1 /* $NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $ */
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $");
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
76 #include <dev/pci/if_stgereg.h>
78 /* #define STGE_CU_BUG 1 */
79 #define STGE_VLAN_UNTAG 1
80 /* #define STGE_VLAN_CFI 1 */
83 * Transmit descriptor list size.
85 #define STGE_NTXDESC 256
86 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
87 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
90 * Receive descriptor list size.
92 #define STGE_NRXDESC 256
93 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
94 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
97 * Only interrupt every N frames. Must be a power-of-two.
99 #define STGE_TXINTR_SPACING 16
100 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
103 * Control structures are DMA'd to the TC9021 chip. We allocate them in
104 * a single clump that maps to a single DMA segment to make several things
107 struct stge_control_data
{
109 * The transmit descriptors.
111 struct stge_tfd scd_txdescs
[STGE_NTXDESC
];
114 * The receive descriptors.
116 struct stge_rfd scd_rxdescs
[STGE_NRXDESC
];
119 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
120 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
121 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
124 * Software state for transmit and receive jobs.
126 struct stge_descsoft
{
127 struct mbuf
*ds_mbuf
; /* head of our mbuf chain */
128 bus_dmamap_t ds_dmamap
; /* our DMA map */
132 * Software state per device.
135 device_t sc_dev
; /* generic device information */
136 bus_space_tag_t sc_st
; /* bus space tag */
137 bus_space_handle_t sc_sh
; /* bus space handle */
138 bus_dma_tag_t sc_dmat
; /* bus DMA tag */
139 struct ethercom sc_ethercom
; /* ethernet common data */
140 int sc_rev
; /* silicon revision */
142 void *sc_ih
; /* interrupt cookie */
144 struct mii_data sc_mii
; /* MII/media information */
146 callout_t sc_tick_ch
; /* tick callout */
148 bus_dmamap_t sc_cddmamap
; /* control data DMA map */
149 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
152 * Software state for transmit and receive descriptors.
154 struct stge_descsoft sc_txsoft
[STGE_NTXDESC
];
155 struct stge_descsoft sc_rxsoft
[STGE_NRXDESC
];
158 * Control data structures.
160 struct stge_control_data
*sc_control_data
;
161 #define sc_txdescs sc_control_data->scd_txdescs
162 #define sc_rxdescs sc_control_data->scd_rxdescs
164 #ifdef STGE_EVENT_COUNTERS
168 struct evcnt sc_ev_txstall
; /* Tx stalled */
169 struct evcnt sc_ev_txdmaintr
; /* Tx DMA interrupts */
170 struct evcnt sc_ev_txindintr
; /* Tx Indicate interrupts */
171 struct evcnt sc_ev_rxintr
; /* Rx interrupts */
173 struct evcnt sc_ev_txseg1
; /* Tx packets w/ 1 segment */
174 struct evcnt sc_ev_txseg2
; /* Tx packets w/ 2 segments */
175 struct evcnt sc_ev_txseg3
; /* Tx packets w/ 3 segments */
176 struct evcnt sc_ev_txseg4
; /* Tx packets w/ 4 segments */
177 struct evcnt sc_ev_txseg5
; /* Tx packets w/ 5 segments */
178 struct evcnt sc_ev_txsegmore
; /* Tx packets w/ more than 5 segments */
179 struct evcnt sc_ev_txcopy
; /* Tx packets that we had to copy */
181 struct evcnt sc_ev_rxipsum
; /* IP checksums checked in-bound */
182 struct evcnt sc_ev_rxtcpsum
; /* TCP checksums checked in-bound */
183 struct evcnt sc_ev_rxudpsum
; /* UDP checksums checked in-bound */
185 struct evcnt sc_ev_txipsum
; /* IP checksums comp. out-bound */
186 struct evcnt sc_ev_txtcpsum
; /* TCP checksums comp. out-bound */
187 struct evcnt sc_ev_txudpsum
; /* UDP checksums comp. out-bound */
188 #endif /* STGE_EVENT_COUNTERS */
190 int sc_txpending
; /* number of Tx requests pending */
191 int sc_txdirty
; /* first dirty Tx descriptor */
192 int sc_txlast
; /* last used Tx descriptor */
194 int sc_rxptr
; /* next ready Rx descriptor/descsoft */
197 struct mbuf
*sc_rxhead
;
198 struct mbuf
*sc_rxtail
;
199 struct mbuf
**sc_rxtailp
;
201 int sc_txthresh
; /* Tx threshold */
202 uint32_t sc_usefiber
:1; /* if we're fiber */
203 uint32_t sc_stge1023
:1; /* are we a 1023 */
204 uint32_t sc_DMACtrl
; /* prototype DMACtrl register */
205 uint32_t sc_MACCtrl
; /* prototype MacCtrl register */
206 uint16_t sc_IntEnable
; /* prototype IntEnable register */
207 uint16_t sc_ReceiveMode
; /* prototype ReceiveMode register */
208 uint8_t sc_PhyCtrl
; /* prototype PhyCtrl register */
211 #define STGE_RXCHAIN_RESET(sc) \
213 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
214 *(sc)->sc_rxtailp = NULL; \
215 (sc)->sc_rxlen = 0; \
216 } while (/*CONSTCOND*/0)
218 #define STGE_RXCHAIN_LINK(sc, m) \
220 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
221 (sc)->sc_rxtailp = &(m)->m_next; \
222 } while (/*CONSTCOND*/0)
224 #ifdef STGE_EVENT_COUNTERS
225 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
227 #define STGE_EVCNT_INCR(ev) /* nothing */
230 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
231 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
233 #define STGE_CDTXSYNC(sc, x, ops) \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
237 #define STGE_CDRXSYNC(sc, x, ops) \
238 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
239 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
241 #define STGE_INIT_RXDESC(sc, x) \
243 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
244 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
247 * Note: We scoot the packet forward 2 bytes in the buffer \
248 * so that the payload after the Ethernet header is aligned \
249 * to a 4-byte boundary. \
251 __rfd->rfd_frag.frag_word0 = \
252 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
253 FRAG_LEN(MCLBYTES - 2)); \
255 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
256 __rfd->rfd_status = 0; \
257 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
258 } while (/*CONSTCOND*/0)
260 #define STGE_TIMEOUT 1000
262 static void stge_start(struct ifnet
*);
263 static void stge_watchdog(struct ifnet
*);
264 static int stge_ioctl(struct ifnet
*, u_long
, void *);
265 static int stge_init(struct ifnet
*);
266 static void stge_stop(struct ifnet
*, int);
268 static bool stge_shutdown(device_t
, int);
270 static void stge_reset(struct stge_softc
*);
271 static void stge_rxdrain(struct stge_softc
*);
272 static int stge_add_rxbuf(struct stge_softc
*, int);
273 static void stge_read_eeprom(struct stge_softc
*, int, uint16_t *);
274 static void stge_tick(void *);
276 static void stge_stats_update(struct stge_softc
*);
278 static void stge_set_filter(struct stge_softc
*);
280 static int stge_intr(void *);
281 static void stge_txintr(struct stge_softc
*);
282 static void stge_rxintr(struct stge_softc
*);
284 static int stge_mii_readreg(device_t
, int, int);
285 static void stge_mii_writereg(device_t
, int, int, int);
286 static void stge_mii_statchg(device_t
);
288 static int stge_match(device_t
, cfdata_t
, void *);
289 static void stge_attach(device_t
, device_t
, void *);
291 int stge_copy_small
= 0;
293 CFATTACH_DECL_NEW(stge
, sizeof(struct stge_softc
),
294 stge_match
, stge_attach
, NULL
, NULL
);
296 static uint32_t stge_mii_bitbang_read(device_t
);
297 static void stge_mii_bitbang_write(device_t
, uint32_t);
299 static const struct mii_bitbang_ops stge_mii_bitbang_ops
= {
300 stge_mii_bitbang_read
,
301 stge_mii_bitbang_write
,
303 PC_MgmtData
, /* MII_BIT_MDO */
304 PC_MgmtData
, /* MII_BIT_MDI */
305 PC_MgmtClk
, /* MII_BIT_MDC */
306 PC_MgmtDir
, /* MII_BIT_DIR_HOST_PHY */
307 0, /* MII_BIT_DIR_PHY_HOST */
312 * Devices supported by this driver.
