Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / raidframe / rf_dagdegrd.c
blobb01b8c571ab6fc1eecad0d4a96deafac88474777
1 /* $NetBSD: rf_dagdegrd.c,v 1.26 2006/10/12 01:31:50 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
30 * rf_dagdegrd.c
32 * code for creating degraded read DAGs
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.26 2006/10/12 01:31:50 christos Exp $");
38 #include <dev/raidframe/raidframevar.h>
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegrd.h"
48 #include "rf_map.h"
51 /******************************************************************************
53 * General comments on DAG creation:
55 * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 * is reached, the execution engine will halt forward execution and work
58 * backward through the graph, executing the undo functions. Assuming that
59 * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 * does not make changes to permanent state, the graph will fail atomically.
61 * If an error occurs after the Cmt node executes, the engine will roll-forward
62 * through the graph, blindly executing nodes until it reaches the end.
63 * If a graph reaches the end, it is assumed to have completed successfully.
65 * A graph has only 1 Cmt node.
70 /******************************************************************************
72 * The following wrappers map the standard DAG creation interface to the
73 * DAG creation routines. Additionally, these wrappers enable experimentation
74 * with new DAG structures by providing an extra level of indirection, allowing
75 * the DAG creation routines to be replaced at this single point.
78 void
79 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
80 RF_AccessStripeMap_t *asmap,
81 RF_DagHeader_t *dag_h,
82 void *bp,
83 RF_RaidAccessFlags_t flags,
84 RF_AllocListElem_t *allocList)
86 rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87 &rf_xorRecoveryFuncs);
91 /******************************************************************************
93 * DAG creation code begins here
97 /******************************************************************************
98 * Create a degraded read DAG for RAID level 1
100 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
102 * The "Rd" node reads data from the surviving disk in the mirror pair
103 * Rpd - read of primary copy
104 * Rsd - read of secondary copy
106 * Parameters: raidPtr - description of the physical array
107 * asmap - logical & physical addresses for this access
108 * bp - buffer ptr (for holding write data)
109 * flags - general flags (e.g. disk locking)
110 * allocList - list of memory allocated in DAG creation
111 *****************************************************************************/
113 void
114 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
115 RF_AccessStripeMap_t *asmap,
116 RF_DagHeader_t *dag_h,
117 void *bp,
118 RF_RaidAccessFlags_t flags,
119 RF_AllocListElem_t *allocList)
121 RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
122 RF_StripeNum_t parityStripeID;
123 RF_ReconUnitNum_t which_ru;
124 RF_PhysDiskAddr_t *pda;
125 int useMirror;
127 useMirror = 0;
128 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
129 asmap->raidAddress, &which_ru);
130 #if RF_DEBUG_DAG
131 if (rf_dagDebug) {
132 printf("[Creating RAID level 1 degraded read DAG]\n");
134 #endif
135 dag_h->creator = "RaidOneDegradedReadDAG";
136 /* alloc the Wnd nodes and the Wmir node */
137 if (asmap->numDataFailed == 0)
138 useMirror = RF_FALSE;
139 else
140 useMirror = RF_TRUE;
142 /* total number of nodes = 1 + (block + commit + terminator) */
144 rdNode = rf_AllocDAGNode();
145 rdNode->list_next = dag_h->nodes;
146 dag_h->nodes = rdNode;
148 blockNode = rf_AllocDAGNode();
149 blockNode->list_next = dag_h->nodes;
150 dag_h->nodes = blockNode;
152 commitNode = rf_AllocDAGNode();
153 commitNode->list_next = dag_h->nodes;
154 dag_h->nodes = commitNode;
156 termNode = rf_AllocDAGNode();
157 termNode->list_next = dag_h->nodes;
158 dag_h->nodes = termNode;
160 /* this dag can not commit until the commit node is reached. errors
161 * prior to the commit point imply the dag has failed and must be
162 * retried */
163 dag_h->numCommitNodes = 1;
164 dag_h->numCommits = 0;
165 dag_h->numSuccedents = 1;
167 /* initialize the block, commit, and terminator nodes */
168 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
169 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
170 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
171 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
172 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
173 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
175 pda = asmap->physInfo;
176 RF_ASSERT(pda != NULL);
177 /* parityInfo must describe entire parity unit */
178 RF_ASSERT(asmap->parityInfo->next == NULL);
180 /* initialize the data node */
181 if (!useMirror) {
182 /* read primary copy of data */
183 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
184 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
185 rdNode->params[0].p = pda;
186 rdNode->params[1].p = pda->bufPtr;
