Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / i386 / pci / glxsb.c
blob182834e32017455f99f6d68429e6c1431122e8c6
1 /* $NetBSD: glxsb.c,v 1.8 2009/03/18 17:06:44 cegger Exp $ */
2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
4 /*
5 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
6 * Copyright (c) 2003, 2004 Theo de Raadt
7 * Copyright (c) 2003 Jason Wright
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * Driver for the security block on the AMD Geode LX processors
24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.8 2009/03/18 17:06:44 cegger Exp $");
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/device.h>
33 #include <sys/malloc.h>
34 #include <sys/mbuf.h>
35 #include <sys/types.h>
36 #include <sys/callout.h>
37 #include <sys/rnd.h>
38 #include <sys/bus.h>
40 #include <machine/cpufunc.h>
42 #include <dev/pci/pcivar.h>
43 #include <dev/pci/pcidevs.h>
45 #include <opencrypto/cryptodev.h>
46 #include <crypto/rijndael/rijndael.h>
48 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
49 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
50 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
51 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
52 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
53 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
54 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
56 /* For GLD_MSR_CTRL: */
57 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */
58 #define SB_GMC_DIV1 0x0001
59 #define SB_GMC_DIV2 0x0002
60 #define SB_GMC_DIV3 0x0003
61 #define SB_GMC_DIV_MASK 0x0003
62 #define SB_GMC_SBI 0x0004 /* AES swap bits */
63 #define SB_GMC_SBY 0x0008 /* AES swap bytes */
64 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
65 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
66 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
67 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
68 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
69 #define SB_GMC_T_SEL_MASK 0x0300
70 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
71 #define SB_GMC_T_TM 0x0800 /* RNG test mode */
72 /* (deterministic) */
74 /* Security Block configuration/control registers (offsets from base) */
76 #define SB_CTL_A 0x0000 /* RW - SB Control A */
77 #define SB_CTL_B 0x0004 /* RW - SB Control B */
78 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
79 #define SB_SOURCE_A 0x0010 /* RW - Source A */
80 #define SB_DEST_A 0x0014 /* RW - Destination A */
81 #define SB_LENGTH_A 0x0018 /* RW - Length A */
82 #define SB_SOURCE_B 0x0020 /* RW - Source B */
83 #define SB_DEST_B 0x0024 /* RW - Destination B */
84 #define SB_LENGTH_B 0x0028 /* RW - Length B */
85 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
86 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
87 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
88 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
89 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
90 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
91 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
92 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
93 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
94 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
95 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
96 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
97 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
98 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
99 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
100 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
102 /* For SB_CTL_A and _B */
103 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
104 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
105 #define SB_CTL_DEC 0x0000 /* Decrypt */
106 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */
107 #define SB_CTL_DC 0x0008 /* Destination coherent */
108 #define SB_CTL_SC 0x0010 /* Source coherent */
109 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
111 /* For SB_AES_INT */
112 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */
113 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */
114 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */
115 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */
116 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */
117 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */
118 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */
119 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */
120 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */
122 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
124 #define SB_MEM_SIZE 0x0810 /* Size of memory block */
126 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
127 /* must be 16-byte aligned */
128 #define SB_AES_BLOCK_SIZE 0x0010
131 * The Geode LX security block AES acceleration doesn't perform scatter-
132 * gather: it just takes source and destination addresses. Therefore the
133 * plain- and ciphertexts need to be contiguous. To this end, we allocate
134 * a buffer for both, and accept the overhead of copying in and out. If
135 * the number of bytes in one operation is bigger than allowed for by the
136 * buffer (buffer is twice the size of the max length, as it has both input
137 * and output) then we have to perform multiple encryptions/decryptions.