314 static const struct stge_product
{
315 pci_vendor_id_t stge_vendor
;
316 pci_product_id_t stge_product
;
317 const char *stge_name
;
318 } stge_products
[] = {
319 { PCI_VENDOR_SUNDANCETI
, PCI_PRODUCT_SUNDANCETI_ST1023
,
320 "Sundance ST-1023 Gigabit Ethernet" },
322 { PCI_VENDOR_SUNDANCETI
, PCI_PRODUCT_SUNDANCETI_ST2021
,
323 "Sundance ST-2021 Gigabit Ethernet" },
325 { PCI_VENDOR_TAMARACK
, PCI_PRODUCT_TAMARACK_TC9021
,
326 "Tamarack TC9021 Gigabit Ethernet" },
328 { PCI_VENDOR_TAMARACK
, PCI_PRODUCT_TAMARACK_TC9021_ALT
,
329 "Tamarack TC9021 Gigabit Ethernet" },
332 * The Sundance sample boards use the Sundance vendor ID,
333 * but the Tamarack product ID.
335 { PCI_VENDOR_SUNDANCETI
, PCI_PRODUCT_TAMARACK_TC9021
,
336 "Sundance TC9021 Gigabit Ethernet" },
338 { PCI_VENDOR_SUNDANCETI
, PCI_PRODUCT_TAMARACK_TC9021_ALT
,
339 "Sundance TC9021 Gigabit Ethernet" },
341 { PCI_VENDOR_DLINK
, PCI_PRODUCT_DLINK_DL4000
,
342 "D-Link DL-4000 Gigabit Ethernet" },
344 { PCI_VENDOR_ANTARES
, PCI_PRODUCT_ANTARES_TC9021
,
345 "Antares Gigabit Ethernet" },
351 static const struct stge_product
*
352 stge_lookup(const struct pci_attach_args
*pa
)
354 const struct stge_product
*sp
;
356 for (sp
= stge_products
; sp
->stge_name
!= NULL
; sp
++) {
357 if (PCI_VENDOR(pa
->pa_id
) == sp
->stge_vendor
&&
358 PCI_PRODUCT(pa
->pa_id
) == sp
->stge_product
)
365 stge_match(device_t parent
, cfdata_t cf
, void *aux
)
367 struct pci_attach_args
*pa
= aux
;
369 if (stge_lookup(pa
) != NULL
)
376 stge_attach(device_t parent
, device_t self
, void *aux
)
378 struct stge_softc
*sc
= device_private(self
);
379 struct pci_attach_args
*pa
= aux
;
380 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
381 pci_chipset_tag_t pc
= pa
->pa_pc
;
382 pci_intr_handle_t ih
;
383 const char *intrstr
= NULL
;
384 bus_space_tag_t iot
, memt
;
385 bus_space_handle_t ioh
, memh
;
386 bus_dma_segment_t seg
;
387 int ioh_valid
, memh_valid
;
389 const struct stge_product
*sp
;
390 uint8_t enaddr
[ETHER_ADDR_LEN
];
392 callout_init(&sc
->sc_tick_ch
, 0);
394 sp
= stge_lookup(pa
);
397 panic("ste_attach: impossible");
400 sc
->sc_rev
= PCI_REVISION(pa
->pa_class
);
402 aprint_normal(": %s, rev. %d\n", sp
->stge_name
, sc
->sc_rev
);
407 ioh_valid
= (pci_mapreg_map(pa
, STGE_PCI_IOBA
,
408 PCI_MAPREG_TYPE_IO
, 0,
409 &iot
, &ioh
, NULL
, NULL
) == 0);
410 memh_valid
= (pci_mapreg_map(pa
, STGE_PCI_MMBA
,
411 PCI_MAPREG_TYPE_MEM
|PCI_MAPREG_MEM_TYPE_32BIT
, 0,
412 &memt
, &memh
, NULL
, NULL
) == 0);
417 } else if (ioh_valid
) {
421 aprint_error_dev(self
, "unable to map device registers\n");
425 sc
->sc_dmat
= pa
->pa_dmat
;
427 /* Enable bus mastering. */
428 pci_conf_write(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
,
429 pci_conf_read(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
) |
430 PCI_COMMAND_MASTER_ENABLE
);
433 if ((error
= pci_activate(pa
->pa_pc
, pa
->pa_tag
, self
, NULL
)) &&
434 error
!= EOPNOTSUPP
) {
435 aprint_error_dev(self
, "cannot activate %d\n",
440 * Map and establish our interrupt.
442 if (pci_intr_map(pa
, &ih
)) {
443 aprint_error_dev(self
, "unable to map interrupt\n");
446 intrstr
= pci_intr_string(pc
, ih
);
447 sc
->sc_ih
= pci_intr_establish(pc
, ih
, IPL_NET
, stge_intr
, sc
);
448 if (sc
->sc_ih
== NULL
) {
449 aprint_error_dev(self
, "unable to establish interrupt");
451 aprint_error(" at %s", intrstr
);
455 aprint_normal_dev(self
, "interrupting at %s\n", intrstr
);
458 * Allocate the control data structures, and create and load the
461 if ((error
= bus_dmamem_alloc(sc
->sc_dmat
,
462 sizeof(struct stge_control_data
), PAGE_SIZE
, 0, &seg
, 1, &rseg
,
464 aprint_error_dev(self
,
465 "unable to allocate control data, error = %d\n",
470 if ((error
= bus_dmamem_map(sc
->sc_dmat
, &seg
, rseg
,
471 sizeof(struct stge_control_data
), (void **)&sc
->sc_control_data
,
472 BUS_DMA_COHERENT
)) != 0) {
473 aprint_error_dev(self
,
474 "unable to map control data, error = %d\n",
479 if ((error
= bus_dmamap_create(sc
->sc_dmat
,
480 sizeof(struct stge_control_data
), 1,
481 sizeof(struct stge_control_data
), 0, 0, &sc
->sc_cddmamap
)) != 0) {
482 aprint_error_dev(self
,
483 "unable to create control data DMA map, error = %d\n",
488 if ((error
= bus_dmamap_load(sc
->sc_dmat
, sc
->sc_cddmamap
,
489 sc
->sc_control_data
, sizeof(struct stge_control_data
), NULL
,
491 aprint_error_dev(self
,
492 "unable to load control data DMA map, error = %d\n",
498 * Create the transmit buffer DMA maps. Note that rev B.3
499 * and earlier seem to have a bug regarding multi-fragment
500 * packets. We need to limit the number of Tx segments on
503 for (i
= 0; i
< STGE_NTXDESC
; i
++) {
504 if ((error
= bus_dmamap_create(sc
->sc_dmat
,
505 ETHER_MAX_LEN_JUMBO
, STGE_NTXFRAGS
, MCLBYTES
, 0, 0,
506 &sc
->sc_txsoft
[i
].ds_dmamap
)) != 0) {
507 aprint_error_dev(self
,
508 "unable to create tx DMA map %d, error = %d\n",
515 * Create the receive buffer DMA maps.
