Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / pci / if_kse.c
blob2010baeb7678a3768b3e4bf1f6479ce212fdebda
1 /* $NetBSD: if_kse.c,v 1.19 2009/05/12 08:23:00 cegger Exp $ */
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.19 2009/05/12 08:23:00 cegger Exp $");
35 #include "bpfilter.h"
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
48 #include <machine/endian.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define MTR0 0x020 /* multicast table 31:0 */
81 #define MTR1 0x024 /* multicast table 63:32 */
82 #define INTEN 0x028 /* interrupt enable */
83 #define INTST 0x02c /* interrupt status */
84 #define MARL 0x200 /* MAC address low */
85 #define MARM 0x202 /* MAC address middle */
86 #define MARH 0x204 /* MAC address high */
87 #define GRR 0x216 /* global reset */
88 #define CIDR 0x400 /* chip ID and enable */
89 #define CGCR 0x40a /* chip global control */
90 #define IACR 0x4a0 /* indirect access control */
91 #define IADR1 0x4a2 /* indirect access data 66:63 */
92 #define IADR2 0x4a4 /* indirect access data 47:32 */
93 #define IADR3 0x4a6 /* indirect access data 63:48 */
94 #define IADR4 0x4a8 /* indirect access data 15:0 */
95 #define IADR5 0x4aa /* indirect access data 31:16 */
96 #define P1CR4 0x512 /* port 1 control 4 */
97 #define P1SR 0x514 /* port 1 status */
98 #define P2CR4 0x532 /* port 2 control 4 */
99 #define P2SR 0x534 /* port 2 status */
101 #define TXC_BS_MSK 0x3f000000 /* burst size */
102 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
103 #define TXC_UCG (1U<<18) /* generate UDP checksum */
104 #define TXC_TCG (1U<<17) /* generate TCP checksum */
105 #define TXC_ICG (1U<<16) /* generate IP checksum */
106 #define TXC_FCE (1U<<9) /* enable flowcontrol */
107 #define TXC_EP (1U<<2) /* enable automatic padding */
108 #define TXC_AC (1U<<1) /* add CRC to frame */
109 #define TXC_TEN (1) /* enable DMA to run */
111 #define RXC_BS_MSK 0x3f000000 /* burst size */
112 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
113 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
114 #define RXC_UCC (1U<<18) /* run UDP checksum */
115 #define RXC_TCC (1U<<17) /* run TDP checksum */
116 #define RXC_ICC (1U<<16) /* run IP checksum */
117 #define RXC_FCE (1U<<9) /* enable flowcontrol */
118 #define RXC_RB (1U<<6) /* receive broadcast frame */
119 #define RXC_RM (1U<<5) /* receive multicast frame */
120 #define RXC_RU (1U<<4) /* receive unicast frame */
121 #define RXC_RE (1U<<3) /* accept error frame */
122 #define RXC_RA (1U<<2) /* receive all frame */
123 #define RXC_MHTE (1U<<1) /* use multicast hash table */
124 #define RXC_REN (1) /* enable DMA to run */
126 #define INT_DMLCS (1U<<31) /* link status change */
127 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
128 #define INT_DMRS (1U<<29) /* frame was received */
129 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
131 #define T0_OWN (1U<<31) /* desc is ready to Tx */
133 #define R0_OWN (1U<<31) /* desc is empty */
134 #define R0_FS (1U<<30) /* first segment of frame */
135 #define R0_LS (1U<<29) /* last segment of frame */
136 #define R0_IPE (1U<<28) /* IP checksum error */
137 #define R0_TCPE (1U<<27) /* TCP checksum error */
138 #define R0_UDPE (1U<<26) /* UDP checksum error */
139 #define R0_ES (1U<<25) /* error summary */
140 #define R0_MF (1U<<24) /* multicast frame */
141 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
142 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
143 #define R0_RE (1U<<19) /* MII reported error */
144 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
145 #define R0_RF (1U<<17) /* damaged runt frame */
146 #define R0_CE (1U<<16) /* CRC error */
147 #define R0_FT (1U<<15) /* frame type */
148 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
150 #define T1_IC (1U<<31) /* post interrupt on complete */
151 #define T1_FS (1U<<30) /* first segment of frame */
152 #define T1_LS (1U<<29) /* last segment of frame */
153 #define T1_IPCKG (1U<<28) /* generate IP checksum */
154 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
155 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
156 #define T1_TER (1U<<25) /* end of ring */
157 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
158 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
160 #define R1_RER (1U<<25) /* end of ring */
161 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
163 #define KSE_NTXSEGS 16
164 #define KSE_TXQUEUELEN 64
165 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
166 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
167 #define KSE_NTXDESC 256
168 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
169 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
170 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
172 #define KSE_NRXDESC 64
173 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
174 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
176 struct tdes {
177 uint32_t t0, t1, t2, t3;
180 struct rdes {
181 uint32_t r0, r1, r2, r3;
184 struct kse_control_data {
185 struct tdes kcd_txdescs[KSE_NTXDESC];
186 struct rdes kcd_rxdescs[KSE_NRXDESC];
188 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
189 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
190 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
192 struct kse_txsoft {
193 struct mbuf *txs_mbuf; /* head of our mbuf chain */
194 bus_dmamap_t txs_dmamap; /* our DMA map */
195 int txs_firstdesc; /* first descriptor in packet */
196 int txs_lastdesc; /* last descriptor in packet */
197 int txs_ndesc; /* # of descriptors used */
200 struct kse_rxsoft {
201 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t rxs_dmamap; /* our DMA map */
205 struct kse_softc {
206 struct device sc_dev; /* generic device information */
