Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / pci / if_dge.c
blob97447b3a8cb0f403a1515e933603688b92419b57
1 /* $NetBSD: if_dge.c,v 1.27 2009/09/27 12:52:59 tsutsui Exp $ */
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.27 2009/09/27 12:52:59 tsutsui Exp $");
85 #include "bpfilter.h"
86 #include "rnd.h"
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
115 #include <netinet/in.h> /* XXX for struct ip */
116 #include <netinet/in_systm.h> /* XXX for struct ip */
117 #include <netinet/ip.h> /* XXX for struct ip */
118 #include <netinet/tcp.h> /* XXX for struct tcphdr */
120 #include <sys/bus.h>
121 #include <sys/intr.h>
122 #include <machine/endian.h>
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/mii_bitbang.h>
128 #include <dev/pci/pcireg.h>
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcidevs.h>
132 #include <dev/pci/if_dgereg.h>
135 * The receive engine may sometimes become off-by-one when writing back
136 * chained descriptors. Avoid this by allocating a large chunk of
137 * memory and use if instead (to avoid chained descriptors).
138 * This only happens with chained descriptors under heavy load.
140 #define DGE_OFFBYONE_RXBUG
142 #define DGE_EVENT_COUNTERS
143 #define DGE_DEBUG
145 #ifdef DGE_DEBUG
146 #define DGE_DEBUG_LINK 0x01
147 #define DGE_DEBUG_TX 0x02
148 #define DGE_DEBUG_RX 0x04
149 #define DGE_DEBUG_CKSUM 0x08
150 int dge_debug = 0;
152 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
153 #else
154 #define DPRINTF(x, y) /* nothing */
155 #endif /* DGE_DEBUG */
158 * Transmit descriptor list size. We allow up to 100 DMA segments per
159 * packet (Intel reports of jumbo frame packets with as
160 * many as 80 DMA segments when using 16k buffers).
162 #define DGE_NTXSEGS 100
163 #define DGE_IFQUEUELEN 20000
164 #define DGE_TXQUEUELEN 2048
165 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
166 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
167 #define DGE_NTXDESC 1024
168 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
169 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
170 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
173 * Receive descriptor list size.
174 * Packet is of size MCLBYTES, and for jumbo packets buffers may
175 * be chained. Due to the nature of the card (high-speed), keep this
176 * ring large. With 2k buffers the ring can store 400 jumbo packets,
177 * which at full speed will be received in just under 3ms.
179 #define DGE_NRXDESC 2048
180 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
181 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
183 * # of descriptors between head and written descriptors.
184 * This is to work-around two erratas.
186 #define DGE_RXSPACE 10
187 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
189 * Receive descriptor fetch threshholds. These are values recommended
190 * by Intel, do not touch them unless you know what you are doing.
192 #define RXDCTL_PTHRESH_VAL 128
193 #define RXDCTL_HTHRESH_VAL 16
194 #define RXDCTL_WTHRESH_VAL 16
198 * Tweakable parameters; default values.
200 #define FCRTH 0x30000 /* Send XOFF water mark */
201 #define FCRTL 0x28000 /* Send XON water mark */
202 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
203 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
206 * Control structures are DMA'd to the i82597 chip. We allocate them in
207 * a single clump that maps to a single DMA segment to make serveral things
208 * easier.
210 struct dge_control_data {
212 * The transmit descriptors.
214 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
217 * The receive descriptors.
219 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
222 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
223 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
224 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
227 * The DGE interface have a higher max MTU size than normal jumbo frames.
229 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
232 * Software state for transmit jobs.
234 struct dge_txsoft {
235 struct mbuf *txs_mbuf; /* head of our mbuf chain */
236 bus_dmamap_t txs_dmamap; /* our DMA map */
237 int txs_firstdesc; /* first descriptor in packet */
238 int txs_lastdesc; /* last descriptor in packet */
239 int txs_ndesc; /* # of descriptors used */
243 * Software state for receive buffers. Each descriptor gets a
244 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
245 * more than one buffer, we chain them together.
247 struct dge_rxsoft {
248 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
249 bus_dmamap_t rxs_dmamap; /* our DMA map */
253 * Software state per device.