517 for (i
= 0; i
< STGE_NRXDESC
; i
++) {
518 if ((error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
, 1,
519 MCLBYTES
, 0, 0, &sc
->sc_rxsoft
[i
].ds_dmamap
)) != 0) {
520 aprint_error_dev(self
,
521 "unable to create rx DMA map %d, error = %d\n",
525 sc
->sc_rxsoft
[i
].ds_mbuf
= NULL
;
529 * Determine if we're copper or fiber. It affects how we
532 if (bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, STGE_AsicCtrl
) &
539 * Reset the chip to a known state.
544 * Reading the station address from the EEPROM doesn't seem
545 * to work, at least on my sample boards. Instead, since
546 * the reset sequence does AutoInit, read it from the station
547 * address registers. For Sundance 1023 you can only read it
550 if (sp
->stge_product
!= PCI_PRODUCT_SUNDANCETI_ST1023
) {
551 enaddr
[0] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
552 STGE_StationAddress0
) & 0xff;
553 enaddr
[1] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
554 STGE_StationAddress0
) >> 8;
555 enaddr
[2] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
556 STGE_StationAddress1
) & 0xff;
557 enaddr
[3] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
558 STGE_StationAddress1
) >> 8;
559 enaddr
[4] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
560 STGE_StationAddress2
) & 0xff;
561 enaddr
[5] = bus_space_read_2(sc
->sc_st
, sc
->sc_sh
,
562 STGE_StationAddress2
) >> 8;
565 uint16_t myaddr
[ETHER_ADDR_LEN
/ 2];
566 for (i
= 0; i
<ETHER_ADDR_LEN
/ 2; i
++) {
567 stge_read_eeprom(sc
, STGE_EEPROM_StationAddress0
+ i
,
569 myaddr
[i
] = le16toh(myaddr
[i
]);
571 (void)memcpy(enaddr
, myaddr
, sizeof(enaddr
));
575 aprint_normal_dev(self
, "Ethernet address %s\n",
576 ether_sprintf(enaddr
));
579 * Read some important bits from the PhyCtrl register.
581 sc
->sc_PhyCtrl
= bus_space_read_1(sc
->sc_st
, sc
->sc_sh
,
582 STGE_PhyCtrl
) & (PC_PhyDuplexPolarity
| PC_PhyLnkPolarity
);
585 * Initialize our media structures and probe the MII.
587 sc
->sc_mii
.mii_ifp
= ifp
;
588 sc
->sc_mii
.mii_readreg
= stge_mii_readreg
;
589 sc
->sc_mii
.mii_writereg
= stge_mii_writereg
;
590 sc
->sc_mii
.mii_statchg
= stge_mii_statchg
;
591 sc
->sc_ethercom
.ec_mii
= &sc
->sc_mii
;
592 ifmedia_init(&sc
->sc_mii
.mii_media
, IFM_IMASK
, ether_mediachange
,
594 mii_attach(self
, &sc
->sc_mii
, 0xffffffff, MII_PHY_ANY
,
595 MII_OFFSET_ANY
, MIIF_DOPAUSE
);
596 if (LIST_FIRST(&sc
->sc_mii
.mii_phys
) == NULL
) {
597 ifmedia_add(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
, 0, NULL
);
598 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
);
600 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_AUTO
);
602 ifp
= &sc
->sc_ethercom
.ec_if
;
603 strlcpy(ifp
->if_xname
, device_xname(self
), IFNAMSIZ
);
605 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
606 ifp
->if_ioctl
= stge_ioctl
;
607 ifp
->if_start
= stge_start
;
608 ifp
->if_watchdog
= stge_watchdog
;
609 ifp
->if_init
= stge_init
;
610 ifp
->if_stop
= stge_stop
;
611 IFQ_SET_READY(&ifp
->if_snd
);
614 * The manual recommends disabling early transmit, so we
615 * do. It's disabled anyway, if using IP checksumming,
616 * since the entire packet must be in the FIFO in order
617 * for the chip to perform the checksum.
619 sc
->sc_txthresh
= 0x0fff;
622 * Disable MWI if the PCI layer tells us to.
625 if ((pa
->pa_flags
& PCI_FLAGS_MWI_OKAY
) == 0)
626 sc
->sc_DMACtrl
|= DMAC_MWIDisable
;
629 * We can support 802.1Q VLAN-sized frames and jumbo
632 * XXX Figure out how to do hw-assisted VLAN tagging in
633 * XXX a reasonable way on this chip.
635 sc
->sc_ethercom
.ec_capabilities
|=
636 ETHERCAP_VLAN_MTU
| /* XXX ETHERCAP_JUMBO_MTU | */
637 ETHERCAP_VLAN_HWTAGGING
;
640 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
642 sc
->sc_ethercom
.ec_if
.if_capabilities
|=
643 IFCAP_CSUM_IPv4_Tx
| IFCAP_CSUM_IPv4_Rx
|
644 IFCAP_CSUM_TCPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
|
645 IFCAP_CSUM_UDPv4_Tx
| IFCAP_CSUM_UDPv4_Rx
;
648 * Attach the interface.
651 ether_ifattach(ifp
, enaddr
);
653 #ifdef STGE_EVENT_COUNTERS
655 * Attach event counters.
657 evcnt_attach_dynamic(&sc
->sc_ev_txstall
, EVCNT_TYPE_MISC
,
658 NULL
, device_xname(self
), "txstall");
659 evcnt_attach_dynamic(&sc
->sc_ev_txdmaintr
, EVCNT_TYPE_INTR
,
660 NULL
, device_xname(self
), "txdmaintr");
661 evcnt_attach_dynamic(&sc
->sc_ev_txindintr
, EVCNT_TYPE_INTR
,
662 NULL
, device_xname(self
), "txindintr");
663 evcnt_attach_dynamic(&sc
->sc_ev_rxintr
, EVCNT_TYPE_INTR
,
664 NULL
, device_xname(self
), "rxintr");
666 evcnt_attach_dynamic(&sc
->sc_ev_txseg1
, EVCNT_TYPE_MISC
,
667 NULL
, device_xname(self
), "txseg1");
668 evcnt_attach_dynamic(&sc
->sc_ev_txseg2
, EVCNT_TYPE_MISC
,
669 NULL
, device_xname(self
), "txseg2");
670 evcnt_attach_dynamic(&sc
->sc_ev_txseg3
, EVCNT_TYPE_MISC
,
671 NULL
, device_xname(self
), "txseg3");
672 evcnt_attach_dynamic(&sc
->sc_ev_txseg4
, EVCNT_TYPE_MISC
,
673 NULL
, device_xname(self
), "txseg4");
674 evcnt_attach_dynamic(&sc
->sc_ev_txseg5
, EVCNT_TYPE_MISC
,
675 NULL
, device_xname(self
), "txseg5");
676 evcnt_attach_dynamic(&sc
->sc_ev_txsegmore
, EVCNT_TYPE_MISC
,
677 NULL
, device_xname(self
), "txsegmore");
678 evcnt_attach_dynamic(&sc
->sc_ev_txcopy
, EVCNT_TYPE_MISC
,
679 NULL
, device_xname(self
), "txcopy");
681 evcnt_attach_dynamic(&sc
->sc_ev_rxipsum
, EVCNT_TYPE_MISC
,
682 NULL
, device_xname(self
), "rxipsum");
683 evcnt_attach_dynamic(&sc
->sc_ev_rxtcpsum
, EVCNT_TYPE_MISC
,
684 NULL
, device_xname(self
), "rxtcpsum");
685 evcnt_attach_dynamic(&sc
->sc_ev_rxudpsum
, EVCNT_TYPE_MISC
,
686 NULL
, device_xname(self
), "rxudpsum");
687 evcnt_attach_dynamic(&sc
->sc_ev_txipsum
, EVCNT_TYPE_MISC
,
688 NULL
, device_xname(self
), "txipsum");
689 evcnt_attach_dynamic(&sc
->sc_ev_txtcpsum
, EVCNT_TYPE_MISC
,
690 NULL
, device_xname(self
), "txtcpsum");
691 evcnt_attach_dynamic(&sc
->sc_ev_txudpsum
, EVCNT_TYPE_MISC
,
692 NULL
, device_xname(self
), "txudpsum");
693 #endif /* STGE_EVENT_COUNTERS */
696 * Make sure the interface is shutdown during reboot.