187 rdNode->params[2].v = parityStripeID;
188 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
189 which_ru);
190 } else {
191 /* read secondary copy of data */
192 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
193 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
194 rdNode->params[0].p = asmap->parityInfo;
195 rdNode->params[1].p = pda->bufPtr;
196 rdNode->params[2].v = parityStripeID;
197 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
198 which_ru);
201 /* connect header to block node */
202 RF_ASSERT(dag_h->numSuccedents == 1);
203 RF_ASSERT(blockNode->numAntecedents == 0);
204 dag_h->succedents[0] = blockNode;
206 /* connect block node to rdnode */
207 RF_ASSERT(blockNode->numSuccedents == 1);
208 RF_ASSERT(rdNode->numAntecedents == 1);
209 blockNode->succedents[0] = rdNode;
210 rdNode->antecedents[0] = blockNode;
211 rdNode->antType[0] = rf_control;
213 /* connect rdnode to commit node */
214 RF_ASSERT(rdNode->numSuccedents == 1);
215 RF_ASSERT(commitNode->numAntecedents == 1);
216 rdNode->succedents[0] = commitNode;
217 commitNode->antecedents[0] = rdNode;
218 commitNode->antType[0] = rf_control;
220 /* connect commit node to terminator */
221 RF_ASSERT(commitNode->numSuccedents == 1);
222 RF_ASSERT(termNode->numAntecedents == 1);
223 RF_ASSERT(termNode->numSuccedents == 0);
224 commitNode->succedents[0] = termNode;
225 termNode->antecedents[0] = commitNode;
226 termNode->antType[0] = rf_control;
231 /******************************************************************************
233 * creates a DAG to perform a degraded-mode read of data within one stripe.
234 * This DAG is as follows:
236 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
237 * -> Rrd ->
238 * -> Rp -->
240 * Each R node is a successor of the L node
241 * One successor arc from each R node goes to C, and the other to X
242 * There is one Rud for each chunk of surviving user data requested by the
243 * user, and one Rrd for each chunk of surviving user data _not_ being read by
244 * the user
245 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
246 * X = XOR, C = Commit, T = terminate
248 * The block node guarantees a single source node.
250 * Note: The target buffer for the XOR node is set to the actual user buffer
251 * where the failed data is supposed to end up. This buffer is zero'd by the
252 * code here. Thus, if you create a degraded read dag, use it, and then
253 * re-use, you have to be sure to zero the target buffer prior to the re-use.
255 * The recfunc argument at the end specifies the name and function used for
256 * the redundancy
257 * recovery function.
259 *****************************************************************************/
261 void
262 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
263 RF_DagHeader_t *dag_h, void *bp,
264 RF_RaidAccessFlags_t flags,
265 RF_AllocListElem_t *allocList,
266 const RF_RedFuncs_t *recFunc)
268 RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
269 RF_DagNode_t *commitNode, *rpNode, *termNode;
270 RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
271 int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
272 int j, paramNum;
273 RF_SectorCount_t sectorsPerSU;
274 RF_ReconUnitNum_t which_ru;
275 char overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
276 RF_AccessStripeMapHeader_t *new_asm_h[2];
277 RF_PhysDiskAddr_t *pda, *parityPDA;
278 RF_StripeNum_t parityStripeID;
279 RF_PhysDiskAddr_t *failedPDA;
280 RF_RaidLayout_t *layoutPtr;
281 char *rpBuf;
283 layoutPtr = &(raidPtr->Layout);
284 /* failedPDA points to the pda within the asm that targets the failed
285 * disk */
286 failedPDA = asmap->failedPDAs[0];
287 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
288 asmap->raidAddress, &which_ru);
289 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
291 #if RF_DEBUG_DAG
292 if (rf_dagDebug) {
293 printf("[Creating degraded read DAG]\n");
295 #endif
296 RF_ASSERT(asmap->numDataFailed == 1);
297 dag_h->creator = "DegradedReadDAG";
300 * generate two ASMs identifying the surviving data we need
301 * in order to recover the lost data
304 /* overlappingPDAs array must be zero'd */
305 memset(overlappingPDAs, 0, RF_MAXCOL);
306 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
307 &rpBuf, overlappingPDAs, allocList);
310 * create all the nodes at once
312 * -1 because no access is generated for the failed pda
314 nRudNodes = asmap->numStripeUnitsAccessed - 1;
315 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
316 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
317 nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
318 * Rrd */
320 blockNode = rf_AllocDAGNode();
321 blockNode->list_next = dag_h->nodes;
322 dag_h->nodes = blockNode;
324 commitNode = rf_AllocDAGNode();
325 commitNode->list_next = dag_h->nodes;
326 dag_h->nodes = commitNode;
328 xorNode = rf_AllocDAGNode();
329 xorNode->list_next = dag_h->nodes;
330 dag_h->nodes = xorNode;
332 rpNode = rf_AllocDAGNode();
333 rpNode->list_next = dag_h->nodes;
334 dag_h->nodes = rpNode;
336 termNode = rf_AllocDAGNode();
337 termNode->list_next = dag_h->nodes;