139 #define GLXSB_MAX_AES_LEN 16384
141 struct glxsb_dma_map {
142 bus_dmamap_t dma_map;
143 bus_dma_segment_t dma_seg;
144 int dma_nsegs;
145 int dma_size;
146 void * dma_vaddr;
147 uint32_t dma_paddr;
149 struct glxsb_session {
150 uint32_t ses_key[4];
151 uint8_t ses_iv[SB_AES_BLOCK_SIZE];
152 int ses_klen;
153 int ses_used;
156 struct glxsb_softc {
157 device_t sc_dev;
158 bus_space_tag_t sc_iot;
159 bus_space_handle_t sc_ioh;
160 struct callout sc_co;
162 bus_dma_tag_t sc_dmat;
163 struct glxsb_dma_map sc_dma;
164 int32_t sc_cid;
165 int sc_nsessions;
166 struct glxsb_session *sc_sessions;
168 rndsource_element_t sc_rnd_source;
171 int glxsb_match(device_t, cfdata_t, void *);
172 void glxsb_attach(device_t, device_t, void *);
173 void glxsb_rnd(void *);
175 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
176 glxsb_match, glxsb_attach, NULL, NULL);
178 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
179 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
181 int glxsb_crypto_setup(struct glxsb_softc *);
182 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
183 int glxsb_crypto_process(void *, struct cryptop *, int);
184 int glxsb_crypto_freesession(void *, uint64_t);
185 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
186 uint32_t, void *, int, void *);
188 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
189 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
190 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
191 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
194 glxsb_match(device_t parent, cfdata_t match, void *aux)
196 struct pci_attach_args *pa = aux;
198 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
199 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
200 return (1);
202 return (0);
205 void
206 glxsb_attach(device_t parent, device_t self, void *aux)
208 struct glxsb_softc *sc = device_private(self);
209 struct pci_attach_args *pa = aux;
210 bus_addr_t membase;
211 bus_size_t memsize;
212 uint64_t msr;
213 uint32_t intr;
215 msr = rdmsr(SB_GLD_MSR_CAP);
216 if ((msr & 0xFFFF00) != 0x130400) {
217 printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
218 return;
221 /* printf(": revision %d", (int) (msr & 0xFF)); */
223 /* Map in the security block configuration/control registers */
224 if (pci_mapreg_map(pa, PCI_MAPREG_START,
225 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
226 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
227 printf(": can't find mem space\n");
228 return;
231 sc->sc_dev = self;
234 * Configure the Security Block.
236 * We want to enable the noise generator (T_NE), and enable the
237 * linear feedback shift register and whitener post-processing
238 * (T_SEL = 3). Also ensure that test mode (deterministic values)
239 * is disabled.
241 msr = rdmsr(SB_GLD_MSR_CTRL);
242 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
243 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
244 #if 0
245 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
246 #endif
247 wrmsr(SB_GLD_MSR_CTRL, msr);
249 rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
250 RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE);
252 /* Install a periodic collector for the "true" (AMD's word) RNG */
253 callout_init(&sc->sc_co, 0);
254 callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
255 glxsb_rnd(sc);
256 printf(": RNG");
258 /* We don't have an interrupt handler, so disable completion INTs */
259 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
260 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
261 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
262 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
264 sc->sc_dmat = pa->pa_dmat;
266 if (glxsb_crypto_setup(sc))
267 printf(" AES");
269 printf("\n");
272 void
273 glxsb_rnd(void *v)
275 struct glxsb_softc *sc = v;
276 uint32_t status, value;
277 extern int hz;
279 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
280 if (status & SB_RNS_TRNG_VALID) {
281 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
282 rnd_add_uint32(&sc->sc_rnd_source, value);
285 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
289 glxsb_crypto_setup(struct glxsb_softc *sc)
292 /* Allocate a contiguous DMA-able buffer to work in */
293 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
294 return 0;
296 sc->sc_cid = crypto_get_driverid(0);
297 if (sc->sc_cid < 0)
298 return 0;
300 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
301 glxsb_crypto_newsession, glxsb_crypto_freesession,