698 if (pmf_device_register1(self
, NULL
, NULL
, stge_shutdown
))
699 pmf_class_network_register(self
, ifp
);
701 aprint_error_dev(self
, "couldn't establish power handler\n");
706 * Free any resources we've allocated during the failed attach
707 * attempt. Do this in reverse order and fall through.
710 for (i
= 0; i
< STGE_NRXDESC
; i
++) {
711 if (sc
->sc_rxsoft
[i
].ds_dmamap
!= NULL
)
712 bus_dmamap_destroy(sc
->sc_dmat
,
713 sc
->sc_rxsoft
[i
].ds_dmamap
);
716 for (i
= 0; i
< STGE_NTXDESC
; i
++) {
717 if (sc
->sc_txsoft
[i
].ds_dmamap
!= NULL
)
718 bus_dmamap_destroy(sc
->sc_dmat
,
719 sc
->sc_txsoft
[i
].ds_dmamap
);
721 bus_dmamap_unload(sc
->sc_dmat
, sc
->sc_cddmamap
);
723 bus_dmamap_destroy(sc
->sc_dmat
, sc
->sc_cddmamap
);
725 bus_dmamem_unmap(sc
->sc_dmat
, (void *)sc
->sc_control_data
,
726 sizeof(struct stge_control_data
));
728 bus_dmamem_free(sc
->sc_dmat
, &seg
, rseg
);
736 * Make sure the interface is stopped at reboot time.
739 stge_shutdown(device_t self
, int howto
)
741 struct stge_softc
*sc
= device_private(self
);
742 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
750 stge_dma_wait(struct stge_softc
*sc
)
754 for (i
= 0; i
< STGE_TIMEOUT
; i
++) {
756 if ((bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, STGE_DMACtrl
) &
757 DMAC_TxDMAInProg
) == 0)
761 if (i
== STGE_TIMEOUT
)
762 printf("%s: DMA wait timed out\n", device_xname(sc
->sc_dev
));
766 * stge_start: [ifnet interface function]
768 * Start packet transmission on the interface.
771 stge_start(struct ifnet
*ifp
)
773 struct stge_softc
*sc
= ifp
->if_softc
;
775 struct stge_descsoft
*ds
;
776 struct stge_tfd
*tfd
;
778 int error
, firsttx
, nexttx
, opending
, seg
, totlen
;
781 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
)
785 * Remember the previous number of pending transmissions
786 * and the first descriptor we will use.
788 opending
= sc
->sc_txpending
;
789 firsttx
= STGE_NEXTTX(sc
->sc_txlast
);
792 * Loop through the send queue, setting up transmit descriptors
793 * until we drain the queue, or use up all available transmit
801 * Grab a packet off the queue.
803 IFQ_POLL(&ifp
->if_snd
, m0
);
808 * Leave one unused descriptor at the end of the
809 * list to prevent wrapping completely around.
811 if (sc
->sc_txpending
== (STGE_NTXDESC
- 1)) {
812 STGE_EVCNT_INCR(&sc
->sc_ev_txstall
);
817 * See if we have any VLAN stuff.
819 mtag
= VLAN_OUTPUT_TAG(&sc
->sc_ethercom
, m0
);
822 * Get the last and next available transmit descriptor.
824 nexttx
= STGE_NEXTTX(sc
->sc_txlast
);
825 tfd
= &sc
->sc_txdescs
[nexttx
];
826 ds
= &sc
->sc_txsoft
[nexttx
];
828 dmamap
= ds
->ds_dmamap
;
831 * Load the DMA map. If this fails, the packet either
832 * didn't fit in the alloted number of segments, or we
833 * were short on resources. For the too-many-segments
834 * case, we simply report an error and drop the packet,
835 * since we can't sanely copy a jumbo packet to a single
838 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, dmamap
, m0
,
841 if (error
== EFBIG
) {
842 printf("%s: Tx packet consumes too many "
843 "DMA segments, dropping...\n",
844 device_xname(sc
->sc_dev
));
845 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
850 * Short on resources, just stop for now.
855 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
858 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
861 /* Sync the DMA map. */
862 bus_dmamap_sync(sc
->sc_dmat
, dmamap
, 0, dmamap
->dm_mapsize
,
863 BUS_DMASYNC_PREWRITE
);
865 /* Initialize the fragment list. */
866 for (totlen
= 0, seg
= 0; seg
< dmamap
->dm_nsegs
; seg
++) {
867 tfd
->tfd_frags
[seg
].frag_word0
=
868 htole64(FRAG_ADDR(dmamap
->dm_segs
[seg
].ds_addr
) |
869 FRAG_LEN(dmamap
->dm_segs
[seg
].ds_len
));
870 totlen
+= dmamap
->dm_segs
[seg
].ds_len
;
873 #ifdef STGE_EVENT_COUNTERS
874 switch (dmamap
->dm_nsegs
) {
876 STGE_EVCNT_INCR(&sc
->sc_ev_txseg1
);
879 STGE_EVCNT_INCR(&sc
->sc_ev_txseg2
);
882 STGE_EVCNT_INCR(&sc
->sc_ev_txseg3
);
885 STGE_EVCNT_INCR(&sc
->sc_ev_txseg4
);
888 STGE_EVCNT_INCR(&sc
->sc_ev_txseg5
);
891 STGE_EVCNT_INCR(&sc
->sc_ev_txsegmore
);
894 #endif /* STGE_EVENT_COUNTERS */
897 * Initialize checksumming flags in the descriptor.
898 * Byte-swap constants so the compiler can optimize.
901 if (m0
->m_pkthdr
.csum_flags
& M_CSUM_IPv4
) {
902 STGE_EVCNT_INCR(&sc
->sc_ev_txipsum
);
903 csum_flags
|= TFD_IPChecksumEnable
;
906 if (m0
->m_pkthdr
.csum_flags
& M_CSUM_TCPv4
) {
907 STGE_EVCNT_INCR(&sc
->sc_ev_txtcpsum
);
908 csum_flags
|= TFD_TCPChecksumEnable
;
909 } else if (m0
->m_pkthdr
.csum_flags
& M_CSUM_UDPv4
) {
910 STGE_EVCNT_INCR(&sc
->sc_ev_txudpsum
);
911 csum_flags
|= TFD_UDPChecksumEnable
;
915 * Initialize the descriptor and give it to the chip.
916 * Check to see if we have a VLAN tag to insert.
919 tfc
= TFD_FrameId(nexttx
) | TFD_WordAlign(/*totlen & */3) |
920 TFD_FragCount(seg
) | csum_flags
|
921 (((nexttx
& STGE_TXINTR_SPACING_MASK
) == 0) ?
922 TFD_TxDMAIndicate
: 0);
925 struct ether_header
*eh
=
926 mtod(m0
, struct ether_header
*);
927 u_int16_t etype
= ntohs(eh
->ether_type
);
928 printf("%s: xmit (tag %d) etype %x\n",
929 ifp
->if_xname
, *mtod(n
, int *), etype
);
931 tfc
|= TFD_VLANTagInsert
|
935 TFD_VID(VLAN_TAG_VALUE(mtag
));
937 tfd
->tfd_control
= htole64(tfc
);
939 /* Sync the descriptor. */
940 STGE_CDTXSYNC(sc
, nexttx
,
941 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
944 * Kick the transmit DMA logic.
