1 /* $NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $ */
3 * Copyright (c) 1995 Carnegie-Mellon University.
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /************************************************************
31 * rf_reconstruct.c -- code to perform on-line reconstruction
33 ************************************************************/
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $");
38 #include <sys/param.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
61 #include "rf_shutdown.h"
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 #else /* RF_DEBUG_RECON */
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
94 #endif /* RF_DEBUG_RECON */
96 #define RF_RECON_DONE_READS 1
97 #define RF_RECON_READ_ERROR 2
98 #define RF_RECON_WRITE_ERROR 3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE 5
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
105 static RF_RaidReconDesc_t
*AllocRaidReconDesc(RF_Raid_t
*, RF_RowCol_t
,
106 RF_RaidDisk_t
*, int, RF_RowCol_t
);
107 static void FreeReconDesc(RF_RaidReconDesc_t
*);
108 static int ProcessReconEvent(RF_Raid_t
*, RF_ReconEvent_t
*);
109 static int IssueNextReadRequest(RF_Raid_t
*, RF_RowCol_t
);
110 static int TryToRead(RF_Raid_t
*, RF_RowCol_t
);
111 static int ComputePSDiskOffsets(RF_Raid_t
*, RF_StripeNum_t
, RF_RowCol_t
,
112 RF_SectorNum_t
*, RF_SectorNum_t
*, RF_RowCol_t
*,
114 static int IssueNextWriteRequest(RF_Raid_t
*);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t
*, RF_HeadSepLimit_t
);
118 static int CheckHeadSeparation(RF_Raid_t
*, RF_PerDiskReconCtrl_t
*,
119 RF_RowCol_t
, RF_HeadSepLimit_t
,
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t
*,
122 RF_ReconParityStripeStatus_t
*,
123 RF_PerDiskReconCtrl_t
*,
124 RF_RowCol_t
, RF_StripeNum_t
,
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
129 struct RF_ReconDoneProc_s
{
130 void (*proc
) (RF_Raid_t
*, void *);
132 RF_ReconDoneProc_t
*next
;
135 /**************************************************************************
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
141 * in the kernel, we fire off the recon thread.
143 **************************************************************************/
145 rf_ShutdownReconstruction(void *ignored
)
147 pool_destroy(&rf_pools
.reconbuffer
);
151 rf_ConfigureReconstruction(RF_ShutdownList_t
**listp
)
154 rf_pool_init(&rf_pools
.reconbuffer
, sizeof(RF_ReconBuffer_t
),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER
, RF_MAX_FREE_RECONBUFFER
);
156 rf_ShutdownCreate(listp
, rf_ShutdownReconstruction
, NULL
);
161 static RF_RaidReconDesc_t
*
162 AllocRaidReconDesc(RF_Raid_t
*raidPtr
, RF_RowCol_t col
,
163 RF_RaidDisk_t
*spareDiskPtr
, int numDisksDone
,
167 RF_RaidReconDesc_t
*reconDesc
;
169 RF_Malloc(reconDesc
, sizeof(RF_RaidReconDesc_t
),
170 (RF_RaidReconDesc_t
*));
171 reconDesc
->raidPtr
= raidPtr
;
172 reconDesc
->col
= col
;
173 reconDesc
->spareDiskPtr
= spareDiskPtr
;
174 reconDesc
->numDisksDone
= numDisksDone
;
175 reconDesc
->scol
= scol
;
176 reconDesc
->next
= NULL
;
182 FreeReconDesc(RF_RaidReconDesc_t
*reconDesc
)
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc
->raidPtr
->raidid
,
187 (long) reconDesc
->numReconEventWaits
,
188 (long) reconDesc
->numReconExecDelays
);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc
->raidPtr
->raidid
,
192 (long) reconDesc
->maxReconExecTicks
);
193 RF_Free(reconDesc
, sizeof(RF_RaidReconDesc_t
));
197 /*****************************************************************************
199 * primary routine to reconstruct a failed disk. This should be called from
200 * within its own thread. It won't return until reconstruction completes,
201 * fails, or is aborted.
202 *****************************************************************************/
204 rf_ReconstructFailedDisk(RF_Raid_t
*raidPtr
, RF_RowCol_t col
)
206 const RF_LayoutSW_t
*lp
;
209 lp
= raidPtr
->Layout
.map
;
210 if (lp
->SubmitReconBuffer
) {
212 * The current infrastructure only supports reconstructing one
213 * disk at a time for each array.
215 RF_LOCK_MUTEX(raidPtr
->mutex
);
216 while (raidPtr
->reconInProgress
) {
217 RF_WAIT_COND(raidPtr
->waitForReconCond
, raidPtr
->mutex
);
219 raidPtr
->reconInProgress
++;
220 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
221 rc
= rf_ReconstructFailedDiskBasic(raidPtr
, col
);
222 RF_LOCK_MUTEX(raidPtr
->mutex
);
223 raidPtr
->reconInProgress
--;
224 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
235 rf_ReconstructFailedDiskBasic(RF_Raid_t
*raidPtr
, RF_RowCol_t col
)
237 RF_ComponentLabel_t
*c_label
;
238 RF_RaidDisk_t
*spareDiskPtr
= NULL
;
239 RF_RaidReconDesc_t
*reconDesc
;
241 int numDisksDone
= 0, rc
;
243 /* first look for a spare drive onto which to reconstruct the data */
244 /* spare disk descriptors are stored in row 0. This may have to
245 * change eventually */
247 RF_LOCK_MUTEX(raidPtr
->mutex
);
248 RF_ASSERT(raidPtr
->Disks
[col
].status
== rf_ds_failed
);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 if (raidPtr
->Layout
.map
->flags
& RF_DISTRIBUTE_SPARE
) {
251 if (raidPtr
->status
!= rf_rs_degraded
) {
252 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col
);
253 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
259 for (scol
= raidPtr
->numCol
; scol
< raidPtr
->numCol
+ raidPtr
->numSpare
; scol
++) {
260 if (raidPtr
->Disks
[scol
].status
== rf_ds_spare
) {
261 spareDiskPtr
= &raidPtr
->Disks
[scol
];
262 spareDiskPtr
->status
= rf_ds_used_spare
;
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col
);
268 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col
, scol
);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
277 reconDesc
= AllocRaidReconDesc((void *) raidPtr
, col
, spareDiskPtr
, numDisksDone
, scol
);
278 raidPtr
->reconDesc
= (void *) reconDesc
;
279 #if RF_RECON_STATS > 0
280 reconDesc
->hsStallCount
= 0;
281 reconDesc
->numReconExecDelays
= 0;
282 reconDesc
->numReconEventWaits
= 0;
283 #endif /* RF_RECON_STATS > 0 */
284 reconDesc
->reconExecTimerRunning
= 0;
285 reconDesc
->reconExecTicks
= 0;
286 reconDesc
->maxReconExecTicks
= 0;
287 rc
= rf_ContinueReconstructFailedDisk(reconDesc
);
290 /* fix up the component label */
291 /* Don't actually need the read here.. */
292 c_label
= raidget_component_label(raidPtr
, scol
);
294 raid_init_component_label(raidPtr
, c_label
);
296 c_label
->column
= col
;
297 c_label
->clean
= RF_RAID_DIRTY
;
298 c_label
->status
= rf_ds_optimal
;
299 c_label
->partitionSize
= raidPtr
->Disks
[scol
].partitionSize
;
301 /* We've just done a rebuild based on all the other
302 disks, so at this point the parity is known to be
303 clean, even if it wasn't before. */
305 /* XXX doesn't hold for RAID 6!!*/
307 RF_LOCK_MUTEX(raidPtr
->mutex
);
308 raidPtr
->parity_good
= RF_RAID_CLEAN
;
309 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
311 /* XXXX MORE NEEDED HERE */
313 raidflush_component_label(raidPtr
, scol
);
315 /* Reconstruct failed. */
317 RF_LOCK_MUTEX(raidPtr
->mutex
);
318 /* Failed disk goes back to "failed" status */
319 raidPtr
->Disks
[col
].status
= rf_ds_failed
;
321 /* Spare disk goes back to "spare" status. */
322 spareDiskPtr
->status
= rf_ds_spare
;
323 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
326 rf_update_component_labels(raidPtr
, RF_NORMAL_COMPONENT_UPDATE
);
332 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
333 and you don't get a spare until the next Monday. With this function
334 (and hot-swappable drives) you can now put your new disk containing
335 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
336 rebuild the data "on the spot".
341 rf_ReconstructInPlace(RF_Raid_t
*raidPtr
, RF_RowCol_t col
)
343 RF_RaidDisk_t
*spareDiskPtr
= NULL
;
344 RF_RaidReconDesc_t
*reconDesc
;
345 const RF_LayoutSW_t
*lp
;
346 RF_ComponentLabel_t
*c_label
;
347 int numDisksDone
= 0, rc
;
348 struct partinfo dpart
;
354 lp
= raidPtr
->Layout
.map
;
355 if (!lp
->SubmitReconBuffer
) {
356 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
358 /* wakeup anyone who might be waiting to do a reconstruct */
359 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
364 * The current infrastructure only supports reconstructing one
365 * disk at a time for each array.
