Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / ufs / ffs / ffs_bswap.c
blob0adfec305fb3b0b7387d2355225969783df6a404
1 /* $NetBSD: ffs_bswap.c,v 1.33 2009/01/18 12:08:51 lukem Exp $ */
3 /*
4 * Copyright (c) 1998 Manuel Bouyer.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #if HAVE_NBTOOL_CONFIG_H
29 #include "nbtool_config.h"
30 #endif
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.33 2009/01/18 12:08:51 lukem Exp $");
35 #include <sys/param.h>
36 #if defined(_KERNEL)
37 #include <sys/systm.h>
38 #endif
40 #include <ufs/ufs/dinode.h>
41 #include <ufs/ufs/ufs_bswap.h>
42 #include <ufs/ffs/fs.h>
43 #include <ufs/ffs/ffs_extern.h>
45 #if !defined(_KERNEL)
46 #include <stddef.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #define panic(x) printf("%s\n", (x)), abort()
51 #endif
53 void
54 ffs_sb_swap(struct fs *o, struct fs *n)
56 size_t i;
57 u_int32_t *o32, *n32;
60 * In order to avoid a lot of lines, as the first N fields (52)
61 * of the superblock up to fs_fmod are u_int32_t, we just loop
62 * here to convert them.
64 o32 = (u_int32_t *)o;
65 n32 = (u_int32_t *)n;
66 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
67 n32[i] = bswap32(o32[i]);
69 n->fs_swuid = bswap64(o->fs_swuid);
70 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
71 n->fs_old_cpc = bswap32(o->fs_old_cpc);
73 /* These fields overlap with a possible location for the
74 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
75 * first half of the historic FS_42POSTBLFMT postbl table.
77 n->fs_maxbsize = bswap32(o->fs_maxbsize);
78 n->fs_sblockloc = bswap64(o->fs_sblockloc);
79 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
80 n->fs_time = bswap64(o->fs_time);
81 n->fs_size = bswap64(o->fs_size);
82 n->fs_dsize = bswap64(o->fs_dsize);
83 n->fs_csaddr = bswap64(o->fs_csaddr);
84 n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
85 n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
87 /* These fields overlap with the second half of the
88 * historic FS_42POSTBLFMT postbl table
90 for (i = 0; i < FSMAXSNAP; i++)
91 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
92 n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
93 n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
94 /* fs_sparecon[28] - ignore for now */
95 n->fs_flags = bswap32(o->fs_flags);
96 n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
97 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
98 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
99 n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
100 n->fs_qbmask = bswap64(o->fs_qbmask);
101 n->fs_qfmask = bswap64(o->fs_qfmask);
102 n->fs_state = bswap32(o->fs_state);
103 n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
104 n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
105 n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
106 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
108 n->fs_magic = bswap32(o->fs_magic);
111 void
112 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
115 n->di_mode = bswap16(o->di_mode);
116 n->di_nlink = bswap16(o->di_nlink);
117 n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
118 n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
119 n->di_size = bswap64(o->di_size);
120 n->di_atime = bswap32(o->di_atime);
121 n->di_atimensec = bswap32(o->di_atimensec);
122 n->di_mtime = bswap32(o->di_mtime);
123 n->di_mtimensec = bswap32(o->di_mtimensec);
124 n->di_ctime = bswap32(o->di_ctime);
125 n->di_ctimensec = bswap32(o->di_ctimensec);
126 memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
127 n->di_flags = bswap32(o->di_flags);
128 n->di_blocks = bswap32(o->di_blocks);
129 n->di_gen = bswap32(o->di_gen);
130 n->di_uid = bswap32(o->di_uid);
131 n->di_gid = bswap32(o->di_gid);
134 void
135 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
137 n->di_mode = bswap16(o->di_mode);
138 n->di_nlink = bswap16(o->di_nlink);
139 n->di_uid = bswap32(o->di_uid);
140 n->di_gid = bswap32(o->di_gid);
141 n->di_blksize = bswap32(o->di_blksize);