207 bus_space_tag_t sc_st; /* bus space tag */
208 bus_space_handle_t sc_sh; /* bus space handle */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 struct ethercom sc_ethercom; /* Ethernet common data */
211 void *sc_ih; /* interrupt cookie */
213 struct ifmedia sc_media; /* ifmedia information */
214 int sc_media_status; /* PHY */
215 int sc_media_active; /* PHY */
216 callout_t sc_callout; /* MII tick callout */
217 callout_t sc_stat_ch; /* statistics counter callout */
219 bus_dmamap_t sc_cddmamap; /* control data DMA map */
220 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222 struct kse_control_data *sc_control_data;
223 #define sc_txdescs sc_control_data->kcd_txdescs
224 #define sc_rxdescs sc_control_data->kcd_rxdescs
226 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
227 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
228 int sc_txfree; /* number of free Tx descriptors */
229 int sc_txnext; /* next ready Tx descriptor */
230 int sc_txsfree; /* number of free Tx jobs */
231 int sc_txsnext; /* next ready Tx job */
232 int sc_txsdirty; /* dirty Tx jobs */
233 int sc_rxptr; /* next ready Rx descriptor/descsoft */
235 uint32_t sc_txc, sc_rxc;
236 uint32_t sc_t1csum;
237 int sc_mcsum;
238 uint32_t sc_inten;
240 uint32_t sc_chip;
241 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
242 uint16_t sc_vlan[16];
244 #ifdef KSE_EVENT_COUNTERS
245 struct ksext {
246 char evcntname[3][8];
247 struct evcnt pev[3][34];
248 } sc_ext; /* switch statistics */
249 #endif
252 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
253 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
255 #define KSE_CDTXSYNC(sc, x, n, ops) \
256 do { \
257 int __x, __n; \
259 __x = (x); \
260 __n = (n); \
262 /* If it will wrap around, sync to the end of the ring. */ \
263 if ((__x + __n) > KSE_NTXDESC) { \
264 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
265 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
266 (KSE_NTXDESC - __x), (ops)); \
267 __n -= (KSE_NTXDESC - __x); \
268 __x = 0; \
271 /* Now sync whatever is left. */ \
272 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
273 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
274 } while (/*CONSTCOND*/0)
276 #define KSE_CDRXSYNC(sc, x, ops) \
277 do { \
278 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
279 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
280 } while (/*CONSTCOND*/0)
282 #define KSE_INIT_RXDESC(sc, x) \
283 do { \
284 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
285 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
286 struct mbuf *__m = __rxs->rxs_mbuf; \
288 __m->m_data = __m->m_ext.ext_buf; \
289 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
290 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
291 __rxd->r0 = R0_OWN; \
292 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
293 } while (/*CONSTCOND*/0)
295 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
297 #ifdef KSEDIAGNOSTIC
298 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
299 #endif
301 static int kse_match(device_t, cfdata_t, void *);
302 static void kse_attach(device_t, device_t, void *);
304 CFATTACH_DECL(kse, sizeof(struct kse_softc),
305 kse_match, kse_attach, NULL, NULL);
307 static int kse_ioctl(struct ifnet *, u_long, void *);
308 static void kse_start(struct ifnet *);
309 static void kse_watchdog(struct ifnet *);
310 static int kse_init(struct ifnet *);
311 static void kse_stop(struct ifnet *, int);
312 static void kse_reset(struct kse_softc *);
313 static void kse_set_filter(struct kse_softc *);
314 static int add_rxbuf(struct kse_softc *, int);
315 static void rxdrain(struct kse_softc *);
316 static int kse_intr(void *);
317 static void rxintr(struct kse_softc *);
318 static void txreap(struct kse_softc *);
319 static void lnkchg(struct kse_softc *);
320 static int ifmedia_upd(struct ifnet *);
321 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 static void phy_tick(void *);
323 static int ifmedia2_upd(struct ifnet *);
324 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
325 #ifdef KSE_EVENT_COUNTERS
326 static void stat_tick(void *);
327 static void zerostats(struct kse_softc *);
328 #endif
330 static int
331 kse_match(device_t parent, cfdata_t match, void *aux)
333 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
335 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
336 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
337 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
338 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
339 return 1;
341 return 0;
344 static void
345 kse_attach(device_t parent, device_t self, void *aux)
347 struct kse_softc *sc = device_private(self);
348 struct pci_attach_args *pa = aux;
349 pci_chipset_tag_t pc = pa->pa_pc;
350 pci_intr_handle_t ih;
351 const char *intrstr;
352 struct ifnet *ifp;
353 struct ifmedia *ifm;
354 uint8_t enaddr[ETHER_ADDR_LEN];
355 bus_dma_segment_t seg;
356 int i, p, error, nseg;
357 pcireg_t pmode;
358 int pmreg;
360 if (pci_mapreg_map(pa, 0x10,
361 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
362 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
363 printf(": unable to map device registers\n");
364 return;
367 sc->sc_dmat = pa->pa_dmat;
369 /* Make sure bus mastering is enabled. */
370 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
371 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
372 PCI_COMMAND_MASTER_ENABLE);
374 /* Get it out of power save mode, if needed. */
375 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
376 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
377 PCI_PMCSR_STATE_MASK;
378 if (pmode == PCI_PMCSR_STATE_D3) {
380 * The card has lost all configuration data in
381 * this state, so punt.