302 glxsb_crypto_process, sc);
304 sc->sc_nsessions = 0;
306 return 1;
310 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
312 struct glxsb_softc *sc = aux;
313 struct glxsb_session *ses = NULL;
314 int sesn;
316 if (sc == NULL || sidp == NULL || cri == NULL ||
317 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
318 cri->cri_klen != 128)
319 return (EINVAL);
321 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
322 if (sc->sc_sessions[sesn].ses_used == 0) {
323 ses = &sc->sc_sessions[sesn];
324 break;
328 if (ses == NULL) {
329 sesn = sc->sc_nsessions;
330 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
331 if (ses == NULL)
332 return (ENOMEM);
333 if (sesn != 0) {
334 memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
335 memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
336 free(sc->sc_sessions, M_DEVBUF);
338 sc->sc_sessions = ses;
339 ses = &sc->sc_sessions[sesn];
340 sc->sc_nsessions++;
343 memset(ses, 0, sizeof(*ses));
344 ses->ses_used = 1;
346 arc4randbytes(ses->ses_iv, sizeof(ses->ses_iv));
347 ses->ses_klen = cri->cri_klen;
349 /* Copy the key (Geode LX wants the primary key only) */
350 memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
352 *sidp = GLXSB_SID(0, sesn);
353 return (0);
357 glxsb_crypto_freesession(void *aux, uint64_t tid)
359 struct glxsb_softc *sc = aux;
360 int sesn;
361 uint32_t sid = ((uint32_t)tid) & 0xffffffff;
363 if (sc == NULL)
364 return (EINVAL);
365 sesn = GLXSB_SESSION(sid);
366 if (sesn >= sc->sc_nsessions)
367 return (EINVAL);
368 memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
369 return (0);
373 * Must be called at splnet() or higher
375 static __inline void
376 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
377 uint32_t pdst, void *key, int len, void *iv)
379 uint32_t status;
380 int i;
382 if (len & 0xF) {
383 printf("%s: len must be a multiple of 16 (not %d)\n",
384 device_xname(sc->sc_dev), len);
385 return;
388 /* Set the source */
389 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
391 /* Set the destination address */
392 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
394 /* Set the data length */
395 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
397 /* Set the IV */
398 if (iv != NULL) {
399 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
400 SB_CBC_IV, iv, 4);
401 control |= SB_CTL_CBC;
404 /* Set the key */
405 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
407 /* Ask the security block to do it */
408 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
409 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
412 * Now wait until it is done.
414 * We do a busy wait. Obviously the number of iterations of
415 * the loop required to perform the AES operation depends upon
416 * the number of bytes to process.
418 * On a 500 MHz Geode LX we see
420 * length (bytes) typical max iterations
421 * 16 12
422 * 64 22
423 * 256 59
424 * 1024 212
425 * 8192 1,537
427 * Since we have a maximum size of operation defined in
428 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
429 * to wait. Allow an order of magnitude longer than it should
430 * really take, just in case.
432 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
433 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
435 if ((status & SB_CTL_ST) == 0) /* Done */
436 return;
439 aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
443 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
445 struct glxsb_softc *sc = aux;
446 struct glxsb_session *ses;
447 struct cryptodesc *crd;
448 char *op_src, *op_dst;
449 uint32_t op_psrc, op_pdst;
450 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
451 int sesn, err = 0;
452 int len, tlen, xlen;
453 int offset;
454 uint32_t control;
455 int s;
457 s = splnet();
459 if (crp == NULL || crp->crp_callback == NULL) {
460 err = EINVAL;
461 goto out;
463 crd = crp->crp_desc;
464 if (crd == NULL || crd->crd_next != NULL ||
465 crd->crd_alg != CRYPTO_AES_CBC ||
466 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
467 err = EINVAL;
468 goto out;
471 sesn = GLXSB_SESSION(crp->crp_sid);
472 if (sesn >= sc->sc_nsessions) {
473 err = EINVAL;
474 goto out;
476 ses = &sc->sc_sessions[sesn];
478 /* How much of our buffer will we need to use? */
479 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
480 GLXSB_MAX_AES_LEN : crd->crd_len;
483 * XXX Check if we can have input == output on Geode LX.
484 * XXX In the meantime, use two separate (adjacent) buffers.
