2667 bge_reset(struct bge_softc
*sc
)
2669 u_int32_t cachesize
, command
, pcistate
, new_pcistate
;
2671 void (*write_op
)(struct bge_softc
*, int, int);
2673 if (BGE_IS_5750_OR_BEYOND(sc
) && !BGE_IS_5714_FAMILY(sc
) &&
2674 (BGE_ASICREV(sc
->bge_chipid
) != BGE_ASICREV_BCM5906
)) {
2675 if (sc
->bge_flags
& BGE_PCIE
) {
2676 write_op
= bge_writemem_direct
;
2678 write_op
= bge_writemem_ind
;
2681 write_op
= bge_writereg_ind
;
2685 /* Save some important PCI state. */
2686 cachesize
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_CACHESZ
);
2687 command
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_CMD
);
2688 pcistate
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_PCISTATE
);
2690 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MISC_CTL
,
2691 BGE_PCIMISCCTL_INDIRECT_ACCESS
|BGE_PCIMISCCTL_MASK_PCI_INTR
|
2692 BGE_HIF_SWAP_OPTIONS
|BGE_PCIMISCCTL_PCISTATE_RW
);
2694 /* Disable fastboot on controllers that support it. */
2695 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5752
||
2696 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5755
||
2697 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5787
)
2698 CSR_WRITE_4(sc
, BGE_FASTBOOT_PC
, 0);
2700 val
= BGE_MISCCFG_RESET_CORE_CLOCKS
| (65<<1);
2702 * XXX: from FreeBSD/Linux; no documentation
2704 if (sc
->bge_flags
& BGE_PCIE
) {
2705 if (CSR_READ_4(sc
, BGE_PCIE_CTL1
) == 0x60)
2706 /* PCI Express 1.0 system */
2707 CSR_WRITE_4(sc
, BGE_PCIE_CTL1
, 0x20);
2708 if (sc
->bge_chipid
!= BGE_CHIPID_BCM5750_A0
) {
2710 * Prevent PCI Express link training
2711 * during global reset.
2713 CSR_WRITE_4(sc
, BGE_MISC_CFG
, 1 << 29);
2719 * Set GPHY Power Down Override to leave GPHY
2720 * powered up in D0 uninitialized.
2722 if (BGE_IS_5705_OR_BEYOND(sc
))
2723 val
|= BGE_MISCCFG_KEEP_GPHY_POWER
;
2725 /* Issue global reset */
2726 write_op(sc
, BGE_MISC_CFG
, val
);
2728 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
2729 i
= CSR_READ_4(sc
, BGE_VCPU_STATUS
);
2730 CSR_WRITE_4(sc
, BGE_VCPU_STATUS
,
2731 i
| BGE_VCPU_STATUS_DRV_RESET
);
2732 i
= CSR_READ_4(sc
, BGE_VCPU_EXT_CTRL
);
2733 CSR_WRITE_4(sc
, BGE_VCPU_EXT_CTRL
,
2734 i
& ~BGE_VCPU_EXT_CTRL_HALT_CPU
);
2740 * XXX: from FreeBSD/Linux; no documentation
2742 if (sc
->bge_flags
& BGE_PCIE
) {
2743 if (sc
->bge_chipid
== BGE_CHIPID_BCM5750_A0
) {
2747 /* XXX: Magic Numbers */
2748 reg
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_UNKNOWN0
);
2749 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_UNKNOWN0
,
2753 * XXX: Magic Numbers.
2754 * Sets maximal PCI-e payload and clears any PCI-e errors.
2755 * Should be replaced with references to PCI config-space
2756 * capability block for PCI-Express.
2758 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
,
2759 BGE_PCI_CONF_DEV_CTRL
, 0xf5000);
2763 /* Reset some of the PCI state that got zapped by reset */
2764 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_MISC_CTL
,
2765 BGE_PCIMISCCTL_INDIRECT_ACCESS
|BGE_PCIMISCCTL_MASK_PCI_INTR
|
2766 BGE_HIF_SWAP_OPTIONS
|BGE_PCIMISCCTL_PCISTATE_RW
);
2767 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_CMD
, command
);
2768 pci_conf_write(sc
->sc_pc
, sc
->sc_pcitag
, BGE_PCI_CACHESZ
, cachesize
);
2769 write_op(sc
, BGE_MISC_CFG
, (65 << 1));
2771 /* Enable memory arbiter. */
2773 uint32_t marbmode
= 0;
2774 if (BGE_IS_5714_FAMILY(sc
)) {
2775 marbmode
= CSR_READ_4(sc
, BGE_MARB_MODE
);
2777 CSR_WRITE_4(sc
, BGE_MARB_MODE
, BGE_MARBMODE_ENABLE
| marbmode
);
2781 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
2782 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
2783 val
= CSR_READ_4(sc
, BGE_VCPU_STATUS
);
2784 if (val
& BGE_VCPU_STATUS_INIT_DONE
)
2788 if (i
== BGE_TIMEOUT
) {
2789 aprint_error_dev(sc
->bge_dev
, "reset timed out\n");
2794 * Write the magic number to the firmware mailbox at 0xb50
2795 * so that the driver can synchronize with the firmware.
2797 bge_writemem_ind(sc
, BGE_SOFTWARE_GENCOMM
, BGE_MAGIC_NUMBER
);
2800 * Poll the value location we just wrote until
2801 * we see the 1's complement of the magic number.
2802 * This indicates that the firmware initialization
2805 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
2806 val
= bge_readmem_ind(sc
, BGE_SOFTWARE_GENCOMM
);
2807 if (val
== ~BGE_MAGIC_NUMBER
)
2812 if (i
>= BGE_TIMEOUT
) {
2813 aprint_error_dev(sc
->bge_dev
,
2814 "firmware handshake timed out, val = %x\n", val
);
2816 * XXX: occasionally fired on bcm5721, but without
2817 * apparent harm. For now, keep going if we timeout
2818 * against PCI-E devices.
2820 if ((sc
->bge_flags
& BGE_PCIE
) == 0)
2826 * XXX Wait for the value of the PCISTATE register to
2827 * return to its original pre-reset state. This is a
2828 * fairly good indicator of reset completion. If we don't
2829 * wait for the reset to fully complete, trying to read
2830 * from the device's non-PCI registers may yield garbage
2833 for (i
= 0; i
< 10000; i
++) {
2834 new_pcistate
= pci_conf_read(sc
->sc_pc
, sc
->sc_pcitag
,
2836 if ((new_pcistate
& ~BGE_PCISTATE_RESERVED
) ==
2837 (pcistate
& ~BGE_PCISTATE_RESERVED
))
2841 if ((new_pcistate
& ~BGE_PCISTATE_RESERVED
) !=
2842 (pcistate
& ~BGE_PCISTATE_RESERVED
)) {
2843 aprint_error_dev(sc
->bge_dev
, "pcistate failed to revert\n");
2846 /* Enable memory arbiter. */
2847 /* XXX why do this twice? */
2849 uint32_t marbmode
= 0;
2850 if (BGE_IS_5714_FAMILY(sc
)) {
2851 marbmode
= CSR_READ_4(sc
, BGE_MARB_MODE
);
2853 CSR_WRITE_4(sc
, BGE_MARB_MODE
, BGE_MARBMODE_ENABLE
| marbmode
);
2856 /* Fix up byte swapping */
2857 CSR_WRITE_4(sc
, BGE_MODE_CTL
, BGE_DMA_SWAP_OPTIONS
);
2859 CSR_WRITE_4(sc
, BGE_MAC_MODE
, 0);
2862 * The 5704 in TBI mode apparently needs some special
2863 * adjustment to insure the SERDES drive level is set
2866 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
&&
2867 BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
) {
2868 u_int32_t serdescfg
;
2870 serdescfg
= CSR_READ_4(sc
, BGE_SERDES_CFG
);
2871 serdescfg
= (serdescfg
& ~0xFFF) | 0x880;
2872 CSR_WRITE_4(sc
, BGE_SERDES_CFG
, serdescfg
);
2875 /* XXX: from FreeBSD/Linux; no documentation */
2876 if (sc
->bge_flags
& BGE_PCIE
&&
2877 sc
->bge_chipid
!= BGE_CHIPID_BCM5750_A0
)
2878 CSR_WRITE_4(sc
, BGE_PCIE_CTL0
, CSR_READ_4(sc
, BGE_PCIE_CTL0
) | (1<<25));
2883 * Frame reception handling. This is called if there's a frame
2884 * on the receive return list.