383 printf("%s: unable to wake from power state D3\n",
384 device_xname(&sc->sc_dev));
385 return;
387 if (pmode != PCI_PMCSR_STATE_D0) {
388 printf("%s: waking up from power date D%d\n",
389 device_xname(&sc->sc_dev), pmode);
390 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
391 PCI_PMCSR_STATE_D0);
395 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
396 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
397 sc->sc_chip, PCI_REVISION(pa->pa_class));
400 * Read the Ethernet address from the EEPROM.
402 i = CSR_READ_2(sc, MARL);
403 enaddr[5] = i; enaddr[4] = i >> 8;
404 i = CSR_READ_2(sc, MARM);
405 enaddr[3] = i; enaddr[2] = i >> 8;
406 i = CSR_READ_2(sc, MARH);
407 enaddr[1] = i; enaddr[0] = i >> 8;
408 printf("%s: Ethernet address: %s\n",
409 device_xname(&sc->sc_dev), ether_sprintf(enaddr));
412 * Enable chip function.
414 CSR_WRITE_2(sc, CIDR, 1);
417 * Map and establish our interrupt.
419 if (pci_intr_map(pa, &ih)) {
420 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
421 return;
423 intrstr = pci_intr_string(pc, ih);
424 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
425 if (sc->sc_ih == NULL) {
426 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
427 if (intrstr != NULL)
428 aprint_error(" at %s", intrstr);
429 aprint_error("\n");
430 return;
432 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
435 * Allocate the control data structures, and create and load the
436 * DMA map for it.
438 error = bus_dmamem_alloc(sc->sc_dmat,
439 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
440 if (error != 0) {
441 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n", error);
442 goto fail_0;
444 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 BUS_DMA_COHERENT);
447 if (error != 0) {
448 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
449 goto fail_1;
451 error = bus_dmamap_create(sc->sc_dmat,
452 sizeof(struct kse_control_data), 1,
453 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
454 if (error != 0) {
455 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
456 "error = %d\n", error);
457 goto fail_2;
459 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
460 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
461 if (error != 0) {
462 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
463 error);
464 goto fail_3;
466 for (i = 0; i < KSE_TXQUEUELEN; i++) {
467 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
468 KSE_NTXSEGS, MCLBYTES, 0, 0,
469 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
470 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
471 "error = %d\n", i, error);
472 goto fail_4;
475 for (i = 0; i < KSE_NRXDESC; i++) {
476 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
478 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
479 "error = %d\n", i, error);
480 goto fail_5;
482 sc->sc_rxsoft[i].rxs_mbuf = NULL;
485 callout_init(&sc->sc_callout, 0);
486 callout_init(&sc->sc_stat_ch, 0);
488 ifm = &sc->sc_media;
489 if (sc->sc_chip == 0x8841) {
490 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
491 ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
492 ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
493 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
494 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
495 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
496 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
498 else {
499 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
500 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
501 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
504 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
505 device_xname(&sc->sc_dev));
507 ifp = &sc->sc_ethercom.ec_if;
508 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 ifp->if_ioctl = kse_ioctl;
512 ifp->if_start = kse_start;
513 ifp->if_watchdog = kse_watchdog;
514 ifp->if_init = kse_init;
515 ifp->if_stop = kse_stop;
516 IFQ_SET_READY(&ifp->if_snd);
519 * KSZ8842 can handle 802.1Q VLAN-sized frames,
520 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
522 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
523 ifp->if_capabilities |=
524 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
525 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
526 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
528 if_attach(ifp);
529 ether_ifattach(ifp, enaddr);
531 p = (sc->sc_chip == 0x8842) ? 3 : 1;
532 #ifdef KSE_EVENT_COUNTERS
533 for (i = 0; i < p; i++) {
534 struct ksext *ee = &sc->sc_ext;
535 sprintf(ee->evcntname[i], "%s.%d", device_xname(&sc->sc_dev), i+1);
536 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
537 NULL, ee->evcntname[i], "RxLoPriotyByte");
538 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
539 NULL, ee->evcntname[i], "RxHiPriotyByte");
540 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
541 NULL, ee->evcntname[i], "RxUndersizePkt");
542 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
543 NULL, ee->evcntname[i], "RxFragments");
544 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
545 NULL, ee->evcntname[i], "RxOversize");
546 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
547 NULL, ee->evcntname[i], "RxJabbers");
548 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
549 NULL, ee->evcntname[i], "RxSymbolError");
550 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
551 NULL, ee->evcntname[i], "RxCRCError");
