1 /* $NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $ */
5 * Bill Paul <wpaul@windriver.com>. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $");
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
43 * Written by Bill Paul <wpaul@windriver.com>
44 * Senior Networking Software Engineer
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/device.h>
93 #include <sys/sockio.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
116 #include <dev/pci/if_vgereg.h>
118 #define VGE_IFQ_MAXLEN 64
120 #define VGE_RING_ALIGN 256
122 #define VGE_NTXDESC 256
123 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
124 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
125 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
127 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
128 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
129 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
130 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
132 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
133 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
134 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
135 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
137 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
140 * Mbuf adjust factor to force 32-bit alignment of IP header.
141 * Drivers should pad ETHER_ALIGN bytes when setting up a
142 * RX mbuf so the upper layers get the IP header properly aligned
143 * past the 14-byte Ethernet header.
145 * See also comment in vge_encap().
147 #define ETHER_ALIGN 2
149 #ifdef __NO_STRICT_ALIGNMENT
150 #define VGE_RX_BUFSIZE MCLBYTES
152 #define VGE_RX_PAD sizeof(uint32_t)
153 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
157 * Control structures are DMA'd to the vge chip. We allocate them in
158 * a single clump that maps to a single DMA segment to make several things
161 struct vge_control_data
{
163 struct vge_txdesc vcd_txdescs
[VGE_NTXDESC
];
165 struct vge_rxdesc vcd_rxdescs
[VGE_NRXDESC
];
166 /* dummy data for TX padding */
167 uint8_t vcd_pad
[ETHER_PAD_LEN
];
170 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
171 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
172 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
173 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
176 * Software state for TX jobs.
179 struct mbuf
*txs_mbuf
; /* head of our mbuf chain */
180 bus_dmamap_t txs_dmamap
; /* our DMA map */
184 * Software state for RX jobs.
187 struct mbuf
*rxs_mbuf
; /* head of our mbuf chain */
188 bus_dmamap_t rxs_dmamap
; /* our DMA map */
195 bus_space_tag_t sc_bst
; /* bus space tag */
196 bus_space_handle_t sc_bsh
; /* bus space handle */
197 bus_dma_tag_t sc_dmat
;
199 struct ethercom sc_ethercom
; /* interface info */
200 uint8_t sc_eaddr
[ETHER_ADDR_LEN
];
203 struct mii_data sc_mii
;
208 callout_t sc_timeout
;
210 bus_dmamap_t sc_cddmamap
;
211 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
213 struct vge_txsoft sc_txsoft
[VGE_NTXDESC
];
214 struct vge_rxsoft sc_rxsoft
[VGE_NRXDESC
];
215 struct vge_control_data
*sc_control_data
;
216 #define sc_txdescs sc_control_data->vcd_txdescs
217 #define sc_rxdescs sc_control_data->vcd_rxdescs
223 struct mbuf
*sc_rx_mhead
;
224 struct mbuf
*sc_rx_mtail
;
228 int sc_suspended
; /* 0 = normal 1 = suspended */
229 uint32_t sc_saved_maps
[5]; /* pci data */
230 uint32_t sc_saved_biosaddr
;
231 uint8_t sc_saved_intline
;
232 uint8_t sc_saved_cachelnsz
;
233 uint8_t sc_saved_lattimer
;
236 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
237 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
238 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
240 #define VGE_TXDESCSYNC(sc, idx, ops) \
241 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
243 offsetof(struct vge_txdesc, td_frag[0]), \
245 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
248 offsetof(struct vge_txdesc, td_frag[0]), \
249 sizeof(struct vge_txfrag) * (nsegs), \
251 #define VGE_RXDESCSYNC(sc, idx, ops) \
252 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
254 sizeof(struct vge_rxdesc), \
258 * register space access macros
260 #define CSR_WRITE_4(sc, reg, val) \
261 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
262 #define CSR_WRITE_2(sc, reg, val) \
263 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264 #define CSR_WRITE_1(sc, reg, val) \
265 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
267 #define CSR_READ_4(sc, reg) \
268 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
269 #define CSR_READ_2(sc, reg) \
270 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
271 #define CSR_READ_1(sc, reg) \
272 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
274 #define CSR_SETBIT_1(sc, reg, x) \
275 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
276 #define CSR_SETBIT_2(sc, reg, x) \
277 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
278 #define CSR_SETBIT_4(sc, reg, x) \
279 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
281 #define CSR_CLRBIT_1(sc, reg, x) \
282 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
283 #define CSR_CLRBIT_2(sc, reg, x) \
284 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
285 #define CSR_CLRBIT_4(sc, reg, x) \
286 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
288 #define VGE_TIMEOUT 10000
290 #define VGE_PCI_LOIO 0x10
291 #define VGE_PCI_LOMEM 0x14
293 static inline void vge_set_txaddr(struct vge_txfrag
*, bus_addr_t
);
294 static inline void vge_set_rxaddr(struct vge_rxdesc
*, bus_addr_t
);
296 static int vge_ifflags_cb(struct ethercom
*);
298 static int vge_match(device_t
, cfdata_t
, void *);
299 static void vge_attach(device_t
, device_t
, void *);
301 static int vge_encap(struct vge_softc
*, struct mbuf
*, int);
303 static int vge_allocmem(struct vge_softc
*);
304 static int vge_newbuf(struct vge_softc
*, int, struct mbuf
*);
305 #ifndef __NO_STRICT_ALIGNMENT
306 static inline void vge_fixup_rx(struct mbuf
*);
308 static void vge_rxeof(struct vge_softc
*);
309 static void vge_txeof(struct vge_softc
*);
310 static int vge_intr(void *);
311 static void vge_tick(void *);
312 static void vge_start(struct ifnet
*);
313 static int vge_ioctl(struct ifnet
*, u_long
, void *);
314 static int vge_init(struct ifnet
*);
315 static void vge_stop(struct ifnet
*, int);
316 static void vge_watchdog(struct ifnet
*);
317 #if VGE_POWER_MANAGEMENT
318 static int vge_suspend(device_t
);
319 static int vge_resume(device_t
);
321 static bool vge_shutdown(device_t
, int);
323 static uint16_t vge_read_eeprom(struct vge_softc
*, int);
325 static void vge_miipoll_start(struct vge_softc
*);
326 static void vge_miipoll_stop(struct vge_softc
*);
327 static int vge_miibus_readreg(device_t
, int, int);
328 static void vge_miibus_writereg(device_t
, int, int, int);
329 static void vge_miibus_statchg(device_t
);
331 static void vge_cam_clear(struct vge_softc
*);
332 static int vge_cam_set(struct vge_softc
*, uint8_t *);
333 static void vge_setmulti(struct vge_softc
*);
334 static void vge_reset(struct vge_softc
*);
336 CFATTACH_DECL_NEW(vge
, sizeof(struct vge_softc
),
337 vge_match
, vge_attach
, NULL
, NULL
);
340 vge_set_txaddr(struct vge_txfrag
*f
, bus_addr_t daddr
)
343 f
->tf_addrlo
= htole32((uint32_t)daddr
);
344 if (sizeof(bus_addr_t
) == sizeof(uint64_t))
345 f
->tf_addrhi
= htole16(((uint64_t)daddr
>> 32) & 0xFFFF);
351 vge_set_rxaddr(struct vge_rxdesc
*rxd
, bus_addr_t daddr
)
354 rxd
->rd_addrlo
= htole32((uint32_t)daddr
);
355 if (sizeof(bus_addr_t
) == sizeof(uint64_t))
356 rxd
->rd_addrhi
= htole16(((uint64_t)daddr
>> 32) & 0xFFFF);
362 * Defragment mbuf chain contents to be as linear as possible.
363 * Returns new mbuf chain on success, NULL on failure. Old mbuf
364 * chain is always freed.
365 * XXX temporary until there would be generic function doing this.
367 #define m_defrag vge_m_defrag
368 struct mbuf
* vge_m_defrag(struct mbuf
*, int);
371 vge_m_defrag(struct mbuf
*mold
, int flags
)
373 struct mbuf
*m0
, *mn
, *n
;
374 size_t sz
= mold
->m_pkthdr
.len
;
377 if ((mold
->m_flags
& M_PKTHDR
) == 0)
378 panic("m_defrag: not a mbuf chain header");
381 MGETHDR(m0
, flags
, MT_DATA
);
384 m0
->m_pkthdr
.len
= mold
->m_pkthdr
.len
;
389 MCLGET(mn
, M_DONTWAIT
);
390 if ((mn
->m_flags
& M_EXT
) == 0) {
396 mn
->m_len
= MIN(sz
, MCLBYTES
);
398 m_copydata(mold
, mold
->m_pkthdr
.len
- sz
, mn
->m_len
,
404 /* need more mbufs */
405 MGET(n
, M_NOWAIT
, MT_DATA
);
420 * Read a word of data stored in the EEPROM at address 'addr.'