338 dag_h->nodes = termNode;
340 for (i = 0; i < nRudNodes; i++) {
341 tmpNode = rf_AllocDAGNode();
342 tmpNode->list_next = dag_h->nodes;
343 dag_h->nodes = tmpNode;
345 rudNodes = dag_h->nodes;
347 for (i = 0; i < nRrdNodes; i++) {
348 tmpNode = rf_AllocDAGNode();
349 tmpNode->list_next = dag_h->nodes;
350 dag_h->nodes = tmpNode;
352 rrdNodes = dag_h->nodes;
354 /* initialize nodes */
355 dag_h->numCommitNodes = 1;
356 dag_h->numCommits = 0;
357 /* this dag can not commit until the commit node is reached errors
358 * prior to the commit point imply the dag has failed */
359 dag_h->numSuccedents = 1;
361 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
362 NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
363 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
364 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
365 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
366 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
367 rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
368 NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
369 recFunc->SimpleName, allocList);
371 /* fill in the Rud nodes */
372 tmprudNode = rudNodes;
373 for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
374 if (pda == failedPDA) {
375 i--;
376 continue;
378 rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
379 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
380 "Rud", allocList);
381 RF_ASSERT(pda);
382 tmprudNode->params[0].p = pda;
383 tmprudNode->params[1].p = pda->bufPtr;
384 tmprudNode->params[2].v = parityStripeID;
385 tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
386 tmprudNode = tmprudNode->list_next;
389 /* fill in the Rrd nodes */
390 i = 0;
391 tmprrdNode = rrdNodes;
392 if (new_asm_h[0]) {
393 for (pda = new_asm_h[0]->stripeMap->physInfo;
394 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
395 i++, pda = pda->next) {
396 rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
397 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
398 dag_h, "Rrd", allocList);
399 RF_ASSERT(pda);
400 tmprrdNode->params[0].p = pda;
401 tmprrdNode->params[1].p = pda->bufPtr;
402 tmprrdNode->params[2].v = parityStripeID;
403 tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
404 tmprrdNode = tmprrdNode->list_next;
407 if (new_asm_h[1]) {
408 /* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
409 we need to just continue using tmprrdNode for the next 'j' elements. */
410 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
411 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
412 j++, pda = pda->next) {
413 rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
414 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
415 dag_h, "Rrd", allocList);
416 RF_ASSERT(pda);
417 tmprrdNode->params[0].p = pda;
418 tmprrdNode->params[1].p = pda->bufPtr;
419 tmprrdNode->params[2].v = parityStripeID;
420 tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
421 tmprrdNode = tmprrdNode->list_next;
424 /* make a PDA for the parity unit */
425 parityPDA = rf_AllocPhysDiskAddr();
426 parityPDA->next = dag_h->pda_cleanup_list;
427 dag_h->pda_cleanup_list = parityPDA;
428 parityPDA->col = asmap->parityInfo->col;
429 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
430 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
431 parityPDA->numSector = failedPDA->numSector;
433 /* initialize the Rp node */
434 rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
435 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
436 rpNode->params[0].p = parityPDA;
437 rpNode->params[1].p = rpBuf;
438 rpNode->params[2].v = parityStripeID;
439 rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
442 * the last and nastiest step is to assign all
443 * the parameters of the Xor node
445 paramNum = 0;
446 tmprrdNode = rrdNodes;
447 for (i = 0; i < nRrdNodes; i++) {
448 /* all the Rrd nodes need to be xored together */
449 xorNode->params[paramNum++] = tmprrdNode->params[0];
450 xorNode->params[paramNum++] = tmprrdNode->params[1];
451 tmprrdNode = tmprrdNode->list_next;
453 tmprudNode = rudNodes;
454 for (i = 0; i < nRudNodes; i++) {
455 /* any Rud nodes that overlap the failed access need to be
456 * xored in */
457 if (overlappingPDAs[i]) {
458 pda = rf_AllocPhysDiskAddr();
459 memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
460 /* add it into the pda_cleanup_list *after* the copy, TYVM */
461 pda->next = dag_h->pda_cleanup_list;
462 dag_h->pda_cleanup_list = pda;
463 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
464 xorNode->params[paramNum++].p = pda;
465 xorNode->params[paramNum++].p = pda->bufPtr;
467 tmprudNode = tmprudNode->list_next;
470 /* install parity pda as last set of params to be xor'd */
471 xorNode->params[paramNum++].p = parityPDA;
472 xorNode->params[paramNum++].p = rpBuf;
475 * the last 2 params to the recovery xor node are
476 * the failed PDA and the raidPtr
478 xorNode->params[paramNum++].p = failedPDA;
479 xorNode->params[paramNum++].p = raidPtr;
480 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
483 * The xor node uses results[0] as the target buffer.
