Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / raidframe / rf_dagutils.c
blobc6a652ccb46b1f59ecb7511d2278b3b293962cf1
1 /* $NetBSD: rf_dagutils.c,v 1.51 2007/03/04 06:02:36 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /******************************************************************************
31 * rf_dagutils.c -- utility routines for manipulating dags
33 *****************************************************************************/
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.51 2007/03/04 06:02:36 christos Exp $");
38 #include <dev/raidframe/raidframevar.h>
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
69 /* The maximum number of nodes in a DAG is bounded by
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 (1 * 2 * layoutPtr->numParityCol) + 3
74 which is: 2*RF_MAXCOL+1*2+1*2*2+3
76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
84 /******************************************************************************
86 * InitNode - initialize a dag node
88 * the size of the propList array is always the same as that of the
89 * successors array.
91 *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 int (*doFunc) (RF_DagNode_t *node),
95 int (*undoFunc) (RF_DagNode_t *node),
96 int (*wakeFunc) (RF_DagNode_t *node, int status),
97 int nSucc, int nAnte, int nParam, int nResult,
98 RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
100 void **ptrs;
101 int nptrs;
103 if (nAnte > RF_MAX_ANTECEDENTS)
104 RF_PANIC();
105 node->status = initstatus;
106 node->commitNode = commit;
107 node->doFunc = doFunc;
108 node->undoFunc = undoFunc;
109 node->wakeFunc = wakeFunc;
110 node->numParams = nParam;
111 node->numResults = nResult;
112 node->numAntecedents = nAnte;
113 node->numAntDone = 0;
114 node->next = NULL;
115 /* node->list_next = NULL */ /* Don't touch this here!
116 It may already be
117 in use by the caller! */
118 node->numSuccedents = nSucc;
119 node->name = name;
120 node->dagHdr = hdr;
121 node->big_dag_ptrs = NULL;
122 node->big_dag_params = NULL;
123 node->visited = 0;
125 /* allocate all the pointers with one call to malloc */
126 nptrs = nSucc + nAnte + nResult + nSucc;
128 if (nptrs <= RF_DAG_PTRCACHESIZE) {
130 * The dag_ptrs field of the node is basically some scribble
131 * space to be used here. We could get rid of it, and always
132 * allocate the range of pointers, but that's expensive. So,
133 * we pick a "common case" size for the pointer cache. Hopefully,
134 * we'll find that:
135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 * only a little bit (least efficient case)
137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 * (wasted memory)
140 ptrs = (void **) node->dag_ptrs;
141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 node->big_dag_ptrs = rf_AllocDAGPCache();
143 ptrs = (void **) node->big_dag_ptrs;
144 } else {
145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 (void **), alist);
148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
153 if (nParam) {
154 if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 node->params = (RF_DagParam_t *) node->dag_params;
156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 node->big_dag_params = rf_AllocDAGPCache();
158 node->params = node->big_dag_params;
159 } else {
160 RF_MallocAndAdd(node->params,
161 nParam * sizeof(RF_DagParam_t),
162 (RF_DagParam_t *), alist);
164 } else {
165 node->params = NULL;
171 /******************************************************************************
173 * allocation and deallocation routines
175 *****************************************************************************/
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
180 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 RF_PhysDiskAddr_t *pda;
182 RF_DagNode_t *tmpnode;
183 RF_DagHeader_t *nextDag;
185 while (dag_h) {
186 nextDag = dag_h->next;
187 rf_FreeAllocList(dag_h->allocList);
188 for (asmap = dag_h->asmList; asmap;) {
189 t_asmap = asmap;
190 asmap = asmap->next;
191 rf_FreeAccessStripeMap(t_asmap);
193 while (dag_h->pda_cleanup_list) {
194 pda = dag_h->pda_cleanup_list;
195 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
196 rf_FreePhysDiskAddr(pda);
198 while (dag_h->nodes) {
199 tmpnode = dag_h->nodes;
200 dag_h->nodes = dag_h->nodes->list_next;
201 rf_FreeDAGNode(tmpnode);
203 rf_FreeDAGHeader(dag_h);
204 dag_h = nextDag;
208 #define RF_MAX_FREE_DAGH 128
209 #define RF_MIN_FREE_DAGH 32
211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
214 #define RF_MAX_FREE_DAGLIST 128
215 #define RF_MIN_FREE_DAGLIST 32
217 #define RF_MAX_FREE_DAGPCACHE 128
218 #define RF_MIN_FREE_DAGPCACHE 8
220 #define RF_MAX_FREE_FUNCLIST 128
221 #define RF_MIN_FREE_FUNCLIST 32
223 #define RF_MAX_FREE_BUFFERS 128
224 #define RF_MIN_FREE_BUFFERS 32
226 static void rf_ShutdownDAGs(void *);
227 static void
228 rf_ShutdownDAGs(void *ignored)
230 pool_destroy(&rf_pools.dagh);
231 pool_destroy(&rf_pools.dagnode);