423 vge_read_eeprom(struct vge_softc
*sc
, int addr
)
429 * Enter EEPROM embedded programming mode. In order to
430 * access the EEPROM at all, we first have to set the
431 * EELOAD bit in the CHIPCFG2 register.
433 CSR_SETBIT_1(sc
, VGE_CHIPCFG2
, VGE_CHIPCFG2_EELOAD
);
434 CSR_SETBIT_1(sc
, VGE_EECSR
, VGE_EECSR_EMBP
/*|VGE_EECSR_ECS*/);
436 /* Select the address of the word we want to read */
437 CSR_WRITE_1(sc
, VGE_EEADDR
, addr
);
439 /* Issue read command */
440 CSR_SETBIT_1(sc
, VGE_EECMD
, VGE_EECMD_ERD
);
442 /* Wait for the done bit to be set. */
443 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
444 if (CSR_READ_1(sc
, VGE_EECMD
) & VGE_EECMD_EDONE
)
448 if (i
== VGE_TIMEOUT
) {
449 printf("%s: EEPROM read timed out\n", device_xname(sc
->sc_dev
));
453 /* Read the result */
454 word
= CSR_READ_2(sc
, VGE_EERDDAT
);
456 /* Turn off EEPROM access mode. */
457 CSR_CLRBIT_1(sc
, VGE_EECSR
, VGE_EECSR_EMBP
/*|VGE_EECSR_ECS*/);
458 CSR_CLRBIT_1(sc
, VGE_CHIPCFG2
, VGE_CHIPCFG2_EELOAD
);
464 vge_miipoll_stop(struct vge_softc
*sc
)
468 CSR_WRITE_1(sc
, VGE_MIICMD
, 0);
470 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
472 if (CSR_READ_1(sc
, VGE_MIISTS
) & VGE_MIISTS_IIDL
)
476 if (i
== VGE_TIMEOUT
) {
477 printf("%s: failed to idle MII autopoll\n",
478 device_xname(sc
->sc_dev
));
483 vge_miipoll_start(struct vge_softc
*sc
)
487 /* First, make sure we're idle. */
489 CSR_WRITE_1(sc
, VGE_MIICMD
, 0);
490 CSR_WRITE_1(sc
, VGE_MIIADDR
, VGE_MIIADDR_SWMPL
);
492 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
494 if (CSR_READ_1(sc
, VGE_MIISTS
) & VGE_MIISTS_IIDL
)
498 if (i
== VGE_TIMEOUT
) {
499 printf("%s: failed to idle MII autopoll\n",
500 device_xname(sc
->sc_dev
));
504 /* Now enable auto poll mode. */
506 CSR_WRITE_1(sc
, VGE_MIICMD
, VGE_MIICMD_MAUTO
);
508 /* And make sure it started. */
510 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
512 if ((CSR_READ_1(sc
, VGE_MIISTS
) & VGE_MIISTS_IIDL
) == 0)
516 if (i
== VGE_TIMEOUT
) {
517 printf("%s: failed to start MII autopoll\n",
518 device_xname(sc
->sc_dev
));
523 vge_miibus_readreg(device_t dev
, int phy
, int reg
)
525 struct vge_softc
*sc
;
529 sc
= device_private(dev
);
531 if (phy
!= (CSR_READ_1(sc
, VGE_MIICFG
) & 0x1F))
535 vge_miipoll_stop(sc
);
537 /* Specify the register we want to read. */
538 CSR_WRITE_1(sc
, VGE_MIIADDR
, reg
);
540 /* Issue read command. */
541 CSR_SETBIT_1(sc
, VGE_MIICMD
, VGE_MIICMD_RCMD
);
543 /* Wait for the read command bit to self-clear. */
544 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
546 if ((CSR_READ_1(sc
, VGE_MIICMD
) & VGE_MIICMD_RCMD
) == 0)
550 if (i
== VGE_TIMEOUT
)
551 printf("%s: MII read timed out\n", device_xname(sc
->sc_dev
));
553 rval
= CSR_READ_2(sc
, VGE_MIIDATA
);
555 vge_miipoll_start(sc
);
562 vge_miibus_writereg(device_t dev
, int phy
, int reg
, int data
)
564 struct vge_softc
*sc
;
567 sc
= device_private(dev
);
568 if (phy
!= (CSR_READ_1(sc
, VGE_MIICFG
) & 0x1F))
572 vge_miipoll_stop(sc
);
574 /* Specify the register we want to write. */
575 CSR_WRITE_1(sc
, VGE_MIIADDR
, reg
);
577 /* Specify the data we want to write. */
578 CSR_WRITE_2(sc
, VGE_MIIDATA
, data
);
580 /* Issue write command. */
581 CSR_SETBIT_1(sc
, VGE_MIICMD
, VGE_MIICMD_WCMD
);
583 /* Wait for the write command bit to self-clear. */
584 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
586 if ((CSR_READ_1(sc
, VGE_MIICMD
) & VGE_MIICMD_WCMD
) == 0)
590 if (i
== VGE_TIMEOUT
) {
591 printf("%s: MII write timed out\n", device_xname(sc
->sc_dev
));
594 vge_miipoll_start(sc
);
599 vge_cam_clear(struct vge_softc
*sc
)
604 * Turn off all the mask bits. This tells the chip
605 * that none of the entries in the CAM filter are valid.
606 * desired entries will be enabled as we fill the filter in.
609 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
610 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_CAMMASK
);
611 CSR_WRITE_1(sc
, VGE_CAMADDR
, VGE_CAMADDR_ENABLE
);
612 for (i
= 0; i
< 8; i
++)
613 CSR_WRITE_1(sc
, VGE_CAM0
+ i
, 0);
615 /* Clear the VLAN filter too. */
617 CSR_WRITE_1(sc
, VGE_CAMADDR
, VGE_CAMADDR_ENABLE
|VGE_CAMADDR_AVSEL
|0);
618 for (i
= 0; i
< 8; i
++)
619 CSR_WRITE_1(sc
, VGE_CAM0
+ i
, 0);
621 CSR_WRITE_1(sc
, VGE_CAMADDR
, 0);
622 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
623 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_MAR
);
629 vge_cam_set(struct vge_softc
*sc
, uint8_t *addr
)
635 if (sc
->sc_camidx
== VGE_CAM_MAXADDRS
)
638 /* Select the CAM data page. */
639 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
640 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_CAMDATA
);
642 /* Set the filter entry we want to update and enable writing. */
643 CSR_WRITE_1(sc
, VGE_CAMADDR
, VGE_CAMADDR_ENABLE
| sc
->sc_camidx
);
645 /* Write the address to the CAM registers */
646 for (i
= 0; i
< ETHER_ADDR_LEN
; i
++)
647 CSR_WRITE_1(sc
, VGE_CAM0
+ i
, addr
[i
]);
649 /* Issue a write command. */
650 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_WRITE
);
652 /* Wake for it to clear. */
653 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
655 if ((CSR_READ_1(sc
, VGE_CAMCTL
) & VGE_CAMCTL_WRITE
) == 0)
659 if (i
== VGE_TIMEOUT
) {
660 printf("%s: setting CAM filter failed\n",
661 device_xname(sc
->sc_dev
));
666 /* Select the CAM mask page. */
667 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
668 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_CAMMASK
);
670 /* Set the mask bit that enables this filter. */
671 CSR_SETBIT_1(sc
, VGE_CAM0
+ (sc
->sc_camidx
/ 8),
672 1 << (sc
->sc_camidx
& 7));
677 /* Turn off access to CAM. */
678 CSR_WRITE_1(sc
, VGE_CAMADDR
, 0);
679 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
680 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_MAR
);
686 * Program the multicast filter. We use the 64-entry CAM filter
687 * for perfect filtering. If there's more than 64 multicast addresses,
688 * we use the hash filter instead.
