Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / raidframe / rf_paritymap.c
blob5c0f6e18607912c4360b3abd4aa56209b03e82b7
1 /* $NetBSD: rf_paritymap.c,v 1.2 2009/11/26 01:23:56 kenh Exp $ */
3 /*-
4 * Copyright (c) 2009 Jed Davis.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.2 2009/11/26 01:23:56 kenh Exp $");
32 #include <sys/param.h>
33 #include <sys/callout.h>
34 #include <sys/kmem.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
40 #include <dev/raidframe/rf_paritymap.h>
41 #include <dev/raidframe/rf_stripelocks.h>
42 #include <dev/raidframe/rf_layout.h>
43 #include <dev/raidframe/rf_raid.h>
44 #include <dev/raidframe/rf_parityscan.h>
45 #include <dev/raidframe/rf_kintf.h>
47 /* Important parameters: */
48 #define REGION_MINSIZE (25ULL << 20)
49 #define DFL_TICKMS 40000
50 #define DFL_COOLDOWN 8 /* 7-8 intervals of 40s = 5min +/- 20s */
52 /* Internal-use flag bits. */
53 #define TICKING 1
54 #define TICKED 2
56 /* Prototypes! */
57 static void rf_paritymap_write_locked(struct rf_paritymap *);
58 static void rf_paritymap_tick(void *);
59 static u_int rf_paritymap_nreg(RF_Raid_t *);
61 /* Extract the current status of the parity map. */
62 void
63 rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
65 memset(ps, 0, sizeof(*ps));
66 if (pm == NULL)
67 ps->enabled = 0;
68 else {
69 ps->enabled = 1;
70 ps->region_size = pm->region_size;
71 mutex_enter(&pm->lock);
72 memcpy(&ps->params, &pm->params, sizeof(ps->params));
73 memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74 memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75 mutex_exit(&pm->lock);
79 /*
80 * Test whether parity in a given sector is suspected of being inconsistent
81 * on disk (assuming that any pending I/O to it is allowed to complete).
82 * This may be of interest to future work on parity scrubbing.
84 int
85 rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
87 unsigned region = sector / pm->region_size;
88 int retval;
90 mutex_enter(&pm->lock);
91 retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92 mutex_exit(&pm->lock);
93 return retval;
96 /* To be called before a write to the RAID is submitted. */
97 void
98 rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
100 unsigned i, b, e;
102 b = offset / pm->region_size;
103 e = (offset + size - 1) / pm->region_size;
105 for (i = b; i <= e; i++)
106 rf_paritymap_begin_region(pm, i);
109 /* To be called after a write to the RAID completes. */
110 void
111 rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
113 unsigned i, b, e;
115 b = offset / pm->region_size;
116 e = (offset + size - 1) / pm->region_size;
118 for (i = b; i <= e; i++)
119 rf_paritymap_end_region(pm, i);
122 void
123 rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
125 int needs_write;
127 KASSERT(region < RF_PARITYMAP_NREG);
128 pm->ctrs.nwrite++;
130 /* If it was being kept warm, deal with that. */
131 mutex_enter(&pm->lock);
132 if (pm->current->state[region] < 0)
133 pm->current->state[region] = 0;
135 /* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136 KASSERT(pm->current->state[region] < 127);
137 pm->current->state[region]++;
139 needs_write = isclr(pm->disk_now->bits, region);
141 if (needs_write) {
142 KASSERT(pm->current->state[region] == 1);
143 rf_paritymap_write_locked(pm);
146 mutex_exit(&pm->lock);
149 void
150 rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
152 KASSERT(region < RF_PARITYMAP_NREG);
154 mutex_enter(&pm->lock);
155 KASSERT(pm->current->state[region] > 0);
156 --pm->current->state[region];
158 if (pm->current->state[region] <= 0) {
159 pm->current->state[region] = -pm->params.cooldown;
160 KASSERT(pm->current->state[region] <= 0);
161 mutex_enter(&pm->lk_flags);
162 if (!(pm->flags & TICKING)) {
163 pm->flags |= TICKING;
164 mutex_exit(&pm->lk_flags);
165 callout_schedule(&pm->ticker,
166 mstohz(pm->params.tickms));
167 } else
168 mutex_exit(&pm->lk_flags);
170 mutex_exit(&pm->lock);
174 * Updates the parity map to account for any changes in current activity
175 * and/or an ongoing parity scan, then writes it to disk with appropriate
176 * synchronization.