2886 * Note: we have to be able to handle two possibilities here:
2887 * 1) the frame is from the jumbo recieve ring
2888 * 2) the frame is from the standard receive ring
2892 bge_rxeof(struct bge_softc
*sc
)
2895 int stdcnt
= 0, jumbocnt
= 0;
2896 bus_dmamap_t dmamap
;
2897 bus_addr_t offset
, toff
;
2901 ifp
= &sc
->ethercom
.ec_if
;
2903 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
2904 offsetof(struct bge_ring_data
, bge_status_block
),
2905 sizeof (struct bge_status_block
),
2906 BUS_DMASYNC_POSTREAD
);
2908 offset
= offsetof(struct bge_ring_data
, bge_rx_return_ring
);
2909 tosync
= sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_rx_prod_idx
-
2910 sc
->bge_rx_saved_considx
;
2913 if (tosync
!= 0 && RND_ENABLED(&sc
->rnd_source
))
2914 rnd_add_uint32(&sc
->rnd_source
, tosync
);
2917 toff
= offset
+ (sc
->bge_rx_saved_considx
* sizeof (struct bge_rx_bd
));
2920 tlen
= (sc
->bge_return_ring_cnt
- sc
->bge_rx_saved_considx
) *
2921 sizeof (struct bge_rx_bd
);
2922 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
2923 toff
, tlen
, BUS_DMASYNC_POSTREAD
);
2927 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
2928 offset
, tosync
* sizeof (struct bge_rx_bd
),
2929 BUS_DMASYNC_POSTREAD
);
2931 while(sc
->bge_rx_saved_considx
!=
2932 sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_rx_prod_idx
) {
2933 struct bge_rx_bd
*cur_rx
;
2935 struct mbuf
*m
= NULL
;
2937 cur_rx
= &sc
->bge_rdata
->
2938 bge_rx_return_ring
[sc
->bge_rx_saved_considx
];
2940 rxidx
= cur_rx
->bge_idx
;
2941 BGE_INC(sc
->bge_rx_saved_considx
, sc
->bge_return_ring_cnt
);
2943 if (cur_rx
->bge_flags
& BGE_RXBDFLAG_JUMBO_RING
) {
2944 BGE_INC(sc
->bge_jumbo
, BGE_JUMBO_RX_RING_CNT
);
2945 m
= sc
->bge_cdata
.bge_rx_jumbo_chain
[rxidx
];
2946 sc
->bge_cdata
.bge_rx_jumbo_chain
[rxidx
] = NULL
;
2948 bus_dmamap_sync(sc
->bge_dmatag
,
2949 sc
->bge_cdata
.bge_rx_jumbo_map
,
2950 mtod(m
, char *) - (char *)sc
->bge_cdata
.bge_jumbo_buf
,
2951 BGE_JLEN
, BUS_DMASYNC_POSTREAD
);
2952 if (cur_rx
->bge_flags
& BGE_RXBDFLAG_ERROR
) {
2954 bge_newbuf_jumbo(sc
, sc
->bge_jumbo
, m
);
2957 if (bge_newbuf_jumbo(sc
, sc
->bge_jumbo
,
2960 bge_newbuf_jumbo(sc
, sc
->bge_jumbo
, m
);
2964 BGE_INC(sc
->bge_std
, BGE_STD_RX_RING_CNT
);
2965 m
= sc
->bge_cdata
.bge_rx_std_chain
[rxidx
];
2967 sc
->bge_cdata
.bge_rx_std_chain
[rxidx
] = NULL
;
2969 dmamap
= sc
->bge_cdata
.bge_rx_std_map
[rxidx
];
2970 sc
->bge_cdata
.bge_rx_std_map
[rxidx
] = 0;
2971 bus_dmamap_sync(sc
->bge_dmatag
, dmamap
, 0,
2972 dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
2973 bus_dmamap_unload(sc
->bge_dmatag
, dmamap
);
2974 if (cur_rx
->bge_flags
& BGE_RXBDFLAG_ERROR
) {
2976 bge_newbuf_std(sc
, sc
->bge_std
, m
, dmamap
);
2979 if (bge_newbuf_std(sc
, sc
->bge_std
,
2980 NULL
, dmamap
) == ENOBUFS
) {
2982 bge_newbuf_std(sc
, sc
->bge_std
, m
, dmamap
);
2988 #ifndef __NO_STRICT_ALIGNMENT
2990 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2991 * the Rx buffer has the layer-2 header unaligned.
2992 * If our CPU requires alignment, re-align by copying.
2994 if (sc
->bge_flags
& BGE_RX_ALIGNBUG
) {
2995 memmove(mtod(m
, char *) + ETHER_ALIGN
, m
->m_data
,
2997 m
->m_data
+= ETHER_ALIGN
;
3001 m
->m_pkthdr
.len
= m
->m_len
= cur_rx
->bge_len
- ETHER_CRC_LEN
;
3002 m
->m_pkthdr
.rcvif
= ifp
;
3006 * Handle BPF listeners. Let the BPF user see the packet.
3009 bpf_mtap(ifp
->if_bpf
, m
);
3012 m
->m_pkthdr
.csum_flags
= M_CSUM_IPv4
;
3014 if ((cur_rx
->bge_ip_csum
^ 0xffff) != 0)
3015 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4_BAD
;
3017 * Rx transport checksum-offload may also
3018 * have bugs with packets which, when transmitted,
3019 * were `runts' requiring padding.
3021 if (cur_rx
->bge_flags
& BGE_RXBDFLAG_TCP_UDP_CSUM
&&
3022 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3023 m
->m_pkthdr
.len
>= ETHER_MIN_NOPAD
)) {
3024 m
->m_pkthdr
.csum_data
=
3025 cur_rx
->bge_tcp_udp_csum
;
3026 m
->m_pkthdr
.csum_flags
|=
3027 (M_CSUM_TCPv4
|M_CSUM_UDPv4
|
3028 M_CSUM_DATA
|M_CSUM_NO_PSEUDOHDR
);
3032 * If we received a packet with a vlan tag, pass it
3033 * to vlan_input() instead of ether_input().
3035 if (cur_rx
->bge_flags
& BGE_RXBDFLAG_VLAN_TAG
) {
3036 VLAN_INPUT_TAG(ifp
, m
, cur_rx
->bge_vlan_tag
, continue);
3039 (*ifp
->if_input
)(ifp
, m
);
3042 bge_writembx(sc
, BGE_MBX_RX_CONS0_LO
, sc
->bge_rx_saved_considx
);
3044 bge_writembx(sc
, BGE_MBX_RX_STD_PROD_LO
, sc
->bge_std
);
3046 bge_writembx(sc
, BGE_MBX_RX_JUMBO_PROD_LO
, sc
->bge_jumbo
);
3050 bge_txeof(struct bge_softc
*sc
)
3052 struct bge_tx_bd
*cur_tx
= NULL
;
3054 struct txdmamap_pool_entry
*dma
;
3055 bus_addr_t offset
, toff
;
3060 ifp
= &sc
->ethercom
.ec_if
;
3062 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
3063 offsetof(struct bge_ring_data
, bge_status_block
),
3064 sizeof (struct bge_status_block
),
3065 BUS_DMASYNC_POSTREAD
);
3067 offset
= offsetof(struct bge_ring_data
, bge_tx_ring
);
3068 tosync
= sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_tx_cons_idx
-
3069 sc
->bge_tx_saved_considx
;
3072 if (tosync
!= 0 && RND_ENABLED(&sc
->rnd_source
))
3073 rnd_add_uint32(&sc
->rnd_source
, tosync
);
3076 toff
= offset
+ (sc
->bge_tx_saved_considx
* sizeof (struct bge_tx_bd
));
3079 tlen
= (BGE_TX_RING_CNT
- sc
->bge_tx_saved_considx
) *
3080 sizeof (struct bge_tx_bd
);
3081 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
3082 toff
, tlen
, BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
3086 bus_dmamap_sync(sc
->bge_dmatag
, sc
->bge_ring_map
,
3087 offset
, tosync
* sizeof (struct bge_tx_bd
),
3088 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
3091 * Go through our tx ring and free mbufs for those
3092 * frames that have been sent.