486 op_src = sc->sc_dma.dma_vaddr;
487 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
489 op_psrc = sc->sc_dma.dma_paddr;
490 op_pdst = sc->sc_dma.dma_paddr + xlen;
492 if (crd->crd_flags & CRD_F_ENCRYPT) {
493 control = SB_CTL_ENC;
494 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
495 memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
496 else
497 memcpy(op_iv, ses->ses_iv, sizeof(op_iv));
499 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
500 if (crp->crp_flags & CRYPTO_F_IMBUF)
501 m_copyback((struct mbuf *)crp->crp_buf,
502 crd->crd_inject, sizeof(op_iv), op_iv);
503 else if (crp->crp_flags & CRYPTO_F_IOV)
504 cuio_copyback((struct uio *)crp->crp_buf,
505 crd->crd_inject, sizeof(op_iv), op_iv);
506 else
507 bcopy(op_iv,
508 (char *)crp->crp_buf + crd->crd_inject,
509 sizeof(op_iv));
511 } else {
512 control = SB_CTL_DEC;
513 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
514 memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
515 else {
516 if (crp->crp_flags & CRYPTO_F_IMBUF)
517 m_copydata((struct mbuf *)crp->crp_buf,
518 crd->crd_inject, sizeof(op_iv), op_iv);
519 else if (crp->crp_flags & CRYPTO_F_IOV)
520 cuio_copydata((struct uio *)crp->crp_buf,
521 crd->crd_inject, sizeof(op_iv), op_iv);
522 else
523 bcopy((char *)crp->crp_buf + crd->crd_inject,
524 op_iv, sizeof(op_iv));
528 offset = 0;
529 tlen = crd->crd_len;
530 piv = op_iv;
532 /* Process the data in GLXSB_MAX_AES_LEN chunks */
533 while (tlen > 0) {
534 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
536 if (crp->crp_flags & CRYPTO_F_IMBUF)
537 m_copydata((struct mbuf *)crp->crp_buf,
538 crd->crd_skip + offset, len, op_src);
539 else if (crp->crp_flags & CRYPTO_F_IOV)
540 cuio_copydata((struct uio *)crp->crp_buf,
541 crd->crd_skip + offset, len, op_src);
542 else
543 bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
544 op_src, len);
546 glxsb_dma_pre_op(sc, &sc->sc_dma);
548 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
549 len, op_iv);
551 glxsb_dma_post_op(sc, &sc->sc_dma);
553 if (crp->crp_flags & CRYPTO_F_IMBUF)
554 m_copyback((struct mbuf *)crp->crp_buf,
555 crd->crd_skip + offset, len, op_dst);
556 else if (crp->crp_flags & CRYPTO_F_IOV)
557 cuio_copyback((struct uio *)crp->crp_buf,
558 crd->crd_skip + offset, len, op_dst);
559 else
560 memcpy((char *)crp->crp_buf + crd->crd_skip + offset, op_dst,
561 len);
563 offset += len;
564 tlen -= len;
566 if (tlen <= 0) { /* Ideally, just == 0 */
567 /* Finished - put the IV in session IV */
568 piv = ses->ses_iv;
572 * Copy out last block for use as next iteration/session IV.
574 * piv is set to op_iv[] before the loop starts, but is
575 * set to ses->ses_iv if we're going to exit the loop this
576 * time.
578 if (crd->crd_flags & CRD_F_ENCRYPT) {
579 memcpy(piv, op_dst + len - sizeof(op_iv), sizeof(op_iv));
580 } else {
581 /* Decryption, only need this if another iteration */
582 if (tlen > 0) {
583 memcpy(piv, op_src + len - sizeof(op_iv),
584 sizeof(op_iv));
589 /* All AES processing has now been done. */
591 memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
592 out:
593 crp->crp_etype = err;
594 crypto_done(crp);
595 splx(s);
596 return (err);
600 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
602 int rc;
604 dma->dma_nsegs = 1;
605 dma->dma_size = size;
607 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
608 0, BUS_DMA_NOWAIT, &dma->dma_map);
609 if (rc != 0) {
610 aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n",
611 size, rc);
613 goto fail0;
616 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
617 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
618 if (rc != 0) {
619 aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n",
620 size, rc);
622 goto fail1;
625 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
626 &dma->dma_vaddr, BUS_DMA_NOWAIT);
627 if (rc != 0) {
628 aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n",
629 size, rc);
631 goto fail2;
634 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
635 size, NULL, BUS_DMA_NOWAIT);
636 if (rc != 0) {
637 aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n",
638 size, rc);
640 goto fail3;
643 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
645 return 0;
647 fail3:
648 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
649 fail2:
650 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
651 fail1:
652 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
653 fail0:
654 return rc;
657 void
658 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
660 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
661 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
664 void
665 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
667 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
668 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
671 void
672 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
674 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
675 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
676 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
677 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);