232 pool_destroy(&rf_pools.daglist);
233 pool_destroy(&rf_pools.dagpcache);
234 pool_destroy(&rf_pools.funclist);
238 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
241 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
242 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
243 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
244 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
245 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
246 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
247 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
248 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
249 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
250 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
251 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
253 return (0);
256 RF_DagHeader_t *
257 rf_AllocDAGHeader(void)
259 RF_DagHeader_t *dh;
261 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
262 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
263 return (dh);
266 void
267 rf_FreeDAGHeader(RF_DagHeader_t * dh)
269 pool_put(&rf_pools.dagh, dh);
272 RF_DagNode_t *
273 rf_AllocDAGNode(void)
275 RF_DagNode_t *node;
277 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
278 memset(node, 0, sizeof(RF_DagNode_t));
279 return (node);
282 void
283 rf_FreeDAGNode(RF_DagNode_t *node)
285 if (node->big_dag_ptrs) {
286 rf_FreeDAGPCache(node->big_dag_ptrs);
288 if (node->big_dag_params) {
289 rf_FreeDAGPCache(node->big_dag_params);
291 pool_put(&rf_pools.dagnode, node);
294 RF_DagList_t *
295 rf_AllocDAGList(void)
297 RF_DagList_t *dagList;
299 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
300 memset(dagList, 0, sizeof(RF_DagList_t));
302 return (dagList);
305 void
306 rf_FreeDAGList(RF_DagList_t *dagList)
308 pool_put(&rf_pools.daglist, dagList);
311 void *
312 rf_AllocDAGPCache(void)
314 void *p;
315 p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
316 memset(p, 0, RF_DAGPCACHE_SIZE);
318 return (p);
321 void
322 rf_FreeDAGPCache(void *p)
324 pool_put(&rf_pools.dagpcache, p);
327 RF_FuncList_t *
328 rf_AllocFuncList(void)
330 RF_FuncList_t *funcList;
332 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
333 memset(funcList, 0, sizeof(RF_FuncList_t));
335 return (funcList);
338 void
339 rf_FreeFuncList(RF_FuncList_t *funcList)
341 pool_put(&rf_pools.funclist, funcList);
344 /* allocates a stripe buffer -- a buffer large enough to hold all the data
345 in an entire stripe.
348 void *
349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
350 int size)
352 RF_VoidPointerListElem_t *vple;
353 void *p;
355 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
356 raidPtr->logBytesPerSector))));
358 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
359 raidPtr->logBytesPerSector),
360 M_RAIDFRAME, M_NOWAIT);
361 if (!p) {
362 RF_LOCK_MUTEX(raidPtr->mutex);
363 if (raidPtr->stripebuf_count > 0) {
364 vple = raidPtr->stripebuf;
365 raidPtr->stripebuf = vple->next;
366 p = vple->p;
367 rf_FreeVPListElem(vple);
368 raidPtr->stripebuf_count--;
369 } else {
370 #ifdef DIAGNOSTIC
371 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
372 #endif
374 RF_UNLOCK_MUTEX(raidPtr->mutex);
375 if (!p) {
376 /* We didn't get a buffer... not much we can do other than wait,
377 and hope that someone frees up memory for us.. */
378 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
379 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
382 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
384 vple = rf_AllocVPListElem();
385 vple->p = p;
386 vple->next = dag_h->desc->stripebufs;
387 dag_h->desc->stripebufs = vple;
389 return (p);
393 void
394 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
396 RF_LOCK_MUTEX(raidPtr->mutex);
397 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
398 /* just tack it in */
399 vple->next = raidPtr->stripebuf;
400 raidPtr->stripebuf = vple;
401 raidPtr->stripebuf_count++;
402 } else {
403 free(vple->p, M_RAIDFRAME);
404 rf_FreeVPListElem(vple);
406 RF_UNLOCK_MUTEX(raidPtr->mutex);
409 /* allocates a buffer big enough to hold the data described by the
410 caller (ie. the data of the associated PDA). Glue this buffer
411 into our dag_h cleanup structure. */
413 void *
414 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
416 RF_VoidPointerListElem_t *vple;
417 void *p;
419 p = rf_AllocIOBuffer(raidPtr, size);
420 vple = rf_AllocVPListElem();
421 vple->p = p;
422 vple->next = dag_h->desc->iobufs;
423 dag_h->desc->iobufs = vple;
425 return (p);
428 void *
429 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
431 RF_VoidPointerListElem_t *vple;
432 void *p;
434 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
435 raidPtr->logBytesPerSector)));
437 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
438 raidPtr->logBytesPerSector,
439 M_RAIDFRAME, M_NOWAIT);
440 if (!p) {
441 RF_LOCK_MUTEX(raidPtr->mutex);
442 if (raidPtr->iobuf_count > 0) {