484 * Set pointer and zero the buffer. In the kernel, this
485 * may be a user buffer in which case we have to remap it.
487 xorNode->results[0] = failedPDA->bufPtr;
488 memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
489 failedPDA->numSector));
491 /* connect nodes to form graph */
492 /* connect the header to the block node */
493 RF_ASSERT(dag_h->numSuccedents == 1);
494 RF_ASSERT(blockNode->numAntecedents == 0);
495 dag_h->succedents[0] = blockNode;
497 /* connect the block node to the read nodes */
498 RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
499 RF_ASSERT(rpNode->numAntecedents == 1);
500 blockNode->succedents[0] = rpNode;
501 rpNode->antecedents[0] = blockNode;
502 rpNode->antType[0] = rf_control;
503 tmprrdNode = rrdNodes;
504 for (i = 0; i < nRrdNodes; i++) {
505 RF_ASSERT(tmprrdNode->numSuccedents == 1);
506 blockNode->succedents[1 + i] = tmprrdNode;
507 tmprrdNode->antecedents[0] = blockNode;
508 tmprrdNode->antType[0] = rf_control;
509 tmprrdNode = tmprrdNode->list_next;
511 tmprudNode = rudNodes;
512 for (i = 0; i < nRudNodes; i++) {
513 RF_ASSERT(tmprudNode->numSuccedents == 1);
514 blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
515 tmprudNode->antecedents[0] = blockNode;
516 tmprudNode->antType[0] = rf_control;
517 tmprudNode = tmprudNode->list_next;
520 /* connect the read nodes to the xor node */
521 RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
522 RF_ASSERT(rpNode->numSuccedents == 1);
523 rpNode->succedents[0] = xorNode;
524 xorNode->antecedents[0] = rpNode;
525 xorNode->antType[0] = rf_trueData;
526 tmprrdNode = rrdNodes;
527 for (i = 0; i < nRrdNodes; i++) {
528 RF_ASSERT(tmprrdNode->numSuccedents == 1);
529 tmprrdNode->succedents[0] = xorNode;
530 xorNode->antecedents[1 + i] = tmprrdNode;
531 xorNode->antType[1 + i] = rf_trueData;
532 tmprrdNode = tmprrdNode->list_next;
534 tmprudNode = rudNodes;
535 for (i = 0; i < nRudNodes; i++) {
536 RF_ASSERT(tmprudNode->numSuccedents == 1);
537 tmprudNode->succedents[0] = xorNode;
538 xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
539 xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
540 tmprudNode = tmprudNode->list_next;
543 /* connect the xor node to the commit node */
544 RF_ASSERT(xorNode->numSuccedents == 1);
545 RF_ASSERT(commitNode->numAntecedents == 1);
546 xorNode->succedents[0] = commitNode;
547 commitNode->antecedents[0] = xorNode;
548 commitNode->antType[0] = rf_control;
550 /* connect the termNode to the commit node */
551 RF_ASSERT(commitNode->numSuccedents == 1);
552 RF_ASSERT(termNode->numAntecedents == 1);
553 RF_ASSERT(termNode->numSuccedents == 0);
554 commitNode->succedents[0] = termNode;
555 termNode->antType[0] = rf_control;
556 termNode->antecedents[0] = commitNode;
559 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
560 /******************************************************************************
561 * Create a degraded read DAG for Chained Declustering
563 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
565 * The "Rd" node reads data from the surviving disk in the mirror pair
566 * Rpd - read of primary copy
567 * Rsd - read of secondary copy
569 * Parameters: raidPtr - description of the physical array
570 * asmap - logical & physical addresses for this access
571 * bp - buffer ptr (for holding write data)
572 * flags - general flags (e.g. disk locking)
573 * allocList - list of memory allocated in DAG creation
574 *****************************************************************************/
576 void
577 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
578 RF_DagHeader_t *dag_h, void *bp,
579 RF_RaidAccessFlags_t flags,
580 RF_AllocListElem_t *allocList)
582 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
583 RF_StripeNum_t parityStripeID;
584 int useMirror, i, shiftable;
585 RF_ReconUnitNum_t which_ru;
586 RF_PhysDiskAddr_t *pda;
588 if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
589 shiftable = RF_TRUE;
590 } else {
591 shiftable = RF_FALSE;
593 useMirror = 0;
594 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
595 asmap->raidAddress, &which_ru);
597 #if RF_DEBUG_DAG
598 if (rf_dagDebug) {
599 printf("[Creating RAID C degraded read DAG]\n");
601 #endif
602 dag_h->creator = "RaidCDegradedReadDAG";
603 /* alloc the Wnd nodes and the Wmir node */
604 if (asmap->numDataFailed == 0)
605 useMirror = RF_FALSE;
606 else
607 useMirror = RF_TRUE;
609 /* total number of nodes = 1 + (block + commit + terminator) */
610 RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
611 i = 0;
612 rdNode = &nodes[i];
613 i++;
614 blockNode = &nodes[i];
615 i++;
616 commitNode = &nodes[i];
617 i++;
618 termNode = &nodes[i];
619 i++;
622 * This dag can not commit until the commit node is reached.