946 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_DMACtrl
,
947 sc
->sc_DMACtrl
| DMAC_TxDMAPollNow
);
950 * Store a pointer to the packet so we can free it later.
954 /* Advance the tx pointer. */
956 sc
->sc_txlast
= nexttx
;
960 * Pass the packet to any BPF listeners.
963 bpf_mtap(ifp
->if_bpf
, m0
);
964 #endif /* NBPFILTER > 0 */
967 if (sc
->sc_txpending
== (STGE_NTXDESC
- 1)) {
968 /* No more slots left; notify upper layer. */
969 ifp
->if_flags
|= IFF_OACTIVE
;
972 if (sc
->sc_txpending
!= opending
) {
974 * We enqueued packets. If the transmitter was idle,
975 * reset the txdirty pointer.
978 sc
->sc_txdirty
= firsttx
;
980 /* Set a watchdog timer in case the chip flakes out. */
986 * stge_watchdog: [ifnet interface function]
988 * Watchdog timer handler.
991 stge_watchdog(struct ifnet
*ifp
)
993 struct stge_softc
*sc
= ifp
->if_softc
;
996 * Sweep up first, since we don't interrupt every frame.
999 if (sc
->sc_txpending
!= 0) {
1000 printf("%s: device timeout\n", device_xname(sc
->sc_dev
));
1003 (void) stge_init(ifp
);
1005 /* Try to get more packets going. */
1011 * stge_ioctl: [ifnet interface function]
1013 * Handle control requests from the operator.
1016 stge_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
1018 struct stge_softc
*sc
= ifp
->if_softc
;
1023 error
= ether_ioctl(ifp
, cmd
, data
);
1024 if (error
== ENETRESET
) {
1027 if (cmd
!= SIOCADDMULTI
&& cmd
!= SIOCDELMULTI
)
1029 else if (ifp
->if_flags
& IFF_RUNNING
) {
1031 * Multicast list has changed; set the hardware filter
1034 stge_set_filter(sc
);
1038 /* Try to get more packets going. */
1048 * Interrupt service routine.
1051 stge_intr(void *arg
)
1053 struct stge_softc
*sc
= arg
;
1054 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1059 if ((bus_space_read_2(sc
->sc_st
, sc
->sc_sh
, STGE_IntStatus
) &
1060 IS_InterruptStatus
) == 0)
1063 for (wantinit
= 0; wantinit
== 0;) {
1064 isr
= bus_space_read_2(sc
->sc_st
, sc
->sc_sh
, STGE_IntStatusAck
);
1065 if ((isr
& sc
->sc_IntEnable
) == 0)
1068 /* Host interface errors. */
1069 if (isr
& IS_HostError
) {
1070 printf("%s: Host interface error\n",
1071 device_xname(sc
->sc_dev
));
1076 /* Receive interrupts. */
1077 if (isr
& (IS_RxDMAComplete
|IS_RFDListEnd
)) {
1078 STGE_EVCNT_INCR(&sc
->sc_ev_rxintr
);
1080 if (isr
& IS_RFDListEnd
) {
1081 printf("%s: receive ring overflow\n",
1082 device_xname(sc
->sc_dev
));
1084 * XXX Should try to recover from this
1085 * XXX more gracefully.
1091 /* Transmit interrupts. */
1092 if (isr
& (IS_TxDMAComplete
|IS_TxComplete
)) {
1093 #ifdef STGE_EVENT_COUNTERS
1094 if (isr
& IS_TxDMAComplete
)
1095 STGE_EVCNT_INCR(&sc
->sc_ev_txdmaintr
);
1100 /* Statistics overflow. */
1101 if (isr
& IS_UpdateStats
)
1102 stge_stats_update(sc
);
1104 /* Transmission errors. */
1105 if (isr
& IS_TxComplete
) {
1106 STGE_EVCNT_INCR(&sc
->sc_ev_txindintr
);
1108 txstat
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
,
1110 if ((txstat
& TS_TxComplete
) == 0)
1112 if (txstat
& TS_TxUnderrun
) {
1114 if (sc
->sc_txthresh
> 0x0fff)
1115 sc
->sc_txthresh
= 0x0fff;
1116 printf("%s: transmit underrun, new "
1117 "threshold: %d bytes\n",
1118 device_xname(sc
->sc_dev
),
1119 sc
->sc_txthresh
<< 5);
1121 if (txstat
& TS_MaxCollisions
)
1122 printf("%s: excessive collisions\n",
1123 device_xname(sc
->sc_dev
));
1133 bus_space_write_2(sc
->sc_st
, sc
->sc_sh
, STGE_IntEnable
,
1136 /* Try to get more packets going. */
1145 * Helper; handle transmit interrupts.
1148 stge_txintr(struct stge_softc
*sc
)
1150 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1151 struct stge_descsoft
*ds
;
1155 ifp
->if_flags
&= ~IFF_OACTIVE
;
1158 * Go through our Tx list and free mbufs for those
1159 * frames which have been transmitted.
1161 for (i
= sc
->sc_txdirty
; sc
->sc_txpending
!= 0;
1162 i
= STGE_NEXTTX(i
), sc
->sc_txpending
--) {
1163 ds
= &sc
->sc_txsoft
[i
];
1165 STGE_CDTXSYNC(sc
, i
,
1166 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1168 control
= le64toh(sc
->sc_txdescs
[i
].tfd_control
);
1169 if ((control
& TFD_TFDDone
) == 0)
1172 bus_dmamap_sync(sc
->sc_dmat
, ds
->ds_dmamap
,
1173 0, ds
->ds_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1174 bus_dmamap_unload(sc
->sc_dmat
, ds
->ds_dmamap
);
1175 m_freem(ds
->ds_mbuf
);
1179 /* Update the dirty transmit buffer pointer. */
1183 * If there are no more pending transmissions, cancel the watchdog
1186 if (sc
->sc_txpending
== 0)
1193 * Helper; handle receive interrupts.
1196 stge_rxintr(struct stge_softc
*sc
)
1198 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1199 struct stge_descsoft
*ds
;
1200 struct mbuf
*m
, *tailm
;
1204 for (i
= sc
->sc_rxptr
;; i
= STGE_NEXTRX(i
)) {
1205 ds
= &sc
->sc_rxsoft
[i
];
1207 STGE_CDRXSYNC(sc
, i
,
1208 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1210 status
= le64toh(sc
->sc_rxdescs
[i
].rfd_status
);
1212 if ((status
& RFD_RFDDone
) == 0)
1215 if (__predict_false(sc
->sc_rxdiscard
)) {
1216 STGE_INIT_RXDESC(sc
, i
);
1217 if (status
& RFD_FrameEnd
) {
1218 /* Reset our state. */
1219 sc
->sc_rxdiscard
= 0;
1224 bus_dmamap_sync(sc
->sc_dmat
, ds
->ds_dmamap
, 0,
1225 ds
->ds_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1230 * Add a new receive buffer to the ring.
1232 if (stge_add_rxbuf(sc
, i
) != 0) {
1234 * Failed, throw away what we've done so
1235 * far, and discard the rest of the packet.