443 vple = raidPtr->iobuf;
444 raidPtr->iobuf = vple->next;
445 p = vple->p;
446 rf_FreeVPListElem(vple);
447 raidPtr->iobuf_count--;
448 } else {
449 #ifdef DIAGNOSTIC
450 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
451 #endif
453 RF_UNLOCK_MUTEX(raidPtr->mutex);
454 if (!p) {
455 /* We didn't get a buffer... not much we can do other than wait,
456 and hope that someone frees up memory for us.. */
457 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
458 raidPtr->logBytesPerSector,
459 M_RAIDFRAME, M_WAITOK);
462 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
463 return (p);
466 void
467 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
471 /* just tack it in */
472 vple->next = raidPtr->iobuf;
473 raidPtr->iobuf = vple;
474 raidPtr->iobuf_count++;
475 } else {
476 free(vple->p, M_RAIDFRAME);
477 rf_FreeVPListElem(vple);
479 RF_UNLOCK_MUTEX(raidPtr->mutex);
484 #if RF_DEBUG_VALIDATE_DAG
485 /******************************************************************************
487 * debug routines
489 *****************************************************************************/
491 char *
492 rf_NodeStatusString(RF_DagNode_t *node)
494 switch (node->status) {
495 case rf_wait:
496 return ("wait");
497 case rf_fired:
498 return ("fired");
499 case rf_good:
500 return ("good");
501 case rf_bad:
502 return ("bad");
503 default:
504 return ("?");
508 void
509 rf_PrintNodeInfoString(RF_DagNode_t *node)
511 RF_PhysDiskAddr_t *pda;
512 int (*df) (RF_DagNode_t *) = node->doFunc;
513 int i, lk, unlk;
514 void *bufPtr;
516 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
517 || (df == rf_DiskReadMirrorIdleFunc)
518 || (df == rf_DiskReadMirrorPartitionFunc)) {
519 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
520 bufPtr = (void *) node->params[1].p;
521 lk = 0;
522 unlk = 0;
523 RF_ASSERT(!(lk && unlk));
524 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
525 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
526 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
527 return;
529 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
530 || (df == rf_RecoveryXorFunc)) {
531 printf("result buf 0x%lx\n", (long) node->results[0]);
532 for (i = 0; i < node->numParams - 1; i += 2) {
533 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
534 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
535 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
536 (long) bufPtr, pda->col,
537 (long) pda->startSector, (int) pda->numSector);
539 return;
541 #if RF_INCLUDE_PARITYLOGGING > 0
542 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
543 for (i = 0; i < node->numParams - 1; i += 2) {
544 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
545 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
546 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
547 pda->col, (long) pda->startSector,
548 (int) pda->numSector, (long) bufPtr);
550 return;
552 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
554 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
555 printf("\n");
556 return;
558 printf("?\n");
560 #ifdef DEBUG
561 static void
562 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
564 char *anttype;
565 int i;
567 node->visited = (unvisited) ? 0 : 1;
568 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
569 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
570 node->numSuccedents, node->numSuccFired, node->numSuccDone,
571 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
572 for (i = 0; i < node->numSuccedents; i++) {
573 printf("%d%s", node->succedents[i]->nodeNum,
574 ((i == node->numSuccedents - 1) ? "\0" : " "));
576 printf("} A{");
577 for (i = 0; i < node->numAntecedents; i++) {
578 switch (node->antType[i]) {
579 case rf_trueData:
580 anttype = "T";
581 break;
582 case rf_antiData:
583 anttype = "A";
584 break;
585 case rf_outputData:
586 anttype = "O";
587 break;
588 case rf_control:
589 anttype = "C";
590 break;
591 default:
592 anttype = "?";
593 break;
595 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
597 printf("}; ");
598 rf_PrintNodeInfoString(node);
599 for (i = 0; i < node->numSuccedents; i++) {
600 if (node->succedents[i]->visited == unvisited)
601 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
605 static void
606 rf_PrintDAG(RF_DagHeader_t *dag_h)
608 int unvisited, i;
609 char *status;
611 /* set dag status */
612 switch (dag_h->status) {
613 case rf_enable:
614 status = "enable";
615 break;
616 case rf_rollForward:
617 status = "rollForward";
618 break;
619 case rf_rollBackward:
620 status = "rollBackward";
621 break;
622 default:
623 status = "illegal!";
624 break;
626 /* find out if visited bits are currently set or clear */
627 unvisited = dag_h->succedents[0]->visited;
629 printf("DAG type: %s\n", dag_h->creator);
630 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
631 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