623 * Errors prior to the commit point imply the dag has failed
624 * and must be retried.
626 dag_h->numCommitNodes = 1;
627 dag_h->numCommits = 0;
628 dag_h->numSuccedents = 1;
630 /* initialize the block, commit, and terminator nodes */
631 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
632 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
633 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
634 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
635 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
636 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
638 pda = asmap->physInfo;
639 RF_ASSERT(pda != NULL);
640 /* parityInfo must describe entire parity unit */
641 RF_ASSERT(asmap->parityInfo->next == NULL);
643 /* initialize the data node */
644 if (!useMirror) {
645 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
646 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
647 if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
648 /* shift this read to the next disk in line */
649 rdNode->params[0].p = asmap->parityInfo;
650 rdNode->params[1].p = pda->bufPtr;
651 rdNode->params[2].v = parityStripeID;
652 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
653 } else {
654 /* read primary copy */
655 rdNode->params[0].p = pda;
656 rdNode->params[1].p = pda->bufPtr;
657 rdNode->params[2].v = parityStripeID;
658 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
660 } else {
661 /* read secondary copy of data */
662 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
663 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
664 rdNode->params[0].p = asmap->parityInfo;
665 rdNode->params[1].p = pda->bufPtr;
666 rdNode->params[2].v = parityStripeID;
667 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
670 /* connect header to block node */
671 RF_ASSERT(dag_h->numSuccedents == 1);
672 RF_ASSERT(blockNode->numAntecedents == 0);
673 dag_h->succedents[0] = blockNode;
675 /* connect block node to rdnode */
676 RF_ASSERT(blockNode->numSuccedents == 1);
677 RF_ASSERT(rdNode->numAntecedents == 1);
678 blockNode->succedents[0] = rdNode;
679 rdNode->antecedents[0] = blockNode;
680 rdNode->antType[0] = rf_control;
682 /* connect rdnode to commit node */
683 RF_ASSERT(rdNode->numSuccedents == 1);
684 RF_ASSERT(commitNode->numAntecedents == 1);
685 rdNode->succedents[0] = commitNode;
686 commitNode->antecedents[0] = rdNode;
687 commitNode->antType[0] = rf_control;
689 /* connect commit node to terminator */
690 RF_ASSERT(commitNode->numSuccedents == 1);
691 RF_ASSERT(termNode->numAntecedents == 1);
692 RF_ASSERT(termNode->numSuccedents == 0);
693 commitNode->succedents[0] = termNode;
694 termNode->antecedents[0] = commitNode;
695 termNode->antType[0] = rf_control;
697 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
699 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
701 * XXX move this elsewhere?