367 RF_LOCK_MUTEX(raidPtr
->mutex
);
369 if (raidPtr
->Disks
[col
].status
!= rf_ds_failed
) {
371 raidPtr
->numFailures
++;
372 raidPtr
->Disks
[col
].status
= rf_ds_failed
;
373 raidPtr
->status
= rf_rs_degraded
;
374 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
375 rf_update_component_labels(raidPtr
,
376 RF_NORMAL_COMPONENT_UPDATE
);
377 RF_LOCK_MUTEX(raidPtr
->mutex
);
380 while (raidPtr
->reconInProgress
) {
381 RF_WAIT_COND(raidPtr
->waitForReconCond
, raidPtr
->mutex
);
384 raidPtr
->reconInProgress
++;
386 /* first look for a spare drive onto which to reconstruct the
387 data. spare disk descriptors are stored in row 0. This
388 may have to change eventually */
390 /* Actually, we don't care if it's failed or not... On a RAID
391 set with correct parity, this function should be callable
392 on any component without ill effects. */
393 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
395 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
396 if (raidPtr
->Layout
.map
->flags
& RF_DISTRIBUTE_SPARE
) {
397 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col
);
399 raidPtr
->reconInProgress
--;
400 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
401 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
406 /* This device may have been opened successfully the
407 first time. Close it before trying to open it again.. */
409 if (raidPtr
->raid_cinfo
[col
].ci_vp
!= NULL
) {
411 printf("Closed the open device: %s\n",
412 raidPtr
->Disks
[col
].devname
);
414 vp
= raidPtr
->raid_cinfo
[col
].ci_vp
;
415 ac
= raidPtr
->Disks
[col
].auto_configured
;
416 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
417 rf_close_component(raidPtr
, vp
, ac
);
418 RF_LOCK_MUTEX(raidPtr
->mutex
);
419 raidPtr
->raid_cinfo
[col
].ci_vp
= NULL
;
421 /* note that this disk was *not* auto_configured (any longer)*/
422 raidPtr
->Disks
[col
].auto_configured
= 0;
425 printf("About to (re-)open the device for rebuilding: %s\n",
426 raidPtr
->Disks
[col
].devname
);
428 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
429 retcode
= dk_lookup(raidPtr
->Disks
[col
].devname
, curlwp
, &vp
, UIO_SYSSPACE
);
432 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr
->raidid
,
433 raidPtr
->Disks
[col
].devname
, retcode
);
435 /* the component isn't responding properly...
436 must be still dead :-( */
437 RF_LOCK_MUTEX(raidPtr
->mutex
);
438 raidPtr
->reconInProgress
--;
439 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
440 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
444 /* Ok, so we can at least do a lookup...
445 How about actually getting a vp for it? */
447 if ((retcode
= VOP_GETATTR(vp
, &va
, curlwp
->l_cred
)) != 0) {
448 RF_LOCK_MUTEX(raidPtr
->mutex
);
449 raidPtr
->reconInProgress
--;
450 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
451 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
455 retcode
= VOP_IOCTL(vp
, DIOCGPART
, &dpart
, FREAD
, curlwp
->l_cred
);
457 RF_LOCK_MUTEX(raidPtr
->mutex
);
458 raidPtr
->reconInProgress
--;
459 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
460 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
463 RF_LOCK_MUTEX(raidPtr
->mutex
);
464 raidPtr
->Disks
[col
].blockSize
= dpart
.disklab
->d_secsize
;
466 raidPtr
->Disks
[col
].numBlocks
= dpart
.part
->p_size
-
469 raidPtr
->raid_cinfo
[col
].ci_vp
= vp
;
470 raidPtr
->raid_cinfo
[col
].ci_dev
= va
.va_rdev
;
472 raidPtr
->Disks
[col
].dev
= va
.va_rdev
;
474 /* we allow the user to specify that only a fraction
475 of the disks should be used this is just for debug:
476 it speeds up * the parity scan */
477 raidPtr
->Disks
[col
].numBlocks
= raidPtr
->Disks
[col
].numBlocks
*
478 rf_sizePercentage
/ 100;
479 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
481 spareDiskPtr
= &raidPtr
->Disks
[col
];
482 spareDiskPtr
->status
= rf_ds_used_spare
;
484 printf("raid%d: initiating in-place reconstruction on column %d\n",
485 raidPtr
->raidid
, col
);
487 reconDesc
= AllocRaidReconDesc((void *) raidPtr
, col
, spareDiskPtr
,
489 raidPtr
->reconDesc
= (void *) reconDesc
;
490 #if RF_RECON_STATS > 0
491 reconDesc
->hsStallCount
= 0;
492 reconDesc
->numReconExecDelays
= 0;
493 reconDesc
->numReconEventWaits
= 0;
494 #endif /* RF_RECON_STATS > 0 */
495 reconDesc
->reconExecTimerRunning
= 0;
496 reconDesc
->reconExecTicks
= 0;
497 reconDesc
->maxReconExecTicks
= 0;
498 rc
= rf_ContinueReconstructFailedDisk(reconDesc
);
501 RF_LOCK_MUTEX(raidPtr
->mutex
);
502 /* Need to set these here, as at this point it'll be claiming
503 that the disk is in rf_ds_spared! But we know better :-) */
505 raidPtr
->Disks
[col
].status
= rf_ds_optimal
;
506 raidPtr
->status
= rf_rs_optimal
;
507 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
509 /* fix up the component label */
510 /* Don't actually need the read here.. */
511 c_label
= raidget_component_label(raidPtr
, col
);
513 RF_LOCK_MUTEX(raidPtr
->mutex
);
514 raid_init_component_label(raidPtr
, c_label
);
517 c_label
->column
= col
;
519 /* We've just done a rebuild based on all the other
520 disks, so at this point the parity is known to be
521 clean, even if it wasn't before. */
523 /* XXX doesn't hold for RAID 6!!*/
525 raidPtr
->parity_good
= RF_RAID_CLEAN
;
526 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
528 raidflush_component_label(raidPtr
, col
);
530 /* Reconstruct-in-place failed. Disk goes back to
531 "failed" status, regardless of what it was before. */
532 RF_LOCK_MUTEX(raidPtr
->mutex
);
533 raidPtr
->Disks
[col
].status
= rf_ds_failed
;
534 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
537 rf_update_component_labels(raidPtr
, RF_NORMAL_COMPONENT_UPDATE
);
539 RF_LOCK_MUTEX(raidPtr
->mutex
);
540 raidPtr
->reconInProgress
--;
541 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
543 RF_SIGNAL_COND(raidPtr
->waitForReconCond
);
549 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t
*reconDesc
)
551 RF_Raid_t
*raidPtr
= reconDesc
->raidPtr
;
552 RF_RowCol_t col
= reconDesc
->col
;
553 RF_RowCol_t scol
= reconDesc
->scol
;
554 RF_ReconMap_t
*mapPtr
;
555 RF_ReconCtrl_t
*tmp_reconctrl
;
556 RF_ReconEvent_t
*event
;
557 RF_StripeCount_t incPSID
,lastPSID
,num_writes
,pending_writes
,prev
;
558 RF_ReconUnitCount_t RUsPerPU
;
559 struct timeval etime
, elpsd
;
560 unsigned long xor_s
, xor_resid_us
;
563 int recon_error
, write_error
;
565 raidPtr
->accumXorTimeUs
= 0;
567 /* create one trace record per physical disk */
568 RF_Malloc(raidPtr
->recon_tracerecs
, raidPtr
->numCol
* sizeof(RF_AccTraceEntry_t
), (RF_AccTraceEntry_t
*));
571 /* quiesce the array prior to starting recon. this is needed
572 * to assure no nasty interactions with pending user writes.
573 * We need to do this before we change the disk or row status. */
575 Dprintf("RECON: begin request suspend\n");
576 rf_SuspendNewRequestsAndWait(raidPtr
);
577 Dprintf("RECON: end request suspend\n");
579 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
580 tmp_reconctrl
= rf_MakeReconControl(reconDesc
, col
, scol
);
582 RF_LOCK_MUTEX(raidPtr
->mutex
);
584 /* create the reconstruction control pointer and install it in
586 raidPtr
->reconControl
= tmp_reconctrl
;
587 mapPtr
= raidPtr
->reconControl
->reconMap
;
588 raidPtr
->reconControl
->numRUsTotal
= mapPtr
->totalRUs
;
589 raidPtr
->reconControl
->numRUsComplete
= 0;
590 raidPtr
->status
= rf_rs_reconstructing
;
591 raidPtr
->Disks
[col
].status
= rf_ds_reconstructing
;
592 raidPtr
->Disks
[col
].spareCol
= scol
;
594 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
596 RF_GETTIME(raidPtr
->reconControl
->starttime
);
598 Dprintf("RECON: resume requests\n");
599 rf_ResumeNewRequests(raidPtr
);
602 mapPtr
= raidPtr
->reconControl
->reconMap
;
604 incPSID
= RF_RECONMAP_SIZE
;
605 lastPSID
= raidPtr
->Layout
.numStripe
/ raidPtr
->Layout
.SUsPerPU
;
606 RUsPerPU
= raidPtr
->Layout
.SUsPerPU
/ raidPtr
->Layout
.SUsPerRU
;
609 pending_writes
= incPSID
;
610 raidPtr
->reconControl
->lastPSID
= incPSID
;
612 /* start the actual reconstruction */
617 if (raidPtr
->waitShutdown
) {
618 /* someone is unconfiguring this array... bail on the reconstruct.. */
625 /* issue a read for each surviving disk */
627 reconDesc
->numDisksDone
= 0;
628 for (i
= 0; i
< raidPtr
->numCol
; i
++) {
630 /* find and issue the next I/O on the
632 if (IssueNextReadRequest(raidPtr
, i
)) {
633 Dprintf1("RECON: done issuing for c%d\n", i
);
634 reconDesc
->numDisksDone
++;
639 /* process reconstruction events until all disks report that
640 * they've completed all work */
642 while (reconDesc
->numDisksDone
< raidPtr
->numCol
- 1) {
644 event
= rf_GetNextReconEvent(reconDesc
);
645 status
= ProcessReconEvent(raidPtr
, event
);
647 /* the normal case is that a read completes, and all is well. */
648 if (status
== RF_RECON_DONE_READS
) {
649 reconDesc
->numDisksDone
++;
650 } else if ((status
== RF_RECON_READ_ERROR
) ||
651 (status
== RF_RECON_WRITE_ERROR
)) {
652 /* an error was encountered while reconstructing...