632 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
633 for (i = 0; i < dag_h->numSuccedents; i++) {
634 printf("%d%s", dag_h->succedents[i]->nodeNum,
635 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
637 printf("};\n");
638 for (i = 0; i < dag_h->numSuccedents; i++) {
639 if (dag_h->succedents[i]->visited == unvisited)
640 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
643 #endif
644 /* assigns node numbers */
646 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
648 int unvisited, i, nnum;
649 RF_DagNode_t *node;
651 nnum = 0;
652 unvisited = dag_h->succedents[0]->visited;
654 dag_h->nodeNum = nnum++;
655 for (i = 0; i < dag_h->numSuccedents; i++) {
656 node = dag_h->succedents[i];
657 if (node->visited == unvisited) {
658 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
661 return (nnum);
665 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
667 int i;
669 node->visited = (unvisited) ? 0 : 1;
671 node->nodeNum = num++;
672 for (i = 0; i < node->numSuccedents; i++) {
673 if (node->succedents[i]->visited == unvisited) {
674 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
677 return (num);
679 /* set the header pointers in each node to "newptr" */
680 void
681 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
683 int i;
684 for (i = 0; i < dag_h->numSuccedents; i++)
685 if (dag_h->succedents[i]->dagHdr != newptr)
686 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
689 void
690 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
692 int i;
693 node->dagHdr = newptr;
694 for (i = 0; i < node->numSuccedents; i++)
695 if (node->succedents[i]->dagHdr != newptr)
696 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
700 void
701 rf_PrintDAGList(RF_DagHeader_t * dag_h)
703 int i = 0;
705 for (; dag_h; dag_h = dag_h->next) {
706 rf_AssignNodeNums(dag_h);
707 printf("\n\nDAG %d IN LIST:\n", i++);
708 rf_PrintDAG(dag_h);
712 static int
713 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
714 RF_DagNode_t **nodes, int unvisited)
716 int i, retcode = 0;
718 /* construct an array of node pointers indexed by node num */
719 node->visited = (unvisited) ? 0 : 1;
720 nodes[node->nodeNum] = node;
722 if (node->next != NULL) {
723 printf("INVALID DAG: next pointer in node is not NULL\n");
724 retcode = 1;
726 if (node->status != rf_wait) {
727 printf("INVALID DAG: Node status is not wait\n");
728 retcode = 1;
730 if (node->numAntDone != 0) {
731 printf("INVALID DAG: numAntDone is not zero\n");
732 retcode = 1;
734 if (node->doFunc == rf_TerminateFunc) {
735 if (node->numSuccedents != 0) {
736 printf("INVALID DAG: Terminator node has succedents\n");
737 retcode = 1;
739 } else {
740 if (node->numSuccedents == 0) {
741 printf("INVALID DAG: Non-terminator node has no succedents\n");
742 retcode = 1;
745 for (i = 0; i < node->numSuccedents; i++) {
746 if (!node->succedents[i]) {
747 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
748 retcode = 1;
750 scount[node->succedents[i]->nodeNum]++;
752 for (i = 0; i < node->numAntecedents; i++) {
753 if (!node->antecedents[i]) {
754 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
755 retcode = 1;
757 acount[node->antecedents[i]->nodeNum]++;
759 for (i = 0; i < node->numSuccedents; i++) {
760 if (node->succedents[i]->visited == unvisited) {
761 if (rf_ValidateBranch(node->succedents[i], scount,
762 acount, nodes, unvisited)) {
763 retcode = 1;
767 return (retcode);
770 static void
771 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
773 int i;
775 RF_ASSERT(node->visited == unvisited);
776 for (i = 0; i < node->numSuccedents; i++) {
777 if (node->succedents[i] == NULL) {
778 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
779 RF_ASSERT(0);
781 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
784 /* NOTE: never call this on a big dag, because it is exponential
785 * in execution time
787 static void
788 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
790 int i, unvisited;
792 unvisited = dag->succedents[0]->visited;
794 for (i = 0; i < dag->numSuccedents; i++) {
795 if (dag->succedents[i] == NULL) {
796 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
797 RF_ASSERT(0);
799 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
802 /* validate a DAG. _at entry_ verify that:
803 * -- numNodesCompleted is zero
804 * -- node queue is null
805 * -- dag status is rf_enable
806 * -- next pointer is null on every node
807 * -- all nodes have status wait
808 * -- numAntDone is zero in all nodes
809 * -- terminator node has zero successors
810 * -- no other node besides terminator has zero successors
811 * -- no successor or antecedent pointer in a node is NULL
812 * -- number of times that each node appears as a successor of another node
813 * is equal to the antecedent count on that node
814 * -- number of times that each node appears as an antecedent of another node
815 * is equal to the succedent count on that node
816 * -- what else?