552 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
553 NULL, ee->evcntname[i], "RxAlignmentError");
554 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
555 NULL, ee->evcntname[i], "RxControl8808Pkts");
556 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
557 NULL, ee->evcntname[i], "RxPausePkts");
558 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
559 NULL, ee->evcntname[i], "RxBroadcast");
560 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
561 NULL, ee->evcntname[i], "RxMulticast");
562 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
563 NULL, ee->evcntname[i], "RxUnicast");
564 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
565 NULL, ee->evcntname[i], "Rx64Octets");
566 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
567 NULL, ee->evcntname[i], "Rx65To127Octets");
568 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
569 NULL, ee->evcntname[i], "Rx128To255Octets");
570 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
571 NULL, ee->evcntname[i], "Rx255To511Octets");
572 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
573 NULL, ee->evcntname[i], "Rx512To1023Octets");
574 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
575 NULL, ee->evcntname[i], "Rx1024To1522Octets");
576 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
577 NULL, ee->evcntname[i], "TxLoPriotyByte");
578 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
579 NULL, ee->evcntname[i], "TxHiPriotyByte");
580 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
581 NULL, ee->evcntname[i], "TxLateCollision");
582 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "TxPausePkts");
584 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "TxBroadcastPkts");
586 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "TxMulticastPkts");
588 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "TxUnicastPkts");
590 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "TxDeferred");
592 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "TxTotalCollision");
594 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "TxExcessiveCollision");
596 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "TxSingleCollision");
598 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "TxMultipleCollision");
600 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "TxDropPkts");
602 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "RxDropPkts");
605 #endif
606 return;
608 fail_5:
609 for (i = 0; i < KSE_NRXDESC; i++) {
610 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
611 bus_dmamap_destroy(sc->sc_dmat,
612 sc->sc_rxsoft[i].rxs_dmamap);
614 fail_4:
615 for (i = 0; i < KSE_TXQUEUELEN; i++) {
616 if (sc->sc_txsoft[i].txs_dmamap != NULL)
617 bus_dmamap_destroy(sc->sc_dmat,
618 sc->sc_txsoft[i].txs_dmamap);
620 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621 fail_3:
622 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
623 fail_2:
624 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
625 sizeof(struct kse_control_data));
626 fail_1:
627 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
628 fail_0:
629 return;
632 static int
633 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
635 struct kse_softc *sc = ifp->if_softc;
636 struct ifreq *ifr = (struct ifreq *)data;
637 int s, error;
639 s = splnet();
641 switch (cmd) {
642 case SIOCSIFMEDIA:
643 case SIOCGIFMEDIA:
644 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
645 break;
647 default:
648 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
649 break;
651 error = 0;
653 if (cmd == SIOCSIFCAP)
654 error = (*ifp->if_init)(ifp);
655 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
657 else if (ifp->if_flags & IFF_RUNNING) {
659 * Multicast list has changed; set the hardware filter
660 * accordingly.
662 kse_set_filter(sc);
664 break;
667 kse_start(ifp);
669 splx(s);
670 return error;
673 static int
674 kse_init(struct ifnet *ifp)
676 struct kse_softc *sc = ifp->if_softc;
677 uint32_t paddr;
678 int i, error = 0;
680 /* cancel pending I/O */
681 kse_stop(ifp, 0);
683 /* reset all registers but PCI configuration */
684 kse_reset(sc);
686 /* craft Tx descriptor ring */
687 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
688 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
689 sc->sc_txdescs[i].t3 = paddr;
690 paddr += sizeof(struct tdes);
692 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
693 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
694 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
695 sc->sc_txfree = KSE_NTXDESC;
696 sc->sc_txnext = 0;
698 for (i = 0; i < KSE_TXQUEUELEN; i++)
699 sc->sc_txsoft[i].txs_mbuf = NULL;
700 sc->sc_txsfree = KSE_TXQUEUELEN;
701 sc->sc_txsnext = 0;
702 sc->sc_txsdirty = 0;
704 /* craft Rx descriptor ring */
705 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
706 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
707 sc->sc_rxdescs[i].r3 = paddr;
708 paddr += sizeof(struct rdes);
710 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
711 for (i = 0; i < KSE_NRXDESC; i++) {
712 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
713 if ((error = add_rxbuf(sc, i)) != 0) {
714 printf("%s: unable to allocate or map rx "
715 "buffer %d, error = %d\n",
716 device_xname(&sc->sc_dev), i, error);
717 rxdrain(sc);
718 goto out;
721 else
722 KSE_INIT_RXDESC(sc, i);
724 sc->sc_rxptr = 0;
726 /* hand Tx/Rx rings to HW */