653 Pretend we've finished this disk.
656 raidPtr
->reconControl
->error
= 1;
658 /* bump the numDisksDone count for reads,
659 but not for writes */
660 if (status
== RF_RECON_READ_ERROR
)
661 reconDesc
->numDisksDone
++;
663 /* write errors are special -- when we are
664 done dealing with the reads that are
665 finished, we don't want to wait for any
667 if (status
== RF_RECON_WRITE_ERROR
) {
672 } else if (status
== RF_RECON_READ_STOPPED
) {
673 /* count this component as being "done" */
674 reconDesc
->numDisksDone
++;
675 } else if (status
== RF_RECON_WRITE_DONE
) {
680 /* make sure any stragglers are woken up so that
681 their theads will complete, and we can get out
682 of here with all IO processed */
684 rf_WakeupHeadSepCBWaiters(raidPtr
);
687 raidPtr
->reconControl
->numRUsTotal
=
689 raidPtr
->reconControl
->numRUsComplete
=
691 rf_UnitsLeftToReconstruct(mapPtr
);
694 raidPtr
->reconControl
->percentComplete
=
695 (raidPtr
->reconControl
->numRUsComplete
* 100 / raidPtr
->reconControl
->numRUsTotal
);
696 if (rf_prReconSched
) {
697 rf_PrintReconSchedule(raidPtr
->reconControl
->reconMap
, &(raidPtr
->reconControl
->starttime
));
702 /* reads done, wakup any waiters, and then wait for writes */
704 rf_WakeupHeadSepCBWaiters(raidPtr
);
706 while (!recon_error
&& (num_writes
< pending_writes
)) {
707 event
= rf_GetNextReconEvent(reconDesc
);
708 status
= ProcessReconEvent(raidPtr
, event
);
710 if (status
== RF_RECON_WRITE_ERROR
) {
713 raidPtr
->reconControl
->error
= 1;
714 /* an error was encountered at the very end... bail */
715 } else if (status
== RF_RECON_WRITE_DONE
) {
717 } /* else it's something else, and we don't care */
720 (raidPtr
->reconControl
->lastPSID
== lastPSID
)) {
725 prev
= raidPtr
->reconControl
->lastPSID
;
726 raidPtr
->reconControl
->lastPSID
+= incPSID
;
728 if (raidPtr
->reconControl
->lastPSID
> lastPSID
) {
729 pending_writes
= lastPSID
- prev
;
730 raidPtr
->reconControl
->lastPSID
= lastPSID
;
733 /* back down curPSID to get ready for the next round... */
734 for (i
= 0; i
< raidPtr
->numCol
; i
++) {
736 raidPtr
->reconControl
->perDiskInfo
[i
].curPSID
--;
737 raidPtr
->reconControl
->perDiskInfo
[i
].ru_count
= RUsPerPU
- 1;
742 mapPtr
= raidPtr
->reconControl
->reconMap
;
744 printf("RECON: all reads completed\n");
746 /* at this point all the reads have completed. We now wait
747 * for any pending writes to complete, and then we're done */
749 while (!recon_error
&& rf_UnitsLeftToReconstruct(raidPtr
->reconControl
->reconMap
) > 0) {
751 event
= rf_GetNextReconEvent(reconDesc
);
752 status
= ProcessReconEvent(raidPtr
, event
);
754 if (status
== RF_RECON_WRITE_ERROR
) {
756 raidPtr
->reconControl
->error
= 1;
757 /* an error was encountered at the very end... bail */
760 raidPtr
->reconControl
->percentComplete
= 100 - (rf_UnitsLeftToReconstruct(mapPtr
) * 100 / mapPtr
->totalRUs
);
761 if (rf_prReconSched
) {
762 rf_PrintReconSchedule(raidPtr
->reconControl
->reconMap
, &(raidPtr
->reconControl
->starttime
));
769 /* we've encountered an error in reconstructing. */
770 printf("raid%d: reconstruction failed.\n", raidPtr
->raidid
);
772 /* we start by blocking IO to the RAID set. */
773 rf_SuspendNewRequestsAndWait(raidPtr
);
775 RF_LOCK_MUTEX(raidPtr
->mutex
);
776 /* mark set as being degraded, rather than
777 rf_rs_reconstructing as we were before the problem.
778 After this is done we can update status of the
779 component disks without worrying about someone
780 trying to read from a failed component.
782 raidPtr
->status
= rf_rs_degraded
;
783 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
786 rf_ResumeNewRequests(raidPtr
);
788 /* At this point there are two cases:
789 1) If we've experienced a read error, then we've
790 already waited for all the reads we're going to get,
791 and we just need to wait for the writes.
793 2) If we've experienced a write error, we've also
794 already waited for all the reads to complete,
795 but there is little point in waiting for the writes --
796 when they do complete, they will just be ignored.
798 So we just wait for writes to complete if we didn't have a
803 /* wait for writes to complete */
804 while (raidPtr
->reconControl
->pending_writes
> 0) {
806 event
= rf_GetNextReconEvent(reconDesc
);
807 status
= ProcessReconEvent(raidPtr
, event
);
809 if (status
== RF_RECON_WRITE_ERROR
) {
810 raidPtr
->reconControl
->error
= 1;
811 /* an error was encountered at the very end... bail.
812 This will be very bad news for the user, since
813 at this point there will have been a read error
814 on one component, and a write error on another!
824 /* drain the event queue - after waiting for the writes above,
825 there shouldn't be much (if anything!) left in the queue. */
827 rf_DrainReconEventQueue(reconDesc
);
829 /* XXX As much as we'd like to free the recon control structure
830 and the reconDesc, we have no way of knowing if/when those will
831 be touched by IO that has yet to occur. It is rather poor to be
832 basically causing a 'memory leak' here, but there doesn't seem to be
833 a cleaner alternative at this time. Perhaps when the reconstruct code
834 gets a makeover this problem will go away.
837 rf_FreeReconControl(raidPtr
);
841 RF_Free(raidPtr
->recon_tracerecs
, raidPtr
->numCol
* sizeof(RF_AccTraceEntry_t
));
843 /* XXX see comment above */
845 FreeReconDesc(reconDesc
);
851 /* Success: mark the dead disk as reconstructed. We quiesce
852 * the array here to assure no nasty interactions with pending
853 * user accesses when we free up the psstatus structure as
854 * part of FreeReconControl() */
856 rf_SuspendNewRequestsAndWait(raidPtr
);
858 RF_LOCK_MUTEX(raidPtr
->mutex
);
859 raidPtr
->numFailures
--;
860 ds
= (raidPtr
->Layout
.map
->flags
& RF_DISTRIBUTE_SPARE
);
861 raidPtr
->Disks
[col
].status
= (ds
) ? rf_ds_dist_spared
: rf_ds_spared
;
862 raidPtr
->status
= (ds
) ? rf_rs_reconfigured
: rf_rs_optimal
;
863 RF_UNLOCK_MUTEX(raidPtr
->mutex
);
865 RF_TIMEVAL_DIFF(&(raidPtr
->reconControl
->starttime
), &etime
, &elpsd
);
867 rf_ResumeNewRequests(raidPtr
);
869 printf("raid%d: Reconstruction of disk at col %d completed\n",
870 raidPtr
->raidid
, col
);
871 xor_s
= raidPtr
->accumXorTimeUs
/ 1000000;
872 xor_resid_us
= raidPtr
->accumXorTimeUs
% 1000000;
873 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
875 (int) elpsd
.tv_sec
, (int) elpsd
.tv_usec
,
876 raidPtr
->accumXorTimeUs
, xor_s
, xor_resid_us
);
877 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
879 (int) raidPtr
->reconControl
->starttime
.tv_sec
,
880 (int) raidPtr
->reconControl
->starttime
.tv_usec
,
881 (int) etime
.tv_sec
, (int) etime
.tv_usec
);
882 #if RF_RECON_STATS > 0
883 printf("raid%d: Total head-sep stall count was %d\n",
884 raidPtr
->raidid
, (int) reconDesc
->hsStallCount
);
885 #endif /* RF_RECON_STATS > 0 */
886 rf_FreeReconControl(raidPtr
);
888 RF_Free(raidPtr
->recon_tracerecs
, raidPtr
->numCol
* sizeof(RF_AccTraceEntry_t
));
890 FreeReconDesc(reconDesc
);
895 /*****************************************************************************
896 * do the right thing upon each reconstruction event.