703 void
704 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
705 RF_PhysDiskAddr_t **pdap, int *nNodep,
706 RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
707 RF_AllocListElem_t *allocList)
709 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
710 int PDAPerDisk, i;
711 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
712 int numDataCol = layoutPtr->numDataCol;
713 int state;
714 RF_SectorNum_t suoff, suend;
715 unsigned firstDataCol, napdas, count;
716 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
717 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
718 RF_PhysDiskAddr_t *pda_p;
719 RF_PhysDiskAddr_t *phys_p;
720 RF_RaidAddr_t sosAddr;
722 /* determine how many pda's we will have to generate per unaccess
723 * stripe. If there is only one failed data unit, it is one; if two,
724 * possibly two, depending wether they overlap. */
726 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
727 fone_end = fone_start + fone->numSector;
729 #define CONS_PDA(if,start,num) \
730 pda_p->col = asmap->if->col; \
731 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
732 pda_p->numSector = num; \
733 pda_p->next = NULL; \
734 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
736 if (asmap->numDataFailed == 1) {
737 PDAPerDisk = 1;
738 state = 1;
739 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
740 pda_p = *pqpdap;
741 /* build p */
742 CONS_PDA(parityInfo, fone_start, fone->numSector);
743 pda_p->type = RF_PDA_TYPE_PARITY;
744 pda_p++;
745 /* build q */
746 CONS_PDA(qInfo, fone_start, fone->numSector);
747 pda_p->type = RF_PDA_TYPE_Q;
748 } else {
749 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
750 ftwo_end = ftwo_start + ftwo->numSector;
751 if (fone->numSector + ftwo->numSector > secPerSU) {
752 PDAPerDisk = 1;
753 state = 2;
754 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
755 pda_p = *pqpdap;
756 CONS_PDA(parityInfo, 0, secPerSU);
757 pda_p->type = RF_PDA_TYPE_PARITY;
758 pda_p++;
759 CONS_PDA(qInfo, 0, secPerSU);
760 pda_p->type = RF_PDA_TYPE_Q;
761 } else {
762 PDAPerDisk = 2;
763 state = 3;
764 /* four of them, fone, then ftwo */
765 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
766 pda_p = *pqpdap;
767 CONS_PDA(parityInfo, fone_start, fone->numSector);
768 pda_p->type = RF_PDA_TYPE_PARITY;
769 pda_p++;
770 CONS_PDA(qInfo, fone_start, fone->numSector);
771 pda_p->type = RF_PDA_TYPE_Q;
772 pda_p++;
773 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
774 pda_p->type = RF_PDA_TYPE_PARITY;
775 pda_p++;
776 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
777 pda_p->type = RF_PDA_TYPE_Q;
780 /* figure out number of nonaccessed pda */
781 napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
782 *nPQNodep = PDAPerDisk;
784 /* sweep over the over accessed pda's, figuring out the number of
785 * additional pda's to generate. Of course, skip the failed ones */
787 count = 0;
788 for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
789 if ((pda_p == fone) || (pda_p == ftwo))
790 continue;
791 suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
792 suend = suoff + pda_p->numSector;
793 switch (state) {
794 case 1: /* one failed PDA to overlap */
795 /* if a PDA doesn't contain the failed unit, it can
796 * only miss the start or end, not both */
797 if ((suoff > fone_start) || (suend < fone_end))
798 count++;
799 break;
800 case 2: /* whole stripe */
801 if (suoff) /* leak at begining */
802 count++;
803 if (suend < numDataCol) /* leak at end */
804 count++;
805 break;
806 case 3: /* two disjoint units */
807 if ((suoff > fone_start) || (suend < fone_end))
808 count++;
809 if ((suoff > ftwo_start) || (suend < ftwo_end))
810 count++;
811 break;
812 default:
813 RF_PANIC();
817 napdas += count;
818 *nNodep = napdas;
819 if (napdas == 0)
820 return; /* short circuit */
822 /* allocate up our list of pda's */
824 RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
825 (RF_PhysDiskAddr_t *), allocList);
826 *pdap = pda_p;
828 /* linkem together */
829 for (i = 0; i < (napdas - 1); i++)
830 pda_p[i].next = pda_p + (i + 1);
832 /* march through the one's up to the first accessed disk */
833 firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
834 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
835 for (i = 0; i < firstDataCol; i++) {
836 if ((pda_p - (*pdap)) == napdas)
837 continue;
838 pda_p->type = RF_PDA_TYPE_DATA;
839 pda_p->raidAddress = sosAddr + (i * secPerSU);
840 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
841 /* skip over dead disks */
842 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
843 continue;
844 switch (state) {
845 case 1: /* fone */
846 pda_p->numSector = fone->numSector;
847 pda_p->raidAddress += fone_start;
848 pda_p->startSector += fone_start;
849 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
850 break;
851 case 2: /* full stripe */
852 pda_p->numSector = secPerSU;
853 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
854 break;
855 case 3: /* two slabs */
856 pda_p->numSector = fone->numSector;
857 pda_p->raidAddress += fone_start;
858 pda_p->startSector += fone_start;
859 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
860 pda_p++;