178 void
179 rf_paritymap_write(struct rf_paritymap *pm)
181 mutex_enter(&pm->lock);
182 rf_paritymap_write_locked(pm);
183 mutex_exit(&pm->lock);
186 /* As above, but to be used when pm->lock is already held. */
187 static void
188 rf_paritymap_write_locked(struct rf_paritymap *pm)
190 char w, w0;
191 int i, j, setting, clearing;
193 setting = clearing = 0;
194 for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195 w0 = pm->disk_now->bits[i];
196 w = pm->disk_boot->bits[i];
198 for (j = 0; j < NBBY; j++)
199 if (pm->current->state[i * NBBY + j] != 0)
200 w |= 1 << j;
202 if (w & ~w0)
203 setting = 1;
204 if (w0 & ~w)
205 clearing = 1;
207 pm->disk_now->bits[i] = w;
209 pm->ctrs.ncachesync += setting + clearing;
210 pm->ctrs.nclearing += clearing;
213 * If bits are being set in the parity map, then a sync is
214 * required afterwards, so that the regions are marked dirty
215 * on disk before any writes to them take place. If bits are
216 * being cleared, then a sync is required before the write, so
217 * that any writes to those regions are processed before the
218 * region is marked clean. (Synchronization is somewhat
219 * overkill; a write ordering barrier would suffice, but we
220 * currently have no way to express that directly.)
222 if (clearing)
223 rf_sync_component_caches(pm->raid);
224 rf_paritymap_kern_write(pm->raid, pm->disk_now);
225 if (setting)
226 rf_sync_component_caches(pm->raid);
229 /* Mark all parity as being in need of rewrite. */
230 void
231 rf_paritymap_invalidate(struct rf_paritymap *pm)
233 mutex_enter(&pm->lock);
234 memset(pm->disk_boot, ~(unsigned char)0,
235 sizeof(struct rf_paritymap_ondisk));
236 mutex_exit(&pm->lock);
239 /* Mark all parity as being correct. */
240 void
241 rf_paritymap_forceclean(struct rf_paritymap *pm)
243 mutex_enter(&pm->lock);
244 memset(pm->disk_boot, (unsigned char)0,
245 sizeof(struct rf_paritymap_ondisk));
246 mutex_exit(&pm->lock);
250 * The cooldown callout routine just defers its work to a thread; it can't do
251 * the parity map write itself as it would block, and although mutex-induced
252 * blocking is permitted it seems wise to avoid tying up the softint.
254 static void
255 rf_paritymap_tick(void *arg)
257 struct rf_paritymap *pm = arg;
259 mutex_enter(&pm->lk_flags);
260 pm->flags |= TICKED;
261 mutex_exit(&pm->lk_flags);
262 wakeup(&(pm->raid->iodone)); /* XXX */
266 * This is where the parity cooling work (and rearming the callout if needed)
267 * is done; the raidio thread calls it when woken up, as by the above.
269 void
270 rf_paritymap_checkwork(struct rf_paritymap *pm)
272 int i, zerop, progressp;
274 mutex_enter(&pm->lk_flags);
275 if (pm->flags & TICKED) {
276 zerop = progressp = 0;
278 pm->flags &= ~TICKED;
279 mutex_exit(&pm->lk_flags);
281 mutex_enter(&pm->lock);
282 for (i = 0; i < RF_PARITYMAP_NREG; i++) {
283 if (pm->current->state[i] < 0) {
284 progressp = 1;
285 pm->current->state[i]++;
286 if (pm->current->state[i] == 0)
287 zerop = 1;
291 if (progressp)
292 callout_schedule(&pm->ticker,
293 mstohz(pm->params.tickms));
294 else {
295 mutex_enter(&pm->lk_flags);
296 pm->flags &= ~TICKING;
297 mutex_exit(&pm->lk_flags);
300 if (zerop)
301 rf_paritymap_write_locked(pm);
302 mutex_exit(&pm->lock);
303 } else
304 mutex_exit(&pm->lk_flags);
308 * Set parity map parameters; used both to alter parameters on the fly and to
309 * establish their initial values. Note that setting a parameter to 0 means
310 * to leave the previous setting unchanged, and that if this is done for the
311 * initial setting of "regions", then a default value will be computed based
312 * on the RAID component size.