727 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
728 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
730 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
731 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
732 if (ifp->if_flags & IFF_PROMISC)
733 sc->sc_rxc |= RXC_RA;
734 if (ifp->if_flags & IFF_BROADCAST)
735 sc->sc_rxc |= RXC_RB;
736 sc->sc_t1csum = sc->sc_mcsum = 0;
737 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
738 sc->sc_rxc |= RXC_ICC;
739 sc->sc_mcsum |= M_CSUM_IPv4;
741 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
742 sc->sc_txc |= TXC_ICG;
743 sc->sc_t1csum |= T1_IPCKG;
745 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
746 sc->sc_rxc |= RXC_TCC;
747 sc->sc_mcsum |= M_CSUM_TCPv4;
749 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
750 sc->sc_txc |= TXC_TCG;
751 sc->sc_t1csum |= T1_TCPCKG;
753 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
754 sc->sc_rxc |= RXC_UCC;
755 sc->sc_mcsum |= M_CSUM_UDPv4;
757 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
758 sc->sc_txc |= TXC_UCG;
759 sc->sc_t1csum |= T1_UDPCKG;
761 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
762 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
764 /* build multicast hash filter if necessary */
765 kse_set_filter(sc);
767 /* set current media */
768 (void)ifmedia_upd(ifp);
770 /* enable transmitter and receiver */
771 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
772 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
773 CSR_WRITE_4(sc, MDRSC, 1);
775 /* enable interrupts */
776 sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
777 if (sc->sc_chip == 0x8841)
778 sc->sc_inten |= INT_DMLCS;
779 CSR_WRITE_4(sc, INTST, ~0);
780 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
782 ifp->if_flags |= IFF_RUNNING;
783 ifp->if_flags &= ~IFF_OACTIVE;
785 if (sc->sc_chip == 0x8841) {
786 /* start one second timer */
787 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
789 #ifdef KSE_EVENT_COUNTERS
790 /* start statistics gather 1 minute timer */
791 zerostats(sc);
792 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
793 #endif
795 out:
796 if (error) {
797 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
798 ifp->if_timer = 0;
799 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
801 return error;
804 static void
805 kse_stop(struct ifnet *ifp, int disable)
807 struct kse_softc *sc = ifp->if_softc;
808 struct kse_txsoft *txs;
809 int i;
811 if (sc->sc_chip == 0x8841)
812 callout_stop(&sc->sc_callout);
813 callout_stop(&sc->sc_stat_ch);
815 sc->sc_txc &= ~TXC_TEN;
816 sc->sc_rxc &= ~RXC_REN;
817 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
818 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
820 for (i = 0; i < KSE_TXQUEUELEN; i++) {
821 txs = &sc->sc_txsoft[i];
822 if (txs->txs_mbuf != NULL) {
823 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
824 m_freem(txs->txs_mbuf);
825 txs->txs_mbuf = NULL;
829 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830 ifp->if_timer = 0;
832 if (disable)
833 rxdrain(sc);
836 static void
837 kse_reset(struct kse_softc *sc)
840 CSR_WRITE_2(sc, GRR, 1);
841 delay(1000); /* PDF does not mention the delay amount */
842 CSR_WRITE_2(sc, GRR, 0);
844 CSR_WRITE_2(sc, CIDR, 1);
847 static void
848 kse_watchdog(struct ifnet *ifp)
850 struct kse_softc *sc = ifp->if_softc;
853 * Since we're not interrupting every packet, sweep
854 * up before we report an error.
856 txreap(sc);
858 if (sc->sc_txfree != KSE_NTXDESC) {
859 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
860 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
861 sc->sc_txnext);
862 ifp->if_oerrors++;
864 /* Reset the interface. */
865 kse_init(ifp);
867 else if (ifp->if_flags & IFF_DEBUG)
868 printf("%s: recovered from device timeout\n",
869 device_xname(&sc->sc_dev));
871 /* Try to get more packets going. */
872 kse_start(ifp);
875 static void
876 kse_start(struct ifnet *ifp)
878 struct kse_softc *sc = ifp->if_softc;
879 struct mbuf *m0, *m;
880 struct kse_txsoft *txs;
881 bus_dmamap_t dmamap;
882 int error, nexttx, lasttx, ofree, seg;
883 uint32_t tdes0;
885 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
886 return;
889 * Remember the previous number of free descriptors.
891 ofree = sc->sc_txfree;
894 * Loop through the send queue, setting up transmit descriptors
895 * until we drain the queue, or use up all available transmit
896 * descriptors.
898 for (;;) {
899 IFQ_POLL(&ifp->if_snd, m0);
900 if (m0 == NULL)
901 break;
903 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
904 txreap(sc);
905 if (sc->sc_txsfree == 0)
906 break;
908 txs = &sc->sc_txsoft[sc->sc_txsnext];
909 dmamap = txs->txs_dmamap;
911 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
912 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
913 if (error) {
914 if (error == EFBIG) {
915 printf("%s: Tx packet consumes too many "
916 "DMA segments, dropping...\n",
917 device_xname(&sc->sc_dev));
918 IFQ_DEQUEUE(&ifp->if_snd, m0);
919 m_freem(m0);
920 continue;
922 /* Short on resources, just stop for now. */
923 break;
926 if (dmamap->dm_nsegs > sc->sc_txfree) {
928 * Not enough free descriptors to transmit this
929 * packet. We haven't committed anything yet,
930 * so just unload the DMA map, put the packet
931 * back on the queue, and punt. Notify the upper
932 * layer that there are not more slots left.