3094 while (sc
->bge_tx_saved_considx
!=
3095 sc
->bge_rdata
->bge_status_block
.bge_idx
[0].bge_tx_cons_idx
) {
3098 idx
= sc
->bge_tx_saved_considx
;
3099 cur_tx
= &sc
->bge_rdata
->bge_tx_ring
[idx
];
3100 if (cur_tx
->bge_flags
& BGE_TXBDFLAG_END
)
3102 m
= sc
->bge_cdata
.bge_tx_chain
[idx
];
3104 sc
->bge_cdata
.bge_tx_chain
[idx
] = NULL
;
3105 dma
= sc
->txdma
[idx
];
3106 bus_dmamap_sync(sc
->bge_dmatag
, dma
->dmamap
, 0,
3107 dma
->dmamap
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
3108 bus_dmamap_unload(sc
->bge_dmatag
, dma
->dmamap
);
3109 SLIST_INSERT_HEAD(&sc
->txdma_list
, dma
, link
);
3110 sc
->txdma
[idx
] = NULL
;
3115 BGE_INC(sc
->bge_tx_saved_considx
, BGE_TX_RING_CNT
);
3120 ifp
->if_flags
&= ~IFF_OACTIVE
;
3126 struct bge_softc
*sc
;
3128 uint32_t statusword
;
3131 ifp
= &sc
->ethercom
.ec_if
;
3133 /* It is possible for the interrupt to arrive before
3134 * the status block is updated prior to the interrupt.
3135 * Reading the PCI State register will confirm whether the
3136 * interrupt is ours and will flush the status block.
3139 /* read status word from status block */
3140 statusword
= sc
->bge_rdata
->bge_status_block
.bge_status
;
3142 if ((statusword
& BGE_STATFLAG_UPDATED
) ||
3143 (!(CSR_READ_4(sc
, BGE_PCI_PCISTATE
) & BGE_PCISTATE_INTR_NOT_ACTIVE
))) {
3144 /* Ack interrupt and stop others from occuring. */
3145 bge_writembx(sc
, BGE_MBX_IRQ0_LO
, 1);
3147 BGE_EVCNT_INCR(sc
->bge_ev_intr
);
3149 /* clear status word */
3150 sc
->bge_rdata
->bge_status_block
.bge_status
= 0;
3152 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5700
||
3153 statusword
& BGE_STATFLAG_LINKSTATE_CHANGED
||
3154 BGE_STS_BIT(sc
, BGE_STS_LINK_EVT
))
3157 if (ifp
->if_flags
& IFF_RUNNING
) {
3158 /* Check RX return ring producer/consumer */
3161 /* Check TX ring producer/consumer */
3165 if (sc
->bge_pending_rxintr_change
) {
3166 uint32_t rx_ticks
= sc
->bge_rx_coal_ticks
;
3167 uint32_t rx_bds
= sc
->bge_rx_max_coal_bds
;
3170 CSR_WRITE_4(sc
, BGE_HCC_RX_COAL_TICKS
, rx_ticks
);
3172 junk
= CSR_READ_4(sc
, BGE_HCC_RX_COAL_TICKS
);
3174 CSR_WRITE_4(sc
, BGE_HCC_RX_MAX_COAL_BDS
, rx_bds
);
3176 junk
= CSR_READ_4(sc
, BGE_HCC_RX_MAX_COAL_BDS
);
3178 sc
->bge_pending_rxintr_change
= 0;
3180 bge_handle_events(sc
);
3182 /* Re-enable interrupts. */
3183 bge_writembx(sc
, BGE_MBX_IRQ0_LO
, 0);
3185 if (ifp
->if_flags
& IFF_RUNNING
&& !IFQ_IS_EMPTY(&ifp
->if_snd
))
3196 struct bge_softc
*sc
= xsc
;
3197 struct mii_data
*mii
= &sc
->bge_mii
;
3202 bge_stats_update(sc
);
3204 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
3206 * Since in TBI mode auto-polling can't be used we should poll
3207 * link status manually. Here we register pending link event
3208 * and trigger interrupt.
3210 BGE_STS_SETBIT(sc
, BGE_STS_LINK_EVT
);
3211 BGE_SETBIT(sc
, BGE_MISC_LOCAL_CTL
, BGE_MLC_INTR_SET
);
3214 * Do not touch PHY if we have link up. This could break
3215 * IPMI/ASF mode or produce extra input errors.
3216 * (extra input errors was reported for bcm5701 & bcm5704).
3218 if (!BGE_STS_BIT(sc
, BGE_STS_LINK
))
3222 callout_reset(&sc
->bge_timeout
, hz
, bge_tick
, sc
);
3228 bge_stats_update(struct bge_softc
*sc
)
3230 struct ifnet
*ifp
= &sc
->ethercom
.ec_if
;
3231 bus_size_t stats
= BGE_MEMWIN_START
+ BGE_STATS_BLOCK
;
3232 bus_size_t rstats
= BGE_RX_STATS
;
3234 #define READ_RSTAT(sc, stats, stat) \
3235 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3237 if (BGE_IS_5705_OR_BEYOND(sc
)) {
3238 ifp
->if_collisions
+=
3239 READ_RSTAT(sc
, rstats
, dot3StatsSingleCollisionFrames
) +
3240 READ_RSTAT(sc
, rstats
, dot3StatsMultipleCollisionFrames
) +
3241 READ_RSTAT(sc
, rstats
, dot3StatsExcessiveCollisions
) +
3242 READ_RSTAT(sc
, rstats
, dot3StatsLateCollisions
);
3244 BGE_EVCNT_ADD(sc
->bge_ev_tx_xoff
,
3245 READ_RSTAT(sc
, rstats
, outXoffSent
));
3246 BGE_EVCNT_ADD(sc
->bge_ev_tx_xon
,
3247 READ_RSTAT(sc
, rstats
, outXonSent
));
3248 BGE_EVCNT_ADD(sc
->bge_ev_rx_xoff
,
3249 READ_RSTAT(sc
, rstats
, xoffPauseFramesReceived
));
3250 BGE_EVCNT_ADD(sc
->bge_ev_rx_xon
,
3251 READ_RSTAT(sc
, rstats
, xonPauseFramesReceived
));
3252 BGE_EVCNT_ADD(sc
->bge_ev_rx_macctl
,
3253 READ_RSTAT(sc
, rstats
, macControlFramesReceived
));
3254 BGE_EVCNT_ADD(sc
->bge_ev_xoffentered
,
3255 READ_RSTAT(sc
, rstats
, xoffStateEntered
));
3260 #define READ_STAT(sc, stats, stat) \
3261 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3263 ifp
->if_collisions
+=
3264 (READ_STAT(sc
, stats
, dot3StatsSingleCollisionFrames
.bge_addr_lo
) +
3265 READ_STAT(sc
, stats
, dot3StatsMultipleCollisionFrames
.bge_addr_lo
) +
3266 READ_STAT(sc
, stats
, dot3StatsExcessiveCollisions
.bge_addr_lo
) +
3267 READ_STAT(sc
, stats
, dot3StatsLateCollisions
.bge_addr_lo
)) -
3270 BGE_EVCNT_UPD(sc
->bge_ev_tx_xoff
,
3271 READ_STAT(sc
, stats
, outXoffSent
.bge_addr_lo
));
3272 BGE_EVCNT_UPD(sc
->bge_ev_tx_xon
,
3273 READ_STAT(sc
, stats
, outXonSent
.bge_addr_lo
));
3274 BGE_EVCNT_UPD(sc
->bge_ev_rx_xoff
,
3275 READ_STAT(sc
, stats
,
3276 xoffPauseFramesReceived
.bge_addr_lo
));
3277 BGE_EVCNT_UPD(sc
->bge_ev_rx_xon
,
3278 READ_STAT(sc
, stats
, xonPauseFramesReceived
.bge_addr_lo
));
3279 BGE_EVCNT_UPD(sc
->bge_ev_rx_macctl
,
3280 READ_STAT(sc
, stats
,
3281 macControlFramesReceived
.bge_addr_lo
));
3282 BGE_EVCNT_UPD(sc
->bge_ev_xoffentered
,
3283 READ_STAT(sc
, stats
, xoffStateEntered
.bge_addr_lo
));
3288 ifp
->if_collisions
+=
3289 (sc
->bge_rdata
->bge_info
.bge_stats
.dot3StatsSingleCollisionFrames
+
3290 sc
->bge_rdata
->bge_info
.bge_stats
.dot3StatsMultipleCollisionFrames
+
3291 sc
->bge_rdata
->bge_info
.bge_stats
.dot3StatsExcessiveCollisions
+
3292 sc
->bge_rdata
->bge_info
.bge_stats
.dot3StatsLateCollisions
) -
3298 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3299 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3300 * but when such padded frames employ the bge IP/TCP checksum offload,
3301 * the hardware checksum assist gives incorrect results (possibly
3302 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3303 * If we pad such runts with zeros, the onboard checksum comes out correct.