315 rf_paritymap_set_params(struct rf_paritymap *pm,
316 const struct rf_pmparams *params, int todisk)
318 int cooldown, tickms;
319 u_int regions;
320 RF_RowCol_t col;
321 RF_ComponentLabel_t *clabel;
322 RF_Raid_t *raidPtr;
324 cooldown = params->cooldown != 0
325 ? params->cooldown : pm->params.cooldown;
326 tickms = params->tickms != 0
327 ? params->tickms : pm->params.tickms;
328 regions = params->regions != 0
329 ? params->regions : pm->params.regions;
331 if (cooldown < 1 || cooldown > 128) {
332 printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
333 cooldown);
334 return (-1);
336 if (tickms < 10) {
337 printf("raid%d: tick time %dms out of range\n",
338 pm->raid->raidid, tickms);
339 return (-1);
341 if (regions == 0) {
342 regions = rf_paritymap_nreg(pm->raid);
343 } else if (regions > RF_PARITYMAP_NREG) {
344 printf("raid%d: region count %u too large (more than %u)\n",
345 pm->raid->raidid, regions, RF_PARITYMAP_NREG);
346 return (-1);
349 /* XXX any currently warm parity will be used with the new tickms! */
350 pm->params.cooldown = cooldown;
351 pm->params.tickms = tickms;
352 /* Apply the initial region count, but do not change it after that. */
353 if (pm->params.regions == 0)
354 pm->params.regions = regions;
356 /* So that the newly set parameters can be tested: */
357 pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
359 if (todisk) {
360 raidPtr = pm->raid;
361 for (col = 0; col < raidPtr->numCol; col++) {
362 clabel = raidget_component_label(raidPtr, col);
363 clabel->parity_map_ntick = cooldown;
364 clabel->parity_map_tickms = tickms;
365 clabel->parity_map_regions = regions;
366 raidflush_component_label(raidPtr, col);
369 return 0;
373 * The number of regions may not be as many as can fit into the map, because
374 * when regions are too small, the overhead of setting parity map bits
375 * becomes significant in comparison to the actual I/O, while the
376 * corresponding gains in parity verification time become negligible. Thus,
377 * a minimum region size (defined above) is imposed.
379 * Note that, if the number of regions is less than the maximum, then some of
380 * the regions will be "fictional", corresponding to no actual disk; some
381 * parts of the code may process them as normal, but they can not ever be
382 * written to.
384 static u_int
385 rf_paritymap_nreg(RF_Raid_t *raid)
387 daddr_t bytes_per_disk, nreg;
389 bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
390 nreg = bytes_per_disk / REGION_MINSIZE;
391 if (nreg > RF_PARITYMAP_NREG)
392 nreg = RF_PARITYMAP_NREG;
394 return (u_int)nreg;
398 * Initialize a parity map given specific parameters. This neither reads nor
399 * writes the parity map config in the component labels; for that, see below.
402 rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
403 const struct rf_pmparams *params)
405 daddr_t rstripes;
406 struct rf_pmparams safe;
408 pm->raid = raid;
409 pm->params.regions = 0;
410 if (0 != rf_paritymap_set_params(pm, params, 0)) {
412 * If the parameters are out-of-range, then bring the
413 * parity map up with something reasonable, so that
414 * the admin can at least go and fix it (or ignore it
415 * entirely).
417 safe.cooldown = DFL_COOLDOWN;
418 safe.tickms = DFL_TICKMS;
419 safe.regions = 0;
421 if (0 != rf_paritymap_set_params(pm, &safe, 0))
422 return (-1);
425 rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
426 pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
428 callout_init(&pm->ticker, CALLOUT_MPSAFE);
429 callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
430 pm->flags = 0;
432 pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
433 KM_SLEEP);
434 pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
435 KM_SLEEP);
436 pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
437 KM_SLEEP);
439 rf_paritymap_kern_read(pm->raid, pm->disk_boot);
440 memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
442 mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
443 mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
445 return 0;
449 * Destroys a parity map; unless "force" is set, also cleans parity for any
450 * regions which were still in cooldown (but are not dirty on disk).