691 vge_setmulti(struct vge_softc
*sc
)
695 uint32_t h
, hashes
[2] = { 0, 0 };
696 struct ether_multi
*enm
;
697 struct ether_multistep step
;
700 ifp
= &sc
->sc_ethercom
.ec_if
;
702 /* First, zot all the multicast entries. */
704 CSR_WRITE_4(sc
, VGE_MAR0
, 0);
705 CSR_WRITE_4(sc
, VGE_MAR1
, 0);
706 ifp
->if_flags
&= ~IFF_ALLMULTI
;
709 * If the user wants allmulti or promisc mode, enable reception
710 * of all multicast frames.
712 if (ifp
->if_flags
& IFF_PROMISC
) {
714 CSR_WRITE_4(sc
, VGE_MAR0
, 0xFFFFFFFF);
715 CSR_WRITE_4(sc
, VGE_MAR1
, 0xFFFFFFFF);
716 ifp
->if_flags
|= IFF_ALLMULTI
;
720 /* Now program new ones */
721 ETHER_FIRST_MULTI(step
, &sc
->sc_ethercom
, enm
);
722 while (enm
!= NULL
) {
724 * If multicast range, fall back to ALLMULTI.
726 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
,
727 ETHER_ADDR_LEN
) != 0)
730 error
= vge_cam_set(sc
, enm
->enm_addrlo
);
734 ETHER_NEXT_MULTI(step
, enm
);
737 /* If there were too many addresses, use the hash filter. */
741 ETHER_FIRST_MULTI(step
, &sc
->sc_ethercom
, enm
);
742 while (enm
!= NULL
) {
744 * If multicast range, fall back to ALLMULTI.
746 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
,
747 ETHER_ADDR_LEN
) != 0)
750 h
= ether_crc32_be(enm
->enm_addrlo
,
751 ETHER_ADDR_LEN
) >> 26;
752 hashes
[h
>> 5] |= 1 << (h
& 0x1f);
754 ETHER_NEXT_MULTI(step
, enm
);
757 CSR_WRITE_4(sc
, VGE_MAR0
, hashes
[0]);
758 CSR_WRITE_4(sc
, VGE_MAR1
, hashes
[1]);
763 vge_reset(struct vge_softc
*sc
)
767 CSR_WRITE_1(sc
, VGE_CRS1
, VGE_CR1_SOFTRESET
);
769 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
771 if ((CSR_READ_1(sc
, VGE_CRS1
) & VGE_CR1_SOFTRESET
) == 0)
775 if (i
== VGE_TIMEOUT
) {
776 printf("%s: soft reset timed out", device_xname(sc
->sc_dev
));
777 CSR_WRITE_1(sc
, VGE_CRS3
, VGE_CR3_STOP_FORCE
);
783 CSR_SETBIT_1(sc
, VGE_EECSR
, VGE_EECSR_RELOAD
);
785 for (i
= 0; i
< VGE_TIMEOUT
; i
++) {
787 if ((CSR_READ_1(sc
, VGE_EECSR
) & VGE_EECSR_RELOAD
) == 0)
791 if (i
== VGE_TIMEOUT
) {
792 printf("%s: EEPROM reload timed out\n",
793 device_xname(sc
->sc_dev
));
798 * On some machine, the first read data from EEPROM could be
799 * messed up, so read one dummy data here to avoid the mess.
801 (void)vge_read_eeprom(sc
, 0);
803 CSR_CLRBIT_1(sc
, VGE_CHIPCFG0
, VGE_CHIPCFG0_PACPI
);
807 * Probe for a VIA gigabit chip. Check the PCI vendor and device
808 * IDs against our list and return a device name if we find a match.
811 vge_match(device_t parent
, cfdata_t match
, void *aux
)
813 struct pci_attach_args
*pa
= aux
;
815 if (PCI_VENDOR(pa
->pa_id
) == PCI_VENDOR_VIATECH
816 && PCI_PRODUCT(pa
->pa_id
) == PCI_PRODUCT_VIATECH_VT612X
)
823 vge_allocmem(struct vge_softc
*sc
)
828 bus_dma_segment_t seg
;
831 * Allocate memory for control data.
834 error
= bus_dmamem_alloc(sc
->sc_dmat
, sizeof(struct vge_control_data
),
835 VGE_RING_ALIGN
, 0, &seg
, 1, &nseg
, BUS_DMA_NOWAIT
);
837 aprint_error_dev(sc
->sc_dev
,
838 "could not allocate control data dma memory\n");
842 /* Map the memory to kernel VA space */
844 error
= bus_dmamem_map(sc
->sc_dmat
, &seg
, nseg
,
845 sizeof(struct vge_control_data
), (void **)&sc
->sc_control_data
,
848 aprint_error_dev(sc
->sc_dev
,
849 "could not map control data dma memory\n");
852 memset(sc
->sc_control_data
, 0, sizeof(struct vge_control_data
));
855 * Create map for control data.
857 error
= bus_dmamap_create(sc
->sc_dmat
,
858 sizeof(struct vge_control_data
), 1,
859 sizeof(struct vge_control_data
), 0, BUS_DMA_NOWAIT
,
862 aprint_error_dev(sc
->sc_dev
,
863 "could not create control data dmamap\n");
867 /* Load the map for the control data. */
868 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->sc_cddmamap
,
869 sc
->sc_control_data
, sizeof(struct vge_control_data
), NULL
,
872 aprint_error_dev(sc
->sc_dev
,
873 "could not load control data dma memory\n");
877 /* Create DMA maps for TX buffers */
879 for (i
= 0; i
< VGE_NTXDESC
; i
++) {
880 error
= bus_dmamap_create(sc
->sc_dmat
, VGE_TX_MAXLEN
,
881 VGE_TX_FRAGS
, VGE_TX_MAXLEN
, 0, BUS_DMA_NOWAIT
,
882 &sc
->sc_txsoft
[i
].txs_dmamap
);
884 aprint_error_dev(sc
->sc_dev
,
885 "can't create DMA map for TX descs\n");
890 /* Create DMA maps for RX buffers */
892 for (i
= 0; i
< VGE_NRXDESC
; i
++) {
893 error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
,
894 1, MCLBYTES
, 0, BUS_DMA_NOWAIT
,
895 &sc
->sc_rxsoft
[i
].rxs_dmamap
);
897 aprint_error_dev(sc
->sc_dev
,
898 "can't create DMA map for RX descs\n");
901 sc
->sc_rxsoft
[i
].rxs_mbuf
= NULL
;
907 for (i
= 0; i
< VGE_NRXDESC
; i
++) {
908 if (sc
->sc_rxsoft
[i
].rxs_dmamap
!= NULL
)
909 bus_dmamap_destroy(sc
->sc_dmat
,
910 sc
->sc_rxsoft
[i
].rxs_dmamap
);
913 for (i
= 0; i
< VGE_NTXDESC
; i
++) {
914 if (sc
->sc_txsoft
[i
].txs_dmamap
!= NULL
)
915 bus_dmamap_destroy(sc
->sc_dmat
,
916 sc
->sc_txsoft
[i
].txs_dmamap
);
918 bus_dmamap_unload(sc
->sc_dmat
, sc
->sc_cddmamap
);
920 bus_dmamap_destroy(sc
->sc_dmat
, sc
->sc_cddmamap
);
922 bus_dmamem_unmap(sc
->sc_dmat
, (void *)sc
->sc_control_data
,
923 sizeof(struct vge_control_data
));
925 bus_dmamem_free(sc
->sc_dmat
, &seg
, nseg
);
931 * Attach the interface. Allocate softc structures, do ifmedia
932 * setup and ethernet/BPF attach.
935 vge_attach(device_t parent
, device_t self
, void *aux
)
938 struct vge_softc
*sc
= device_private(self
);
940 struct pci_attach_args
*pa
= aux
;
941 pci_chipset_tag_t pc
= pa
->pa_pc
;
943 pci_intr_handle_t ih
;
948 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
949 PCI_REVISION(pa
->pa_class
));
951 /* Make sure bus-mastering is enabled */
952 pci_conf_write(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
,
953 pci_conf_read(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
) |
954 PCI_COMMAND_MASTER_ENABLE
);
957 * Map control/status registers.
959 if (pci_mapreg_map(pa
, VGE_PCI_LOMEM
, PCI_MAPREG_TYPE_MEM
, 0,
960 &sc
->sc_bst
, &sc
->sc_bsh
, NULL
, NULL
) != 0) {
961 aprint_error_dev(self
, "couldn't map memory\n");
966 * Map and establish our interrupt.