142 n->di_size = bswap64(o->di_size);
143 n->di_blocks = bswap64(o->di_blocks);
144 n->di_atime = bswap64(o->di_atime);
145 n->di_atimensec = bswap32(o->di_atimensec);
146 n->di_mtime = bswap64(o->di_mtime);
147 n->di_mtimensec = bswap32(o->di_mtimensec);
148 n->di_ctime = bswap64(o->di_ctime);
149 n->di_ctimensec = bswap32(o->di_ctimensec);
150 n->di_birthtime = bswap64(o->di_birthtime);
151 n->di_birthnsec = bswap32(o->di_birthnsec);
152 n->di_gen = bswap32(o->di_gen);
153 n->di_kernflags = bswap32(o->di_kernflags);
154 n->di_flags = bswap32(o->di_flags);
155 n->di_extsize = bswap32(o->di_extsize);
156 memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
159 void
160 ffs_csum_swap(struct csum *o, struct csum *n, int size)
162 size_t i;
163 u_int32_t *oint, *nint;
165 oint = (u_int32_t*)o;
166 nint = (u_int32_t*)n;
168 for (i = 0; i < size / sizeof(u_int32_t); i++)
169 nint[i] = bswap32(oint[i]);
172 void
173 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
175 n->cs_ndir = bswap64(o->cs_ndir);
176 n->cs_nbfree = bswap64(o->cs_nbfree);
177 n->cs_nifree = bswap64(o->cs_nifree);
178 n->cs_nffree = bswap64(o->cs_nffree);
182 * Note that ffs_cg_swap may be called with o == n.
184 void
185 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
187 int i;
188 u_int32_t *n32, *o32;
189 u_int16_t *n16, *o16;
190 int32_t btotoff, boff, clustersumoff;
192 n->cg_firstfield = bswap32(o->cg_firstfield);
193 n->cg_magic = bswap32(o->cg_magic);
194 n->cg_old_time = bswap32(o->cg_old_time);
195 n->cg_cgx = bswap32(o->cg_cgx);
196 n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
197 n->cg_old_niblk = bswap16(o->cg_old_niblk);
198 n->cg_ndblk = bswap32(o->cg_ndblk);
199 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
200 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
201 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
202 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
203 n->cg_rotor = bswap32(o->cg_rotor);
204 n->cg_frotor = bswap32(o->cg_frotor);
205 n->cg_irotor = bswap32(o->cg_irotor);
206 for (i = 0; i < MAXFRAG; i++)
207 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
209 if ((fs->fs_magic != FS_UFS2_MAGIC) &&
210 (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
211 struct ocg *on, *oo;
212 int j;
213 on = (struct ocg *)n;
214 oo = (struct ocg *)o;
216 for (i = 0; i < 32; i++) {
217 on->cg_btot[i] = bswap32(oo->cg_btot[i]);
218 for (j = 0; j < 8; j++)
219 on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
221 memmove(on->cg_iused, oo->cg_iused, 256);
222 on->cg_magic = bswap32(oo->cg_magic);
223 } else { /* new format */
225 n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
226 n->cg_old_boff = bswap32(o->cg_old_boff);
227 n->cg_iusedoff = bswap32(o->cg_iusedoff);
228 n->cg_freeoff = bswap32(o->cg_freeoff);
229 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
230 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
231 n->cg_clusteroff = bswap32(o->cg_clusteroff);
232 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
233 n->cg_niblk = bswap32(o->cg_niblk);
234 n->cg_initediblk = bswap32(o->cg_initediblk);
235 n->cg_time = bswap64(o->cg_time);
237 if (n->cg_magic == CG_MAGIC) {
238 btotoff = n->cg_old_btotoff;
239 boff = n->cg_old_boff;
240 clustersumoff = n->cg_clustersumoff;
241 } else {
242 btotoff = bswap32(n->cg_old_btotoff);
243 boff = bswap32(n->cg_old_boff);
244 clustersumoff = bswap32(n->cg_clustersumoff);
247 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
248 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
249 for (i = 1; i < fs->fs_contigsumsize + 1; i++)
250 n32[i] = bswap32(o32[i]);
252 if (fs->fs_magic == FS_UFS2_MAGIC)
253 return;
255 n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
256 o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
257 n16 = (u_int16_t *)((u_int8_t *)n + boff);
258 o16 = (u_int16_t *)((u_int8_t *)o + boff);
260 for (i = 0; i < fs->fs_old_cpg; i++)
261 n32[i] = bswap32(o32[i]);
263 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
264 n16[i] = bswap16(o16[i]);