452 void
453 rf_paritymap_destroy(struct rf_paritymap *pm, int force)
455 int i;
457 callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
458 callout_destroy(&pm->ticker);
460 if (!force) {
461 for (i = 0; i < RF_PARITYMAP_NREG; i++) {
462 /* XXX check for > 0 ? */
463 if (pm->current->state[i] < 0)
464 pm->current->state[i] = 0;
467 rf_paritymap_write_locked(pm);
470 mutex_destroy(&pm->lock);
471 mutex_destroy(&pm->lk_flags);
473 kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
474 kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
475 kmem_free(pm->current, sizeof(struct rf_paritymap_current));
479 * Rewrite parity, taking parity map into account; this is the equivalent of
480 * the old rf_RewriteParity, and is likewise to be called from a suitable
481 * thread and shouldn't have multiple copies running in parallel and so on.
483 * Note that the fictional regions are "cleaned" in one shot, so that very
484 * small RAIDs (useful for testing) will not experience potentially severe
485 * regressions in rewrite time.
488 rf_paritymap_rewrite(struct rf_paritymap *pm)
490 int i, ret_val = 0;
491 daddr_t reg_b, reg_e;
493 /* Process only the actual regions. */
494 for (i = 0; i < pm->params.regions; i++) {
495 mutex_enter(&pm->lock);
496 if (isset(pm->disk_boot->bits, i)) {
497 mutex_exit(&pm->lock);
499 reg_b = i * pm->region_size;
500 reg_e = reg_b + pm->region_size;
501 if (reg_e > pm->raid->totalSectors)
502 reg_e = pm->raid->totalSectors;
504 if (rf_RewriteParityRange(pm->raid, reg_b,
505 reg_e - reg_b)) {
506 ret_val = 1;
507 if (pm->raid->waitShutdown)
508 return ret_val;
509 } else {
510 mutex_enter(&pm->lock);
511 clrbit(pm->disk_boot->bits, i);
512 rf_paritymap_write_locked(pm);
513 mutex_exit(&pm->lock);
515 } else {
516 mutex_exit(&pm->lock);
520 /* Now, clear the fictional regions, if any. */
521 rf_paritymap_forceclean(pm);
522 rf_paritymap_write(pm);
524 return ret_val;
528 * How to merge the on-disk parity maps when reading them in from the
529 * various components; returns whether they differ. In the case that
530 * they do differ, sets *dst to the union of *dst and *src.
532 * In theory, it should be safe to take the intersection (or just pick
533 * a single component arbitrarily), but the paranoid approach costs
534 * little.
536 * Appropriate locking, if any, is the responsibility of the caller.
539 rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
540 struct rf_paritymap_ondisk *src)
542 int i, discrep = 0;
544 for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
545 if (dst->bits[i] != src->bits[i])
546 discrep = 1;
547 dst->bits[i] |= src->bits[i];
550 return discrep;
554 * Detach a parity map from its RAID. This is not meant to be applied except
555 * when unconfiguring the RAID after all I/O has been resolved, as otherwise
556 * an out-of-date parity map could be treated as current.
558 void
559 rf_paritymap_detach(RF_Raid_t *raidPtr)
561 if (raidPtr->parity_map == NULL)
562 return;
564 simple_lock(&(raidPtr->iodone_lock));
565 struct rf_paritymap *pm = raidPtr->parity_map;
566 raidPtr->parity_map = NULL;
567 simple_unlock(&(raidPtr->iodone_lock));
568 /* XXXjld is that enough locking? Or too much? */
569 rf_paritymap_destroy(pm, 0);
570 kmem_free(pm, sizeof(*pm));
574 * Attach a parity map to a RAID set if appropriate. Includes
575 * configure-time processing of parity-map fields of component label.
577 void
578 rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
580 RF_RowCol_t col;
581 int pm_use, pm_zap;
582 int g_tickms, g_ntick, g_regions;
583 int good;
584 RF_ComponentLabel_t *clabel;
585 u_int flags, regions;
586 struct rf_pmparams params;
588 if (raidPtr->Layout.map->faultsTolerated == 0) {
589 /* There isn't any parity. */
590 return;
593 pm_use = 1;
594 pm_zap = 0;
595 g_tickms = DFL_TICKMS;
596 g_ntick = DFL_COOLDOWN;
597 g_regions = 0;
600 * Collect opinions on the set config. If this is the initial
601 * config (raidctl -C), treat all labels as invalid, since
602 * there may be random data present.