934 ifp->if_flags |= IFF_OACTIVE;
935 bus_dmamap_unload(sc->sc_dmat, dmamap);
936 break;
939 IFQ_DEQUEUE(&ifp->if_snd, m0);
942 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
945 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
946 BUS_DMASYNC_PREWRITE);
948 lasttx = -1; tdes0 = 0;
949 for (nexttx = sc->sc_txnext, seg = 0;
950 seg < dmamap->dm_nsegs;
951 seg++, nexttx = KSE_NEXTTX(nexttx)) {
952 struct tdes *tdes = &sc->sc_txdescs[nexttx];
954 * If this is the first descriptor we're
955 * enqueueing, don't set the OWN bit just
956 * yet. That could cause a race condition.
957 * We'll do it below.
959 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
960 tdes->t1 = sc->sc_t1csum
961 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
962 tdes->t0 = tdes0;
963 tdes0 |= T0_OWN;
964 lasttx = nexttx;
968 * Outgoing NFS mbuf must be unloaded when Tx completed.
969 * Without T1_IC NFS mbuf is left unack'ed for excessive
970 * time and NFS stops to proceed until kse_watchdog()
971 * calls txreap() to reclaim the unack'ed mbuf.
972 * It's painful to traverse every mbuf chain to determine
973 * whether someone is waiting for Tx completion.
975 m = m0;
976 do {
977 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
978 sc->sc_txdescs[lasttx].t1 |= T1_IC;
979 break;
981 } while ((m = m->m_next) != NULL);
983 /* write last T0_OWN bit of the 1st segment */
984 sc->sc_txdescs[lasttx].t1 |= T1_LS;
985 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
986 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
987 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
988 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
990 /* tell DMA start transmit */
991 CSR_WRITE_4(sc, MDTSC, 1);
993 txs->txs_mbuf = m0;
994 txs->txs_firstdesc = sc->sc_txnext;
995 txs->txs_lastdesc = lasttx;
996 txs->txs_ndesc = dmamap->dm_nsegs;
998 sc->sc_txfree -= txs->txs_ndesc;
999 sc->sc_txnext = nexttx;
1000 sc->sc_txsfree--;
1001 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1002 #if NBPFILTER > 0
1004 * Pass the packet to any BPF listeners.
1006 if (ifp->if_bpf)
1007 bpf_mtap(ifp->if_bpf, m0);
1008 #endif /* NBPFILTER > 0 */
1011 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1012 /* No more slots left; notify upper layer. */
1013 ifp->if_flags |= IFF_OACTIVE;
1015 if (sc->sc_txfree != ofree) {
1016 /* Set a watchdog timer in case the chip flakes out. */
1017 ifp->if_timer = 5;
1021 static void
1022 kse_set_filter(struct kse_softc *sc)
1024 struct ether_multistep step;
1025 struct ether_multi *enm;
1026 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1027 uint32_t h, hashes[2];
1029 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1030 ifp->if_flags &= ~IFF_ALLMULTI;
1031 if (ifp->if_flags & IFF_PROMISC)
1032 return;
1034 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1035 if (enm == NULL)
1036 return;
1037 hashes[0] = hashes[1] = 0;
1038 do {
1039 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1041 * We must listen to a range of multicast addresses.
1042 * For now, just accept all multicasts, rather than
1043 * trying to set only those filter bits needed to match
1044 * the range. (At this time, the only use of address
1045 * ranges is for IP multicast routing, for which the
1046 * range is big enough to require all bits set.)