968 if (pci_intr_map(pa
, &ih
)) {
969 aprint_error_dev(self
, "unable to map interrupt\n");
972 intrstr
= pci_intr_string(pc
, ih
);
973 sc
->sc_intrhand
= pci_intr_establish(pc
, ih
, IPL_NET
, vge_intr
, sc
);
974 if (sc
->sc_intrhand
== NULL
) {
975 aprint_error_dev(self
, "unable to establish interrupt");
977 aprint_error(" at %s", intrstr
);
981 aprint_normal_dev(self
, "interrupting at %s\n", intrstr
);
983 /* Reset the adapter. */
987 * Get station address from the EEPROM.
989 eaddr
= sc
->sc_eaddr
;
990 val
= vge_read_eeprom(sc
, VGE_EE_EADDR
+ 0);
991 eaddr
[0] = val
& 0xff;
993 val
= vge_read_eeprom(sc
, VGE_EE_EADDR
+ 1);
994 eaddr
[2] = val
& 0xff;
996 val
= vge_read_eeprom(sc
, VGE_EE_EADDR
+ 2);
997 eaddr
[4] = val
& 0xff;
1000 aprint_normal_dev(self
, "Ethernet address: %s\n",
1001 ether_sprintf(eaddr
));
1004 * Use the 32bit tag. Hardware supports 48bit physical addresses,
1005 * but we don't use that for now.
1007 sc
->sc_dmat
= pa
->pa_dmat
;
1009 if (vge_allocmem(sc
) != 0)
1012 ifp
= &sc
->sc_ethercom
.ec_if
;
1014 strlcpy(ifp
->if_xname
, device_xname(self
), IFNAMSIZ
);
1015 ifp
->if_mtu
= ETHERMTU
;
1016 ifp
->if_baudrate
= IF_Gbps(1);
1017 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
1018 ifp
->if_ioctl
= vge_ioctl
;
1019 ifp
->if_start
= vge_start
;
1020 ifp
->if_init
= vge_init
;
1021 ifp
->if_stop
= vge_stop
;
1024 * We can support 802.1Q VLAN-sized frames and jumbo
1027 sc
->sc_ethercom
.ec_capabilities
|=
1028 ETHERCAP_VLAN_MTU
| ETHERCAP_JUMBO_MTU
|
1029 ETHERCAP_VLAN_HWTAGGING
;
1032 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1034 ifp
->if_capabilities
|=
1035 IFCAP_CSUM_IPv4_Tx
| IFCAP_CSUM_IPv4_Rx
|
1036 IFCAP_CSUM_TCPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
|
1037 IFCAP_CSUM_UDPv4_Tx
| IFCAP_CSUM_UDPv4_Rx
;
1039 #ifdef DEVICE_POLLING
1040 #ifdef IFCAP_POLLING
1041 ifp
->if_capabilities
|= IFCAP_POLLING
;
1044 ifp
->if_watchdog
= vge_watchdog
;
1045 IFQ_SET_MAXLEN(&ifp
->if_snd
, max(VGE_IFQ_MAXLEN
, IFQ_MAXLEN
));
1046 IFQ_SET_READY(&ifp
->if_snd
);
1049 * Initialize our media structures and probe the MII.
1051 sc
->sc_mii
.mii_ifp
= ifp
;
1052 sc
->sc_mii
.mii_readreg
= vge_miibus_readreg
;
1053 sc
->sc_mii
.mii_writereg
= vge_miibus_writereg
;
1054 sc
->sc_mii
.mii_statchg
= vge_miibus_statchg
;
1056 sc
->sc_ethercom
.ec_mii
= &sc
->sc_mii
;
1057 ifmedia_init(&sc
->sc_mii
.mii_media
, 0, ether_mediachange
,
1059 mii_attach(self
, &sc
->sc_mii
, 0xffffffff, MII_PHY_ANY
,
1060 MII_OFFSET_ANY
, MIIF_DOPAUSE
);
1061 if (LIST_FIRST(&sc
->sc_mii
.mii_phys
) == NULL
) {
1062 ifmedia_add(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
, 0, NULL
);
1063 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
);
1065 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_AUTO
);
1068 * Attach the interface.
1071 ether_ifattach(ifp
, eaddr
);
1072 ether_set_ifflags_cb(&sc
->sc_ethercom
, vge_ifflags_cb
);
1074 callout_init(&sc
->sc_timeout
, 0);
1075 callout_setfunc(&sc
->sc_timeout
, vge_tick
, sc
);
1078 * Make sure the interface is shutdown during reboot.
1080 if (pmf_device_register1(self
, NULL
, NULL
, vge_shutdown
))
1081 pmf_class_network_register(self
, ifp
);
1083 aprint_error_dev(self
, "couldn't establish power handler\n");
1087 vge_newbuf(struct vge_softc
*sc
, int idx
, struct mbuf
*m
)
1090 struct vge_rxdesc
*rxd
;
1091 struct vge_rxsoft
*rxs
;
1100 MGETHDR(m_new
, M_DONTWAIT
, MT_DATA
);
1104 MCLGET(m_new
, M_DONTWAIT
);
1105 if ((m_new
->m_flags
& M_EXT
) == 0) {
1112 m
->m_data
= m
->m_ext
.ext_buf
;
1116 * This is part of an evil trick to deal with non-x86 platforms.
1117 * The VIA chip requires RX buffers to be aligned on 32-bit
1118 * boundaries, but that will hose non-x86 machines. To get around
1119 * this, we leave some empty space at the start of each buffer
1120 * and for non-x86 hosts, we copy the buffer back two bytes
1121 * to achieve word alignment. This is slightly more efficient
1122 * than allocating a new buffer, copying the contents, and
1123 * discarding the old buffer.
1125 m
->m_len
= m
->m_pkthdr
.len
= VGE_RX_BUFSIZE
;
1126 #ifndef __NO_STRICT_ALIGNMENT
1127 m
->m_data
+= VGE_RX_PAD
;
1129 rxs
= &sc
->sc_rxsoft
[idx
];
1130 map
= rxs
->rxs_dmamap
;
1132 if (bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, m
, BUS_DMA_NOWAIT
) != 0)
1135 rxd
= &sc
->sc_rxdescs
[idx
];
1138 /* If this descriptor is still owned by the chip, bail. */
1139 VGE_RXDESCSYNC(sc
, idx
, BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1140 rd_sts
= le32toh(rxd
->rd_sts
);
1141 VGE_RXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
);
1142 if (rd_sts
& VGE_RDSTS_OWN
) {
1143 panic("%s: tried to map busy RX descriptor",
1144 device_xname(sc
->sc_dev
));
1149 bus_dmamap_sync(sc
->sc_dmat
, map
, 0, map
->dm_mapsize
,
1150 BUS_DMASYNC_PREREAD
);
1153 htole16(VGE_BUFLEN(map
->dm_segs
[0].ds_len
) | VGE_RXDESC_I
);
1154 vge_set_rxaddr(rxd
, map
->dm_segs
[0].ds_addr
);
1157 VGE_RXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1160 * Note: the manual fails to document the fact that for
1161 * proper opration, the driver needs to replentish the RX
1162 * DMA ring 4 descriptors at a time (rather than one at a
1163 * time, like most chips). We can allocate the new buffers
1164 * but we should not set the OWN bits until we're ready
1165 * to hand back 4 of them in one shot.
1168 #define VGE_RXCHUNK 4
1169 sc
->sc_rx_consumed
++;
1170 if (sc
->sc_rx_consumed
== VGE_RXCHUNK
) {
1171 for (i
= idx
; i
!= idx
- VGE_RXCHUNK
; i
--) {
1173 sc
->sc_rxdescs
[i
].rd_sts
|= htole32(VGE_RDSTS_OWN
);
1174 VGE_RXDESCSYNC(sc
, i
,
1175 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1177 sc
->sc_rx_consumed
= 0;
1187 #ifndef __NO_STRICT_ALIGNMENT
1189 vge_fixup_rx(struct mbuf
*m
)
1192 uint16_t *src
, *dst
;
1194 src
= mtod(m
, uint16_t *);
1197 for (i
= 0; i
< (m
->m_len
/ sizeof(uint16_t) + 1); i
++)
1200 m
->m_data
-= ETHER_ALIGN
;
1205 * RX handler. We support the reception of jumbo frames that have
1206 * been fragmented across multiple 2K mbuf cluster buffers.