1238 bus_dmamap_sync(sc
->sc_dmat
, ds
->ds_dmamap
, 0,
1239 ds
->ds_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1240 STGE_INIT_RXDESC(sc
, i
);
1241 if ((status
& RFD_FrameEnd
) == 0)
1242 sc
->sc_rxdiscard
= 1;
1243 if (sc
->sc_rxhead
!= NULL
)
1244 m_freem(sc
->sc_rxhead
);
1245 STGE_RXCHAIN_RESET(sc
);
1250 if (status
& RFD_FrameStart
) {
1251 KASSERT(sc
->sc_rxhead
== NULL
);
1252 KASSERT(sc
->sc_rxtailp
== &sc
->sc_rxhead
);
1256 STGE_RXCHAIN_LINK(sc
, m
);
1259 * If this is not the end of the packet, keep
1262 if ((status
& RFD_FrameEnd
) == 0) {
1263 sc
->sc_rxlen
+= m
->m_len
;
1268 * Okay, we have the entire packet now...
1270 *sc
->sc_rxtailp
= NULL
;
1272 tailm
= sc
->sc_rxtail
;
1274 STGE_RXCHAIN_RESET(sc
);
1277 * If the packet had an error, drop it. Note we
1278 * count the error later in the periodic stats update.
1280 if (status
& (RFD_RxFIFOOverrun
| RFD_RxRuntFrame
|
1281 RFD_RxAlignmentError
| RFD_RxFCSError
|
1282 RFD_RxLengthError
)) {
1290 * Note we have configured the chip to not include
1291 * the CRC at the end of the packet.
1293 len
= RFD_RxDMAFrameLen(status
);
1294 tailm
->m_len
= len
- sc
->sc_rxlen
;
1297 * If the packet is small enough to fit in a
1298 * single header mbuf, allocate one and copy
1299 * the data into it. This greatly reduces
1300 * memory consumption when we receive lots
1303 if (stge_copy_small
!= 0 && len
<= (MHLEN
- 2)) {
1305 MGETHDR(nm
, M_DONTWAIT
, MT_DATA
);
1312 nm
->m_pkthdr
.len
= nm
->m_len
= len
;
1313 m_copydata(m
, 0, len
, mtod(nm
, void *));
1319 * Set the incoming checksum information for the packet.
1321 if (status
& RFD_IPDetected
) {
1322 STGE_EVCNT_INCR(&sc
->sc_ev_rxipsum
);
1323 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4
;
1324 if (status
& RFD_IPError
)
1325 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4_BAD
;
1326 if (status
& RFD_TCPDetected
) {
1327 STGE_EVCNT_INCR(&sc
->sc_ev_rxtcpsum
);
1328 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCPv4
;
1329 if (status
& RFD_TCPError
)
1330 m
->m_pkthdr
.csum_flags
|=
1332 } else if (status
& RFD_UDPDetected
) {
1333 STGE_EVCNT_INCR(&sc
->sc_ev_rxudpsum
);
1334 m
->m_pkthdr
.csum_flags
|= M_CSUM_UDPv4
;
1335 if (status
& RFD_UDPError
)
1336 m
->m_pkthdr
.csum_flags
|=
1341 m
->m_pkthdr
.rcvif
= ifp
;
1342 m
->m_pkthdr
.len
= len
;
1346 * Pass this up to any BPF listeners, but only
1347 * pass if up the stack if it's for us.
1350 bpf_mtap(ifp
->if_bpf
, m
);
1351 #endif /* NBPFILTER > 0 */
1352 #ifdef STGE_VLAN_UNTAG
1354 * Check for VLAN tagged packets
1356 if (status
& RFD_VLANDetected
)
1357 VLAN_INPUT_TAG(ifp
, m
, RFD_TCI(status
), continue);
1361 if (status
& RFD_VLANDetected
) {
1362 struct ether_header
*eh
;
1365 eh
= mtod(m
, struct ether_header
*);
1366 etype
= ntohs(eh
->ether_type
);
1367 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1368 ifp
->if_xname
, (u_int16_t
) RFD_TCI(status
),
1373 (*ifp
->if_input
)(ifp
, m
);
1376 /* Update the receive pointer. */
1383 * One second timer, used to tick the MII.
1386 stge_tick(void *arg
)
1388 struct stge_softc
*sc
= arg
;
1392 mii_tick(&sc
->sc_mii
);
1393 stge_stats_update(sc
);
1396 callout_reset(&sc
->sc_tick_ch
, hz
, stge_tick
, sc
);
1400 * stge_stats_update:
1402 * Read the TC9021 statistics counters.
1405 stge_stats_update(struct stge_softc
*sc
)
1407 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1408 bus_space_tag_t st
= sc
->sc_st
;
1409 bus_space_handle_t sh
= sc
->sc_sh
;
1411 (void) bus_space_read_4(st
, sh
, STGE_OctetRcvOk
);
1414 bus_space_read_4(st
, sh
, STGE_FramesRcvdOk
);
1417 (u_int
) bus_space_read_2(st
, sh
, STGE_FramesLostRxErrors
);
1419 (void) bus_space_read_4(st
, sh
, STGE_OctetXmtdOk
);
1422 bus_space_read_4(st
, sh
, STGE_FramesXmtdOk
);
1424 ifp
->if_collisions
+=
1425 bus_space_read_4(st
, sh
, STGE_LateCollisions
) +
1426 bus_space_read_4(st
, sh
, STGE_MultiColFrames
) +
1427 bus_space_read_4(st
, sh
, STGE_SingleColFrames
);
1430 (u_int
) bus_space_read_2(st
, sh
, STGE_FramesAbortXSColls
) +
1431 (u_int
) bus_space_read_2(st
, sh
, STGE_FramesWEXDeferal
);
1437 * Perform a soft reset on the TC9021.
1440 stge_reset(struct stge_softc
*sc
)
1445 ac
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, STGE_AsicCtrl
);
1448 * Only assert RstOut if we're fiber. We need GMII clocks
1449 * to be present in order for the reset to complete on fiber
1452 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_AsicCtrl
,
1453 ac
| AC_GlobalReset
| AC_RxReset
| AC_TxReset
|
1454 AC_DMA
| AC_FIFO
| AC_Network
| AC_Host
| AC_AutoInit
|
1455 (sc
->sc_usefiber
? AC_RstOut
: 0));
1459 for (i
= 0; i
< STGE_TIMEOUT
; i
++) {
1461 if ((bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, STGE_AsicCtrl
) &
1466 if (i
== STGE_TIMEOUT
)
1467 printf("%s: reset failed to complete\n",
1468 device_xname(sc
->sc_dev
));
1474 * stge_init: [ ifnet interface function ]
1476 * Initialize the interface. Must be called at splnet().
1479 stge_init(struct ifnet
*ifp
)
1481 struct stge_softc
*sc
= ifp
->if_softc
;
1482 bus_space_tag_t st
= sc
->sc_st
;
1483 bus_space_handle_t sh
= sc
->sc_sh
;
1484 struct stge_descsoft
*ds
;
1488 * Cancel any pending I/O.
1493 * Reset the chip to a known state.
1498 * Initialize the transmit descriptor ring.
1500 memset(sc
->sc_txdescs
, 0, sizeof(sc
->sc_txdescs
));
1501 for (i
= 0; i
< STGE_NTXDESC
; i
++) {
1502 sc
->sc_txdescs
[i
].tfd_next
= htole64(
1503 STGE_CDTXADDR(sc
, STGE_NEXTTX(i
)));
1504 sc
->sc_txdescs
[i
].tfd_control
= htole64(TFD_TFDDone
);
1506 sc
->sc_txpending
= 0;
1508 sc
->sc_txlast
= STGE_NTXDESC
- 1;
1511 * Initialize the receive descriptor and receive job
1514 for (i
= 0; i
< STGE_NRXDESC
; i
++) {
1515 ds
= &sc
->sc_rxsoft
[i
];
1516 if (ds
->ds_mbuf
== NULL
) {
1517 if ((error
= stge_add_rxbuf(sc
, i
)) != 0) {
1518 printf("%s: unable to allocate or map rx "
1519 "buffer %d, error = %d\n",
1520 device_xname(sc
->sc_dev
), i
, error
);
1522 * XXX Should attempt to run with fewer receive
1523 * XXX buffers instead of just failing.