604 if (!force) {
605 for (col = 0; col < raidPtr->numCol; col++) {
606 clabel = raidget_component_label(raidPtr, col);
607 flags = clabel->parity_map_flags;
608 /* Check for use by non-parity-map kernel. */
609 if (clabel->parity_map_modcount
610 != clabel->mod_counter) {
611 flags &= ~RF_PMLABEL_WASUSED;
614 if (flags & RF_PMLABEL_VALID) {
615 g_tickms = clabel->parity_map_tickms;
616 g_ntick = clabel->parity_map_ntick;
617 regions = clabel->parity_map_regions;
618 if (g_regions == 0)
619 g_regions = regions;
620 else if (g_regions != regions) {
621 pm_zap = 1; /* important! */
624 if (flags & RF_PMLABEL_DISABLE) {
625 pm_use = 0;
627 if (!(flags & RF_PMLABEL_WASUSED)) {
628 pm_zap = 1;
630 } else {
631 pm_zap = 1;
634 } else {
635 pm_zap = 1;
638 /* Finally, create and attach the parity map. */
639 if (pm_use) {
640 params.cooldown = g_ntick;
641 params.tickms = g_tickms;
642 params.regions = g_regions;
644 raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
645 KM_SLEEP);
646 if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
647 &params)) {
648 /* It failed; do without. */
649 kmem_free(raidPtr->parity_map,
650 sizeof(struct rf_paritymap));
651 raidPtr->parity_map = NULL;
652 return;
655 if (g_regions == 0)
656 /* Pick up the autoconfigured region count. */
657 g_regions = raidPtr->parity_map->params.regions;
659 if (pm_zap) {
660 good = raidPtr->parity_good && !force;
662 if (good)
663 rf_paritymap_forceclean(raidPtr->parity_map);
664 else
665 rf_paritymap_invalidate(raidPtr->parity_map);
666 /* This needs to be on disk before WASUSED is set. */
667 rf_paritymap_write(raidPtr->parity_map);
671 /* Alter labels in-core to reflect the current view of things. */
672 for (col = 0; col < raidPtr->numCol; col++) {
673 clabel = raidget_component_label(raidPtr, col);
675 if (pm_use)
676 flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
677 else
678 flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
680 clabel->parity_map_flags = flags;
681 clabel->parity_map_tickms = g_tickms;
682 clabel->parity_map_ntick = g_ntick;
683 clabel->parity_map_regions = g_regions;
684 raidflush_component_label(raidPtr, col);
689 * For initializing the parity-map fields of a component label, both on
690 * initial creation and on reconstruct/copyback/etc.
692 void
693 rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
695 if (pm != NULL) {
696 clabel->parity_map_flags =
697 RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
698 clabel->parity_map_tickms = pm->params.tickms;
699 clabel->parity_map_ntick = pm->params.cooldown;
701 * XXXjld: If the number of regions is changed on disk, and
702 * then a new component is labeled before the next configure,
703 * then it will get the old value and they will conflict on
704 * the next boot (and the default will be used instead).
706 clabel->parity_map_regions = pm->params.regions;
707 } else {
709 * XXXjld: if the map is disabled, and all the components are
710 * replaced without an intervening unconfigure/reconfigure,
711 * then it will become enabled on the next unconfig/reconfig.
717 /* Will the parity map be disabled next time? */
719 rf_paritymap_get_disable(RF_Raid_t *raidPtr)
721 RF_ComponentLabel_t *clabel;
722 RF_RowCol_t col;
723 int dis;
725 dis = 0;
726 for (col = 0; col < raidPtr->numCol; col++) {
727 clabel = raidget_component_label(raidPtr, col);
728 if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
729 dis = 1;
732 return dis;
735 /* Set whether the parity map will be disabled next time. */
736 void
737 rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
739 RF_ComponentLabel_t *clabel;
740 RF_RowCol_t col;
742 for (col = 0; col < raidPtr->numCol; col++) {
743 clabel = raidget_component_label(raidPtr, col);
744 if (dis)
745 clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
746 else
747 clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
748 raidflush_component_label(raidPtr, col);