1048 goto allmulti;
1050 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1051 hashes[h >> 5] |= 1 << (h & 0x1f);
1052 ETHER_NEXT_MULTI(step, enm);
1053 } while (enm != NULL);
1054 sc->sc_rxc |= RXC_MHTE;
1055 CSR_WRITE_4(sc, MTR0, hashes[0]);
1056 CSR_WRITE_4(sc, MTR1, hashes[1]);
1057 return;
1058 allmulti:
1059 sc->sc_rxc |= RXC_RM;
1060 ifp->if_flags |= IFF_ALLMULTI;
1063 static int
1064 add_rxbuf(struct kse_softc *sc, int idx)
1066 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1067 struct mbuf *m;
1068 int error;
1070 MGETHDR(m, M_DONTWAIT, MT_DATA);
1071 if (m == NULL)
1072 return ENOBUFS;
1074 MCLGET(m, M_DONTWAIT);
1075 if ((m->m_flags & M_EXT) == 0) {
1076 m_freem(m);
1077 return ENOBUFS;
1080 if (rxs->rxs_mbuf != NULL)
1081 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1083 rxs->rxs_mbuf = m;
1085 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1086 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1087 if (error) {
1088 printf("%s: can't load rx DMA map %d, error = %d\n",
1089 device_xname(&sc->sc_dev), idx, error);
1090 panic("kse_add_rxbuf");
1093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1096 KSE_INIT_RXDESC(sc, idx);
1098 return 0;
1101 static void
1102 rxdrain(struct kse_softc *sc)
1104 struct kse_rxsoft *rxs;
1105 int i;
1107 for (i = 0; i < KSE_NRXDESC; i++) {
1108 rxs = &sc->sc_rxsoft[i];
1109 if (rxs->rxs_mbuf != NULL) {
1110 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1111 m_freem(rxs->rxs_mbuf);
1112 rxs->rxs_mbuf = NULL;
1117 static int
1118 kse_intr(void *arg)
1120 struct kse_softc *sc = arg;
1121 uint32_t isr;
1123 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1124 return 0;
1126 if (isr & INT_DMRS)
1127 rxintr(sc);
1128 if (isr & INT_DMTS)
1129 txreap(sc);
1130 if (isr & INT_DMLCS)
1131 lnkchg(sc);
1132 if (isr & INT_DMRBUS)
1133 printf("%s: Rx descriptor full\n", device_xname(&sc->sc_dev));
1135 CSR_WRITE_4(sc, INTST, isr);
1136 return 1;
1139 static void
1140 rxintr(struct kse_softc *sc)
1142 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1143 struct kse_rxsoft *rxs;
1144 struct mbuf *m;
1145 uint32_t rxstat;
1146 int i, len;
1148 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1149 rxs = &sc->sc_rxsoft[i];
1151 KSE_CDRXSYNC(sc, i,
1152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1154 rxstat = sc->sc_rxdescs[i].r0;
1156 if (rxstat & R0_OWN) /* desc is left empty */
1157 break;
1159 /* R0_FS|R0_LS must have been marked for this desc */
1161 if (rxstat & R0_ES) {
1162 ifp->if_ierrors++;
1163 #define PRINTERR(bit, str) \
1164 if (rxstat & (bit)) \
1165 printf("%s: receive error: %s\n", \
1166 device_xname(&sc->sc_dev), str)
1167 PRINTERR(R0_TL, "frame too long");
1168 PRINTERR(R0_RF, "runt frame");
1169 PRINTERR(R0_CE, "bad FCS");
1170 #undef PRINTERR
1171 KSE_INIT_RXDESC(sc, i);
1172 continue;
1175 /* HW errata; frame might be too small or too large */
1177 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1178 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1180 len = rxstat & R0_FL_MASK;
1181 len -= ETHER_CRC_LEN; /* trim CRC off */
1182 m = rxs->rxs_mbuf;
1184 if (add_rxbuf(sc, i) != 0) {
1185 ifp->if_ierrors++;
1186 KSE_INIT_RXDESC(sc, i);
1187 bus_dmamap_sync(sc->sc_dmat,
1188 rxs->rxs_dmamap, 0,
1189 rxs->rxs_dmamap->dm_mapsize,
1190 BUS_DMASYNC_PREREAD);
1191 continue;
1194 ifp->if_ipackets++;
1195 m->m_pkthdr.rcvif = ifp;
1196 m->m_pkthdr.len = m->m_len = len;
1198 if (sc->sc_mcsum) {
1199 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1200 if (rxstat & R0_IPE)
1201 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1202 if (rxstat & (R0_TCPE | R0_UDPE))
1203 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1205 #if NBPFILTER > 0
1206 if (ifp->if_bpf)
1207 bpf_mtap(ifp->if_bpf, m);
1208 #endif /* NBPFILTER > 0 */
1209 (*ifp->if_input)(ifp, m);
1210 #ifdef KSEDIAGNOSTIC
1211 if (kse_monitor_rxintr > 0) {
1212 printf("m stat %x data %p len %d\n",
1213 rxstat, m->m_data, m->m_len);
1215 #endif
1217 sc->sc_rxptr = i;
1220 static void
1221 txreap(struct kse_softc *sc)
1223 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1224 struct kse_txsoft *txs;
1225 uint32_t txstat;
1226 int i;
1228 ifp->if_flags &= ~IFF_OACTIVE;
1230 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1231 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1232 txs = &sc->sc_txsoft[i];
1234 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1235 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1237 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1239 if (txstat & T0_OWN) /* desc is still in use */
1240 break;
1242 /* there is no way to tell transmission status per frame */
1244 ifp->if_opackets++;
1246 sc->sc_txfree += txs->txs_ndesc;
1247 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1248 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1249 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1250 m_freem(txs->txs_mbuf);
1251 txs->txs_mbuf = NULL;
1253 sc->sc_txsdirty = i;
1254 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1255 ifp->if_timer = 0;
1258 static void
1259 lnkchg(struct kse_softc *sc)
1261 struct ifmediareq ifmr;