861 pda_p->type = RF_PDA_TYPE_DATA;
862 pda_p->raidAddress = sosAddr + (i * secPerSU);
863 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
864 pda_p->numSector = ftwo->numSector;
865 pda_p->raidAddress += ftwo_start;
866 pda_p->startSector += ftwo_start;
867 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
868 break;
869 default:
870 RF_PANIC();
872 pda_p++;
875 /* march through the touched stripe units */
876 for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
877 if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
878 continue;
879 suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
880 suend = suoff + phys_p->numSector;
881 switch (state) {
882 case 1: /* single buffer */
883 if (suoff > fone_start) {
884 RF_ASSERT(suend >= fone_end);
885 /* The data read starts after the mapped
886 * access, snip off the begining */
887 pda_p->numSector = suoff - fone_start;
888 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
890 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891 pda_p++;
893 if (suend < fone_end) {
894 RF_ASSERT(suoff <= fone_start);
895 /* The data read stops before the end of the
896 * failed access, extend */
897 pda_p->numSector = fone_end - suend;
898 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
899 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
900 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 pda_p++;
903 break;
904 case 2: /* whole stripe unit */
905 RF_ASSERT((suoff == 0) || (suend == secPerSU));
906 if (suend < secPerSU) { /* short read, snip from end
907 * on */
908 pda_p->numSector = secPerSU - suend;
909 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
910 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
911 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
912 pda_p++;
913 } else
914 if (suoff > 0) { /* short at front */
915 pda_p->numSector = suoff;
916 pda_p->raidAddress = sosAddr + (i * secPerSU);
917 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
918 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
919 pda_p++;
921 break;
922 case 3: /* two nonoverlapping failures */
923 if ((suoff > fone_start) || (suend < fone_end)) {
924 if (suoff > fone_start) {
925 RF_ASSERT(suend >= fone_end);
926 /* The data read starts after the
927 * mapped access, snip off the
928 * begining */
929 pda_p->numSector = suoff - fone_start;
930 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
931 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
932 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
933 pda_p++;
935 if (suend < fone_end) {
936 RF_ASSERT(suoff <= fone_start);
937 /* The data read stops before the end
938 * of the failed access, extend */
939 pda_p->numSector = fone_end - suend;
940 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
941 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
942 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
943 pda_p++;
946 if ((suoff > ftwo_start) || (suend < ftwo_end)) {
947 if (suoff > ftwo_start) {
948 RF_ASSERT(suend >= ftwo_end);
949 /* The data read starts after the
950 * mapped access, snip off the
951 * begining */
952 pda_p->numSector = suoff - ftwo_start;
953 pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
954 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
955 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
956 pda_p++;
958 if (suend < ftwo_end) {
959 RF_ASSERT(suoff <= ftwo_start);
960 /* The data read stops before the end
961 * of the failed access, extend */
962 pda_p->numSector = ftwo_end - suend;
963 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
964 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
965 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
966 pda_p++;
969 break;
970 default:
971 RF_PANIC();
975 /* after the last accessed disk */
976 for (; i < numDataCol; i++) {
977 if ((pda_p - (*pdap)) == napdas)
978 continue;
979 pda_p->type = RF_PDA_TYPE_DATA;
980 pda_p->raidAddress = sosAddr + (i * secPerSU);
981 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
982 /* skip over dead disks */
983 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
984 continue;
985 switch (state) {
986 case 1: /* fone */
987 pda_p->numSector = fone->numSector;
988 pda_p->raidAddress += fone_start;
989 pda_p->startSector += fone_start;
990 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
991 break;
992 case 2: /* full stripe */
993 pda_p->numSector = secPerSU;
994 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
995 break;
996 case 3: /* two slabs */
997 pda_p->numSector = fone->numSector;
998 pda_p->raidAddress += fone_start;
999 pda_p->startSector += fone_start;
1000 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1001 pda_p++;
1002 pda_p->type = RF_PDA_TYPE_DATA;
1003 pda_p->raidAddress = sosAddr + (i * secPerSU);
1004 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
1005 pda_p->numSector = ftwo->numSector;
1006 pda_p->raidAddress += ftwo_start;
1007 pda_p->startSector += ftwo_start;
1008 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1009 break;
1010 default:
1011 RF_PANIC();
1013 pda_p++;
1016 RF_ASSERT(pda_p - *pdap == napdas);
1017 return;
1019 #define INIT_DISK_NODE(node,name) \