897 *****************************************************************************/
899 ProcessReconEvent(RF_Raid_t
*raidPtr
, RF_ReconEvent_t
*event
)
901 int retcode
= 0, submitblocked
;
902 RF_ReconBuffer_t
*rbuf
;
903 RF_SectorCount_t sectorsPerRU
;
905 retcode
= RF_RECON_READ_STOPPED
;
907 Dprintf1("RECON: ProcessReconEvent type %d\n", event
->type
);
909 switch (event
->type
) {
911 /* a read I/O has completed */
912 case RF_REVENT_READDONE
:
913 rbuf
= raidPtr
->reconControl
->perDiskInfo
[event
->col
].rbuf
;
914 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
915 event
->col
, rbuf
->parityStripeID
);
916 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
917 rbuf
->parityStripeID
, rbuf
->buffer
, rbuf
->buffer
[0] & 0xff, rbuf
->buffer
[1] & 0xff,
918 rbuf
->buffer
[2] & 0xff, rbuf
->buffer
[3] & 0xff, rbuf
->buffer
[4] & 0xff);
919 rf_FreeDiskQueueData((RF_DiskQueueData_t
*) rbuf
->arg
);
920 if (!raidPtr
->reconControl
->error
) {
921 submitblocked
= rf_SubmitReconBuffer(rbuf
, 0, 0);
922 Dprintf1("RECON: submitblocked=%d\n", submitblocked
);
924 retcode
= IssueNextReadRequest(raidPtr
, event
->col
);
930 /* a write I/O has completed */
931 case RF_REVENT_WRITEDONE
:
933 if (rf_floatingRbufDebug
) {
934 rf_CheckFloatingRbufCount(raidPtr
, 1);
937 sectorsPerRU
= raidPtr
->Layout
.sectorsPerStripeUnit
* raidPtr
->Layout
.SUsPerRU
;
938 rbuf
= (RF_ReconBuffer_t
*) event
->arg
;
939 rf_FreeDiskQueueData((RF_DiskQueueData_t
*) rbuf
->arg
);
940 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
941 rbuf
->parityStripeID
, rbuf
->which_ru
, raidPtr
->reconControl
->percentComplete
);
942 rf_ReconMapUpdate(raidPtr
, raidPtr
->reconControl
->reconMap
,
943 rbuf
->failedDiskSectorOffset
, rbuf
->failedDiskSectorOffset
+ sectorsPerRU
- 1);
944 rf_RemoveFromActiveReconTable(raidPtr
, rbuf
->parityStripeID
, rbuf
->which_ru
);
946 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
947 raidPtr
->reconControl
->pending_writes
--;
948 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
950 if (rbuf
->type
== RF_RBUF_TYPE_FLOATING
) {
951 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
952 while(raidPtr
->reconControl
->rb_lock
) {
953 ltsleep(&raidPtr
->reconControl
->rb_lock
, PRIBIO
, "reconctrlpre1", 0,
954 &raidPtr
->reconControl
->rb_mutex
);
956 raidPtr
->reconControl
->rb_lock
= 1;
957 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
959 raidPtr
->numFullReconBuffers
--;
960 rf_ReleaseFloatingReconBuffer(raidPtr
, rbuf
);
962 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
963 raidPtr
->reconControl
->rb_lock
= 0;
964 wakeup(&raidPtr
->reconControl
->rb_lock
);
965 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
967 if (rbuf
->type
== RF_RBUF_TYPE_FORCED
)
968 rf_FreeReconBuffer(rbuf
);
971 retcode
= RF_RECON_WRITE_DONE
;
974 case RF_REVENT_BUFCLEAR
: /* A buffer-stall condition has been
976 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event
->col
);
977 if (!raidPtr
->reconControl
->error
) {
978 submitblocked
= rf_SubmitReconBuffer(raidPtr
->reconControl
->perDiskInfo
[event
->col
].rbuf
,
979 0, (int) (long) event
->arg
);
980 RF_ASSERT(!submitblocked
); /* we wouldn't have gotten the
981 * BUFCLEAR event if we
983 retcode
= IssueNextReadRequest(raidPtr
, event
->col
);
987 case RF_REVENT_BLOCKCLEAR
: /* A user-write reconstruction
988 * blockage has been cleared */
989 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event
->col
);
990 if (!raidPtr
->reconControl
->error
) {
991 retcode
= TryToRead(raidPtr
, event
->col
);
995 case RF_REVENT_HEADSEPCLEAR
: /* A max-head-separation
996 * reconstruction blockage has been
998 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event
->col
);
999 if (!raidPtr
->reconControl
->error
) {
1000 retcode
= TryToRead(raidPtr
, event
->col
);
1004 /* a buffer has become ready to write */
1005 case RF_REVENT_BUFREADY
:
1006 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event
->col
);
1007 if (!raidPtr
->reconControl
->error
) {
1008 retcode
= IssueNextWriteRequest(raidPtr
);
1010 if (rf_floatingRbufDebug
) {
1011 rf_CheckFloatingRbufCount(raidPtr
, 1);
1017 /* we need to skip the current RU entirely because it got
1018 * recon'd while we were waiting for something else to happen */
1019 case RF_REVENT_SKIP
:
1020 DDprintf1("RECON: SKIP EVENT: col %d\n", event
->col
);
1021 if (!raidPtr
->reconControl
->error
) {
1022 retcode
= IssueNextReadRequest(raidPtr
, event
->col
);
1026 /* a forced-reconstruction read access has completed. Just
1027 * submit the buffer */
1028 case RF_REVENT_FORCEDREADDONE
:
1029 rbuf
= (RF_ReconBuffer_t
*) event
->arg
;
1030 rf_FreeDiskQueueData((RF_DiskQueueData_t
*) rbuf
->arg
);
1031 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event
->col
);
1032 if (!raidPtr
->reconControl
->error
) {
1033 submitblocked
= rf_SubmitReconBuffer(rbuf
, 1, 0);
1034 RF_ASSERT(!submitblocked
);
1039 /* A read I/O failed to complete */
1040 case RF_REVENT_READ_FAILED
:
1041 retcode
= RF_RECON_READ_ERROR
;
1044 /* A write I/O failed to complete */
1045 case RF_REVENT_WRITE_FAILED
:
1046 retcode
= RF_RECON_WRITE_ERROR
;
1048 /* This is an error, but it was a pending write.
1050 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1051 raidPtr
->reconControl
->pending_writes
--;
1052 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1054 rbuf
= (RF_ReconBuffer_t
*) event
->arg
;
1056 /* cleanup the disk queue data */
1057 rf_FreeDiskQueueData((RF_DiskQueueData_t
*) rbuf
->arg
);
1059 /* At this point we're erroring out, badly, and floatingRbufs
1060 may not even be valid. Rather than putting this back onto
1061 the floatingRbufs list, just arrange for its immediate
1064 rf_FreeReconBuffer(rbuf
);
1067 /* a forced read I/O failed to complete */
1068 case RF_REVENT_FORCEDREAD_FAILED
:
1069 retcode
= RF_RECON_READ_ERROR
;
1075 rf_FreeReconEventDesc(event
);
1078 /*****************************************************************************
1080 * find the next thing that's needed on the indicated disk, and issue
1081 * a read request for it. We assume that the reconstruction buffer
1082 * associated with this process is free to receive the data. If
1083 * reconstruction is blocked on the indicated RU, we issue a
1084 * blockage-release request instead of a physical disk read request.
1085 * If the current disk gets too far ahead of the others, we issue a
1086 * head-separation wait request and return.
1088 * ctrl->{ru_count, curPSID, diskOffset} and
1089 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1090 * we're currently accessing. Note that this deviates from the
1091 * standard C idiom of having counters point to the next thing to be
1092 * accessed. This allows us to easily retry when we're blocked by
1093 * head separation or reconstruction-blockage events.