819 rf_ValidateDAG(RF_DagHeader_t *dag_h)
821 int i, nodecount;
822 int *scount, *acount;/* per-node successor and antecedent counts */
823 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
824 int retcode = 0;
825 int unvisited;
826 int commitNodeCount = 0;
828 if (rf_validateVisitedDebug)
829 rf_ValidateVisitedBits(dag_h);
831 if (dag_h->numNodesCompleted != 0) {
832 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
833 retcode = 1;
834 goto validate_dag_bad;
836 if (dag_h->status != rf_enable) {
837 printf("INVALID DAG: not enabled\n");
838 retcode = 1;
839 goto validate_dag_bad;
841 if (dag_h->numCommits != 0) {
842 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
843 retcode = 1;
844 goto validate_dag_bad;
846 if (dag_h->numSuccedents != 1) {
847 /* currently, all dags must have only one succedent */
848 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
849 retcode = 1;
850 goto validate_dag_bad;
852 nodecount = rf_AssignNodeNums(dag_h);
854 unvisited = dag_h->succedents[0]->visited;
856 RF_Malloc(scount, nodecount * sizeof(int), (int *));
857 RF_Malloc(acount, nodecount * sizeof(int), (int *));
858 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
859 (RF_DagNode_t **));
860 for (i = 0; i < dag_h->numSuccedents; i++) {
861 if ((dag_h->succedents[i]->visited == unvisited)
862 && rf_ValidateBranch(dag_h->succedents[i], scount,
863 acount, nodes, unvisited)) {
864 retcode = 1;
867 /* start at 1 to skip the header node */
868 for (i = 1; i < nodecount; i++) {
869 if (nodes[i]->commitNode)
870 commitNodeCount++;
871 if (nodes[i]->doFunc == NULL) {
872 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
873 retcode = 1;
874 goto validate_dag_out;
876 if (nodes[i]->undoFunc == NULL) {
877 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
878 retcode = 1;
879 goto validate_dag_out;
881 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
882 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
883 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
884 retcode = 1;
885 goto validate_dag_out;
887 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
888 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
889 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
890 retcode = 1;
891 goto validate_dag_out;
895 if (dag_h->numCommitNodes != commitNodeCount) {
896 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
897 dag_h->numCommitNodes, commitNodeCount);
898 retcode = 1;
899 goto validate_dag_out;
901 validate_dag_out:
902 RF_Free(scount, nodecount * sizeof(int));
903 RF_Free(acount, nodecount * sizeof(int));
904 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
905 if (retcode)
906 rf_PrintDAGList(dag_h);
908 if (rf_validateVisitedDebug)
909 rf_ValidateVisitedBits(dag_h);
911 return (retcode);
913 validate_dag_bad:
914 rf_PrintDAGList(dag_h);
915 return (retcode);
918 #endif /* RF_DEBUG_VALIDATE_DAG */
920 /******************************************************************************
922 * misc construction routines
924 *****************************************************************************/
926 void
927 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
929 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
930 int fcol = raidPtr->reconControl->fcol;
931 int scol = raidPtr->reconControl->spareCol;
932 RF_PhysDiskAddr_t *pda;
934 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
935 for (pda = asmap->physInfo; pda; pda = pda->next) {
936 if (pda->col == fcol) {
937 #if RF_DEBUG_DAG
938 if (rf_dagDebug) {
939 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
940 pda->startSector)) {
941 RF_PANIC();
944 #endif
945 /* printf("Remapped data for large write\n"); */
946 if (ds) {
947 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
948 &pda->col, &pda->startSector, RF_REMAP);
949 } else {
950 pda->col = scol;
954 for (pda = asmap->parityInfo; pda; pda = pda->next) {
955 if (pda->col == fcol) {
956 #if RF_DEBUG_DAG
957 if (rf_dagDebug) {
958 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
959 RF_PANIC();
962 #endif
964 if (ds) {
965 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
966 } else {
967 pda->col = scol;
973 /* this routine allocates read buffers and generates stripe maps for the
974 * regions of the array from the start of the stripe to the start of the
975 * access, and from the end of the access to the end of the stripe. It also
976 * computes and returns the number of DAG nodes needed to read all this data.