1209 vge_rxeof(struct vge_softc
*sc
)
1213 int idx
, total_len
, lim
;
1214 struct vge_rxdesc
*cur_rxd
;
1215 struct vge_rxsoft
*rxs
;
1216 uint32_t rxstat
, rxctl
;
1218 ifp
= &sc
->sc_ethercom
.ec_if
;
1221 /* Invalidate the descriptor memory */
1223 for (idx
= sc
->sc_rx_prodidx
;; idx
= VGE_NEXT_RXDESC(idx
)) {
1224 cur_rxd
= &sc
->sc_rxdescs
[idx
];
1226 VGE_RXDESCSYNC(sc
, idx
,
1227 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1228 rxstat
= le32toh(cur_rxd
->rd_sts
);
1229 if ((rxstat
& VGE_RDSTS_OWN
) != 0) {
1230 VGE_RXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
);
1234 rxctl
= le32toh(cur_rxd
->rd_ctl
);
1235 rxs
= &sc
->sc_rxsoft
[idx
];
1237 total_len
= (rxstat
& VGE_RDSTS_BUFSIZ
) >> 16;
1239 /* Invalidate the RX mbuf and unload its map */
1241 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
,
1242 0, rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1243 bus_dmamap_unload(sc
->sc_dmat
, rxs
->rxs_dmamap
);
1246 * If the 'start of frame' bit is set, this indicates
1247 * either the first fragment in a multi-fragment receive,
1248 * or an intermediate fragment. Either way, we want to
1249 * accumulate the buffers.
1251 if (rxstat
& VGE_RXPKT_SOF
) {
1252 m
->m_len
= VGE_RX_BUFSIZE
;
1253 if (sc
->sc_rx_mhead
== NULL
)
1254 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= m
;
1256 m
->m_flags
&= ~M_PKTHDR
;
1257 sc
->sc_rx_mtail
->m_next
= m
;
1258 sc
->sc_rx_mtail
= m
;
1260 vge_newbuf(sc
, idx
, NULL
);
1265 * Bad/error frames will have the RXOK bit cleared.
1266 * However, there's one error case we want to allow:
1267 * if a VLAN tagged frame arrives and the chip can't
1268 * match it against the CAM filter, it considers this
1269 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1270 * We don't want to drop the frame though: our VLAN
1271 * filtering is done in software.
1273 if ((rxstat
& VGE_RDSTS_RXOK
) == 0 &&
1274 (rxstat
& VGE_RDSTS_VIDM
) == 0 &&
1275 (rxstat
& VGE_RDSTS_CSUMERR
) == 0) {
1278 * If this is part of a multi-fragment packet,
1279 * discard all the pieces.
1281 if (sc
->sc_rx_mhead
!= NULL
) {
1282 m_freem(sc
->sc_rx_mhead
);
1283 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= NULL
;
1285 vge_newbuf(sc
, idx
, m
);
1290 * If allocating a replacement mbuf fails,
1291 * reload the current one.
1294 if (vge_newbuf(sc
, idx
, NULL
)) {
1296 if (sc
->sc_rx_mhead
!= NULL
) {
1297 m_freem(sc
->sc_rx_mhead
);
1298 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= NULL
;
1300 vge_newbuf(sc
, idx
, m
);
1304 if (sc
->sc_rx_mhead
!= NULL
) {
1305 m
->m_len
= total_len
% VGE_RX_BUFSIZE
;
1307 * Special case: if there's 4 bytes or less
1308 * in this buffer, the mbuf can be discarded:
1309 * the last 4 bytes is the CRC, which we don't
1310 * care about anyway.
1312 if (m
->m_len
<= ETHER_CRC_LEN
) {
1313 sc
->sc_rx_mtail
->m_len
-=
1314 (ETHER_CRC_LEN
- m
->m_len
);
1317 m
->m_len
-= ETHER_CRC_LEN
;
1318 m
->m_flags
&= ~M_PKTHDR
;
1319 sc
->sc_rx_mtail
->m_next
= m
;
1321 m
= sc
->sc_rx_mhead
;
1322 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= NULL
;
1323 m
->m_pkthdr
.len
= total_len
- ETHER_CRC_LEN
;
1325 m
->m_pkthdr
.len
= m
->m_len
= total_len
- ETHER_CRC_LEN
;
1327 #ifndef __NO_STRICT_ALIGNMENT
1331 m
->m_pkthdr
.rcvif
= ifp
;
1333 /* Do RX checksumming if enabled */
1334 if (ifp
->if_csum_flags_rx
& M_CSUM_IPv4
) {
1336 /* Check IP header checksum */
1337 if (rxctl
& VGE_RDCTL_IPPKT
)
1338 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4
;
1339 if ((rxctl
& VGE_RDCTL_IPCSUMOK
) == 0)
1340 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4_BAD
;
1343 if (ifp
->if_csum_flags_rx
& M_CSUM_TCPv4
) {
1344 /* Check UDP checksum */
1345 if (rxctl
& VGE_RDCTL_TCPPKT
)
1346 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCPv4
;
1348 if ((rxctl
& VGE_RDCTL_PROTOCSUMOK
) == 0)
1349 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCP_UDP_BAD
;
1352 if (ifp
->if_csum_flags_rx
& M_CSUM_UDPv4
) {
1353 /* Check UDP checksum */
1354 if (rxctl
& VGE_RDCTL_UDPPKT
)
1355 m
->m_pkthdr
.csum_flags
|= M_CSUM_UDPv4
;
1357 if ((rxctl
& VGE_RDCTL_PROTOCSUMOK
) == 0)
1358 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCP_UDP_BAD
;
1361 if (rxstat
& VGE_RDSTS_VTAG
) {
1363 * We use bswap16() here because:
1364 * On LE machines, tag is stored in BE as stream data.
1365 * On BE machines, tag is stored in BE as stream data
1366 * but it was already swapped by le32toh() above.
1368 VLAN_INPUT_TAG(ifp
, m
,
1369 bswap16(rxctl
& VGE_RDCTL_VLANID
), continue);
1374 * Handle BPF listeners.
1377 bpf_mtap(ifp
->if_bpf
, m
);
1380 (*ifp
->if_input
)(ifp
, m
);
1383 if (lim
== VGE_NRXDESC
)
1387 sc
->sc_rx_prodidx
= idx
;
1388 CSR_WRITE_2(sc
, VGE_RXDESC_RESIDUECNT
, lim
);
1392 vge_txeof(struct vge_softc
*sc
)
1395 struct vge_txsoft
*txs
;
1399 ifp
= &sc
->sc_ethercom
.ec_if
;
1401 for (idx
= sc
->sc_tx_considx
;
1402 sc
->sc_tx_free
< VGE_NTXDESC
;
1403 idx
= VGE_NEXT_TXDESC(idx
), sc
->sc_tx_free
++) {
1404 VGE_TXDESCSYNC(sc
, idx
,
1405 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1406 txstat
= le32toh(sc
->sc_txdescs
[idx
].td_sts
);
1407 VGE_TXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
);
1408 if (txstat
& VGE_TDSTS_OWN
) {
1412 txs
= &sc
->sc_txsoft
[idx
];
1413 m_freem(txs
->txs_mbuf
);
1414 txs
->txs_mbuf
= NULL
;
1415 bus_dmamap_sync(sc
->sc_dmat
, txs
->txs_dmamap
, 0,
1416 txs
->txs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1417 bus_dmamap_unload(sc
->sc_dmat
, txs
->txs_dmamap
);
1418 if (txstat
& (VGE_TDSTS_EXCESSCOLL
|VGE_TDSTS_COLL
))
1419 ifp
->if_collisions
++;
1420 if (txstat
& VGE_TDSTS_TXERR
)
1426 sc
->sc_tx_considx
= idx
;
1428 if (sc
->sc_tx_free
> 0) {
1429 ifp
->if_flags
&= ~IFF_OACTIVE
;
1433 * If not all descriptors have been released reaped yet,
1434 * reload the timer so that we will eventually get another
1435 * interrupt that will cause us to re-enter this routine.
1436 * This is done in case the transmitter has gone idle.