1095 *****************************************************************************/
1097 IssueNextReadRequest(RF_Raid_t
*raidPtr
, RF_RowCol_t col
)
1099 RF_PerDiskReconCtrl_t
*ctrl
= &raidPtr
->reconControl
->perDiskInfo
[col
];
1100 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
1101 RF_ReconBuffer_t
*rbuf
= ctrl
->rbuf
;
1102 RF_ReconUnitCount_t RUsPerPU
= layoutPtr
->SUsPerPU
/ layoutPtr
->SUsPerRU
;
1103 RF_SectorCount_t sectorsPerRU
= layoutPtr
->sectorsPerStripeUnit
* layoutPtr
->SUsPerRU
;
1104 int do_new_check
= 0, retcode
= 0, status
;
1106 /* if we are currently the slowest disk, mark that we have to do a new
1108 if (ctrl
->headSepCounter
<= raidPtr
->reconControl
->minHeadSepCounter
)
1114 if (ctrl
->ru_count
< RUsPerPU
) {
1115 ctrl
->diskOffset
+= sectorsPerRU
;
1116 rbuf
->failedDiskSectorOffset
+= sectorsPerRU
;
1120 /* code left over from when head-sep was based on
1121 * parity stripe id */
1122 if (ctrl
->curPSID
>= raidPtr
->reconControl
->lastPSID
) {
1123 CheckForNewMinHeadSep(raidPtr
, ++(ctrl
->headSepCounter
));
1124 return (RF_RECON_DONE_READS
); /* finito! */
1126 /* find the disk offsets of the start of the parity
1127 * stripe on both the current disk and the failed
1128 * disk. skip this entire parity stripe if either disk
1129 * does not appear in the indicated PS */
1130 status
= ComputePSDiskOffsets(raidPtr
, ctrl
->curPSID
, col
, &ctrl
->diskOffset
, &rbuf
->failedDiskSectorOffset
,
1131 &rbuf
->spCol
, &rbuf
->spOffset
);
1133 ctrl
->ru_count
= RUsPerPU
- 1;
1137 rbuf
->which_ru
= ctrl
->ru_count
;
1139 /* skip this RU if it's already been reconstructed */
1140 if (rf_CheckRUReconstructed(raidPtr
->reconControl
->reconMap
, rbuf
->failedDiskSectorOffset
)) {
1141 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl
->curPSID
, ctrl
->ru_count
);
1146 ctrl
->headSepCounter
++;
1148 CheckForNewMinHeadSep(raidPtr
, ctrl
->headSepCounter
); /* update min if needed */
1151 /* at this point, we have definitely decided what to do, and we have
1152 * only to see if we can actually do it now */
1153 rbuf
->parityStripeID
= ctrl
->curPSID
;
1154 rbuf
->which_ru
= ctrl
->ru_count
;
1155 #if RF_ACC_TRACE > 0
1156 memset((char *) &raidPtr
->recon_tracerecs
[col
], 0,
1157 sizeof(raidPtr
->recon_tracerecs
[col
]));
1158 raidPtr
->recon_tracerecs
[col
].reconacc
= 1;
1159 RF_ETIMER_START(raidPtr
->recon_tracerecs
[col
].recon_timer
);
1161 retcode
= TryToRead(raidPtr
, col
);
1166 * tries to issue the next read on the indicated disk. We may be
1167 * blocked by (a) the heads being too far apart, or (b) recon on the
1168 * indicated RU being blocked due to a write by a user thread. In
1169 * this case, we issue a head-sep or blockage wait request, which will
1170 * cause this same routine to be invoked again later when the blockage
1175 TryToRead(RF_Raid_t
*raidPtr
, RF_RowCol_t col
)
1177 RF_PerDiskReconCtrl_t
*ctrl
= &raidPtr
->reconControl
->perDiskInfo
[col
];
1178 RF_SectorCount_t sectorsPerRU
= raidPtr
->Layout
.sectorsPerStripeUnit
* raidPtr
->Layout
.SUsPerRU
;
1179 RF_StripeNum_t psid
= ctrl
->curPSID
;
1180 RF_ReconUnitNum_t which_ru
= ctrl
->ru_count
;
1181 RF_DiskQueueData_t
*req
;
1183 RF_ReconParityStripeStatus_t
*pssPtr
, *newpssPtr
;
1185 /* if the current disk is too far ahead of the others, issue a
1186 * head-separation wait and return */
1187 if (CheckHeadSeparation(raidPtr
, ctrl
, col
, ctrl
->headSepCounter
, which_ru
))
1190 /* allocate a new PSS in case we need it */
1191 newpssPtr
= rf_AllocPSStatus(raidPtr
);
1193 RF_LOCK_PSS_MUTEX(raidPtr
, psid
);
1194 pssPtr
= rf_LookupRUStatus(raidPtr
, raidPtr
->reconControl
->pssTable
, psid
, which_ru
, RF_PSS_CREATE
, newpssPtr
);
1196 if (pssPtr
!= newpssPtr
) {
1197 rf_FreePSStatus(raidPtr
, newpssPtr
);
1200 /* if recon is blocked on the indicated parity stripe, issue a
1201 * block-wait request and return. this also must mark the indicated RU
1202 * in the stripe as under reconstruction if not blocked. */
1203 status
= CheckForcedOrBlockedReconstruction(raidPtr
, pssPtr
, ctrl
, col
, psid
, which_ru
);
1204 if (status
== RF_PSS_RECON_BLOCKED
) {
1205 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid
, which_ru
);
1208 if (status
== RF_PSS_FORCED_ON_WRITE
) {
1209 rf_CauseReconEvent(raidPtr
, col
, NULL
, RF_REVENT_SKIP
);
1212 /* make one last check to be sure that the indicated RU didn't get
1213 * reconstructed while we were waiting for something else to happen.
1214 * This is unfortunate in that it causes us to make this check twice
1215 * in the normal case. Might want to make some attempt to re-work
1216 * this so that we only do this check if we've definitely blocked on
1217 * one of the above checks. When this condition is detected, we may
1218 * have just created a bogus status entry, which we need to delete. */
1219 if (rf_CheckRUReconstructed(raidPtr
->reconControl
->reconMap
, ctrl
->rbuf
->failedDiskSectorOffset
)) {
1220 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid
, which_ru
);
1221 if (pssPtr
== newpssPtr
)
1222 rf_PSStatusDelete(raidPtr
, raidPtr
->reconControl
->pssTable
, pssPtr
);
1223 rf_CauseReconEvent(raidPtr
, col
, NULL
, RF_REVENT_SKIP
);
1226 /* found something to read. issue the I/O */
1227 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1228 psid
, col
, ctrl
->diskOffset
, ctrl
->rbuf
->buffer
);
1229 #if RF_ACC_TRACE > 0
1230 RF_ETIMER_STOP(raidPtr
->recon_tracerecs
[col
].recon_timer
);
1231 RF_ETIMER_EVAL(raidPtr
->recon_tracerecs
[col
].recon_timer
);
1232 raidPtr
->recon_tracerecs
[col
].specific
.recon
.recon_start_to_fetch_us
=
1233 RF_ETIMER_VAL_US(raidPtr
->recon_tracerecs
[col
].recon_timer
);
1234 RF_ETIMER_START(raidPtr
->recon_tracerecs
[col
].recon_timer
);
1236 /* should be ok to use a NULL proc pointer here, all the bufs we use
1237 * should be in kernel space */
1238 req
= rf_CreateDiskQueueData(RF_IO_TYPE_READ
, ctrl
->diskOffset
, sectorsPerRU
, ctrl
->rbuf
->buffer
, psid
, which_ru
,
1239 ReconReadDoneProc
, (void *) ctrl
,
1240 #if RF_ACC_TRACE > 0
1241 &raidPtr
->recon_tracerecs
[col
],
1245 (void *) raidPtr
, 0, NULL
, PR_WAITOK
);
1247 ctrl
->rbuf
->arg
= (void *) req
;
1248 rf_DiskIOEnqueue(&raidPtr
->Queues
[col
], req
, RF_IO_RECON_PRIORITY
);
1249 pssPtr
->issued
[col
] = 1;
1252 RF_UNLOCK_PSS_MUTEX(raidPtr
, psid
);
1258 * given a parity stripe ID, we want to find out whether both the
1259 * current disk and the failed disk exist in that parity stripe. If
1260 * not, we want to skip this whole PS. If so, we want to find the
1261 * disk offset of the start of the PS on both the current disk and the
1264 * this works by getting a list of disks comprising the indicated
1265 * parity stripe, and searching the list for the current and failed
1266 * disks. Once we've decided they both exist in the parity stripe, we
1267 * need to decide whether each is data or parity, so that we'll know
1268 * which mapping function to call to get the corresponding disk
1271 * this is kind of unpleasant, but doing it this way allows the
1272 * reconstruction code to use parity stripe IDs rather than physical
1273 * disks address to march through the failed disk, which greatly
1274 * simplifies a lot of code, as well as eliminating the need for a
1275 * reverse-mapping function. I also think it will execute faster,
1276 * since the calls to the mapping module are kept to a minimum.