1263 #if 0 /* rambling link status */
1264 printf("%s: link %s\n", device_xname(&sc->sc_dev),
1265 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1266 #endif
1267 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1270 static int
1271 ifmedia_upd(struct ifnet *ifp)
1273 struct kse_softc *sc = ifp->if_softc;
1274 struct ifmedia *ifm = &sc->sc_media;
1275 uint16_t ctl;
1277 ctl = 0;
1278 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1279 ctl |= (1U << 13); /* restart AN */
1280 ctl |= (1U << 7); /* enable AN */
1281 ctl |= (1U << 4); /* advertise flow control pause */
1282 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1284 else {
1285 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1286 ctl |= (1U << 6);
1287 if (ifm->ifm_media & IFM_FDX)
1288 ctl |= (1U << 5);
1290 CSR_WRITE_2(sc, P1CR4, ctl);
1292 sc->sc_media_active = IFM_NONE;
1293 sc->sc_media_status = IFM_AVALID;
1295 return 0;
1298 static void
1299 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1301 struct kse_softc *sc = ifp->if_softc;
1302 struct ifmedia *ifm = &sc->sc_media;
1303 uint16_t ctl, sts, result;
1305 ifmr->ifm_status = IFM_AVALID;
1306 ifmr->ifm_active = IFM_ETHER;
1308 ctl = CSR_READ_2(sc, P1CR4);
1309 sts = CSR_READ_2(sc, P1SR);
1310 if ((sts & (1U << 5)) == 0) {
1311 ifmr->ifm_active |= IFM_NONE;
1312 goto out; /* link is down */
1314 ifmr->ifm_status |= IFM_ACTIVE;
1315 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1316 if ((sts & (1U << 6)) == 0) {
1317 ifmr->ifm_active |= IFM_NONE;
1318 goto out; /* negotiation in progress */
1320 result = ctl & sts & 017;
1321 if (result & (1U << 3))
1322 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1323 else if (result & (1U << 2))
1324 ifmr->ifm_active |= IFM_100_TX;
1325 else if (result & (1U << 1))
1326 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1327 else if (result & (1U << 0))
1328 ifmr->ifm_active |= IFM_10_T;
1329 else
1330 ifmr->ifm_active |= IFM_NONE;
1331 if (ctl & (1U << 4))
1332 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1333 if (sts & (1U << 4))
1334 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1336 else {
1337 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1338 if (sts & (1U << 9))
1339 ifmr->ifm_active |= IFM_FDX;
1340 if (sts & (1U << 12))
1341 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1342 if (sts & (1U << 11))
1343 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1346 out:
1347 sc->sc_media_status = ifmr->ifm_status;
1348 sc->sc_media_active = ifmr->ifm_active;
1351 static void
1352 phy_tick(void *arg)
1354 struct kse_softc *sc = arg;
1355 struct ifmediareq ifmr;
1356 int s;
1358 s = splnet();
1359 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1360 splx(s);
1362 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1365 static int
1366 ifmedia2_upd(struct ifnet *ifp)
1368 struct kse_softc *sc = ifp->if_softc;
1370 sc->sc_media_status = IFM_AVALID;
1371 sc->sc_media_active = IFM_NONE;
1372 return 0;
1375 static void
1376 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1378 struct kse_softc *sc = ifp->if_softc;
1379 int p1sts, p2sts;
1381 ifmr->ifm_status = IFM_AVALID;
1382 ifmr->ifm_active = IFM_ETHER;
1383 p1sts = CSR_READ_2(sc, P1SR);
1384 p2sts = CSR_READ_2(sc, P2SR);
1385 if (((p1sts | p2sts) & (1U << 5)) == 0)
1386 ifmr->ifm_active |= IFM_NONE;
1387 else {
1388 ifmr->ifm_status |= IFM_ACTIVE;
1389 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1390 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1392 sc->sc_media_status = ifmr->ifm_status;
1393 sc->sc_media_active = ifmr->ifm_active;
1396 #ifdef KSE_EVENT_COUNTERS
1397 static void
1398 stat_tick(void *arg)
1400 struct kse_softc *sc = arg;
1401 struct ksext *ee = &sc->sc_ext;
1402 int nport, p, i, val;
1404 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1405 for (p = 0; p < nport; p++) {
1406 for (i = 0; i < 32; i++) {
1407 val = 0x1c00 | (p * 0x20 + i);
1408 CSR_WRITE_2(sc, IACR, val);
1409 do {
1410 val = CSR_READ_2(sc, IADR5) << 16;
1411 } while ((val & (1U << 30)) == 0);
1412 if (val & (1U << 31)) {
1413 (void)CSR_READ_2(sc, IADR4);
1414 val = 0x3fffffff; /* has made overflow */
1416 else {
1417 val &= 0x3fff0000; /* 29:16 */
1418 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1420 ee->pev[p][i].ev_count += val; /* i (0-31) */
1422 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1423 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1424 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1425 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1427 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1430 static void
1431 zerostats(struct kse_softc *sc)
1433 struct ksext *ee = &sc->sc_ext;
1434 int nport, p, i, val;
1436 /* make sure all the HW counters get zero */
1437 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1438 for (p = 0; p < nport; p++) {
1439 for (i = 0; i < 31; i++) {
1440 val = 0x1c00 | (p * 0x20 + i);
1441 CSR_WRITE_2(sc, IACR, val);
1442 do {
1443 val = CSR_READ_2(sc, IADR5) << 16;
1444 } while ((val & (1U << 30)) == 0);
1445 (void)CSR_READ_2(sc, IADR4);
1446 ee->pev[p][i].ev_count = 0;
1450 #endif