977 * Note that this routine does the wrong thing if the access is fully
978 * contained within one stripe unit, so we RF_ASSERT against this case at the
979 * start.
981 * layoutPtr - in: layout information
982 * asmap - in: access stripe map
983 * dag_h - in: header of the dag to create
984 * new_asm_h - in: ptr to array of 2 headers. to be filled in
985 * nRodNodes - out: num nodes to be generated to read unaccessed data
986 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
988 void
989 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
990 RF_RaidLayout_t *layoutPtr,
991 RF_AccessStripeMap_t *asmap,
992 RF_DagHeader_t *dag_h,
993 RF_AccessStripeMapHeader_t **new_asm_h,
994 int *nRodNodes,
995 char **sosBuffer, char **eosBuffer,
996 RF_AllocListElem_t *allocList)
998 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
999 RF_SectorNum_t sosNumSector, eosNumSector;
1001 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
1002 /* generate an access map for the region of the array from start of
1003 * stripe to start of access */
1004 new_asm_h[0] = new_asm_h[1] = NULL;
1005 *nRodNodes = 0;
1006 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
1007 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1008 sosNumSector = asmap->raidAddress - sosRaidAddress;
1009 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
1010 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
1011 new_asm_h[0]->next = dag_h->asmList;
1012 dag_h->asmList = new_asm_h[0];
1013 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1015 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1016 /* we're totally within one stripe here */
1017 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1018 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1020 /* generate an access map for the region of the array from end of
1021 * access to end of stripe */
1022 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1023 eosRaidAddress = asmap->endRaidAddress;
1024 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1025 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1026 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1027 new_asm_h[1]->next = dag_h->asmList;
1028 dag_h->asmList = new_asm_h[1];
1029 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1031 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1032 /* we're totally within one stripe here */
1033 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1034 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1040 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1042 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1043 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1045 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1046 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1047 /* use -1 to be sure we stay within SU */
1048 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1049 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1050 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1054 /* GenerateFailedAccessASMs
1056 * this routine figures out what portion of the stripe needs to be read
1057 * to effect the degraded read or write operation. It's primary function
1058 * is to identify everything required to recover the data, and then
1059 * eliminate anything that is already being accessed by the user.
1061 * The main result is two new ASMs, one for the region from the start of the
1062 * stripe to the start of the access, and one for the region from the end of
1063 * the access to the end of the stripe. These ASMs describe everything that
1064 * needs to be read to effect the degraded access. Other results are:
1065 * nXorBufs -- the total number of buffers that need to be XORed together to
1066 * recover the lost data,
1067 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1068 * at entry, not allocated.
1069 * overlappingPDAs --
1070 * describes which of the non-failed PDAs in the user access
1071 * overlap data that needs to be read to effect recovery.
1072 * overlappingPDAs[i]==1 if and only if, neglecting the failed
1073 * PDA, the ith pda in the input asm overlaps data that needs
1074 * to be read for recovery.