255 struct dge_softc {
256 struct device sc_dev; /* generic device information */
257 bus_space_tag_t sc_st; /* bus space tag */
258 bus_space_handle_t sc_sh; /* bus space handle */
259 bus_dma_tag_t sc_dmat; /* bus DMA tag */
260 struct ethercom sc_ethercom; /* ethernet common data */
262 int sc_flags; /* flags; see below */
263 int sc_bus_speed; /* PCI/PCIX bus speed */
264 int sc_pcix_offset; /* PCIX capability register offset */
266 pci_chipset_tag_t sc_pc;
267 pcitag_t sc_pt;
268 int sc_mmrbc; /* Max PCIX memory read byte count */
270 void *sc_ih; /* interrupt cookie */
272 struct ifmedia sc_media;
274 bus_dmamap_t sc_cddmamap; /* control data DMA map */
275 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
277 int sc_align_tweak;
280 * Software state for the transmit and receive descriptors.
282 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
283 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
286 * Control data structures.
288 struct dge_control_data *sc_control_data;
289 #define sc_txdescs sc_control_data->wcd_txdescs
290 #define sc_rxdescs sc_control_data->wcd_rxdescs
292 #ifdef DGE_EVENT_COUNTERS
293 /* Event counters. */
294 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
295 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
296 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
297 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
298 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
299 struct evcnt sc_ev_rxintr; /* Rx interrupts */
300 struct evcnt sc_ev_linkintr; /* Link interrupts */
302 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
303 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
304 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
305 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
307 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
308 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
309 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
311 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
312 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
313 #endif /* DGE_EVENT_COUNTERS */
315 int sc_txfree; /* number of free Tx descriptors */
316 int sc_txnext; /* next ready Tx descriptor */
318 int sc_txsfree; /* number of free Tx jobs */
319 int sc_txsnext; /* next free Tx job */
320 int sc_txsdirty; /* dirty Tx jobs */
322 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
323 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
325 int sc_rxptr; /* next ready Rx descriptor/queue ent */
326 int sc_rxdiscard;
327 int sc_rxlen;
328 struct mbuf *sc_rxhead;
329 struct mbuf *sc_rxtail;
330 struct mbuf **sc_rxtailp;
332 uint32_t sc_ctrl0; /* prototype CTRL0 register */
333 uint32_t sc_icr; /* prototype interrupt bits */
334 uint32_t sc_tctl; /* prototype TCTL register */
335 uint32_t sc_rctl; /* prototype RCTL register */
337 int sc_mchash_type; /* multicast filter offset */
339 uint16_t sc_eeprom[EEPROM_SIZE];
341 #if NRND > 0
342 rndsource_element_t rnd_source; /* random source */
343 #endif
344 #ifdef DGE_OFFBYONE_RXBUG
345 void *sc_bugbuf;
346 SLIST_HEAD(, rxbugentry) sc_buglist;
347 bus_dmamap_t sc_bugmap;
348 struct rxbugentry *sc_entry;
349 #endif
352 #define DGE_RXCHAIN_RESET(sc) \
353 do { \
354 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
355 *(sc)->sc_rxtailp = NULL; \
356 (sc)->sc_rxlen = 0; \
357 } while (/*CONSTCOND*/0)
359 #define DGE_RXCHAIN_LINK(sc, m) \
360 do { \
361 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
362 (sc)->sc_rxtailp = &(m)->m_next; \
363 } while (/*CONSTCOND*/0)
365 /* sc_flags */
366 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
367 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
369 #ifdef DGE_EVENT_COUNTERS
370 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
371 #else
372 #define DGE_EVCNT_INCR(ev) /* nothing */
373 #endif
375 #define CSR_READ(sc, reg) \
376 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
377 #define CSR_WRITE(sc, reg, val) \
378 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
381 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
383 #define DGE_CDTXSYNC(sc, x, n, ops) \
384 do { \
385 int __x, __n; \
387 __x = (x); \
388 __n = (n); \
390 /* If it will wrap around, sync to the end of the ring. */ \
391 if ((__x + __n) > DGE_NTXDESC) { \
392 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
393 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
394 (DGE_NTXDESC - __x), (ops)); \
395 __n -= (DGE_NTXDESC - __x); \
396 __x = 0; \
399 /* Now sync whatever is left. */ \
400 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
401 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
402 } while (/*CONSTCOND*/0)
404 #define DGE_CDRXSYNC(sc, x, ops) \
405 do { \
406 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
407 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
408 } while (/*CONSTCOND*/0)
410 #ifdef DGE_OFFBYONE_RXBUG
411 #define DGE_INIT_RXDESC(sc, x) \
412 do { \