3306 bge_cksum_pad(struct mbuf
*pkt
)
3308 struct mbuf
*last
= NULL
;
3311 padlen
= ETHER_MIN_NOPAD
- pkt
->m_pkthdr
.len
;
3313 /* if there's only the packet-header and we can pad there, use it. */
3314 if (pkt
->m_pkthdr
.len
== pkt
->m_len
&&
3315 M_TRAILINGSPACE(pkt
) >= padlen
) {
3319 * Walk packet chain to find last mbuf. We will either
3320 * pad there, or append a new mbuf and pad it
3321 * (thus perhaps avoiding the bcm5700 dma-min bug).
3323 for (last
= pkt
; last
->m_next
!= NULL
; last
= last
->m_next
) {
3324 continue; /* do nothing */
3327 /* `last' now points to last in chain. */
3328 if (M_TRAILINGSPACE(last
) < padlen
) {
3329 /* Allocate new empty mbuf, pad it. Compact later. */
3331 MGET(n
, M_DONTWAIT
, MT_DATA
);
3340 KDASSERT(!M_READONLY(last
));
3341 KDASSERT(M_TRAILINGSPACE(last
) >= padlen
);
3343 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3344 memset(mtod(last
, char *) + last
->m_len
, 0, padlen
);
3345 last
->m_len
+= padlen
;
3346 pkt
->m_pkthdr
.len
+= padlen
;
3351 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3354 bge_compact_dma_runt(struct mbuf
*pkt
)
3356 struct mbuf
*m
, *prev
;
3357 int totlen
, prevlen
;
3363 for (m
= pkt
; m
!= NULL
; prev
= m
,m
= m
->m_next
) {
3364 int mlen
= m
->m_len
;
3365 int shortfall
= 8 - mlen
;
3374 /* If we get here, mbuf data is too small for DMA engine.
3375 * Try to fix by shuffling data to prev or next in chain.
3376 * If that fails, do a compacting deep-copy of the whole chain.
3379 /* Internal frag. If fits in prev, copy it there. */
3380 if (prev
&& M_TRAILINGSPACE(prev
) >= m
->m_len
) {
3381 memcpy(prev
->m_data
+ prev
->m_len
, m
->m_data
, mlen
);
3382 prev
->m_len
+= mlen
;
3384 /* XXX stitch chain */
3385 prev
->m_next
= m_free(m
);
3389 else if (m
->m_next
!= NULL
&&
3390 M_TRAILINGSPACE(m
) >= shortfall
&&
3391 m
->m_next
->m_len
>= (8 + shortfall
)) {
3392 /* m is writable and have enough data in next, pull up. */
3394 memcpy(m
->m_data
+ m
->m_len
, m
->m_next
->m_data
,
3396 m
->m_len
+= shortfall
;
3397 m
->m_next
->m_len
-= shortfall
;
3398 m
->m_next
->m_data
+= shortfall
;
3400 else if (m
->m_next
== NULL
|| 1) {
3401 /* Got a runt at the very end of the packet.
3402 * borrow data from the tail of the preceding mbuf and
3403 * update its length in-place. (The original data is still
3404 * valid, so we can do this even if prev is not writable.)
3407 /* if we'd make prev a runt, just move all of its data. */
3408 KASSERT(prev
!= NULL
/*, ("runt but null PREV")*/);
3409 KASSERT(prev
->m_len
>= 8 /*, ("runt prev")*/);
3411 if ((prev
->m_len
- shortfall
) < 8)
3412 shortfall
= prev
->m_len
;
3414 #ifdef notyet /* just do the safe slow thing for now */
3415 if (!M_READONLY(m
)) {
3416 if (M_LEADINGSPACE(m
) < shorfall
) {
3418 m_dat
= (m
->m_flags
& M_PKTHDR
) ?
3419 m
->m_pktdat
: m
->dat
;
3420 memmove(m_dat
, mtod(m
, void*), m
->m_len
);
3424 #endif /* just do the safe slow thing */
3426 struct mbuf
* n
= NULL
;
3427 int newprevlen
= prev
->m_len
- shortfall
;
3429 MGET(n
, M_NOWAIT
, MT_DATA
);
3432 KASSERT(m
->m_len
+ shortfall
< MLEN
3434 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3436 /* first copy the data we're stealing from prev */
3437 memcpy(n
->m_data
, prev
->m_data
+ newprevlen
,
3440 /* update prev->m_len accordingly */
3441 prev
->m_len
-= shortfall
;
3443 /* copy data from runt m */
3444 memcpy(n
->m_data
+ shortfall
, m
->m_data
,
3447 /* n holds what we stole from prev, plus m */
3448 n
->m_len
= shortfall
+ m
->m_len
;
3450 /* stitch n into chain and free m */
3451 n
->m_next
= m
->m_next
;
3453 /* KASSERT(m->m_next == NULL); */
3456 m
= n
; /* for continuing loop */
3465 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3466 * pointers to descriptors.
3469 bge_encap(struct bge_softc
*sc
, struct mbuf
*m_head
, u_int32_t
*txidx
)
3471 struct bge_tx_bd
*f
= NULL
;
3472 u_int32_t frag
, cur
;
3473 u_int16_t csum_flags
= 0;
3474 u_int16_t txbd_tso_flags
= 0;
3475 struct txdmamap_pool_entry
*dma
;
3476 bus_dmamap_t dmamap
;
3479 int use_tso
, maxsegsize
, error
;
3481 cur
= frag
= *txidx
;
3483 if (m_head
->m_pkthdr
.csum_flags
) {
3484 if (m_head
->m_pkthdr
.csum_flags
& M_CSUM_IPv4
)
3485 csum_flags
|= BGE_TXBDFLAG_IP_CSUM
;
3486 if (m_head
->m_pkthdr
.csum_flags
& (M_CSUM_TCPv4
|M_CSUM_UDPv4
))
3487 csum_flags
|= BGE_TXBDFLAG_TCP_UDP_CSUM
;
3491 * If we were asked to do an outboard checksum, and the NIC
3492 * has the bug where it sometimes adds in the Ethernet padding,
3493 * explicitly pad with zeros so the cksum will be correct either way.
3494 * (For now, do this for all chip versions, until newer
3495 * are confirmed to not require the workaround.)
3497 if ((csum_flags
& BGE_TXBDFLAG_TCP_UDP_CSUM
) == 0 ||
3499 (sc
->bge_quirks
& BGE_QUIRK_SHORT_CKSUM_BUG
) == 0 ||
3501 m_head
->m_pkthdr
.len
>= ETHER_MIN_NOPAD
)
3504 if (bge_cksum_pad(m_head
) != 0) {
3509 if (!(BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5700_BX
))
3513 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3514 * less than eight bytes. If we encounter a teeny mbuf
3515 * at the end of a chain, we can pad. Otherwise, copy.
3517 if (bge_compact_dma_runt(m_head
) != 0)
3521 dma
= SLIST_FIRST(&sc
->txdma_list
);
3524 dmamap
= dma
->dmamap
;
3527 * Set up any necessary TSO state before we start packing...
3529 use_tso
= (m_head
->m_pkthdr
.csum_flags
& M_CSUM_TSOv4
) != 0;
3532 } else { /* TSO setup */
3534 struct ether_header
*eh
;
3535 unsigned ip_tcp_hlen
, iptcp_opt_words
, tcp_seg_flags
, offset
;
3536 struct mbuf
* m0
= m_head
;
3542 * XXX It would be nice if the mbuf pkthdr had offset
3543 * fields for the protocol headers.
3546 eh
= mtod(m0
, struct ether_header
*);
3547 switch (htons(eh
->ether_type
)) {
3549 offset
= ETHER_HDR_LEN
;
3552 case ETHERTYPE_VLAN
:
3553 offset
= ETHER_HDR_LEN
+ ETHER_VLAN_ENCAP_LEN
;
3558 * Don't support this protocol or encapsulation.
3564 * TCP/IP headers are in the first mbuf; we can do
3565 * this the easy way.
3567 iphl
= M_CSUM_DATA_IPv4_IPHL(m0
->m_pkthdr
.csum_data
);
3568 hlen
= iphl
+ offset
;
3569 if (__predict_false(m0
->m_len
<
3570 (hlen
+ sizeof(struct tcphdr
)))) {
3572 aprint_debug_dev(sc
->bge_dev
,
3573 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3574 "not handled yet\n",
3575 m0
->m_len
, hlen
+ sizeof(struct tcphdr
));
3578 * XXX jonathan@NetBSD.org: untested.