1529 STGE_INIT_RXDESC(sc
, i
);
1532 sc
->sc_rxdiscard
= 0;
1533 STGE_RXCHAIN_RESET(sc
);
1535 /* Set the station address. */
1536 for (i
= 0; i
< 6; i
++)
1537 bus_space_write_1(st
, sh
, STGE_StationAddress0
+ i
,
1538 CLLADDR(ifp
->if_sadl
)[i
]);
1541 * Set the statistics masks. Disable all the RMON stats,
1542 * and disable selected stats in the non-RMON stats registers.
1544 bus_space_write_4(st
, sh
, STGE_RMONStatisticsMask
, 0xffffffff);
1545 bus_space_write_4(st
, sh
, STGE_StatisticsMask
,
1546 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1547 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1548 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1551 /* Set up the receive filter. */
1552 stge_set_filter(sc
);
1555 * Give the transmit and receive ring to the chip.
1557 bus_space_write_4(st
, sh
, STGE_TFDListPtrHi
, 0); /* NOTE: 32-bit DMA */
1558 bus_space_write_4(st
, sh
, STGE_TFDListPtrLo
,
1559 STGE_CDTXADDR(sc
, sc
->sc_txdirty
));
1561 bus_space_write_4(st
, sh
, STGE_RFDListPtrHi
, 0); /* NOTE: 32-bit DMA */
1562 bus_space_write_4(st
, sh
, STGE_RFDListPtrLo
,
1563 STGE_CDRXADDR(sc
, sc
->sc_rxptr
));
1566 * Initialize the Tx auto-poll period. It's OK to make this number
1567 * large (255 is the max, but we use 127) -- we explicitly kick the
1568 * transmit engine when there's actually a packet.
1570 bus_space_write_1(st
, sh
, STGE_TxDMAPollPeriod
, 127);
1572 /* ..and the Rx auto-poll period. */
1573 bus_space_write_1(st
, sh
, STGE_RxDMAPollPeriod
, 64);
1575 /* Initialize the Tx start threshold. */
1576 bus_space_write_2(st
, sh
, STGE_TxStartThresh
, sc
->sc_txthresh
);
1578 /* RX DMA thresholds, from linux */
1579 bus_space_write_1(st
, sh
, STGE_RxDMABurstThresh
, 0x30);
1580 bus_space_write_1(st
, sh
, STGE_RxDMAUrgentThresh
, 0x30);
1583 * Initialize the Rx DMA interrupt control register. We
1584 * request an interrupt after every incoming packet, but
1585 * defer it for 32us (64 * 512 ns). When the number of
1586 * interrupts pending reaches 8, we stop deferring the
1587 * interrupt, and signal it immediately.
1589 bus_space_write_4(st
, sh
, STGE_RxDMAIntCtrl
,
1590 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1593 * Initialize the interrupt mask.
1595 sc
->sc_IntEnable
= IS_HostError
| IS_TxComplete
| IS_UpdateStats
|
1596 IS_TxDMAComplete
| IS_RxDMAComplete
| IS_RFDListEnd
;
1597 bus_space_write_2(st
, sh
, STGE_IntStatus
, 0xffff);
1598 bus_space_write_2(st
, sh
, STGE_IntEnable
, sc
->sc_IntEnable
);
1601 * Configure the DMA engine.
1602 * XXX Should auto-tune TxBurstLimit.
1604 bus_space_write_4(st
, sh
, STGE_DMACtrl
, sc
->sc_DMACtrl
|
1605 DMAC_TxBurstLimit(3));
1608 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1609 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1612 bus_space_write_2(st
, sh
, STGE_FlowOnTresh
, 29696 / 16);
1613 bus_space_write_2(st
, sh
, STGE_FlowOffThresh
, 0);
1616 * Set the maximum frame size.
1618 bus_space_write_2(st
, sh
, STGE_MaxFrameSize
,
1619 ifp
->if_mtu
+ ETHER_HDR_LEN
+ ETHER_CRC_LEN
+
1620 ((sc
->sc_ethercom
.ec_capenable
& ETHERCAP_VLAN_MTU
) ?
1621 ETHER_VLAN_ENCAP_LEN
: 0));
1624 * Initialize MacCtrl -- do it before setting the media,
1625 * as setting the media will actually program the register.
1627 * Note: We have to poke the IFS value before poking
1630 sc
->sc_MACCtrl
= MC_IFSSelect(0);
1631 bus_space_write_4(st
, sh
, STGE_MACCtrl
, sc
->sc_MACCtrl
);
1632 sc
->sc_MACCtrl
|= MC_StatisticsEnable
| MC_TxEnable
| MC_RxEnable
;
1633 #ifdef STGE_VLAN_UNTAG
1634 sc
->sc_MACCtrl
|= MC_AutoVLANuntagging
;
1637 if (sc
->sc_rev
>= 6) { /* >= B.2 */
1638 /* Multi-frag frame bug work-around. */
1639 bus_space_write_2(st
, sh
, STGE_DebugCtrl
,
1640 bus_space_read_2(st
, sh
, STGE_DebugCtrl
) | 0x0200);
1642 /* Tx Poll Now bug work-around. */
1643 bus_space_write_2(st
, sh
, STGE_DebugCtrl
,
1644 bus_space_read_2(st
, sh
, STGE_DebugCtrl
) | 0x0010);
1645 /* XXX ? from linux */
1646 bus_space_write_2(st
, sh
, STGE_DebugCtrl
,
1647 bus_space_read_2(st
, sh
, STGE_DebugCtrl
) | 0x0020);
1651 * Set the current media.
1653 if ((error
= ether_mediachange(ifp
)) != 0)
1657 * Start the one second MII clock.
1659 callout_reset(&sc
->sc_tick_ch
, hz
, stge_tick
, sc
);
1664 ifp
->if_flags
|= IFF_RUNNING
;
1665 ifp
->if_flags
&= ~IFF_OACTIVE
;
1669 printf("%s: interface not running\n", device_xname(sc
->sc_dev
));
1676 * Drain the receive queue.
1679 stge_rxdrain(struct stge_softc
*sc
)
1681 struct stge_descsoft
*ds
;
1684 for (i
= 0; i
< STGE_NRXDESC
; i
++) {
1685 ds
= &sc
->sc_rxsoft
[i
];
1686 if (ds
->ds_mbuf
!= NULL
) {
1687 bus_dmamap_unload(sc
->sc_dmat
, ds
->ds_dmamap
);
1688 ds
->ds_mbuf
->m_next
= NULL
;
1689 m_freem(ds
->ds_mbuf
);
1696 * stge_stop: [ ifnet interface function ]
1698 * Stop transmission on the interface.
1701 stge_stop(struct ifnet
*ifp
, int disable
)
1703 struct stge_softc
*sc
= ifp
->if_softc
;
1704 struct stge_descsoft
*ds
;
1708 * Stop the one second clock.
1710 callout_stop(&sc
->sc_tick_ch
);
1713 mii_down(&sc
->sc_mii
);
1716 * Disable interrupts.
1718 bus_space_write_2(sc
->sc_st
, sc
->sc_sh
, STGE_IntEnable
, 0);
1721 * Stop receiver, transmitter, and stats update.
1723 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_MACCtrl
,
1724 MC_StatisticsDisable
| MC_TxDisable
| MC_RxDisable
);
1727 * Stop the transmit and receive DMA.