1438 if (sc
->sc_tx_free
< VGE_NTXDESC
)
1439 CSR_WRITE_1(sc
, VGE_CRS1
, VGE_CR1_TIMER0_ENABLE
);
1447 struct vge_softc
*sc
;
1449 struct mii_data
*mii
;
1453 ifp
= &sc
->sc_ethercom
.ec_if
;
1458 callout_schedule(&sc
->sc_timeout
, hz
);
1462 if ((mii
->mii_media_status
& IFM_ACTIVE
) == 0)
1465 if (mii
->mii_media_status
& IFM_ACTIVE
&&
1466 IFM_SUBTYPE(mii
->mii_media_active
) != IFM_NONE
) {
1468 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
1479 struct vge_softc
*sc
;
1486 if (sc
->sc_suspended
) {
1490 ifp
= &sc
->sc_ethercom
.ec_if
;
1492 if ((ifp
->if_flags
& IFF_UP
) == 0) {
1496 /* Disable interrupts */
1497 CSR_WRITE_1(sc
, VGE_CRC3
, VGE_CR3_INT_GMSK
);
1501 status
= CSR_READ_4(sc
, VGE_ISR
);
1502 /* If the card has gone away the read returns 0xffffffff. */
1503 if (status
== 0xFFFFFFFF)
1508 CSR_WRITE_4(sc
, VGE_ISR
, status
);
1511 if ((status
& VGE_INTRS
) == 0)
1514 if (status
& (VGE_ISR_RXOK
|VGE_ISR_RXOK_HIPRIO
))
1517 if (status
& (VGE_ISR_RXOFLOW
|VGE_ISR_RXNODESC
)) {
1519 CSR_WRITE_1(sc
, VGE_RXQCSRS
, VGE_RXQCSR_RUN
);
1520 CSR_WRITE_1(sc
, VGE_RXQCSRS
, VGE_RXQCSR_WAK
);
1523 if (status
& (VGE_ISR_TXOK0
|VGE_ISR_TIMER0
))
1526 if (status
& (VGE_ISR_TXDMA_STALL
|VGE_ISR_RXDMA_STALL
))
1529 if (status
& VGE_ISR_LINKSTS
)
1533 /* Re-enable interrupts */
1534 CSR_WRITE_1(sc
, VGE_CRS3
, VGE_CR3_INT_GMSK
);
1536 if (claim
&& !IFQ_IS_EMPTY(&ifp
->if_snd
))
1543 vge_encap(struct vge_softc
*sc
, struct mbuf
*m_head
, int idx
)
1545 struct vge_txsoft
*txs
;
1546 struct vge_txdesc
*txd
;
1547 struct vge_txfrag
*f
;
1550 int m_csumflags
, seg
, error
, flags
;
1553 uint32_t td_sts
, td_ctl
;
1555 KASSERT(sc
->sc_tx_free
> 0);
1557 txd
= &sc
->sc_txdescs
[idx
];
1560 /* If this descriptor is still owned by the chip, bail. */
1561 VGE_TXDESCSYNC(sc
, idx
,
1562 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1563 td_sts
= le32toh(txd
->td_sts
);
1564 VGE_TXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
);
1565 if (td_sts
& VGE_TDSTS_OWN
) {
1571 * Preserve m_pkthdr.csum_flags here since m_head might be
1572 * updated by m_defrag()
1574 m_csumflags
= m_head
->m_pkthdr
.csum_flags
;
1576 txs
= &sc
->sc_txsoft
[idx
];
1577 map
= txs
->txs_dmamap
;
1578 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, m_head
, BUS_DMA_NOWAIT
);
1580 /* If too many segments to map, coalesce */
1581 if (error
== EFBIG
||
1582 (m_head
->m_pkthdr
.len
< ETHER_PAD_LEN
&&
1583 map
->dm_nsegs
== VGE_TX_FRAGS
)) {
1584 m_new
= m_defrag(m_head
, M_DONTWAIT
);
1588 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
,
1589 m_new
, BUS_DMA_NOWAIT
);
1599 txs
->txs_mbuf
= m_head
;
1601 bus_dmamap_sync(sc
->sc_dmat
, map
, 0, map
->dm_mapsize
,
1602 BUS_DMASYNC_PREWRITE
);
1604 for (seg
= 0, f
= &txd
->td_frag
[0]; seg
< map
->dm_nsegs
; seg
++, f
++) {
1605 f
->tf_buflen
= htole16(VGE_BUFLEN(map
->dm_segs
[seg
].ds_len
));
1606 vge_set_txaddr(f
, map
->dm_segs
[seg
].ds_addr
);
1609 /* Argh. This chip does not autopad short frames */
1610 sz
= m_head
->m_pkthdr
.len
;
1611 if (sz
< ETHER_PAD_LEN
) {
1612 f
->tf_buflen
= htole16(VGE_BUFLEN(ETHER_PAD_LEN
- sz
));
1613 vge_set_txaddr(f
, VGE_CDPADADDR(sc
));
1617 VGE_TXFRAGSYNC(sc
, idx
, seg
, BUS_DMASYNC_PREWRITE
);
1620 * When telling the chip how many segments there are, we
1621 * must use nsegs + 1 instead of just nsegs. Darned if I
1627 if (m_csumflags
& M_CSUM_IPv4
)
1628 flags
|= VGE_TDCTL_IPCSUM
;
1629 if (m_csumflags
& M_CSUM_TCPv4
)
1630 flags
|= VGE_TDCTL_TCPCSUM
;
1631 if (m_csumflags
& M_CSUM_UDPv4
)
1632 flags
|= VGE_TDCTL_UDPCSUM
;
1634 td_ctl
= flags
| (seg
<< 28) | VGE_TD_LS_NORM
;
1636 if (sz
> ETHERMTU
+ ETHER_HDR_LEN
)
1637 td_ctl
|= VGE_TDCTL_JUMBO
;
1640 * Set up hardware VLAN tagging.
1642 mtag
= VLAN_OUTPUT_TAG(&sc
->sc_ethercom
, m_head
);
1645 * No need htons() here since vge(4) chip assumes
1646 * that tags are written in little endian and
1647 * we already use htole32() here.
1649 td_ctl
|= VLAN_TAG_VALUE(mtag
) | VGE_TDCTL_VTAG
;
1651 txd
->td_ctl
= htole32(td_ctl
);
1652 txd
->td_sts
= htole32(td_sts
);
1653 VGE_TXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1655 txd
->td_sts
= htole32(VGE_TDSTS_OWN
| td_sts
);
1656 VGE_TXDESCSYNC(sc
, idx
, BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1664 * Main transmit routine.
1668 vge_start(struct ifnet
*ifp
)
1670 struct vge_softc
*sc
;
1671 struct vge_txsoft
*txs
;
1672 struct mbuf
*m_head
;
1673 int idx
, pidx
, ofree
, error
;
1678 (ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
) {
1683 idx
= sc
->sc_tx_prodidx
;
1684 pidx
= VGE_PREV_TXDESC(idx
);
1685 ofree
= sc
->sc_tx_free
;
1688 * Loop through the send queue, setting up transmit descriptors
1689 * until we drain the queue, or use up all available transmit
1693 /* Grab a packet off the queue. */
1694 IFQ_POLL(&ifp
->if_snd
, m_head
);
1698 if (sc
->sc_tx_free
== 0) {
1700 * All slots used, stop for now.
1702 ifp
->if_flags
|= IFF_OACTIVE
;
1706 txs
= &sc
->sc_txsoft
[idx
];
1707 KASSERT(txs
->txs_mbuf
== NULL
);
1709 if ((error
= vge_encap(sc
, m_head
, idx
))) {
1710 if (error
== EFBIG
) {
1711 printf("%s: Tx packet consumes too many "
1712 "DMA segments, dropping...\n",
1713 device_xname(sc
->sc_dev
));
1714 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
1720 * Short on resources, just stop for now.
1722 if (error
== ENOBUFS
)
1723 ifp
->if_flags
|= IFF_OACTIVE
;
1727 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
1730 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1733 sc
->sc_txdescs
[pidx
].td_frag
[0].tf_buflen
|=
1734 htole16(VGE_TXDESC_Q
);
1735 VGE_TXFRAGSYNC(sc
, pidx
, 1,
1736 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1738 if (txs
->txs_mbuf
!= m_head
) {
1740 m_head
= txs
->txs_mbuf
;
1744 idx
= VGE_NEXT_TXDESC(idx
);
1747 * If there's a BPF listener, bounce a copy of this frame
1752 bpf_mtap(ifp
->if_bpf
, m_head
);
1756 if (sc
->sc_tx_free
< ofree
) {
1757 /* TX packet queued */
1759 sc
->sc_tx_prodidx
= idx
;
1761 /* Issue a transmit command. */
1762 CSR_WRITE_2(sc
, VGE_TXQCSRS
, VGE_TXQCSR_WAK0
);
1765 * Use the countdown timer for interrupt moderation.