3579 * how to force this branch to be taken?
3581 BGE_EVCNT_INCR(&sc
->sc_ev_txtsopain
);
3583 m_copydata(m0
, offset
, sizeof(ip
), &ip
);
3584 m_copydata(m0
, hlen
, sizeof(th
), &th
);
3588 m_copyback(m0
, hlen
+ offsetof(struct ip
, ip_len
),
3589 sizeof(ip
.ip_len
), &ip
.ip_len
);
3591 th
.th_sum
= in_cksum_phdr(ip
.ip_src
.s_addr
,
3592 ip
.ip_dst
.s_addr
, htons(IPPROTO_TCP
));
3594 m_copyback(m0
, hlen
+ offsetof(struct tcphdr
, th_sum
),
3595 sizeof(th
.th_sum
), &th
.th_sum
);
3597 hlen
+= th
.th_off
<< 2;
3598 iptcp_opt_words
= hlen
;
3601 * if_wm "hard" case not yet supported, can we not
3602 * mandate it out of existence?
3604 (void) ip
; (void)th
; (void) ip_tcp_hlen
;
3609 ip
= (struct ip
*) (mtod(m0
, char *) + offset
);
3610 th
= (struct tcphdr
*) (mtod(m0
, char *) + hlen
);
3611 ip_tcp_hlen
= iphl
+ (th
->th_off
<< 2);
3613 /* Total IP/TCP options, in 32-bit words */
3614 iptcp_opt_words
= (ip_tcp_hlen
3615 - sizeof(struct tcphdr
)
3616 - sizeof(struct ip
)) >> 2;
3618 if (BGE_IS_5750_OR_BEYOND(sc
)) {
3620 csum_flags
&= ~(BGE_TXBDFLAG_TCP_UDP_CSUM
);
3623 * XXX jonathan@NetBSD.org: 5705 untested.
3624 * Requires TSO firmware patch for 5701/5703/5704.
3626 th
->th_sum
= in_cksum_phdr(ip
->ip_src
.s_addr
,
3627 ip
->ip_dst
.s_addr
, htons(IPPROTO_TCP
));
3630 mss
= m_head
->m_pkthdr
.segsz
;
3632 BGE_TXBDFLAG_CPU_PRE_DMA
|
3633 BGE_TXBDFLAG_CPU_POST_DMA
;
3636 * Our NIC TSO-assist assumes TSO has standard, optionless
3637 * IPv4 and TCP headers, which total 40 bytes. By default,
3638 * the NIC copies 40 bytes of IP/TCP header from the
3639 * supplied header into the IP/TCP header portion of
3640 * each post-TSO-segment. If the supplied packet has IP or
3641 * TCP options, we need to tell the NIC to copy those extra
3642 * bytes into each post-TSO header, in addition to the normal
3643 * 40-byte IP/TCP header (and to leave space accordingly).
3644 * Unfortunately, the driver encoding of option length
3645 * varies across different ASIC families.
3648 if (iptcp_opt_words
) {
3649 if ( BGE_IS_5705_OR_BEYOND(sc
)) {
3651 iptcp_opt_words
<< 11;
3654 iptcp_opt_words
<< 12;
3657 maxsegsize
= mss
| tcp_seg_flags
;
3658 ip
->ip_len
= htons(mss
+ ip_tcp_hlen
);
3663 * Start packing the mbufs in this chain into
3664 * the fragment pointers. Stop when we run out
3665 * of fragments or hit the end of the mbuf chain.
3667 error
= bus_dmamap_load_mbuf(sc
->bge_dmatag
, dmamap
, m_head
,
3673 * Sanity check: avoid coming within 16 descriptors
3674 * of the end of the ring.
3676 if (dmamap
->dm_nsegs
> (BGE_TX_RING_CNT
- sc
->bge_txcnt
- 16)) {
3677 BGE_TSO_PRINTF(("%s: "
3678 " dmamap_load_mbuf too close to ring wrap\n",
3679 device_xname(sc
->bge_dev
)));
3683 mtag
= sc
->ethercom
.ec_nvlans
?
3684 m_tag_find(m_head
, PACKET_TAG_VLAN
, NULL
) : NULL
;
3687 /* Iterate over dmap-map fragments. */
3688 for (i
= 0; i
< dmamap
->dm_nsegs
; i
++) {
3689 f
= &sc
->bge_rdata
->bge_tx_ring
[frag
];
3690 if (sc
->bge_cdata
.bge_tx_chain
[frag
] != NULL
)
3693 bge_set_hostaddr(&f
->bge_addr
, dmamap
->dm_segs
[i
].ds_addr
);
3694 f
->bge_len
= dmamap
->dm_segs
[i
].ds_len
;
3697 * For 5751 and follow-ons, for TSO we must turn
3698 * off checksum-assist flag in the tx-descr, and
3699 * supply the ASIC-revision-specific encoding
3700 * of TSO flags and segsize.
3703 if (BGE_IS_5750_OR_BEYOND(sc
) || i
== 0) {
3704 f
->bge_rsvd
= maxsegsize
;
3705 f
->bge_flags
= csum_flags
| txbd_tso_flags
;
3709 (csum_flags
| txbd_tso_flags
) & 0x0fff;
3713 f
->bge_flags
= csum_flags
;
3717 f
->bge_flags
|= BGE_TXBDFLAG_VLAN_TAG
;
3718 f
->bge_vlan_tag
= VLAN_TAG_VALUE(mtag
);
3720 f
->bge_vlan_tag
= 0;
3723 BGE_INC(frag
, BGE_TX_RING_CNT
);
3726 if (i
< dmamap
->dm_nsegs
) {
3727 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3728 device_xname(sc
->bge_dev
), i
, dmamap
->dm_nsegs
));
3732 bus_dmamap_sync(sc
->bge_dmatag
, dmamap
, 0, dmamap
->dm_mapsize
,
3733 BUS_DMASYNC_PREWRITE
);
3735 if (frag
== sc
->bge_tx_saved_considx
) {
3736 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3737 device_xname(sc
->bge_dev
), frag
, sc
->bge_tx_saved_considx
));
3742 sc
->bge_rdata
->bge_tx_ring
[cur
].bge_flags
|= BGE_TXBDFLAG_END
;
3743 sc
->bge_cdata
.bge_tx_chain
[cur
] = m_head
;
3744 SLIST_REMOVE_HEAD(&sc
->txdma_list
, link
);
3745 sc
->txdma
[cur
] = dma
;
3746 sc
->bge_txcnt
+= dmamap
->dm_nsegs
;
3753 bus_dmamap_unload(sc
->bge_dmatag
, dmamap
);
3759 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3760 * to the mbuf data regions directly in the transmit descriptors.
3763 bge_start(struct ifnet
*ifp
)
3765 struct bge_softc
*sc
;
3766 struct mbuf
*m_head
= NULL
;
3772 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
)
3775 prodidx
= sc
->bge_tx_prodidx
;
3777 while(sc
->bge_cdata
.bge_tx_chain
[prodidx
] == NULL
) {
3778 IFQ_POLL(&ifp
->if_snd
, m_head
);
3785 * safety overkill. If this is a fragmented packet chain
3786 * with delayed TCP/UDP checksums, then only encapsulate
3787 * it if we have enough descriptors to handle the entire
3789 * (paranoia -- may not actually be needed)
3791 if (m_head
->m_flags
& M_FIRSTFRAG
&&
3792 m_head
->m_pkthdr
.csum_flags
& (CSUM_DELAY_DATA
)) {
3793 if ((BGE_TX_RING_CNT
- sc
->bge_txcnt
) <
3794 M_CSUM_DATA_IPv4_OFFSET(m_head
->m_pkthdr
.csum_data
) + 16) {
3795 ifp
->if_flags
|= IFF_OACTIVE
;
3802 * Pack the data into the transmit ring. If we
3803 * don't have room, set the OACTIVE flag and wait
3804 * for the NIC to drain the ring.