1076 /* in: asm - ASM for the actual access, one stripe only */
1077 /* in: failedPDA - which component of the access has failed */
1078 /* in: dag_h - header of the DAG we're going to create */
1079 /* out: new_asm_h - the two new ASMs */
1080 /* out: nXorBufs - the total number of xor bufs required */
1081 /* out: rpBufPtr - a buffer for the parity read */
1082 void
1083 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1084 RF_PhysDiskAddr_t *failedPDA,
1085 RF_DagHeader_t *dag_h,
1086 RF_AccessStripeMapHeader_t **new_asm_h,
1087 int *nXorBufs, char **rpBufPtr,
1088 char *overlappingPDAs,
1089 RF_AllocListElem_t *allocList)
1091 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1093 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1094 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1095 RF_PhysDiskAddr_t *pda;
1096 int foundit, i;
1098 foundit = 0;
1099 /* first compute the following raid addresses: start of stripe,
1100 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1101 * MAX(end of access, end of failed SU), (eosStartAddr) end of
1102 * stripe (i.e. start of next stripe) (eosAddr) */
1103 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1104 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1105 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1106 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1108 /* now generate access stripe maps for each of the above regions of
1109 * the stripe. Use a dummy (NULL) buf ptr for now */
1111 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1112 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1114 /* walk through the PDAs and range-restrict each SU to the region of
1115 * the SU touched on the failed PDA. also compute total data buffer
1116 * space requirements in this step. Ignore the parity for now. */
1117 /* Also count nodes to find out how many bufs need to be xored together */
1118 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1119 * case, 1 is for failed data */
1121 if (new_asm_h[0]) {
1122 new_asm_h[0]->next = dag_h->asmList;
1123 dag_h->asmList = new_asm_h[0];
1124 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1125 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1126 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1128 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1130 if (new_asm_h[1]) {
1131 new_asm_h[1]->next = dag_h->asmList;
1132 dag_h->asmList = new_asm_h[1];
1133 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1134 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1135 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1137 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1140 /* allocate a buffer for parity */
1141 if (rpBufPtr)
1142 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1144 /* the last step is to figure out how many more distinct buffers need
1145 * to get xor'd to produce the missing unit. there's one for each
1146 * user-data read node that overlaps the portion of the failed unit
1147 * being accessed */
1149 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1150 if (pda == failedPDA) {
1151 i--;
1152 foundit = 1;
1153 continue;
1155 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1156 overlappingPDAs[i] = 1;
1157 (*nXorBufs)++;
1160 if (!foundit) {
1161 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1162 RF_ASSERT(0);
1164 #if RF_DEBUG_DAG
1165 if (rf_degDagDebug) {
1166 if (new_asm_h[0]) {
1167 printf("First asm:\n");
1168 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1170 if (new_asm_h[1]) {
1171 printf("Second asm:\n");
1172 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1175 #endif
1179 /* adjusts the offset and number of sectors in the destination pda so that
1180 * it covers at most the region of the SU covered by the source PDA. This
1181 * is exclusively a restriction: the number of sectors indicated by the
1182 * target PDA can only shrink.
1184 * For example: s = sectors within SU indicated by source PDA
1185 * d = sectors within SU indicated by dest PDA
1186 * r = results, stored in dest PDA
1188 * |--------------- one stripe unit ---------------------|
1189 * | sssssssssssssssssssssssssssssssss |
1190 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1191 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1193 * Another example:
1195 * |--------------- one stripe unit ---------------------|
1196 * | sssssssssssssssssssssssssssssssss |
1197 * | ddddddddddddddddddddddd |
1198 * | rrrrrrrrrrrrrrrr |
1201 void
1202 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1203 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1205 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1206 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1207 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1208 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1209 * stay within SU */
1210 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1211 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1213 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1214 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1216 if (dobuffer)
1217 dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1218 if (doraidaddr) {
1219 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1220 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1224 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1227 * Want the highest of these primes to be the largest one
1228 * less than the max expected number of columns (won't hurt
1229 * to be too small or too large, but won't be optimal, either)
1230 * --jimz
1232 #define NLOWPRIMES 8
1233 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1234 /*****************************************************************************
1235 * compute the workload shift factor. (chained declustering)
1237 * return nonzero if access should shift to secondary, otherwise,
1238 * access is to primary
1239 *****************************************************************************/
1241 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1244 * variables:
1245 * d = column of disk containing primary
1246 * f = column of failed disk
1247 * n = number of disks in array
1248 * sd = "shift distance" (number of columns that d is to the right of f)
1249 * v = numerator of redirection ratio
1250 * k = denominator of redirection ratio
1252 RF_RowCol_t d, f, sd, n;
1253 int k, v, ret, i;
1255 n = raidPtr->numCol;
1257 /* assign column of primary copy to d */
1258 d = pda->col;
1260 /* assign column of dead disk to f */
1261 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1263 RF_ASSERT(f < n);
1264 RF_ASSERT(f != d);
1266 sd = (f > d) ? (n + d - f) : (d - f);
1267 RF_ASSERT(sd < n);
1270 * v of every k accesses should be redirected
1272 * v/k := (n-1-sd)/(n-1)
1274 v = (n - 1 - sd);
1275 k = (n - 1);
1277 #if 1
1279 * XXX
1280 * Is this worth it?
1282 * Now reduce the fraction, by repeatedly factoring
1283 * out primes (just like they teach in elementary school!)
1285 for (i = 0; i < NLOWPRIMES; i++) {
1286 if (lowprimes[i] > v)
1287 break;
1288 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1289 v /= lowprimes[i];
1290 k /= lowprimes[i];
1293 #endif
1295 raidPtr->hist_diskreq[d]++;
1296 if (raidPtr->hist_diskreq[d] > v) {
1297 ret = 0; /* do not redirect */
1298 } else {
1299 ret = 1; /* redirect */
1302 #if 0
1303 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1304 raidPtr->hist_diskreq[d]);
1305 #endif
1307 if (raidPtr->hist_diskreq[d] >= k) {
1308 /* reset counter */
1309 raidPtr->hist_diskreq[d] = 0;
1311 return (ret);
1313 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1316 * Disk selection routines
1320 * Selects the disk with the shortest queue from a mirror pair.
1321 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1322 * disk are counted as members of the "queue"
1324 void
1325 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1327 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1328 RF_RowCol_t colData, colMirror;
1329 int dataQueueLength, mirrorQueueLength, usemirror;
1330 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1331 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1332 RF_PhysDiskAddr_t *tmp_pda;
1333 RF_RaidDisk_t *disks = raidPtr->Disks;
1334 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1336 /* return the [row col] of the disk with the shortest queue */
1337 colData = data_pda->col;
1338 colMirror = mirror_pda->col;
1339 dataQueue = &(dqs[colData]);
1340 mirrorQueue = &(dqs[colMirror]);
1342 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1343 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1344 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1345 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1346 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1347 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1348 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1349 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1350 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1351 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1352 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1353 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1355 usemirror = 0;
1356 if (RF_DEAD_DISK(disks[colMirror].status)) {
1357 usemirror = 0;
1358 } else
1359 if (RF_DEAD_DISK(disks[colData].status)) {
1360 usemirror = 1;
1361 } else
1362 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1363 /* Trust only the main disk */
1364 usemirror = 0;
1365 } else
1366 if (dataQueueLength < mirrorQueueLength) {
1367 usemirror = 0;
1368 } else
1369 if (mirrorQueueLength < dataQueueLength) {
1370 usemirror = 1;
1371 } else {
1372 /* queues are equal length. attempt
1373 * cleverness. */
1374 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1375 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1376 usemirror = 0;
1377 } else {
1378 usemirror = 1;
1382 if (usemirror) {
1383 /* use mirror (parity) disk, swap params 0 & 4 */
1384 tmp_pda = data_pda;
1385 node->params[0].p = mirror_pda;
1386 node->params[4].p = tmp_pda;
1387 } else {
1388 /* use data disk, leave param 0 unchanged */
1390 /* printf("dataQueueLength %d, mirrorQueueLength
1391 * %d\n",dataQueueLength, mirrorQueueLength); */
1393 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1395 * Do simple partitioning. This assumes that
1396 * the data and parity disks are laid out identically.
1398 void
1399 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1401 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1402 RF_RowCol_t colData, colMirror;
1403 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1404 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1405 RF_PhysDiskAddr_t *tmp_pda;
1406 RF_RaidDisk_t *disks = raidPtr->Disks;
1407 int usemirror;
1409 /* return the [row col] of the disk with the shortest queue */
1410 colData = data_pda->col;
1411 colMirror = mirror_pda->col;
1413 usemirror = 0;
1414 if (RF_DEAD_DISK(disks[colMirror].status)) {
1415 usemirror = 0;
1416 } else
1417 if (RF_DEAD_DISK(disks[colData].status)) {
1418 usemirror = 1;
1419 } else
1420 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1421 /* Trust only the main disk */
1422 usemirror = 0;
1423 } else
1424 if (data_pda->startSector <
1425 (disks[colData].numBlocks / 2)) {
1426 usemirror = 0;
1427 } else {
1428 usemirror = 1;
1431 if (usemirror) {
1432 /* use mirror (parity) disk, swap params 0 & 4 */
1433 tmp_pda = data_pda;
1434 node->params[0].p = mirror_pda;
1435 node->params[4].p = tmp_pda;
1436 } else {
1437 /* use data disk, leave param 0 unchanged */
1440 #endif