1766 * 'TX done' interrupts are disabled. Instead, we reset the
1767 * countdown timer, which will begin counting until it hits
1768 * the value in the SSTIMER register, and then trigger an
1769 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1770 * the timer count is reloaded. Only when the transmitter
1771 * is idle will the timer hit 0 and an interrupt fire.
1773 CSR_WRITE_1(sc
, VGE_CRS1
, VGE_CR1_TIMER0_ENABLE
);
1776 * Set a timeout in case the chip goes out to lunch.
1783 vge_init(struct ifnet
*ifp
)
1785 struct vge_softc
*sc
;
1791 * Cancel pending I/O and free all RX/TX buffers.
1796 /* Initialize the RX descriptors and mbufs. */
1797 memset(sc
->sc_rxdescs
, 0, sizeof(sc
->sc_rxdescs
));
1798 sc
->sc_rx_consumed
= 0;
1799 for (i
= 0; i
< VGE_NRXDESC
; i
++) {
1800 if (vge_newbuf(sc
, i
, NULL
) == ENOBUFS
) {
1801 printf("%s: unable to allocate or map rx buffer\n",
1802 device_xname(sc
->sc_dev
));
1806 sc
->sc_rx_prodidx
= 0;
1807 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= NULL
;
1809 /* Initialize the TX descriptors and mbufs. */
1810 memset(sc
->sc_txdescs
, 0, sizeof(sc
->sc_txdescs
));
1811 bus_dmamap_sync(sc
->sc_dmat
, sc
->sc_cddmamap
,
1812 VGE_CDTXOFF(0), sizeof(sc
->sc_txdescs
),
1813 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1814 for (i
= 0; i
< VGE_NTXDESC
; i
++)
1815 sc
->sc_txsoft
[i
].txs_mbuf
= NULL
;
1817 sc
->sc_tx_prodidx
= 0;
1818 sc
->sc_tx_considx
= 0;
1819 sc
->sc_tx_free
= VGE_NTXDESC
;
1821 /* Set our station address */
1822 for (i
= 0; i
< ETHER_ADDR_LEN
; i
++)
1823 CSR_WRITE_1(sc
, VGE_PAR0
+ i
, sc
->sc_eaddr
[i
]);
1826 * Set receive FIFO threshold. Also allow transmission and
1827 * reception of VLAN tagged frames.
1829 CSR_CLRBIT_1(sc
, VGE_RXCFG
, VGE_RXCFG_FIFO_THR
|VGE_RXCFG_VTAGOPT
);
1830 CSR_SETBIT_1(sc
, VGE_RXCFG
, VGE_RXFIFOTHR_128BYTES
|VGE_VTAG_OPT2
);
1832 /* Set DMA burst length */
1833 CSR_CLRBIT_1(sc
, VGE_DMACFG0
, VGE_DMACFG0_BURSTLEN
);
1834 CSR_SETBIT_1(sc
, VGE_DMACFG0
, VGE_DMABURST_128
);
1836 CSR_SETBIT_1(sc
, VGE_TXCFG
, VGE_TXCFG_ARB_PRIO
|VGE_TXCFG_NONBLK
);
1838 /* Set collision backoff algorithm */
1839 CSR_CLRBIT_1(sc
, VGE_CHIPCFG1
, VGE_CHIPCFG1_CRANDOM
|
1840 VGE_CHIPCFG1_CAP
|VGE_CHIPCFG1_MBA
|VGE_CHIPCFG1_BAKOPT
);
1841 CSR_SETBIT_1(sc
, VGE_CHIPCFG1
, VGE_CHIPCFG1_OFSET
);
1843 /* Disable LPSEL field in priority resolution */
1844 CSR_SETBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_LPSEL_DIS
);
1847 * Load the addresses of the DMA queues into the chip.
1848 * Note that we only use one transmit queue.
1851 CSR_WRITE_4(sc
, VGE_TXDESC_ADDR_LO0
, VGE_ADDR_LO(VGE_CDTXADDR(sc
, 0)));
1852 CSR_WRITE_2(sc
, VGE_TXDESCNUM
, VGE_NTXDESC
- 1);
1854 CSR_WRITE_4(sc
, VGE_RXDESC_ADDR_LO
, VGE_ADDR_LO(VGE_CDRXADDR(sc
, 0)));
1855 CSR_WRITE_2(sc
, VGE_RXDESCNUM
, VGE_NRXDESC
- 1);
1856 CSR_WRITE_2(sc
, VGE_RXDESC_RESIDUECNT
, VGE_NRXDESC
);
1858 /* Enable and wake up the RX descriptor queue */
1859 CSR_WRITE_1(sc
, VGE_RXQCSRS
, VGE_RXQCSR_RUN
);
1860 CSR_WRITE_1(sc
, VGE_RXQCSRS
, VGE_RXQCSR_WAK
);
1862 /* Enable the TX descriptor queue */
1863 CSR_WRITE_2(sc
, VGE_TXQCSRS
, VGE_TXQCSR_RUN0
);
1865 /* Set up the receive filter -- allow large frames for VLANs. */
1866 CSR_WRITE_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_UCAST
|VGE_RXCTL_RX_GIANT
);
1868 /* If we want promiscuous mode, set the allframes bit. */
1869 if (ifp
->if_flags
& IFF_PROMISC
) {
1870 CSR_SETBIT_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_PROMISC
);
1873 /* Set capture broadcast bit to capture broadcast frames. */
1874 if (ifp
->if_flags
& IFF_BROADCAST
) {
1875 CSR_SETBIT_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_BCAST
);
1878 /* Set multicast bit to capture multicast frames. */
1879 if (ifp
->if_flags
& IFF_MULTICAST
) {
1880 CSR_SETBIT_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_MCAST
);
1883 /* Init the cam filter. */
1886 /* Init the multicast filter. */
1889 /* Enable flow control */
1891 CSR_WRITE_1(sc
, VGE_CRS2
, 0x8B);
1893 /* Enable jumbo frame reception (if desired) */
1895 /* Start the MAC. */
1896 CSR_WRITE_1(sc
, VGE_CRC0
, VGE_CR0_STOP
);
1897 CSR_WRITE_1(sc
, VGE_CRS1
, VGE_CR1_NOPOLL
);
1898 CSR_WRITE_1(sc
, VGE_CRS0
,
1899 VGE_CR0_TX_ENABLE
|VGE_CR0_RX_ENABLE
|VGE_CR0_START
);
1902 * Configure one-shot timer for microsecond
1903 * resulution and load it for 500 usecs.
1905 CSR_SETBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_TIMER0_RES
);
1906 CSR_WRITE_2(sc
, VGE_SSTIMER
, 400);
1909 * Configure interrupt moderation for receive. Enable
1910 * the holdoff counter and load it, and set the RX
1911 * suppression count to the number of descriptors we
1912 * want to allow before triggering an interrupt.
1913 * The holdoff timer is in units of 20 usecs.
1917 CSR_WRITE_1(sc
, VGE_INTCTL1
, VGE_INTCTL_TXINTSUP_DISABLE
);
1918 /* Select the interrupt holdoff timer page. */
1919 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
1920 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_INTHLDOFF
);
1921 CSR_WRITE_1(sc
, VGE_INTHOLDOFF
, 10); /* ~200 usecs */
1923 /* Enable use of the holdoff timer. */
1924 CSR_WRITE_1(sc
, VGE_CRS3
, VGE_CR3_INT_HOLDOFF
);
1925 CSR_WRITE_1(sc
, VGE_INTCTL1
, VGE_INTCTL_SC_RELOAD
);
1927 /* Select the RX suppression threshold page. */
1928 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
1929 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_RXSUPPTHR
);
1930 CSR_WRITE_1(sc
, VGE_RXSUPPTHR
, 64); /* interrupt after 64 packets */
1932 /* Restore the page select bits. */
1933 CSR_CLRBIT_1(sc
, VGE_CAMCTL
, VGE_CAMCTL_PAGESEL
);
1934 CSR_SETBIT_1(sc
, VGE_CAMCTL
, VGE_PAGESEL_MAR
);
1937 #ifdef DEVICE_POLLING
1939 * Disable interrupts if we are polling.
1941 if (ifp
->if_flags
& IFF_POLLING
) {
1942 CSR_WRITE_4(sc
, VGE_IMR
, 0);
1943 CSR_WRITE_1(sc
, VGE_CRC3
, VGE_CR3_INT_GMSK
);
1944 } else /* otherwise ... */
1945 #endif /* DEVICE_POLLING */
1948 * Enable interrupts.