3806 if (bge_encap(sc
, m_head
, &prodidx
)) {
3807 ifp
->if_flags
|= IFF_OACTIVE
;
3811 /* now we are committed to transmit the packet */
3812 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
3817 * If there's a BPF listener, bounce a copy of this frame
3821 bpf_mtap(ifp
->if_bpf
, m_head
);
3828 bge_writembx(sc
, BGE_MBX_TX_HOST_PROD0_LO
, prodidx
);
3829 /* 5700 b2 errata */
3830 if (BGE_CHIPREV(sc
->bge_chipid
) == BGE_CHIPREV_5700_BX
)
3831 bge_writembx(sc
, BGE_MBX_TX_HOST_PROD0_LO
, prodidx
);
3833 sc
->bge_tx_prodidx
= prodidx
;
3836 * Set a timeout in case the chip goes out to lunch.
3842 bge_init(struct ifnet
*ifp
)
3844 struct bge_softc
*sc
= ifp
->if_softc
;
3850 ifp
= &sc
->ethercom
.ec_if
;
3852 /* Cancel pending I/O and flush buffers. */
3858 * Init the various state machines, ring
3859 * control blocks and firmware.
3861 error
= bge_blockinit(sc
);
3863 aprint_error_dev(sc
->bge_dev
, "initialization error %d\n",
3869 ifp
= &sc
->ethercom
.ec_if
;
3872 CSR_WRITE_4(sc
, BGE_RX_MTU
, ifp
->if_mtu
+
3873 ETHER_HDR_LEN
+ ETHER_CRC_LEN
+ ETHER_VLAN_ENCAP_LEN
);
3875 /* Load our MAC address. */
3876 m
= (const u_int16_t
*)&(CLLADDR(ifp
->if_sadl
)[0]);
3877 CSR_WRITE_4(sc
, BGE_MAC_ADDR1_LO
, htons(m
[0]));
3878 CSR_WRITE_4(sc
, BGE_MAC_ADDR1_HI
, (htons(m
[1]) << 16) | htons(m
[2]));
3880 /* Enable or disable promiscuous mode as needed. */
3881 if (ifp
->if_flags
& IFF_PROMISC
) {
3882 BGE_SETBIT(sc
, BGE_RX_MODE
, BGE_RXMODE_RX_PROMISC
);
3884 BGE_CLRBIT(sc
, BGE_RX_MODE
, BGE_RXMODE_RX_PROMISC
);
3887 /* Program multicast filter. */
3891 bge_init_rx_ring_std(sc
);
3894 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3895 * memory to insure that the chip has in fact read the first
3896 * entry of the ring.
3898 if (sc
->bge_chipid
== BGE_CHIPID_BCM5705_A0
) {
3900 for (i
= 0; i
< 10; i
++) {
3902 v
= bge_readmem_ind(sc
, BGE_STD_RX_RINGS
+ 8);
3903 if (v
== (MCLBYTES
- ETHER_ALIGN
))
3907 aprint_error_dev(sc
->bge_dev
,
3908 "5705 A0 chip failed to load RX ring\n");
3911 /* Init jumbo RX ring. */
3912 if (ifp
->if_mtu
> (ETHERMTU
+ ETHER_HDR_LEN
+ ETHER_CRC_LEN
))
3913 bge_init_rx_ring_jumbo(sc
);
3915 /* Init our RX return ring index */
3916 sc
->bge_rx_saved_considx
= 0;
3919 bge_init_tx_ring(sc
);
3921 /* Turn on transmitter */
3922 BGE_SETBIT(sc
, BGE_TX_MODE
, BGE_TXMODE_ENABLE
);
3924 /* Turn on receiver */
3925 BGE_SETBIT(sc
, BGE_RX_MODE
, BGE_RXMODE_ENABLE
);
3927 CSR_WRITE_4(sc
, BGE_MAX_RX_FRAME_LOWAT
, 2);
3929 /* Tell firmware we're alive. */
3930 BGE_SETBIT(sc
, BGE_MODE_CTL
, BGE_MODECTL_STACKUP
);
3932 /* Enable host interrupts. */
3933 BGE_SETBIT(sc
, BGE_PCI_MISC_CTL
, BGE_PCIMISCCTL_CLEAR_INTA
);
3934 BGE_CLRBIT(sc
, BGE_PCI_MISC_CTL
, BGE_PCIMISCCTL_MASK_PCI_INTR
);
3935 bge_writembx(sc
, BGE_MBX_IRQ0_LO
, 0);
3937 if ((error
= bge_ifmedia_upd(ifp
)) != 0)
3940 ifp
->if_flags
|= IFF_RUNNING
;
3941 ifp
->if_flags
&= ~IFF_OACTIVE
;
3943 callout_reset(&sc
->bge_timeout
, hz
, bge_tick
, sc
);
3952 * Set media options.
3955 bge_ifmedia_upd(struct ifnet
*ifp
)
3957 struct bge_softc
*sc
= ifp
->if_softc
;
3958 struct mii_data
*mii
= &sc
->bge_mii
;
3959 struct ifmedia
*ifm
= &sc
->bge_ifmedia
;
3962 /* If this is a 1000baseX NIC, enable the TBI port. */
3963 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
3964 if (IFM_TYPE(ifm
->ifm_media
) != IFM_ETHER
)
3966 switch(IFM_SUBTYPE(ifm
->ifm_media
)) {
3969 * The BCM5704 ASIC appears to have a special
3970 * mechanism for programming the autoneg
3971 * advertisement registers in TBI mode.
3973 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
) {
3975 sgdig
= CSR_READ_4(sc
, BGE_SGDIG_STS
);
3976 if (sgdig
& BGE_SGDIGSTS_DONE
) {
3977 CSR_WRITE_4(sc
, BGE_TX_TBI_AUTONEG
, 0);
3978 sgdig
= CSR_READ_4(sc
, BGE_SGDIG_CFG
);
3979 sgdig
|= BGE_SGDIGCFG_AUTO
|
3980 BGE_SGDIGCFG_PAUSE_CAP
|
3981 BGE_SGDIGCFG_ASYM_PAUSE
;
3982 CSR_WRITE_4(sc
, BGE_SGDIG_CFG
,
3983 sgdig
| BGE_SGDIGCFG_SEND
);
3985 CSR_WRITE_4(sc
, BGE_SGDIG_CFG
, sgdig
);
3990 if ((ifm
->ifm_media
& IFM_GMASK
) == IFM_FDX
) {
3991 BGE_CLRBIT(sc
, BGE_MAC_MODE
,
3992 BGE_MACMODE_HALF_DUPLEX
);
3994 BGE_SETBIT(sc
, BGE_MAC_MODE
,
3995 BGE_MACMODE_HALF_DUPLEX
);
4001 /* XXX 802.3x flow control for 1000BASE-SX */
4005 BGE_STS_SETBIT(sc
, BGE_STS_LINK_EVT
);
4006 if ((rc
= mii_mediachg(mii
)) == ENXIO
)
4010 * Force an interrupt so that we will call bge_link_upd
4011 * if needed and clear any pending link state attention.
4012 * Without this we are not getting any further interrupts
4013 * for link state changes and thus will not UP the link and
4014 * not be able to send in bge_start. The only way to get
4015 * things working was to receive a packet and get a RX intr.
4017 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5700
||
4018 sc
->bge_flags
& BGE_IS_5788
)
4019 BGE_SETBIT(sc
, BGE_MISC_LOCAL_CTL
, BGE_MLC_INTR_SET
);
4021 BGE_SETBIT(sc
, BGE_HCC_MODE
, BGE_HCCMODE_COAL_NOW
);
4027 * Report current media status.