1730 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_TFDListPtrHi
, 0);
1731 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_TFDListPtrLo
, 0);
1732 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_RFDListPtrHi
, 0);
1733 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_RFDListPtrLo
, 0);
1736 * Release any queued transmit buffers.
1738 for (i
= 0; i
< STGE_NTXDESC
; i
++) {
1739 ds
= &sc
->sc_txsoft
[i
];
1740 if (ds
->ds_mbuf
!= NULL
) {
1741 bus_dmamap_unload(sc
->sc_dmat
, ds
->ds_dmamap
);
1742 m_freem(ds
->ds_mbuf
);
1748 * Mark the interface down and cancel the watchdog timer.
1750 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
1758 stge_eeprom_wait(struct stge_softc
*sc
)
1762 for (i
= 0; i
< STGE_TIMEOUT
; i
++) {
1764 if ((bus_space_read_2(sc
->sc_st
, sc
->sc_sh
, STGE_EepromCtrl
) &
1765 EC_EepromBusy
) == 0)
1774 * Read data from the serial EEPROM.
1777 stge_read_eeprom(struct stge_softc
*sc
, int offset
, uint16_t *data
)
1780 if (stge_eeprom_wait(sc
))
1781 printf("%s: EEPROM failed to come ready\n",
1782 device_xname(sc
->sc_dev
));
1784 bus_space_write_2(sc
->sc_st
, sc
->sc_sh
, STGE_EepromCtrl
,
1785 EC_EepromAddress(offset
) | EC_EepromOpcode(EC_OP_RR
));
1786 if (stge_eeprom_wait(sc
))
1787 printf("%s: EEPROM read timed out\n",
1788 device_xname(sc
->sc_dev
));
1789 *data
= bus_space_read_2(sc
->sc_st
, sc
->sc_sh
, STGE_EepromData
);
1795 * Add a receive buffer to the indicated descriptor.
1798 stge_add_rxbuf(struct stge_softc
*sc
, int idx
)
1800 struct stge_descsoft
*ds
= &sc
->sc_rxsoft
[idx
];
1804 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1808 MCLGET(m
, M_DONTWAIT
);
1809 if ((m
->m_flags
& M_EXT
) == 0) {
1814 m
->m_data
= m
->m_ext
.ext_buf
+ 2;
1815 m
->m_len
= MCLBYTES
- 2;
1817 if (ds
->ds_mbuf
!= NULL
)
1818 bus_dmamap_unload(sc
->sc_dmat
, ds
->ds_dmamap
);
1822 error
= bus_dmamap_load(sc
->sc_dmat
, ds
->ds_dmamap
,
1823 m
->m_ext
.ext_buf
, m
->m_ext
.ext_size
, NULL
, BUS_DMA_NOWAIT
);
1825 printf("%s: can't load rx DMA map %d, error = %d\n",
1826 device_xname(sc
->sc_dev
), idx
, error
);
1827 panic("stge_add_rxbuf"); /* XXX */
1830 bus_dmamap_sync(sc
->sc_dmat
, ds
->ds_dmamap
, 0,
1831 ds
->ds_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
1833 STGE_INIT_RXDESC(sc
, idx
);
1841 * Set up the receive filter.
1844 stge_set_filter(struct stge_softc
*sc
)
1846 struct ethercom
*ec
= &sc
->sc_ethercom
;
1847 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1848 struct ether_multi
*enm
;
1849 struct ether_multistep step
;
1853 sc
->sc_ReceiveMode
= RM_ReceiveUnicast
;
1854 if (ifp
->if_flags
& IFF_BROADCAST
)
1855 sc
->sc_ReceiveMode
|= RM_ReceiveBroadcast
;
1857 /* XXX: ST1023 only works in promiscuous mode */
1858 if (sc
->sc_stge1023
)
1859 ifp
->if_flags
|= IFF_PROMISC
;
1861 if (ifp
->if_flags
& IFF_PROMISC
) {
1862 sc
->sc_ReceiveMode
|= RM_ReceiveAllFrames
;
1867 * Set up the multicast address filter by passing all multicast
1868 * addresses through a CRC generator, and then using the low-order
1869 * 6 bits as an index into the 64 bit multicast hash table. The
1870 * high order bits select the register, while the rest of the bits
1871 * select the bit within the register.
1874 memset(mchash
, 0, sizeof(mchash
));
1876 ETHER_FIRST_MULTI(step
, ec
, enm
);
1880 while (enm
!= NULL
) {
1881 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
, ETHER_ADDR_LEN
)) {
1883 * We must listen to a range of multicast addresses.
1884 * For now, just accept all multicasts, rather than
1885 * trying to set only those filter bits needed to match
1886 * the range. (At this time, the only use of address
1887 * ranges is for IP multicast routing, for which the
1888 * range is big enough to require all bits set.)
1893 crc
= ether_crc32_be(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
1895 /* Just want the 6 least significant bits. */
1898 /* Set the corresponding bit in the hash table. */
1899 mchash
[crc
>> 5] |= 1 << (crc
& 0x1f);
1901 ETHER_NEXT_MULTI(step
, enm
);
1904 sc
->sc_ReceiveMode
|= RM_ReceiveMulticastHash
;
1906 ifp
->if_flags
&= ~IFF_ALLMULTI
;
1910 ifp
->if_flags
|= IFF_ALLMULTI
;
1911 sc
->sc_ReceiveMode
|= RM_ReceiveMulticast
;
1914 if ((ifp
->if_flags
& IFF_ALLMULTI
) == 0) {
1916 * Program the multicast hash table.
1918 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_HashTable0
,
1920 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_HashTable1
,
1924 bus_space_write_2(sc
->sc_st
, sc
->sc_sh
, STGE_ReceiveMode
,
1925 sc
->sc_ReceiveMode
);
1929 * stge_mii_readreg: [mii interface function]
1931 * Read a PHY register on the MII of the TC9021.
1934 stge_mii_readreg(device_t self
, int phy
, int reg
)
1937 return (mii_bitbang_readreg(self
, &stge_mii_bitbang_ops
, phy
, reg
));
1941 * stge_mii_writereg: [mii interface function]
1943 * Write a PHY register on the MII of the TC9021.
1946 stge_mii_writereg(device_t self
, int phy
, int reg
, int val
)
1949 mii_bitbang_writereg(self
, &stge_mii_bitbang_ops
, phy
, reg
, val
);
1953 * stge_mii_statchg: [mii interface function]
1955 * Callback from MII layer when media changes.
1958 stge_mii_statchg(device_t self
)
1960 struct stge_softc
*sc
= device_private(self
);
1962 if (sc
->sc_mii
.mii_media_active
& IFM_FDX
)
1963 sc
->sc_MACCtrl
|= MC_DuplexSelect
;
1965 sc
->sc_MACCtrl
&= ~MC_DuplexSelect
;
1967 /* XXX 802.1x flow-control? */
1969 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, STGE_MACCtrl
, sc
->sc_MACCtrl
);
1973 * sste_mii_bitbang_read: [mii bit-bang interface function]
1975 * Read the MII serial port for the MII bit-bang module.
1978 stge_mii_bitbang_read(device_t self
)
1980 struct stge_softc
*sc
= device_private(self
);
1982 return (bus_space_read_1(sc
->sc_st
, sc
->sc_sh
, STGE_PhyCtrl
));
1986 * stge_mii_bitbang_write: [mii big-bang interface function]
1988 * Write the MII serial port for the MII bit-bang module.
1991 stge_mii_bitbang_write(device_t self
, uint32_t val
)
1993 struct stge_softc
*sc
= device_private(self
);
1995 bus_space_write_1(sc
->sc_st
, sc
->sc_sh
, STGE_PhyCtrl
,
1996 val
| sc
->sc_PhyCtrl
);