1950 CSR_WRITE_4(sc
, VGE_IMR
, VGE_INTRS
);
1951 CSR_WRITE_4(sc
, VGE_ISR
, 0);
1952 CSR_WRITE_1(sc
, VGE_CRS3
, VGE_CR3_INT_GMSK
);
1955 if ((rc
= ether_mediachange(ifp
)) != 0)
1958 ifp
->if_flags
|= IFF_RUNNING
;
1959 ifp
->if_flags
&= ~IFF_OACTIVE
;
1961 sc
->sc_if_flags
= 0;
1964 callout_schedule(&sc
->sc_timeout
, hz
);
1971 vge_miibus_statchg(device_t self
)
1973 struct vge_softc
*sc
;
1974 struct mii_data
*mii
;
1975 struct ifmedia_entry
*ife
;
1977 sc
= device_private(self
);
1979 ife
= mii
->mii_media
.ifm_cur
;
1981 * If the user manually selects a media mode, we need to turn
1982 * on the forced MAC mode bit in the DIAGCTL register. If the
1983 * user happens to choose a full duplex mode, we also need to
1984 * set the 'force full duplex' bit. This applies only to
1985 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1986 * mode is disabled, and in 1000baseT mode, full duplex is
1987 * always implied, so we turn on the forced mode bit but leave
1988 * the FDX bit cleared.
1991 switch (IFM_SUBTYPE(ife
->ifm_media
)) {
1993 CSR_CLRBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_MACFORCE
);
1994 CSR_CLRBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_FDXFORCE
);
1997 CSR_SETBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_MACFORCE
);
1998 CSR_CLRBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_FDXFORCE
);
2002 CSR_SETBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_MACFORCE
);
2003 if ((ife
->ifm_media
& IFM_GMASK
) == IFM_FDX
) {
2004 CSR_SETBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_FDXFORCE
);
2006 CSR_CLRBIT_1(sc
, VGE_DIAGCTL
, VGE_DIAGCTL_FDXFORCE
);
2010 printf("%s: unknown media type: %x\n",
2011 device_xname(sc
->sc_dev
),
2012 IFM_SUBTYPE(ife
->ifm_media
));
2018 vge_ifflags_cb(struct ethercom
*ec
)
2020 struct ifnet
*ifp
= &ec
->ec_if
;
2021 struct vge_softc
*sc
= ifp
->if_softc
;
2022 int change
= ifp
->if_flags
^ sc
->sc_if_flags
;
2024 if ((change
& ~(IFF_CANTCHANGE
|IFF_DEBUG
)) != 0)
2026 else if ((change
& IFF_PROMISC
) == 0)
2029 if ((ifp
->if_flags
& IFF_PROMISC
) == 0)
2030 CSR_CLRBIT_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_PROMISC
);
2032 CSR_SETBIT_1(sc
, VGE_RXCTL
, VGE_RXCTL_RX_PROMISC
);
2038 vge_ioctl(struct ifnet
*ifp
, u_long command
, void *data
)
2040 struct vge_softc
*sc
;
2045 ifr
= (struct ifreq
*)data
;
2050 if ((error
= ether_ioctl(ifp
, command
, data
)) == ENETRESET
) {
2052 if (command
!= SIOCADDMULTI
&& command
!= SIOCDELMULTI
)
2054 else if (ifp
->if_flags
& IFF_RUNNING
) {
2056 * Multicast list has changed; set the hardware filter
2062 sc
->sc_if_flags
= ifp
->if_flags
;
2069 vge_watchdog(struct ifnet
*ifp
)
2071 struct vge_softc
*sc
;
2076 printf("%s: watchdog timeout\n", device_xname(sc
->sc_dev
));
2088 * Stop the adapter and free any mbufs allocated to the
2092 vge_stop(struct ifnet
*ifp
, int disable
)
2094 struct vge_softc
*sc
= ifp
->if_softc
;
2095 struct vge_txsoft
*txs
;
2096 struct vge_rxsoft
*rxs
;
2102 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
2103 #ifdef DEVICE_POLLING
2104 ether_poll_deregister(ifp
);
2105 #endif /* DEVICE_POLLING */
2107 CSR_WRITE_1(sc
, VGE_CRC3
, VGE_CR3_INT_GMSK
);
2108 CSR_WRITE_1(sc
, VGE_CRS0
, VGE_CR0_STOP
);
2109 CSR_WRITE_4(sc
, VGE_ISR
, 0xFFFFFFFF);
2110 CSR_WRITE_2(sc
, VGE_TXQCSRC
, 0xFFFF);
2111 CSR_WRITE_1(sc
, VGE_RXQCSRC
, 0xFF);
2112 CSR_WRITE_4(sc
, VGE_RXDESC_ADDR_LO
, 0);
2114 if (sc
->sc_rx_mhead
!= NULL
) {
2115 m_freem(sc
->sc_rx_mhead
);
2116 sc
->sc_rx_mhead
= sc
->sc_rx_mtail
= NULL
;
2119 /* Free the TX list buffers. */
2121 for (i
= 0; i
< VGE_NTXDESC
; i
++) {
2122 txs
= &sc
->sc_txsoft
[i
];
2123 if (txs
->txs_mbuf
!= NULL
) {
2124 bus_dmamap_unload(sc
->sc_dmat
, txs
->txs_dmamap
);
2125 m_freem(txs
->txs_mbuf
);
2126 txs
->txs_mbuf
= NULL
;
2130 /* Free the RX list buffers. */
2132 for (i
= 0; i
< VGE_NRXDESC
; i
++) {
2133 rxs
= &sc
->sc_rxsoft
[i
];
2134 if (rxs
->rxs_mbuf
!= NULL
) {
2135 bus_dmamap_unload(sc
->sc_dmat
, rxs
->rxs_dmamap
);
2136 m_freem(rxs
->rxs_mbuf
);
2137 rxs
->rxs_mbuf
= NULL
;
2144 #if VGE_POWER_MANAGEMENT
2146 * Device suspend routine. Stop the interface and save some PCI
2147 * settings in case the BIOS doesn't restore them properly on
2151 vge_suspend(device_t dev
)
2153 struct vge_softc
*sc
;
2156 sc
= device_get_softc(dev
);
2160 for (i
= 0; i
< 5; i
++)
2161 sc
->sc_saved_maps
[i
] =
2162 pci_read_config(dev
, PCIR_MAPS
+ i
* 4, 4);
2163 sc
->sc_saved_biosaddr
= pci_read_config(dev
, PCIR_BIOS
, 4);
2164 sc
->sc_saved_intline
= pci_read_config(dev
, PCIR_INTLINE
, 1);
2165 sc
->sc_saved_cachelnsz
= pci_read_config(dev
, PCIR_CACHELNSZ
, 1);
2166 sc
->sc_saved_lattimer
= pci_read_config(dev
, PCIR_LATTIMER
, 1);
2174 * Device resume routine. Restore some PCI settings in case the BIOS
2175 * doesn't, re-enable busmastering, and restart the interface if
2179 vge_resume(device_t dev
)
2181 struct vge_softc
*sc
;
2185 sc
= device_private(dev
);
2186 ifp
= &sc
->sc_ethercom
.ec_if
;
2188 /* better way to do this? */
2189 for (i
= 0; i
< 5; i
++)
2190 pci_write_config(dev
, PCIR_MAPS
+ i
* 4,
2191 sc
->sc_saved_maps
[i
], 4);
2192 pci_write_config(dev
, PCIR_BIOS
, sc
->sc_saved_biosaddr
, 4);
2193 pci_write_config(dev
, PCIR_INTLINE
, sc
->sc_saved_intline
, 1);
2194 pci_write_config(dev
, PCIR_CACHELNSZ
, sc
->sc_saved_cachelnsz
, 1);
2195 pci_write_config(dev
, PCIR_LATTIMER
, sc
->sc_saved_lattimer
, 1);
2197 /* reenable busmastering */
2198 pci_enable_busmaster(dev
);
2199 pci_enable_io(dev
, SYS_RES_MEMORY
);
2201 /* reinitialize interface if necessary */
2202 if (ifp
->if_flags
& IFF_UP
)
2212 * Stop all chip I/O so that the kernel's probe routines don't
2213 * get confused by errant DMAs when rebooting.
2216 vge_shutdown(device_t self
, int howto
)
2218 struct vge_softc
*sc
;
2220 sc
= device_private(self
);
2221 vge_stop(&sc
->sc_ethercom
.ec_if
, 1);