4030 bge_ifmedia_sts(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
4032 struct bge_softc
*sc
= ifp
->if_softc
;
4033 struct mii_data
*mii
= &sc
->bge_mii
;
4035 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
4036 ifmr
->ifm_status
= IFM_AVALID
;
4037 ifmr
->ifm_active
= IFM_ETHER
;
4038 if (CSR_READ_4(sc
, BGE_MAC_STS
) &
4039 BGE_MACSTAT_TBI_PCS_SYNCHED
)
4040 ifmr
->ifm_status
|= IFM_ACTIVE
;
4041 ifmr
->ifm_active
|= IFM_1000_SX
;
4042 if (CSR_READ_4(sc
, BGE_MAC_MODE
) & BGE_MACMODE_HALF_DUPLEX
)
4043 ifmr
->ifm_active
|= IFM_HDX
;
4045 ifmr
->ifm_active
|= IFM_FDX
;
4050 ifmr
->ifm_status
= mii
->mii_media_status
;
4051 ifmr
->ifm_active
= (mii
->mii_media_active
& ~IFM_ETH_FMASK
) |
4056 bge_ioctl(struct ifnet
*ifp
, u_long command
, void *data
)
4058 struct bge_softc
*sc
= ifp
->if_softc
;
4059 struct ifreq
*ifr
= (struct ifreq
*) data
;
4061 struct mii_data
*mii
;
4067 if ((error
= ifioctl_common(ifp
, command
, data
)) != 0)
4069 if (ifp
->if_flags
& IFF_UP
) {
4071 * If only the state of the PROMISC flag changed,
4072 * then just use the 'set promisc mode' command
4073 * instead of reinitializing the entire NIC. Doing
4074 * a full re-init means reloading the firmware and
4075 * waiting for it to start up, which may take a
4078 if (ifp
->if_flags
& IFF_RUNNING
&&
4079 ifp
->if_flags
& IFF_PROMISC
&&
4080 !(sc
->bge_if_flags
& IFF_PROMISC
)) {
4081 BGE_SETBIT(sc
, BGE_RX_MODE
,
4082 BGE_RXMODE_RX_PROMISC
);
4083 } else if (ifp
->if_flags
& IFF_RUNNING
&&
4084 !(ifp
->if_flags
& IFF_PROMISC
) &&
4085 sc
->bge_if_flags
& IFF_PROMISC
) {
4086 BGE_CLRBIT(sc
, BGE_RX_MODE
,
4087 BGE_RXMODE_RX_PROMISC
);
4088 } else if (!(sc
->bge_if_flags
& IFF_UP
))
4091 if (ifp
->if_flags
& IFF_RUNNING
)
4094 sc
->bge_if_flags
= ifp
->if_flags
;
4098 /* XXX Flow control is not supported for 1000BASE-SX */
4099 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
4100 ifr
->ifr_media
&= ~IFM_ETH_FMASK
;
4101 sc
->bge_flowflags
= 0;
4104 /* Flow control requires full-duplex mode. */
4105 if (IFM_SUBTYPE(ifr
->ifr_media
) == IFM_AUTO
||
4106 (ifr
->ifr_media
& IFM_FDX
) == 0) {
4107 ifr
->ifr_media
&= ~IFM_ETH_FMASK
;
4109 if (IFM_SUBTYPE(ifr
->ifr_media
) != IFM_AUTO
) {
4110 if ((ifr
->ifr_media
& IFM_ETH_FMASK
) == IFM_FLOW
) {
4111 /* We can do both TXPAUSE and RXPAUSE. */
4113 IFM_ETH_TXPAUSE
| IFM_ETH_RXPAUSE
;
4115 sc
->bge_flowflags
= ifr
->ifr_media
& IFM_ETH_FMASK
;
4119 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
4120 error
= ifmedia_ioctl(ifp
, ifr
, &sc
->bge_ifmedia
,
4124 error
= ifmedia_ioctl(ifp
, ifr
, &mii
->mii_media
,
4129 if ((error
= ether_ioctl(ifp
, command
, data
)) != ENETRESET
)
4134 if (command
!= SIOCADDMULTI
&& command
!= SIOCDELMULTI
)
4136 else if (ifp
->if_flags
& IFF_RUNNING
)
4147 bge_watchdog(struct ifnet
*ifp
)
4149 struct bge_softc
*sc
;
4153 aprint_error_dev(sc
->bge_dev
, "watchdog timeout -- resetting\n");
4155 ifp
->if_flags
&= ~IFF_RUNNING
;
4162 bge_stop_block(struct bge_softc
*sc
, bus_addr_t reg
, uint32_t bit
)
4166 BGE_CLRBIT(sc
, reg
, bit
);
4168 for (i
= 0; i
< BGE_TIMEOUT
; i
++) {
4169 if ((CSR_READ_4(sc
, reg
) & bit
) == 0)
4172 if (sc
->bge_flags
& BGE_PCIE
)
4177 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4178 * on some environment (and once after boot?)
4180 if (reg
!= BGE_SRS_MODE
)
4181 aprint_error_dev(sc
->bge_dev
,
4182 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4187 * Stop the adapter and free any mbufs allocated to the
4191 bge_stop(struct ifnet
*ifp
, int disable
)
4193 struct bge_softc
*sc
= ifp
->if_softc
;
4195 callout_stop(&sc
->bge_timeout
);
4198 * Disable all of the receiver blocks
4200 bge_stop_block(sc
, BGE_RX_MODE
, BGE_RXMODE_ENABLE
);
4201 bge_stop_block(sc
, BGE_RBDI_MODE
, BGE_RBDIMODE_ENABLE
);
4202 bge_stop_block(sc
, BGE_RXLP_MODE
, BGE_RXLPMODE_ENABLE
);
4203 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
4204 bge_stop_block(sc
, BGE_RXLS_MODE
, BGE_RXLSMODE_ENABLE
);
4205 bge_stop_block(sc
, BGE_RDBDI_MODE
, BGE_RBDIMODE_ENABLE
);
4206 bge_stop_block(sc
, BGE_RDC_MODE
, BGE_RDCMODE_ENABLE
);
4207 bge_stop_block(sc
, BGE_RBDC_MODE
, BGE_RBDCMODE_ENABLE
);
4210 * Disable all of the transmit blocks
4212 bge_stop_block(sc
, BGE_SRS_MODE
, BGE_SRSMODE_ENABLE
);
4213 bge_stop_block(sc
, BGE_SBDI_MODE
, BGE_SBDIMODE_ENABLE
);
4214 bge_stop_block(sc
, BGE_SDI_MODE
, BGE_SDIMODE_ENABLE
);
4215 bge_stop_block(sc
, BGE_RDMA_MODE
, BGE_RDMAMODE_ENABLE
);
4216 bge_stop_block(sc
, BGE_SDC_MODE
, BGE_SDCMODE_ENABLE
);
4217 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
4218 bge_stop_block(sc
, BGE_DMAC_MODE
, BGE_DMACMODE_ENABLE
);
4219 bge_stop_block(sc
, BGE_SBDC_MODE
, BGE_SBDCMODE_ENABLE
);
4222 * Shut down all of the memory managers and related
4225 bge_stop_block(sc
, BGE_HCC_MODE
, BGE_HCCMODE_ENABLE
);
4226 bge_stop_block(sc
, BGE_WDMA_MODE
, BGE_WDMAMODE_ENABLE
);
4227 if (!(BGE_IS_5705_OR_BEYOND(sc
)))
4228 bge_stop_block(sc
, BGE_MBCF_MODE
, BGE_MBCFMODE_ENABLE
);
4230 CSR_WRITE_4(sc
, BGE_FTQ_RESET
, 0xFFFFFFFF);
4231 CSR_WRITE_4(sc
, BGE_FTQ_RESET
, 0);
4233 if (!(BGE_IS_5705_OR_BEYOND(sc
))) {
4234 bge_stop_block(sc
, BGE_BMAN_MODE
, BGE_BMANMODE_ENABLE
);
4235 bge_stop_block(sc
, BGE_MARB_MODE
, BGE_MARBMODE_ENABLE
);
4238 /* Disable host interrupts. */
4239 BGE_SETBIT(sc
, BGE_PCI_MISC_CTL
, BGE_PCIMISCCTL_MASK_PCI_INTR
);
4240 bge_writembx(sc
, BGE_MBX_IRQ0_LO
, 1);
4243 * Tell firmware we're shutting down.
4245 BGE_CLRBIT(sc
, BGE_MODE_CTL
, BGE_MODECTL_STACKUP
);
4247 /* Free the RX lists. */
4248 bge_free_rx_ring_std(sc
);
4250 /* Free jumbo RX list. */
4251 bge_free_rx_ring_jumbo(sc
);
4253 /* Free TX buffers. */
4254 bge_free_tx_ring(sc
);
4257 * Isolate/power down the PHY.
4259 if (!(sc
->bge_flags
& BGE_PHY_FIBER_TBI
))
4260 mii_down(&sc
->bge_mii
);
4262 sc
->bge_tx_saved_considx
= BGE_TXCONS_UNSET
;
4264 /* Clear MAC's link state (PHY may still have link UP). */
4265 BGE_STS_CLRBIT(sc
, BGE_STS_LINK
);
4267 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
4271 bge_link_upd(struct bge_softc
*sc
)
4273 struct ifnet
*ifp
= &sc
->ethercom
.ec_if
;
4274 struct mii_data
*mii
= &sc
->bge_mii
;
4278 /* Clear 'pending link event' flag */
4279 BGE_STS_CLRBIT(sc
, BGE_STS_LINK_EVT
);
4282 * Process link state changes.