1020 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
1021 (node)->succedents[0] = unblockNode; \
1022 (node)->succedents[1] = recoveryNode; \
1023 (node)->antecedents[0] = blockNode; \
1024 (node)->antType[0] = rf_control
1026 #define DISK_NODE_PARAMS(_node_,_p_) \
1027 (_node_).params[0].p = _p_ ; \
1028 (_node_).params[1].p = (_p_)->bufPtr; \
1029 (_node_).params[2].v = parityStripeID; \
1030 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
1032 void
1033 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1034 RF_DagHeader_t *dag_h, void *bp,
1035 RF_RaidAccessFlags_t flags,
1036 RF_AllocListElem_t *allocList,
1037 const char *redundantReadNodeName,
1038 const char *recoveryNodeName,
1039 int (*recovFunc) (RF_DagNode_t *))
1041 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1042 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1043 *unblockNode, *rpNodes, *rqNodes, *termNode;
1044 RF_PhysDiskAddr_t *pda, *pqPDAs;
1045 RF_PhysDiskAddr_t *npdas;
1046 int nNodes, nRrdNodes, nRudNodes, i;
1047 RF_ReconUnitNum_t which_ru;
1048 int nReadNodes, nPQNodes;
1049 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1050 RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1051 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1053 #if RF_DEBUG_DAG
1054 if (rf_dagDebug)
1055 printf("[Creating Double Degraded Read DAG]\n");
1056 #endif
1057 rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1059 nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1060 nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1061 nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1063 RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1064 i = 0;
1065 blockNode = &nodes[i];
1066 i += 1;
1067 unblockNode = &nodes[i];
1068 i += 1;
1069 recoveryNode = &nodes[i];
1070 i += 1;
1071 termNode = &nodes[i];
1072 i += 1;
1073 rudNodes = &nodes[i];
1074 i += nRudNodes;
1075 rrdNodes = &nodes[i];
1076 i += nRrdNodes;
1077 rpNodes = &nodes[i];
1078 i += nPQNodes;
1079 rqNodes = &nodes[i];
1080 i += nPQNodes;
1081 RF_ASSERT(i == nNodes);
1083 dag_h->numSuccedents = 1;
1084 dag_h->succedents[0] = blockNode;
1085 dag_h->creator = "DoubleDegRead";
1086 dag_h->numCommits = 0;
1087 dag_h->numCommitNodes = 1; /* unblock */
1089 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1090 termNode->antecedents[0] = unblockNode;
1091 termNode->antType[0] = rf_control;
1092 termNode->antecedents[1] = recoveryNode;
1093 termNode->antType[1] = rf_control;
1095 /* init the block and unblock nodes */
1096 /* The block node has all nodes except itself, unblock and recovery as
1097 * successors. Similarly for predecessors of the unblock. */
1098 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1099 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1101 for (i = 0; i < nReadNodes; i++) {
1102 blockNode->succedents[i] = rudNodes + i;
1103 unblockNode->antecedents[i] = rudNodes + i;
1104 unblockNode->antType[i] = rf_control;
1106 unblockNode->succedents[0] = termNode;
1108 /* The recovery node has all the reads as predecessors, and the term
1109 * node as successors. It gets a pda as a param from each of the read
1110 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1111 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1112 1, /* succesors */
1113 nReadNodes, /* preds */
1114 nReadNodes + 2, /* params */
1115 asmap->numDataFailed, /* results */
1116 dag_h, recoveryNodeName, allocList);
1118 recoveryNode->succedents[0] = termNode;
1119 for (i = 0; i < nReadNodes; i++) {
1120 recoveryNode->antecedents[i] = rudNodes + i;
1121 recoveryNode->antType[i] = rf_trueData;
1124 /* build the read nodes, then come back and fill in recovery params
1125 * and results */
1126 pda = asmap->physInfo;
1127 for (i = 0; i < nRudNodes; pda = pda->next) {
1128 if ((pda == failedPDA) || (pda == failedPDAtwo))
1129 continue;
1130 INIT_DISK_NODE(rudNodes + i, "Rud");
1131 RF_ASSERT(pda);
1132 DISK_NODE_PARAMS(rudNodes[i], pda);
1133 i++;
1136 pda = npdas;
1137 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1138 INIT_DISK_NODE(rrdNodes + i, "Rrd");
1139 RF_ASSERT(pda);
1140 DISK_NODE_PARAMS(rrdNodes[i], pda);
1143 /* redundancy pdas */
1144 pda = pqPDAs;
1145 INIT_DISK_NODE(rpNodes, "Rp");
1146 RF_ASSERT(pda);
1147 DISK_NODE_PARAMS(rpNodes[0], pda);
1148 pda++;
1149 INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1150 RF_ASSERT(pda);
1151 DISK_NODE_PARAMS(rqNodes[0], pda);
1152 if (nPQNodes == 2) {
1153 pda++;
1154 INIT_DISK_NODE(rpNodes + 1, "Rp");
1155 RF_ASSERT(pda);
1156 DISK_NODE_PARAMS(rpNodes[1], pda);
1157 pda++;
1158 INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1159 RF_ASSERT(pda);
1160 DISK_NODE_PARAMS(rqNodes[1], pda);
1162 /* fill in recovery node params */
1163 for (i = 0; i < nReadNodes; i++)
1164 recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1165 recoveryNode->params[i++].p = (void *) raidPtr;
1166 recoveryNode->params[i++].p = (void *) asmap;
1167 recoveryNode->results[0] = failedPDA;
1168 if (asmap->numDataFailed == 2)
1169 recoveryNode->results[1] = failedPDAtwo;
1171 /* zero fill the target data buffers? */
1174 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */