1 /* $NetBSD: rf_map.c,v 1.43 2007/03/04 06:02:38 christos Exp $ */
3 * Copyright (c) 1995 Carnegie-Mellon University.
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /**************************************************************************
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
33 **************************************************************************/
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.43 2007/03/04 06:02:38 christos Exp $");
38 #include <dev/raidframe/raidframevar.h>
40 #include "rf_threadstuff.h"
42 #include "rf_general.h"
44 #include "rf_shutdown.h"
46 static void rf_FreePDAList(RF_PhysDiskAddr_t
*pda_list
);
47 static void rf_FreeASMList(RF_AccessStripeMap_t
*asm_list
);
49 /***************************************************************************
51 * MapAccess -- main 1st order mapping routine. Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed. Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access. Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written. The
60 * routine also maps the parity. The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed. This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need. We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access. Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
70 * This routine returns NULL if numBlocks is 0
72 * raidAddress - starting address in RAID address space
73 * numBlocks - number of blocks in RAID address space to access
74 * buffer - buffer to supply/recieve data
75 * remap - 1 => remap address to spare space
76 ***************************************************************************/
78 RF_AccessStripeMapHeader_t
*
79 rf_MapAccess(RF_Raid_t
*raidPtr
, RF_RaidAddr_t raidAddress
,
80 RF_SectorCount_t numBlocks
, void *buffer
, int remap
)
82 RF_RaidLayout_t
*layoutPtr
= &(raidPtr
->Layout
);
83 RF_AccessStripeMapHeader_t
*asm_hdr
= NULL
;
84 RF_AccessStripeMap_t
*asm_list
= NULL
, *asm_p
= NULL
;
85 int faultsTolerated
= layoutPtr
->map
->faultsTolerated
;
86 /* we'll change raidAddress along the way */
87 RF_RaidAddr_t startAddress
= raidAddress
;
88 RF_RaidAddr_t endAddress
= raidAddress
+ numBlocks
;
89 RF_RaidDisk_t
*disks
= raidPtr
->Disks
;
90 RF_PhysDiskAddr_t
*pda_p
;
91 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92 RF_PhysDiskAddr_t
*pda_q
;
94 RF_StripeCount_t numStripes
= 0;
95 RF_RaidAddr_t stripeRealEndAddress
, stripeEndAddress
,
96 nextStripeUnitAddress
;
97 RF_RaidAddr_t startAddrWithinStripe
, lastRaidAddr
;
98 RF_StripeCount_t totStripes
;
99 RF_StripeNum_t stripeID
, lastSID
, SUID
, lastSUID
;
100 RF_AccessStripeMap_t
*asmList
, *t_asm
;
101 RF_PhysDiskAddr_t
*pdaList
, *t_pda
;
103 /* allocate all the ASMs and PDAs up front */
104 lastRaidAddr
= raidAddress
+ numBlocks
- 1;
105 stripeID
= rf_RaidAddressToStripeID(layoutPtr
, raidAddress
);
106 lastSID
= rf_RaidAddressToStripeID(layoutPtr
, lastRaidAddr
);
107 totStripes
= lastSID
- stripeID
+ 1;
108 SUID
= rf_RaidAddressToStripeUnitID(layoutPtr
, raidAddress
);
109 lastSUID
= rf_RaidAddressToStripeUnitID(layoutPtr
, lastRaidAddr
);
111 asmList
= rf_AllocASMList(totStripes
);
113 /* may also need pda(s) per stripe for parity */
114 pdaList
= rf_AllocPDAList(lastSUID
- SUID
+ 1 +
115 faultsTolerated
* totStripes
);
118 if (raidAddress
+ numBlocks
> raidPtr
->totalSectors
) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
125 rf_PrintRaidAddressInfo(raidPtr
, raidAddress
, numBlocks
);
127 for (; raidAddress
< endAddress
;) {
128 /* make the next stripe structure */
131 asmList
= asmList
->next
;
132 memset((char *) t_asm
, 0, sizeof(RF_AccessStripeMap_t
));
134 asm_list
= asm_p
= t_asm
;
141 /* map SUs from current location to the end of the stripe */
142 asm_p
->stripeID
= /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID
++;
144 stripeRealEndAddress
= rf_RaidAddressOfNextStripeBoundary(layoutPtr
, raidAddress
);
145 stripeEndAddress
= RF_MIN(endAddress
, stripeRealEndAddress
);
146 asm_p
->raidAddress
= raidAddress
;
147 asm_p
->endRaidAddress
= stripeEndAddress
;
149 /* map each stripe unit in the stripe */
152 /* Raid addr of start of portion of access that is
153 within this stripe */
154 startAddrWithinStripe
= raidAddress
;
156 for (; raidAddress
< stripeEndAddress
;) {
159 pdaList
= pdaList
->next
;
160 memset((char *) t_pda
, 0, sizeof(RF_PhysDiskAddr_t
));
162 asm_p
->physInfo
= pda_p
= t_pda
;
168 pda_p
->type
= RF_PDA_TYPE_DATA
;
169 (layoutPtr
->map
->MapSector
) (raidPtr
, raidAddress
,
171 &(pda_p
->startSector
),
174 /* mark any failures we find. failedPDA is
175 * don't-care if there is more than one
178 /* the RAID address corresponding to this
179 physical diskaddress */
180 pda_p
->raidAddress
= raidAddress
;
181 nextStripeUnitAddress
= rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr
, raidAddress
);
182 pda_p
->numSector
= RF_MIN(endAddress
, nextStripeUnitAddress
) - raidAddress
;
183 RF_ASSERT(pda_p
->numSector
!= 0);
184 rf_ASMCheckStatus(raidPtr
, pda_p
, asm_p
, disks
, 0);
185 pda_p
->bufPtr
= (char *)buffer
+ rf_RaidAddressToByte(raidPtr
, (raidAddress
- startAddress
));
186 asm_p
->totalSectorsAccessed
+= pda_p
->numSector
;
187 asm_p
->numStripeUnitsAccessed
++;
189 raidAddress
= RF_MIN(endAddress
, nextStripeUnitAddress
);
192 /* Map the parity. At this stage, the startSector and
193 * numSector fields for the parity unit are always set
194 * to indicate the entire parity unit. We may modify
195 * this after mapping the data portion. */
196 switch (faultsTolerated
) {
199 case 1: /* single fault tolerant */
202 pdaList
= pdaList
->next
;
203 memset((char *) t_pda
, 0, sizeof(RF_PhysDiskAddr_t
));
204 pda_p
= asm_p
->parityInfo
= t_pda
;
205 pda_p
->type
= RF_PDA_TYPE_PARITY
;
206 (layoutPtr
->map
->MapParity
) (raidPtr
, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
),
207 &(pda_p
->col
), &(pda_p
->startSector
), remap
);
208 pda_p
->numSector
= layoutPtr
->sectorsPerStripeUnit
;
209 /* raidAddr may be needed to find unit to redirect to */
210 pda_p
->raidAddress
= rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
);
211 rf_ASMCheckStatus(raidPtr
, pda_p
, asm_p
, disks
, 1);
212 rf_ASMParityAdjust(asm_p
->parityInfo
, startAddrWithinStripe
, endAddress
, layoutPtr
, asm_p
);
215 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216 case 2: /* two fault tolerant */
217 RF_ASSERT(pdaList
&& pdaList
->next
);
219 pdaList
= pdaList
->next
;
220 memset((char *) t_pda
, 0, sizeof(RF_PhysDiskAddr_t
));
221 pda_p
= asm_p
->parityInfo
= t_pda
;
222 pda_p
->type
= RF_PDA_TYPE_PARITY
;
224 pdaList
= pdaList
->next
;
225 memset((char *) t_pda
, 0, sizeof(RF_PhysDiskAddr_t
));
226 pda_q
= asm_p
->qInfo
= t_pda
;
227 pda_q
->type
= RF_PDA_TYPE_Q
;
228 (layoutPtr
->map
->MapParity
) (raidPtr
, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
),
229 &(pda_p
->col
), &(pda_p
->startSector
), remap
);
230 (layoutPtr
->map
->MapQ
) (raidPtr
, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
),
231 &(pda_q
->col
), &(pda_q
->startSector
), remap
);
232 pda_q
->numSector
= pda_p
->numSector
= layoutPtr
->sectorsPerStripeUnit
;
233 /* raidAddr may be needed to find unit to redirect to */
234 pda_p
->raidAddress
= rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
);
235 pda_q
->raidAddress
= rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
);
236 /* failure mode stuff */
237 rf_ASMCheckStatus(raidPtr
, pda_p
, asm_p
, disks
, 1);
238 rf_ASMCheckStatus(raidPtr
, pda_q
, asm_p
, disks
, 1);
239 rf_ASMParityAdjust(asm_p
->parityInfo
, startAddrWithinStripe
, endAddress
, layoutPtr
, asm_p
);
240 rf_ASMParityAdjust(asm_p
->qInfo
, startAddrWithinStripe
, endAddress
, layoutPtr
, asm_p
);
245 RF_ASSERT(asmList
== NULL
&& pdaList
== NULL
);
246 /* make the header structure */
247 asm_hdr
= rf_AllocAccessStripeMapHeader();
248 RF_ASSERT(numStripes
== totStripes
);
249 asm_hdr
->numStripes
= numStripes
;
250 asm_hdr
->stripeMap
= asm_list
;
254 rf_PrintAccessStripeMap(asm_hdr
);
259 /***************************************************************************
260 * This routine walks through an ASM list and marks the PDAs that have
261 * failed. It's called only when a disk failure causes an in-flight
262 * DAG to fail. The parity may consist of two components, but we want
263 * to use only one failedPDA pointer. Thus we set failedPDA to point
264 * to the first parity component, and rely on the rest of the code to
265 * do the right thing with this.
266 ***************************************************************************/
269 rf_MarkFailuresInASMList(RF_Raid_t
*raidPtr
,
270 RF_AccessStripeMapHeader_t
*asm_h
)
272 RF_RaidDisk_t
*disks
= raidPtr
->Disks
;
273 RF_AccessStripeMap_t
*asmap
;
274 RF_PhysDiskAddr_t
*pda
;
276 for (asmap
= asm_h
->stripeMap
; asmap
; asmap
= asmap
->next
) {
277 asmap
->numDataFailed
= 0;
278 asmap
->numParityFailed
= 0;
279 asmap
->numQFailed
= 0;
280 asmap
->numFailedPDAs
= 0;
281 memset((char *) asmap
->failedPDAs
, 0,
282 RF_MAX_FAILED_PDA
* sizeof(RF_PhysDiskAddr_t
*));
283 for (pda
= asmap
->physInfo
; pda
; pda
= pda
->next
) {
284 if (RF_DEAD_DISK(disks
[pda
->col
].status
)) {
285 asmap
->numDataFailed
++;
286 asmap
->failedPDAs
[asmap
->numFailedPDAs
] = pda
;
287 asmap
->numFailedPDAs
++;
290 pda
= asmap
->parityInfo
;
291 if (pda
&& RF_DEAD_DISK(disks
[pda
->col
].status
)) {
292 asmap
->numParityFailed
++;
293 asmap
->failedPDAs
[asmap
->numFailedPDAs
] = pda
;
294 asmap
->numFailedPDAs
++;
297 if (pda
&& RF_DEAD_DISK(disks
[pda
->col
].status
)) {
299 asmap
->failedPDAs
[asmap
->numFailedPDAs
] = pda
;
300 asmap
->numFailedPDAs
++;
305 /***************************************************************************
307 * routines to allocate and free list elements. All allocation
308 * routines zero the structure before returning it.
310 * FreePhysDiskAddr is static. It should never be called directly,
311 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
314 ***************************************************************************/
316 #define RF_MAX_FREE_ASMHDR 128
317 #define RF_MIN_FREE_ASMHDR 32
319 #define RF_MAX_FREE_ASM 192
320 #define RF_MIN_FREE_ASM 64
322 #define RF_MAX_FREE_PDA 192
323 #define RF_MIN_FREE_PDA 64
325 #define RF_MAX_FREE_ASMHLE 64
326 #define RF_MIN_FREE_ASMHLE 16
328 #define RF_MAX_FREE_FSS 128
329 #define RF_MIN_FREE_FSS 32
331 #define RF_MAX_FREE_VFPLE 128
332 #define RF_MIN_FREE_VFPLE 32
334 #define RF_MAX_FREE_VPLE 128
335 #define RF_MIN_FREE_VPLE 32
338 /* called at shutdown time. So far, all that is necessary is to
339 release all the free lists */
340 static void rf_ShutdownMapModule(void *);
342 rf_ShutdownMapModule(void *ignored
)
344 pool_destroy(&rf_pools
.asm_hdr
);
345 pool_destroy(&rf_pools
.asmap
);
346 pool_destroy(&rf_pools
.asmhle
);
347 pool_destroy(&rf_pools
.pda
);
348 pool_destroy(&rf_pools
.fss
);
349 pool_destroy(&rf_pools
.vfple
);
350 pool_destroy(&rf_pools
.vple
);
354 rf_ConfigureMapModule(RF_ShutdownList_t
**listp
)
357 rf_pool_init(&rf_pools
.asm_hdr
, sizeof(RF_AccessStripeMapHeader_t
),
358 "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR
, RF_MAX_FREE_ASMHDR
);
359 rf_pool_init(&rf_pools
.asmap
, sizeof(RF_AccessStripeMap_t
),
360 "rf_asm_pl", RF_MIN_FREE_ASM
, RF_MAX_FREE_ASM
);
361 rf_pool_init(&rf_pools
.asmhle
, sizeof(RF_ASMHeaderListElem_t
),
362 "rf_asmhle_pl", RF_MIN_FREE_ASMHLE
, RF_MAX_FREE_ASMHLE
);
363 rf_pool_init(&rf_pools
.pda
, sizeof(RF_PhysDiskAddr_t
),
364 "rf_pda_pl", RF_MIN_FREE_PDA
, RF_MAX_FREE_PDA
);
365 rf_pool_init(&rf_pools
.fss
, sizeof(RF_FailedStripe_t
),
366 "rf_fss_pl", RF_MIN_FREE_FSS
, RF_MAX_FREE_FSS
);
367 rf_pool_init(&rf_pools
.vfple
, sizeof(RF_VoidFunctionPointerListElem_t
),
368 "rf_vfple_pl", RF_MIN_FREE_VFPLE
, RF_MAX_FREE_VFPLE
);
369 rf_pool_init(&rf_pools
.vple
, sizeof(RF_VoidPointerListElem_t
),
370 "rf_vple_pl", RF_MIN_FREE_VPLE
, RF_MAX_FREE_VPLE
);
371 rf_ShutdownCreate(listp
, rf_ShutdownMapModule
, NULL
);
376 RF_AccessStripeMapHeader_t
*
377 rf_AllocAccessStripeMapHeader(void)
379 RF_AccessStripeMapHeader_t
*p
;
381 p
= pool_get(&rf_pools
.asm_hdr
, PR_WAITOK
);
382 memset((char *) p
, 0, sizeof(RF_AccessStripeMapHeader_t
));
388 rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t
*p
)
390 pool_put(&rf_pools
.asm_hdr
, p
);
394 RF_VoidFunctionPointerListElem_t
*
395 rf_AllocVFPListElem(void)
397 RF_VoidFunctionPointerListElem_t
*p
;
399 p
= pool_get(&rf_pools
.vfple
, PR_WAITOK
);
400 memset((char *) p
, 0, sizeof(RF_VoidFunctionPointerListElem_t
));
406 rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t
*p
)
409 pool_put(&rf_pools
.vfple
, p
);
413 RF_VoidPointerListElem_t
*
414 rf_AllocVPListElem(void)
416 RF_VoidPointerListElem_t
*p
;
418 p
= pool_get(&rf_pools
.vple
, PR_WAITOK
);
419 memset((char *) p
, 0, sizeof(RF_VoidPointerListElem_t
));
425 rf_FreeVPListElem(RF_VoidPointerListElem_t
*p
)
428 pool_put(&rf_pools
.vple
, p
);
431 RF_ASMHeaderListElem_t
*
432 rf_AllocASMHeaderListElem(void)
434 RF_ASMHeaderListElem_t
*p
;
436 p
= pool_get(&rf_pools
.asmhle
, PR_WAITOK
);
437 memset((char *) p
, 0, sizeof(RF_ASMHeaderListElem_t
));
443 rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t
*p
)
446 pool_put(&rf_pools
.asmhle
, p
);
450 rf_AllocFailedStripeStruct(void)
452 RF_FailedStripe_t
*p
;
454 p
= pool_get(&rf_pools
.fss
, PR_WAITOK
);
455 memset((char *) p
, 0, sizeof(RF_FailedStripe_t
));
461 rf_FreeFailedStripeStruct(RF_FailedStripe_t
*p
)
463 pool_put(&rf_pools
.fss
, p
);
471 rf_AllocPhysDiskAddr(void)
473 RF_PhysDiskAddr_t
*p
;
475 p
= pool_get(&rf_pools
.pda
, PR_WAITOK
);
476 memset((char *) p
, 0, sizeof(RF_PhysDiskAddr_t
));
480 /* allocates a list of PDAs, locking the free list only once when we
481 * have to call calloc, we do it one component at a time to simplify
482 * the process of freeing the list at program shutdown. This should
483 * not be much of a performance hit, because it should be very
484 * infrequently executed. */
486 rf_AllocPDAList(int count
)
488 RF_PhysDiskAddr_t
*p
, *prev
;
493 for (i
= 0; i
< count
; i
++) {
494 p
= pool_get(&rf_pools
.pda
, PR_WAITOK
);
503 rf_FreePhysDiskAddr(RF_PhysDiskAddr_t
*p
)
505 pool_put(&rf_pools
.pda
, p
);
509 rf_FreePDAList(RF_PhysDiskAddr_t
*pda_list
)
511 RF_PhysDiskAddr_t
*p
, *tmp
;
516 pool_put(&rf_pools
.pda
, p
);
521 /* this is essentially identical to AllocPDAList. I should combine
522 * the two. when we have to call calloc, we do it one component at a
523 * time to simplify the process of freeing the list at program
524 * shutdown. This should not be much of a performance hit, because it
525 * should be very infrequently executed. */
526 RF_AccessStripeMap_t
*
527 rf_AllocASMList(int count
)
529 RF_AccessStripeMap_t
*p
, *prev
;
534 for (i
= 0; i
< count
; i
++) {
535 p
= pool_get(&rf_pools
.asmap
, PR_WAITOK
);
543 rf_FreeASMList(RF_AccessStripeMap_t
*asm_list
)
545 RF_AccessStripeMap_t
*p
, *tmp
;
550 pool_put(&rf_pools
.asmap
, p
);
556 rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t
*hdr
)
558 RF_AccessStripeMap_t
*p
;
559 RF_PhysDiskAddr_t
*pdp
, *trailer
, *pdaList
= NULL
, *pdaEnd
= NULL
;
560 int count
= 0, t
, asm_count
= 0;
562 for (p
= hdr
->stripeMap
; p
; p
= p
->next
) {
564 /* link the 3 pda lists into the accumulating pda list */
569 pdaEnd
->next
= p
->qInfo
;
570 for (trailer
= NULL
, pdp
= p
->qInfo
; pdp
;) {
579 pdaList
= p
->parityInfo
;
581 pdaEnd
->next
= p
->parityInfo
;
582 for (trailer
= NULL
, pdp
= p
->parityInfo
; pdp
;) {
591 pdaList
= p
->physInfo
;
593 pdaEnd
->next
= p
->physInfo
;
594 for (trailer
= NULL
, pdp
= p
->physInfo
; pdp
;) {
606 for (t
= 0, pdp
= pdaList
; pdp
; pdp
= pdp
->next
)
608 RF_ASSERT(t
== count
);
611 rf_FreePDAList(pdaList
);
612 rf_FreeASMList(hdr
->stripeMap
);
613 rf_FreeAccessStripeMapHeader(hdr
);
615 /* We can't use the large write optimization if there are any failures
616 * in the stripe. In the declustered layout, there is no way to
617 * immediately determine what disks constitute a stripe, so we
618 * actually have to hunt through the stripe looking for failures. The
619 * reason we map the parity instead of just using asm->parityInfo->col
620 * is because the latter may have been already redirected to a spare
621 * drive, which would mess up the computation of the stripe offset.
623 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
625 rf_CheckStripeForFailures(RF_Raid_t
*raidPtr
, RF_AccessStripeMap_t
*asmap
)
627 RF_RowCol_t tcol
, pcol
, *diskids
, i
;
628 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
629 RF_StripeCount_t stripeOffset
;
631 RF_RaidAddr_t sosAddr
;
632 RF_SectorNum_t diskOffset
, poffset
;
634 /* quick out in the fault-free case. */
635 RF_LOCK_MUTEX(raidPtr
->mutex
);
636 numFailures
= raidPtr
->numFailures
;
637 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
638 if (numFailures
== 0)
641 sosAddr
= rf_RaidAddressOfPrevStripeBoundary(layoutPtr
,
643 (layoutPtr
->map
->IdentifyStripe
) (raidPtr
, asmap
->raidAddress
,
645 (layoutPtr
->map
->MapParity
) (raidPtr
, asmap
->raidAddress
,
646 &pcol
, &poffset
, 0); /* get pcol */
648 /* this need not be true if we've redirected the access to a
649 * spare in another row RF_ASSERT(row == testrow); */
651 for (i
= 0; i
< layoutPtr
->numDataCol
+ layoutPtr
->numParityCol
; i
++) {
652 if (diskids
[i
] != pcol
) {
653 if (RF_DEAD_DISK(raidPtr
->Disks
[diskids
[i
]].status
)) {
654 if (raidPtr
->status
!= rf_rs_reconstructing
)
656 RF_ASSERT(raidPtr
->reconControl
->fcol
== diskids
[i
]);
657 layoutPtr
->map
->MapSector(raidPtr
,
658 sosAddr
+ stripeOffset
* layoutPtr
->sectorsPerStripeUnit
,
659 &tcol
, &diskOffset
, 0);
660 RF_ASSERT(tcol
== diskids
[i
]);
661 if (!rf_CheckRUReconstructed(raidPtr
->reconControl
->reconMap
, diskOffset
))
663 asmap
->flags
|= RF_ASM_REDIR_LARGE_WRITE
;
671 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
673 return the number of failed data units in the stripe.
677 rf_NumFailedDataUnitsInStripe(RF_Raid_t
*raidPtr
, RF_AccessStripeMap_t
*asmap
)
679 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
681 RF_SectorNum_t diskOffset
;
682 RF_RaidAddr_t sosAddr
;
685 /* quick out in the fault-free case. */
686 RF_LOCK_MUTEX(raidPtr
->mutex
);
687 numFailures
= raidPtr
->numFailures
;
688 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
689 if (numFailures
== 0)
693 sosAddr
= rf_RaidAddressOfPrevStripeBoundary(layoutPtr
,
695 for (i
= 0; i
< layoutPtr
->numDataCol
; i
++) {
696 (layoutPtr
->map
->MapSector
) (raidPtr
, sosAddr
+ i
* layoutPtr
->sectorsPerStripeUnit
,
697 &tcol
, &diskOffset
, 0);
698 if (RF_DEAD_DISK(raidPtr
->Disks
[tcol
].status
))
706 /****************************************************************************
710 ***************************************************************************/
713 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t
*asm_h
)
715 rf_PrintFullAccessStripeMap(asm_h
, 0);
719 /* prbuf - flag to print buffer pointers */
721 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t
*asm_h
, int prbuf
)
724 RF_AccessStripeMap_t
*asmap
= asm_h
->stripeMap
;
725 RF_PhysDiskAddr_t
*p
;
726 printf("%d stripes total\n", (int) asm_h
->numStripes
);
727 for (; asmap
; asmap
= asmap
->next
) {
728 /* printf("Num failures: %d\n",asmap->numDataFailed); */
729 /* printf("Num sectors:
730 * %d\n",(int)asmap->totalSectorsAccessed); */
731 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
732 (int) asmap
->stripeID
,
733 (int) asmap
->totalSectorsAccessed
,
734 (int) asmap
->numDataFailed
,
735 (int) asmap
->numParityFailed
);
736 if (asmap
->parityInfo
) {
737 printf("Parity [c%d s%d-%d", asmap
->parityInfo
->col
,
738 (int) asmap
->parityInfo
->startSector
,
739 (int) (asmap
->parityInfo
->startSector
+
740 asmap
->parityInfo
->numSector
- 1));
742 printf(" b0x%lx", (unsigned long) asmap
->parityInfo
->bufPtr
);
743 if (asmap
->parityInfo
->next
) {
744 printf(", c%d s%d-%d", asmap
->parityInfo
->next
->col
,
745 (int) asmap
->parityInfo
->next
->startSector
,
746 (int) (asmap
->parityInfo
->next
->startSector
+
747 asmap
->parityInfo
->next
->numSector
- 1));
749 printf(" b0x%lx", (unsigned long) asmap
->parityInfo
->next
->bufPtr
);
750 RF_ASSERT(asmap
->parityInfo
->next
->next
== NULL
);
754 for (i
= 0, p
= asmap
->physInfo
; p
; p
= p
->next
, i
++) {
755 printf("SU c%d s%d-%d ", p
->col
, (int) p
->startSector
,
756 (int) (p
->startSector
+ p
->numSector
- 1));
758 printf("b0x%lx ", (unsigned long) p
->bufPtr
);
763 p
= asm_h
->stripeMap
->failedPDAs
[0];
764 if (asm_h
->stripeMap
->numDataFailed
+ asm_h
->stripeMap
->numParityFailed
> 1)
765 printf("[multiple failures]\n");
767 if (asm_h
->stripeMap
->numDataFailed
+ asm_h
->stripeMap
->numParityFailed
> 0)
768 printf("\t[Failed PDA: c%d s%d-%d]\n", p
->col
,
769 (int) p
->startSector
, (int) (p
->startSector
+ p
->numSector
- 1));
775 rf_PrintRaidAddressInfo(RF_Raid_t
*raidPtr
, RF_RaidAddr_t raidAddr
,
776 RF_SectorCount_t numBlocks
)
778 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
779 RF_RaidAddr_t ra
, sosAddr
= rf_RaidAddressOfPrevStripeBoundary(layoutPtr
, raidAddr
);
781 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
782 for (ra
= sosAddr
; ra
<= raidAddr
+ numBlocks
; ra
+= layoutPtr
->sectorsPerStripeUnit
) {
783 printf("%d (0x%x), ", (int) ra
, (int) ra
);
786 printf("Offset into stripe unit: %d (0x%x)\n",
787 (int) (raidAddr
% layoutPtr
->sectorsPerStripeUnit
),
788 (int) (raidAddr
% layoutPtr
->sectorsPerStripeUnit
));
791 /* given a parity descriptor and the starting address within a stripe,
792 * range restrict the parity descriptor to touch only the correct
795 rf_ASMParityAdjust(RF_PhysDiskAddr_t
*toAdjust
,
796 RF_StripeNum_t startAddrWithinStripe
,
797 RF_SectorNum_t endAddress
,
798 RF_RaidLayout_t
*layoutPtr
,
799 RF_AccessStripeMap_t
*asm_p
)
801 RF_PhysDiskAddr_t
*new_pda
;
803 /* when we're accessing only a portion of one stripe unit, we
804 * want the parity descriptor to identify only the chunk of
805 * parity associated with the data. When the access spans
806 * exactly one stripe unit boundary and is less than a stripe
807 * unit in size, it uses two disjoint regions of the parity
808 * unit. When an access spans more than one stripe unit
809 * boundary, it uses all of the parity unit.
811 * To better handle the case where stripe units are small, we
812 * may eventually want to change the 2nd case so that if the
813 * SU size is below some threshold, we just read/write the
814 * whole thing instead of breaking it up into two accesses. */
815 if (asm_p
->numStripeUnitsAccessed
== 1) {
816 int x
= (startAddrWithinStripe
% layoutPtr
->sectorsPerStripeUnit
);
817 toAdjust
->startSector
+= x
;
818 toAdjust
->raidAddress
+= x
;
819 toAdjust
->numSector
= asm_p
->physInfo
->numSector
;
820 RF_ASSERT(toAdjust
->numSector
!= 0);
822 if (asm_p
->numStripeUnitsAccessed
== 2 && asm_p
->totalSectorsAccessed
< layoutPtr
->sectorsPerStripeUnit
) {
823 int x
= (startAddrWithinStripe
% layoutPtr
->sectorsPerStripeUnit
);
825 /* create a second pda and copy the parity map info
827 RF_ASSERT(toAdjust
->next
== NULL
);
828 /* the following will get freed in rf_FreeAccessStripeMap() via
830 new_pda
= toAdjust
->next
= rf_AllocPhysDiskAddr();
831 *new_pda
= *toAdjust
; /* structure assignment */
832 new_pda
->next
= NULL
;
834 /* adjust the start sector & number of blocks for the
835 * first parity pda */
836 toAdjust
->startSector
+= x
;
837 toAdjust
->raidAddress
+= x
;
838 toAdjust
->numSector
= rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr
, startAddrWithinStripe
) - startAddrWithinStripe
;
839 RF_ASSERT(toAdjust
->numSector
!= 0);
841 /* adjust the second pda */
842 new_pda
->numSector
= endAddress
- rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr
, endAddress
);
843 /* new_pda->raidAddress =
844 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
845 * toAdjust->raidAddress); */
846 RF_ASSERT(new_pda
->numSector
!= 0);
850 /* Check if a disk has been spared or failed. If spared, redirect the
851 * I/O. If it has been failed, record it in the asm pointer. Fourth
852 * arg is whether data or parity. */
854 rf_ASMCheckStatus(RF_Raid_t
*raidPtr
, RF_PhysDiskAddr_t
*pda_p
,
855 RF_AccessStripeMap_t
*asm_p
, RF_RaidDisk_t
*disks
,
858 RF_DiskStatus_t dstatus
;
861 dstatus
= disks
[pda_p
->col
].status
;
863 if (dstatus
== rf_ds_spared
) {
864 /* if the disk has been spared, redirect access to the spare */
866 pda_p
->col
= disks
[fcol
].spareCol
;
868 if (dstatus
== rf_ds_dist_spared
) {
869 /* ditto if disk has been spared to dist spare space */
871 RF_RowCol_t oc
= pda_p
->col
;
872 RF_SectorNum_t oo
= pda_p
->startSector
;
874 if (pda_p
->type
== RF_PDA_TYPE_DATA
)
875 raidPtr
->Layout
.map
->MapSector(raidPtr
, pda_p
->raidAddress
, &pda_p
->col
, &pda_p
->startSector
, RF_REMAP
);
877 raidPtr
->Layout
.map
->MapParity(raidPtr
, pda_p
->raidAddress
, &pda_p
->col
, &pda_p
->startSector
, RF_REMAP
);
881 printf("Redirected c %d o %d -> c %d o %d\n", oc
, (int) oo
,
882 pda_p
->col
, (int) pda_p
->startSector
);
886 if (RF_DEAD_DISK(dstatus
)) {
887 /* if the disk is inaccessible, mark the
890 asm_p
->numParityFailed
++;
892 asm_p
->numDataFailed
++;
894 asm_p
->failedPDAs
[asm_p
->numFailedPDAs
] = pda_p
;
895 asm_p
->numFailedPDAs
++;
897 switch (asm_p
->numParityFailed
+ asm_p
->numDataFailed
) {
899 asm_p
->failedPDAs
[0] = pda_p
;
902 asm_p
->failedPDAs
[1] = pda_p
;
908 /* the redirected access should never span a stripe unit boundary */
909 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr
->Layout
, pda_p
->raidAddress
) ==
910 rf_RaidAddressToStripeUnitID(&raidPtr
->Layout
, pda_p
->raidAddress
+ pda_p
->numSector
- 1));
911 RF_ASSERT(pda_p
->col
!= -1);