4283 * Grrr. The link status word in the status block does
4284 * not work correctly on the BCM5700 rev AX and BX chips,
4285 * according to all available information. Hence, we have
4286 * to enable MII interrupts in order to properly obtain
4287 * async link changes. Unfortunately, this also means that
4288 * we have to read the MAC status register to detect link
4289 * changes, thereby adding an additional register access to
4290 * the interrupt handler.
4293 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5700
) {
4294 status
= CSR_READ_4(sc
, BGE_MAC_STS
);
4295 if (status
& BGE_MACSTAT_MI_INTERRUPT
) {
4298 if (!BGE_STS_BIT(sc
, BGE_STS_LINK
) &&
4299 mii
->mii_media_status
& IFM_ACTIVE
&&
4300 IFM_SUBTYPE(mii
->mii_media_active
) != IFM_NONE
)
4301 BGE_STS_SETBIT(sc
, BGE_STS_LINK
);
4302 else if (BGE_STS_BIT(sc
, BGE_STS_LINK
) &&
4303 (!(mii
->mii_media_status
& IFM_ACTIVE
) ||
4304 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_NONE
))
4305 BGE_STS_CLRBIT(sc
, BGE_STS_LINK
);
4307 /* Clear the interrupt */
4308 CSR_WRITE_4(sc
, BGE_MAC_EVT_ENB
,
4309 BGE_EVTENB_MI_INTERRUPT
);
4310 bge_miibus_readreg(sc
->bge_dev
, 1, BRGPHY_MII_ISR
);
4311 bge_miibus_writereg(sc
->bge_dev
, 1, BRGPHY_MII_IMR
,
4317 if (sc
->bge_flags
& BGE_PHY_FIBER_TBI
) {
4318 status
= CSR_READ_4(sc
, BGE_MAC_STS
);
4319 if (status
& BGE_MACSTAT_TBI_PCS_SYNCHED
) {
4320 if (!BGE_STS_BIT(sc
, BGE_STS_LINK
)) {
4321 BGE_STS_SETBIT(sc
, BGE_STS_LINK
);
4322 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5704
)
4323 BGE_CLRBIT(sc
, BGE_MAC_MODE
,
4324 BGE_MACMODE_TBI_SEND_CFGS
);
4325 CSR_WRITE_4(sc
, BGE_MAC_STS
, 0xFFFFFFFF);
4326 if_link_state_change(ifp
, LINK_STATE_UP
);
4328 } else if (BGE_STS_BIT(sc
, BGE_STS_LINK
)) {
4329 BGE_STS_CLRBIT(sc
, BGE_STS_LINK
);
4330 if_link_state_change(ifp
, LINK_STATE_DOWN
);
4333 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4334 * This should not happen since mii callouts are locked now, but
4335 * we keep this check for debug.
4337 } else if (BGE_STS_BIT(sc
, BGE_STS_AUTOPOLL
)) {
4339 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4340 * bit in status word always set. Workaround this bug by
4341 * reading PHY link status directly.
4343 link
= (CSR_READ_4(sc
, BGE_MI_STS
) & BGE_MISTS_LINK
)?
4346 if (BGE_STS_BIT(sc
, BGE_STS_LINK
) != link
) {
4349 if (!BGE_STS_BIT(sc
, BGE_STS_LINK
) &&
4350 mii
->mii_media_status
& IFM_ACTIVE
&&
4351 IFM_SUBTYPE(mii
->mii_media_active
) != IFM_NONE
)
4352 BGE_STS_SETBIT(sc
, BGE_STS_LINK
);
4353 else if (BGE_STS_BIT(sc
, BGE_STS_LINK
) &&
4354 (!(mii
->mii_media_status
& IFM_ACTIVE
) ||
4355 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_NONE
))
4356 BGE_STS_CLRBIT(sc
, BGE_STS_LINK
);
4360 /* Clear the attention */
4361 CSR_WRITE_4(sc
, BGE_MAC_STS
, BGE_MACSTAT_SYNC_CHANGED
|
4362 BGE_MACSTAT_CFG_CHANGED
|BGE_MACSTAT_MI_COMPLETE
|
4363 BGE_MACSTAT_LINK_CHANGED
);
4367 sysctl_bge_verify(SYSCTLFN_ARGS
)
4370 struct sysctlnode node
;
4373 t
= *(int*)rnode
->sysctl_data
;
4374 node
.sysctl_data
= &t
;
4375 error
= sysctl_lookup(SYSCTLFN_CALL(&node
));
4376 if (error
|| newp
== NULL
)
4380 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__
, t
,
4381 node
.sysctl_num
, rnode
->sysctl_num
));
4384 if (node
.sysctl_num
== bge_rxthresh_nodenum
) {
4385 if (t
< 0 || t
>= NBGE_RX_THRESH
)
4387 bge_update_all_threshes(t
);
4391 *(int*)rnode
->sysctl_data
= t
;
4397 * Set up sysctl(3) MIB, hw.bge.*.
4399 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4401 SYSCTL_SETUP(sysctl_bge
, "sysctl bge subtree setup")
4403 int rc
, bge_root_num
;
4404 const struct sysctlnode
*node
;
4406 if ((rc
= sysctl_createv(clog
, 0, NULL
, NULL
,
4407 CTLFLAG_PERMANENT
, CTLTYPE_NODE
, "hw", NULL
,
4408 NULL
, 0, NULL
, 0, CTL_HW
, CTL_EOL
)) != 0) {
4412 if ((rc
= sysctl_createv(clog
, 0, NULL
, &node
,
4413 CTLFLAG_PERMANENT
, CTLTYPE_NODE
, "bge",
4414 SYSCTL_DESCR("BGE interface controls"),
4415 NULL
, 0, NULL
, 0, CTL_HW
, CTL_CREATE
, CTL_EOL
)) != 0) {
4419 bge_root_num
= node
->sysctl_num
;
4421 /* BGE Rx interrupt mitigation level */
4422 if ((rc
= sysctl_createv(clog
, 0, NULL
, &node
,
4423 CTLFLAG_PERMANENT
|CTLFLAG_READWRITE
,
4424 CTLTYPE_INT
, "rx_lvl",
4425 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4426 sysctl_bge_verify
, 0,
4428 0, CTL_HW
, bge_root_num
, CTL_CREATE
,
4433 bge_rxthresh_nodenum
= node
->sysctl_num
;
4438 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__
, rc
);
4442 bge_get_eaddr_mem(struct bge_softc
*sc
, u_int8_t ether_addr
[])
4446 mac_addr
= bge_readmem_ind(sc
, 0x0c14);
4447 if ((mac_addr
>> 16) == 0x484b) {
4448 ether_addr
[0] = (uint8_t)(mac_addr
>> 8);
4449 ether_addr
[1] = (uint8_t)mac_addr
;
4450 mac_addr
= bge_readmem_ind(sc
, 0x0c18);
4451 ether_addr
[2] = (uint8_t)(mac_addr
>> 24);
4452 ether_addr
[3] = (uint8_t)(mac_addr
>> 16);
4453 ether_addr
[4] = (uint8_t)(mac_addr
>> 8);
4454 ether_addr
[5] = (uint8_t)mac_addr
;
4461 bge_get_eaddr_nvram(struct bge_softc
*sc
, u_int8_t ether_addr
[])
4463 int mac_offset
= BGE_EE_MAC_OFFSET
;
4465 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
4466 mac_offset
= BGE_EE_MAC_OFFSET_5906
;
4469 return (bge_read_nvram(sc
, ether_addr
, mac_offset
+ 2,
4474 bge_get_eaddr_eeprom(struct bge_softc
*sc
, u_int8_t ether_addr
[])
4477 if (BGE_ASICREV(sc
->bge_chipid
) == BGE_ASICREV_BCM5906
) {
4481 return (bge_read_eeprom(sc
, ether_addr
, BGE_EE_MAC_OFFSET
+ 2,
4486 bge_get_eaddr(struct bge_softc
*sc
, u_int8_t eaddr
[])
4488 static const bge_eaddr_fcn_t bge_eaddr_funcs
[] = {
4489 /* NOTE: Order is critical */
4491 bge_get_eaddr_nvram
,
4492 bge_get_eaddr_eeprom
,
4495 const bge_eaddr_fcn_t
*func
;
4497 for (func
= bge_eaddr_funcs
; *func
!= NULL
; ++func
) {
4498 if ((*func
)(sc
, eaddr
) == 0)
4501 return (*func
== NULL
? ENXIO
: 0);