1278 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1279 * THE STRIPE IN THE CORRECT ORDER
1281 * raidPtr - raid descriptor
1282 * psid - parity stripe identifier
1283 * col - column of disk to find the offsets for
1284 * spCol - out: col of spare unit for failed unit
1285 * spOffset - out: offset into disk containing spare unit
1291 ComputePSDiskOffsets(RF_Raid_t
*raidPtr
, RF_StripeNum_t psid
,
1292 RF_RowCol_t col
, RF_SectorNum_t
*outDiskOffset
,
1293 RF_SectorNum_t
*outFailedDiskSectorOffset
,
1294 RF_RowCol_t
*spCol
, RF_SectorNum_t
*spOffset
)
1296 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
1297 RF_RowCol_t fcol
= raidPtr
->reconControl
->fcol
;
1298 RF_RaidAddr_t sosRaidAddress
; /* start-of-stripe */
1299 RF_RowCol_t
*diskids
;
1300 u_int i
, j
, k
, i_offset
, j_offset
;
1303 RF_SectorNum_t poffset
;
1304 char i_is_parity
= 0, j_is_parity
= 0;
1305 RF_RowCol_t stripeWidth
= layoutPtr
->numDataCol
+ layoutPtr
->numParityCol
;
1307 /* get a listing of the disks comprising that stripe */
1308 sosRaidAddress
= rf_ParityStripeIDToRaidAddress(layoutPtr
, psid
);
1309 (layoutPtr
->map
->IdentifyStripe
) (raidPtr
, sosRaidAddress
, &diskids
);
1312 /* reject this entire parity stripe if it does not contain the
1313 * indicated disk or it does not contain the failed disk */
1315 for (i
= 0; i
< stripeWidth
; i
++) {
1316 if (col
== diskids
[i
])
1319 if (i
== stripeWidth
)
1321 for (j
= 0; j
< stripeWidth
; j
++) {
1322 if (fcol
== diskids
[j
])
1325 if (j
== stripeWidth
) {
1328 /* find out which disk the parity is on */
1329 (layoutPtr
->map
->MapParity
) (raidPtr
, sosRaidAddress
, &pcol
, &poffset
, RF_DONT_REMAP
);
1331 /* find out if either the current RU or the failed RU is parity */
1332 /* also, if the parity occurs in this stripe prior to the data and/or
1333 * failed col, we need to decrement i and/or j */
1334 for (k
= 0; k
< stripeWidth
; k
++)
1335 if (diskids
[k
] == pcol
)
1337 RF_ASSERT(k
< stripeWidth
);
1346 } /* set offsets to zero to disable multiply
1355 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1356 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1357 * tells us how far into the stripe the [current,failed] disk is. */
1359 /* call the mapping routine to get the offset into the current disk,
1360 * repeat for failed disk. */
1362 layoutPtr
->map
->MapParity(raidPtr
, sosRaidAddress
+ i_offset
* layoutPtr
->sectorsPerStripeUnit
, &testcol
, outDiskOffset
, RF_DONT_REMAP
);
1364 layoutPtr
->map
->MapSector(raidPtr
, sosRaidAddress
+ i_offset
* layoutPtr
->sectorsPerStripeUnit
, &testcol
, outDiskOffset
, RF_DONT_REMAP
);
1366 RF_ASSERT(col
== testcol
);
1369 layoutPtr
->map
->MapParity(raidPtr
, sosRaidAddress
+ j_offset
* layoutPtr
->sectorsPerStripeUnit
, &testcol
, outFailedDiskSectorOffset
, RF_DONT_REMAP
);
1371 layoutPtr
->map
->MapSector(raidPtr
, sosRaidAddress
+ j_offset
* layoutPtr
->sectorsPerStripeUnit
, &testcol
, outFailedDiskSectorOffset
, RF_DONT_REMAP
);
1372 RF_ASSERT(fcol
== testcol
);
1374 /* now locate the spare unit for the failed unit */
1375 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1376 if (layoutPtr
->map
->flags
& RF_DISTRIBUTE_SPARE
) {
1378 layoutPtr
->map
->MapParity(raidPtr
, sosRaidAddress
+ j_offset
* layoutPtr
->sectorsPerStripeUnit
, spCol
, spOffset
, RF_REMAP
);
1380 layoutPtr
->map
->MapSector(raidPtr
, sosRaidAddress
+ j_offset
* layoutPtr
->sectorsPerStripeUnit
, spCol
, spOffset
, RF_REMAP
);
1383 *spCol
= raidPtr
->reconControl
->spareCol
;
1384 *spOffset
= *outFailedDiskSectorOffset
;
1385 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1391 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1395 /* this is called when a buffer has become ready to write to the replacement disk */
1397 IssueNextWriteRequest(RF_Raid_t
*raidPtr
)
1399 RF_RaidLayout_t
*layoutPtr
= &raidPtr
->Layout
;
1400 RF_SectorCount_t sectorsPerRU
= layoutPtr
->sectorsPerStripeUnit
* layoutPtr
->SUsPerRU
;
1401 #if RF_ACC_TRACE > 0
1402 RF_RowCol_t fcol
= raidPtr
->reconControl
->fcol
;
1404 RF_ReconBuffer_t
*rbuf
;
1405 RF_DiskQueueData_t
*req
;
1407 rbuf
= rf_GetFullReconBuffer(raidPtr
->reconControl
);
1408 RF_ASSERT(rbuf
); /* there must be one available, or we wouldn't
1409 * have gotten the event that sent us here */
1410 RF_ASSERT(rbuf
->pssPtr
);
1412 rbuf
->pssPtr
->writeRbuf
= rbuf
;
1413 rbuf
->pssPtr
= NULL
;
1415 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1416 rbuf
->spCol
, rbuf
->spOffset
, rbuf
->parityStripeID
,
1417 rbuf
->which_ru
, rbuf
->failedDiskSectorOffset
, rbuf
->buffer
);
1418 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1419 rbuf
->parityStripeID
, rbuf
->buffer
[0] & 0xff, rbuf
->buffer
[1] & 0xff,
1420 rbuf
->buffer
[2] & 0xff, rbuf
->buffer
[3] & 0xff, rbuf
->buffer
[4] & 0xff);
1422 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1424 req
= rf_CreateDiskQueueData(RF_IO_TYPE_WRITE
, rbuf
->spOffset
,
1425 sectorsPerRU
, rbuf
->buffer
,
1426 rbuf
->parityStripeID
, rbuf
->which_ru
,
1427 ReconWriteDoneProc
, (void *) rbuf
,
1428 #if RF_ACC_TRACE > 0
1429 &raidPtr
->recon_tracerecs
[fcol
],
1433 (void *) raidPtr
, 0, NULL
, PR_WAITOK
);
1435 rbuf
->arg
= (void *) req
;
1436 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1437 raidPtr
->reconControl
->pending_writes
++;
1438 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1439 rf_DiskIOEnqueue(&raidPtr
->Queues
[rbuf
->spCol
], req
, RF_IO_RECON_PRIORITY
);
1445 * this gets called upon the completion of a reconstruction read
1446 * operation the arg is a pointer to the per-disk reconstruction
1447 * control structure for the process that just finished a read.
1449 * called at interrupt context in the kernel, so don't do anything
1453 ReconReadDoneProc(void *arg
, int status
)
1455 RF_PerDiskReconCtrl_t
*ctrl
= (RF_PerDiskReconCtrl_t
*) arg
;
1458 /* Detect that reconCtrl is no longer valid, and if that
1459 is the case, bail without calling rf_CauseReconEvent().
1460 There won't be anyone listening for this event anyway */
1462 if (ctrl
->reconCtrl
== NULL
)
1465 raidPtr
= ctrl
->reconCtrl
->reconDesc
->raidPtr
;
1468 printf("raid%d: Recon read failed: %d\n", raidPtr
->raidid
, status
);
1469 rf_CauseReconEvent(raidPtr
, ctrl
->col
, NULL
, RF_REVENT_READ_FAILED
);
1472 #if RF_ACC_TRACE > 0
1473 RF_ETIMER_STOP(raidPtr
->recon_tracerecs
[ctrl
->col
].recon_timer
);
1474 RF_ETIMER_EVAL(raidPtr
->recon_tracerecs
[ctrl
->col
].recon_timer
);
1475 raidPtr
->recon_tracerecs
[ctrl
->col
].specific
.recon
.recon_fetch_to_return_us
=
1476 RF_ETIMER_VAL_US(raidPtr
->recon_tracerecs
[ctrl
->col
].recon_timer
);
1477 RF_ETIMER_START(raidPtr
->recon_tracerecs
[ctrl
->col
].recon_timer
);
1479 rf_CauseReconEvent(raidPtr
, ctrl
->col
, NULL
, RF_REVENT_READDONE
);
1482 /* this gets called upon the completion of a reconstruction write operation.
1483 * the arg is a pointer to the rbuf that was just written
1485 * called at interrupt context in the kernel, so don't do anything illegal here.
1488 ReconWriteDoneProc(void *arg
, int status
)
1490 RF_ReconBuffer_t
*rbuf
= (RF_ReconBuffer_t
*) arg
;
1492 /* Detect that reconControl is no longer valid, and if that
1493 is the case, bail without calling rf_CauseReconEvent().
1494 There won't be anyone listening for this event anyway */
1496 if (rbuf
->raidPtr
->reconControl
== NULL
)
1499 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf
->parityStripeID
, rbuf
->which_ru
);
1501 printf("raid%d: Recon write failed!\n", rbuf
->raidPtr
->raidid
);
1502 rf_CauseReconEvent(rbuf
->raidPtr
, rbuf
->col
, arg
, RF_REVENT_WRITE_FAILED
);
1505 rf_CauseReconEvent(rbuf
->raidPtr
, rbuf
->col
, arg
, RF_REVENT_WRITEDONE
);
1511 * computes a new minimum head sep, and wakes up anyone who needs to
1512 * be woken as a result
1515 CheckForNewMinHeadSep(RF_Raid_t
*raidPtr
, RF_HeadSepLimit_t hsCtr
)
1517 RF_ReconCtrl_t
*reconCtrlPtr
= raidPtr
->reconControl
;
1518 RF_HeadSepLimit_t new_min
;
1520 RF_CallbackDesc_t
*p
;
1521 RF_ASSERT(hsCtr
>= reconCtrlPtr
->minHeadSepCounter
); /* from the definition
1525 RF_LOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1526 while(reconCtrlPtr
->rb_lock
) {
1527 ltsleep(&reconCtrlPtr
->rb_lock
, PRIBIO
, "reconctlcnmhs", 0, &reconCtrlPtr
->rb_mutex
);
1529 reconCtrlPtr
->rb_lock
= 1;
1530 RF_UNLOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1532 new_min
= ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1533 for (i
= 0; i
< raidPtr
->numCol
; i
++)
1534 if (i
!= reconCtrlPtr
->fcol
) {
1535 if (reconCtrlPtr
->perDiskInfo
[i
].headSepCounter
< new_min
)
1536 new_min
= reconCtrlPtr
->perDiskInfo
[i
].headSepCounter
;
1538 /* set the new minimum and wake up anyone who can now run again */
1539 if (new_min
!= reconCtrlPtr
->minHeadSepCounter
) {
1540 reconCtrlPtr
->minHeadSepCounter
= new_min
;
1541 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min
);
1542 while (reconCtrlPtr
->headSepCBList
) {
1543 if (reconCtrlPtr
->headSepCBList
->callbackArg
.v
> new_min
)
1545 p
= reconCtrlPtr
->headSepCBList
;
1546 reconCtrlPtr
->headSepCBList
= p
->next
;
1548 rf_CauseReconEvent(raidPtr
, p
->col
, NULL
, RF_REVENT_HEADSEPCLEAR
);
1549 rf_FreeCallbackDesc(p
);
1553 RF_LOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1554 reconCtrlPtr
->rb_lock
= 0;
1555 wakeup(&reconCtrlPtr
->rb_lock
);
1556 RF_UNLOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1560 * checks to see that the maximum head separation will not be violated
1561 * if we initiate a reconstruction I/O on the indicated disk.
1562 * Limiting the maximum head separation between two disks eliminates
1563 * the nasty buffer-stall conditions that occur when one disk races
1564 * ahead of the others and consumes all of the floating recon buffers.
1565 * This code is complex and unpleasant but it's necessary to avoid
1566 * some very nasty, albeit fairly rare, reconstruction behavior.
1568 * returns non-zero if and only if we have to stop working on the
1569 * indicated disk due to a head-separation delay.
1572 CheckHeadSeparation(RF_Raid_t
*raidPtr
, RF_PerDiskReconCtrl_t
*ctrl
,
1573 RF_RowCol_t col
, RF_HeadSepLimit_t hsCtr
,
1574 RF_ReconUnitNum_t which_ru
)
1576 RF_ReconCtrl_t
*reconCtrlPtr
= raidPtr
->reconControl
;
1577 RF_CallbackDesc_t
*cb
, *p
, *pt
;
1580 /* if we're too far ahead of the slowest disk, stop working on this
1581 * disk until the slower ones catch up. We do this by scheduling a
1582 * wakeup callback for the time when the slowest disk has caught up.
1583 * We define "caught up" with 20% hysteresis, i.e. the head separation
1584 * must have fallen to at most 80% of the max allowable head
1585 * separation before we'll wake up.
1588 RF_LOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1589 while(reconCtrlPtr
->rb_lock
) {
1590 ltsleep(&reconCtrlPtr
->rb_lock
, PRIBIO
, "reconctlchs", 0, &reconCtrlPtr
->rb_mutex
);
1592 reconCtrlPtr
->rb_lock
= 1;
1593 RF_UNLOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1594 if ((raidPtr
->headSepLimit
>= 0) &&
1595 ((ctrl
->headSepCounter
- reconCtrlPtr
->minHeadSepCounter
) > raidPtr
->headSepLimit
)) {
1596 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1597 raidPtr
->raidid
, col
, ctrl
->headSepCounter
,
1598 reconCtrlPtr
->minHeadSepCounter
,
1599 raidPtr
->headSepLimit
);
1600 cb
= rf_AllocCallbackDesc();
1601 /* the minHeadSepCounter value we have to get to before we'll
1602 * wake up. build in 20% hysteresis. */
1603 cb
->callbackArg
.v
= (ctrl
->headSepCounter
- raidPtr
->headSepLimit
+ raidPtr
->headSepLimit
/ 5);
1607 /* insert this callback descriptor into the sorted list of
1608 * pending head-sep callbacks */
1609 p
= reconCtrlPtr
->headSepCBList
;
1611 reconCtrlPtr
->headSepCBList
= cb
;
1613 if (cb
->callbackArg
.v
< p
->callbackArg
.v
) {
1614 cb
->next
= reconCtrlPtr
->headSepCBList
;
1615 reconCtrlPtr
->headSepCBList
= cb
;
1617 for (pt
= p
, p
= p
->next
; p
&& (p
->callbackArg
.v
< cb
->callbackArg
.v
); pt
= p
, p
= p
->next
);
1622 #if RF_RECON_STATS > 0
1623 ctrl
->reconCtrl
->reconDesc
->hsStallCount
++;
1624 #endif /* RF_RECON_STATS > 0 */
1626 RF_LOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1627 reconCtrlPtr
->rb_lock
= 0;
1628 wakeup(&reconCtrlPtr
->rb_lock
);
1629 RF_UNLOCK_MUTEX(reconCtrlPtr
->rb_mutex
);
1634 * checks to see if reconstruction has been either forced or blocked
1635 * by a user operation. if forced, we skip this RU entirely. else if
1636 * blocked, put ourselves on the wait list. else return 0.
1638 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1641 CheckForcedOrBlockedReconstruction(RF_Raid_t
*raidPtr
,
1642 RF_ReconParityStripeStatus_t
*pssPtr
,
1643 RF_PerDiskReconCtrl_t
*ctrl
,
1645 RF_StripeNum_t psid
,
1646 RF_ReconUnitNum_t which_ru
)
1648 RF_CallbackDesc_t
*cb
;
1651 if ((pssPtr
->flags
& RF_PSS_FORCED_ON_READ
) || (pssPtr
->flags
& RF_PSS_FORCED_ON_WRITE
))
1652 retcode
= RF_PSS_FORCED_ON_WRITE
;
1654 if (pssPtr
->flags
& RF_PSS_RECON_BLOCKED
) {
1655 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col
, psid
, which_ru
);
1656 cb
= rf_AllocCallbackDesc(); /* append ourselves to
1660 cb
->next
= pssPtr
->blockWaitList
;
1661 pssPtr
->blockWaitList
= cb
;
1662 retcode
= RF_PSS_RECON_BLOCKED
;
1665 pssPtr
->flags
|= RF_PSS_UNDER_RECON
; /* mark this RU as under
1671 * if reconstruction is currently ongoing for the indicated stripeID,
1672 * reconstruction is forced to completion and we return non-zero to
1673 * indicate that the caller must wait. If not, then reconstruction is
1674 * blocked on the indicated stripe and the routine returns zero. If
1675 * and only if we return non-zero, we'll cause the cbFunc to get
1676 * invoked with the cbArg when the reconstruction has completed.
1679 rf_ForceOrBlockRecon(RF_Raid_t
*raidPtr
, RF_AccessStripeMap_t
*asmap
,
1680 void (*cbFunc
)(RF_Raid_t
*, void *), void *cbArg
)
1682 RF_StripeNum_t stripeID
= asmap
->stripeID
; /* the stripe ID we're
1683 * forcing recon on */
1684 RF_SectorCount_t sectorsPerRU
= raidPtr
->Layout
.sectorsPerStripeUnit
* raidPtr
->Layout
.SUsPerRU
; /* num sects in one RU */
1685 RF_ReconParityStripeStatus_t
*pssPtr
, *newpssPtr
; /* a pointer to the parity
1686 * stripe status structure */
1687 RF_StripeNum_t psid
; /* parity stripe id */
1688 RF_SectorNum_t offset
, fd_offset
; /* disk offset, failed-disk
1690 RF_RowCol_t
*diskids
;
1691 RF_ReconUnitNum_t which_ru
; /* RU within parity stripe */
1692 RF_RowCol_t fcol
, diskno
, i
;
1693 RF_ReconBuffer_t
*new_rbuf
; /* ptr to newly allocated rbufs */
1694 RF_DiskQueueData_t
*req
;/* disk I/O req to be enqueued */
1695 RF_CallbackDesc_t
*cb
;
1698 psid
= rf_MapStripeIDToParityStripeID(&raidPtr
->Layout
, stripeID
, &which_ru
);
1700 /* allocate a new PSS in case we need it */
1701 newpssPtr
= rf_AllocPSStatus(raidPtr
);
1703 RF_LOCK_PSS_MUTEX(raidPtr
, psid
);
1705 pssPtr
= rf_LookupRUStatus(raidPtr
, raidPtr
->reconControl
->pssTable
, psid
, which_ru
, RF_PSS_CREATE
| RF_PSS_RECON_BLOCKED
, newpssPtr
);
1707 if (pssPtr
!= newpssPtr
) {
1708 rf_FreePSStatus(raidPtr
, newpssPtr
);
1711 /* if recon is not ongoing on this PS, just return */
1712 if (!(pssPtr
->flags
& RF_PSS_UNDER_RECON
)) {
1713 RF_UNLOCK_PSS_MUTEX(raidPtr
, psid
);
1716 /* otherwise, we have to wait for reconstruction to complete on this
1718 /* In order to avoid waiting for a potentially large number of
1719 * low-priority accesses to complete, we force a normal-priority (i.e.
1720 * not low-priority) reconstruction on this RU. */
1721 if (!(pssPtr
->flags
& RF_PSS_FORCED_ON_WRITE
) && !(pssPtr
->flags
& RF_PSS_FORCED_ON_READ
)) {
1722 DDprintf1("Forcing recon on psid %ld\n", psid
);
1723 pssPtr
->flags
|= RF_PSS_FORCED_ON_WRITE
; /* mark this RU as under
1725 pssPtr
->flags
&= ~RF_PSS_RECON_BLOCKED
; /* clear the blockage
1726 * that we just set */
1727 fcol
= raidPtr
->reconControl
->fcol
;
1729 /* get a listing of the disks comprising the indicated stripe */
1730 (raidPtr
->Layout
.map
->IdentifyStripe
) (raidPtr
, asmap
->raidAddress
, &diskids
);
1732 /* For previously issued reads, elevate them to normal
1733 * priority. If the I/O has already completed, it won't be
1734 * found in the queue, and hence this will be a no-op. For
1735 * unissued reads, allocate buffers and issue new reads. The
1736 * fact that we've set the FORCED bit means that the regular
1737 * recon procs will not re-issue these reqs */
1738 for (i
= 0; i
< raidPtr
->Layout
.numDataCol
+ raidPtr
->Layout
.numParityCol
; i
++)
1739 if ((diskno
= diskids
[i
]) != fcol
) {
1740 if (pssPtr
->issued
[diskno
]) {
1741 nPromoted
= rf_DiskIOPromote(&raidPtr
->Queues
[diskno
], psid
, which_ru
);
1742 if (rf_reconDebug
&& nPromoted
)
1743 printf("raid%d: promoted read from col %d\n", raidPtr
->raidid
, diskno
);
1745 new_rbuf
= rf_MakeReconBuffer(raidPtr
, diskno
, RF_RBUF_TYPE_FORCED
); /* create new buf */
1746 ComputePSDiskOffsets(raidPtr
, psid
, diskno
, &offset
, &fd_offset
,
1747 &new_rbuf
->spCol
, &new_rbuf
->spOffset
); /* find offsets & spare
1749 new_rbuf
->parityStripeID
= psid
; /* fill in the buffer */
1750 new_rbuf
->which_ru
= which_ru
;
1751 new_rbuf
->failedDiskSectorOffset
= fd_offset
;
1752 new_rbuf
->priority
= RF_IO_NORMAL_PRIORITY
;
1754 /* use NULL b_proc b/c all addrs
1755 * should be in kernel space */
1756 req
= rf_CreateDiskQueueData(RF_IO_TYPE_READ
, offset
+ which_ru
* sectorsPerRU
, sectorsPerRU
, new_rbuf
->buffer
,
1757 psid
, which_ru
, (int (*) (void *, int)) ForceReconReadDoneProc
, (void *) new_rbuf
,
1758 NULL
, (void *) raidPtr
, 0, NULL
, PR_WAITOK
);
1760 new_rbuf
->arg
= req
;
1761 rf_DiskIOEnqueue(&raidPtr
->Queues
[diskno
], req
, RF_IO_NORMAL_PRIORITY
); /* enqueue the I/O */
1762 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr
->raidid
, diskno
);
1765 /* if the write is sitting in the disk queue, elevate its
1767 if (rf_DiskIOPromote(&raidPtr
->Queues
[fcol
], psid
, which_ru
))
1769 printf("raid%d: promoted write to col %d\n",
1770 raidPtr
->raidid
, fcol
);
1772 /* install a callback descriptor to be invoked when recon completes on
1773 * this parity stripe. */
1774 cb
= rf_AllocCallbackDesc();
1775 /* XXX the following is bogus.. These functions don't really match!!
1777 cb
->callbackFunc
= (void (*) (RF_CBParam_t
)) cbFunc
;
1778 cb
->callbackArg
.p
= (void *) cbArg
;
1779 cb
->next
= pssPtr
->procWaitList
;
1780 pssPtr
->procWaitList
= cb
;
1781 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1782 raidPtr
->raidid
, psid
);
1784 RF_UNLOCK_PSS_MUTEX(raidPtr
, psid
);
1787 /* called upon the completion of a forced reconstruction read.
1788 * all we do is schedule the FORCEDREADONE event.
1789 * called at interrupt context in the kernel, so don't do anything illegal here.
1792 ForceReconReadDoneProc(void *arg
, int status
)
1794 RF_ReconBuffer_t
*rbuf
= arg
;
1796 /* Detect that reconControl is no longer valid, and if that
1797 is the case, bail without calling rf_CauseReconEvent().
1798 There won't be anyone listening for this event anyway */
1800 if (rbuf
->raidPtr
->reconControl
== NULL
)
1804 printf("raid%d: Forced recon read failed!\n", rbuf
->raidPtr
->raidid
);
1805 rf_CauseReconEvent(rbuf
->raidPtr
, rbuf
->col
, (void *) rbuf
, RF_REVENT_FORCEDREAD_FAILED
);
1808 rf_CauseReconEvent(rbuf
->raidPtr
, rbuf
->col
, (void *) rbuf
, RF_REVENT_FORCEDREADDONE
);
1810 /* releases a block on the reconstruction of the indicated stripe */
1812 rf_UnblockRecon(RF_Raid_t
*raidPtr
, RF_AccessStripeMap_t
*asmap
)
1814 RF_StripeNum_t stripeID
= asmap
->stripeID
;
1815 RF_ReconParityStripeStatus_t
*pssPtr
;
1816 RF_ReconUnitNum_t which_ru
;
1817 RF_StripeNum_t psid
;
1818 RF_CallbackDesc_t
*cb
;
1820 psid
= rf_MapStripeIDToParityStripeID(&raidPtr
->Layout
, stripeID
, &which_ru
);
1821 RF_LOCK_PSS_MUTEX(raidPtr
, psid
);
1822 pssPtr
= rf_LookupRUStatus(raidPtr
, raidPtr
->reconControl
->pssTable
, psid
, which_ru
, RF_PSS_NONE
, NULL
);
1824 /* When recon is forced, the pss desc can get deleted before we get
1825 * back to unblock recon. But, this can _only_ happen when recon is
1826 * forced. It would be good to put some kind of sanity check here, but
1827 * how to decide if recon was just forced or not? */
1829 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1830 * RU %d\n",psid,which_ru); */
1831 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1832 if (rf_reconDebug
|| rf_pssDebug
)
1833 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid
, which_ru
);
1837 pssPtr
->blockCount
--;
1838 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1839 raidPtr
->raidid
, psid
, pssPtr
->blockCount
);
1840 if (pssPtr
->blockCount
== 0) { /* if recon blockage has been released */
1842 /* unblock recon before calling CauseReconEvent in case
1843 * CauseReconEvent causes us to try to issue a new read before
1844 * returning here. */
1845 pssPtr
->flags
&= ~RF_PSS_RECON_BLOCKED
;
1848 while (pssPtr
->blockWaitList
) {
1849 /* spin through the block-wait list and
1850 release all the waiters */
1851 cb
= pssPtr
->blockWaitList
;
1852 pssPtr
->blockWaitList
= cb
->next
;
1854 rf_CauseReconEvent(raidPtr
, cb
->col
, NULL
, RF_REVENT_BLOCKCLEAR
);
1855 rf_FreeCallbackDesc(cb
);
1857 if (!(pssPtr
->flags
& RF_PSS_UNDER_RECON
)) {
1858 /* if no recon was requested while recon was blocked */
1859 rf_PSStatusDelete(raidPtr
, raidPtr
->reconControl
->pssTable
, pssPtr
);
1863 RF_UNLOCK_PSS_MUTEX(raidPtr
, psid
);
1868 rf_WakeupHeadSepCBWaiters(RF_Raid_t
*raidPtr
)
1870 RF_CallbackDesc_t
*p
;
1872 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1873 while(raidPtr
->reconControl
->rb_lock
) {
1874 ltsleep(&raidPtr
->reconControl
->rb_lock
, PRIBIO
,
1875 "rf_wakeuphscbw", 0, &raidPtr
->reconControl
->rb_mutex
);
1878 raidPtr
->reconControl
->rb_lock
= 1;
1879 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1881 while (raidPtr
->reconControl
->headSepCBList
) {
1882 p
= raidPtr
->reconControl
->headSepCBList
;
1883 raidPtr
->reconControl
->headSepCBList
= p
->next
;
1885 rf_CauseReconEvent(raidPtr
, p
->col
, NULL
, RF_REVENT_HEADSEPCLEAR
);
1886 rf_FreeCallbackDesc(p
);
1888 RF_LOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);
1889 raidPtr
->reconControl
->rb_lock
= 0;
1890 wakeup(&raidPtr
->reconControl
->rb_lock
);
1891 RF_UNLOCK_MUTEX(raidPtr
->reconControl
->rb_mutex
);