413 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
414 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
415 struct mbuf *__m = __rxs->rxs_mbuf; \
417 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
418 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
419 __rxd->dr_baddrh = 0; \
420 __rxd->dr_len = 0; \
421 __rxd->dr_cksum = 0; \
422 __rxd->dr_status = 0; \
423 __rxd->dr_errors = 0; \
424 __rxd->dr_special = 0; \
425 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
427 CSR_WRITE((sc), DGE_RDT, (x)); \
428 } while (/*CONSTCOND*/0)
429 #else
430 #define DGE_INIT_RXDESC(sc, x) \
431 do { \
432 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
433 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
434 struct mbuf *__m = __rxs->rxs_mbuf; \
436 /* \
437 * Note: We scoot the packet forward 2 bytes in the buffer \
438 * so that the payload after the Ethernet header is aligned \
439 * to a 4-byte boundary. \
441 * XXX BRAINDAMAGE ALERT! \
442 * The stupid chip uses the same size for every buffer, which \
443 * is set in the Receive Control register. We are using the 2K \
444 * size option, but what we REALLY want is (2K - 2)! For this \
445 * reason, we can't "scoot" packets longer than the standard \
446 * Ethernet MTU. On strict-alignment platforms, if the total \
447 * size exceeds (2K - 2) we set align_tweak to 0 and let \
448 * the upper layer copy the headers. \
449 */ \
450 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
452 __rxd->dr_baddrl = \
453 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
454 (sc)->sc_align_tweak); \
455 __rxd->dr_baddrh = 0; \
456 __rxd->dr_len = 0; \
457 __rxd->dr_cksum = 0; \
458 __rxd->dr_status = 0; \
459 __rxd->dr_errors = 0; \
460 __rxd->dr_special = 0; \
461 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
463 CSR_WRITE((sc), DGE_RDT, (x)); \
464 } while (/*CONSTCOND*/0)
465 #endif
467 #ifdef DGE_OFFBYONE_RXBUG
469 * Allocation constants. Much memory may be used for this.
471 #ifndef DGE_BUFFER_SIZE
472 #define DGE_BUFFER_SIZE DGE_MAX_MTU
473 #endif
474 #define DGE_NBUFFERS (4*DGE_NRXDESC)
475 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
477 struct rxbugentry {
478 SLIST_ENTRY(rxbugentry) rb_entry;
479 int rb_slot;
482 static int
483 dge_alloc_rcvmem(struct dge_softc *sc)
485 char *ptr, *kva;
486 bus_dma_segment_t seg;
487 int i, rseg, state, error;
488 struct rxbugentry *entry;
490 state = error = 0;
492 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
493 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
494 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
495 return ENOBUFS;
498 state = 1;
499 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
500 BUS_DMA_NOWAIT)) {
501 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
502 (int)DGE_RXMEM);
503 error = ENOBUFS;
504 goto out;
507 state = 2;
508 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
509 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
510 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
511 error = ENOBUFS;
512 goto out;
515 state = 3;
516 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
517 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
518 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
519 error = ENOBUFS;
520 goto out;
523 state = 4;
524 sc->sc_bugbuf = (void *)kva;
525 SLIST_INIT(&sc->sc_buglist);
528 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
529 * in an array.
531 ptr = sc->sc_bugbuf;
532 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
533 M_DEVBUF, M_NOWAIT)) == NULL) {
534 error = ENOBUFS;
535 goto out;
537 sc->sc_entry = entry;
538 for (i = 0; i < DGE_NBUFFERS; i++) {
539 entry[i].rb_slot = i;
540 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
542 out:
543 if (error != 0) {
544 switch (state) {
545 case 4:
546 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
547 case 3:
548 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
549 case 2:
550 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
551 case 1:
552 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
553 break;
554 default:
555 break;
559 return error;
563 * Allocate a jumbo buffer.
565 static void *
566 dge_getbuf(struct dge_softc *sc)
568 struct rxbugentry *entry;
570 entry = SLIST_FIRST(&sc->sc_buglist);
572 if (entry == NULL) {
573 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
574 return(NULL);
577 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
578 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
582 * Release a jumbo buffer.
584 static void
585 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
587 struct rxbugentry *entry;
588 struct dge_softc *sc;
589 int i, s;
591 /* Extract the softc struct pointer. */
592 sc = (struct dge_softc *)arg;
594 if (sc == NULL)
595 panic("dge_freebuf: can't find softc pointer!");
597 /* calculate the slot this buffer belongs to */
599 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
601 if ((i < 0) || (i >= DGE_NBUFFERS))
602 panic("dge_freebuf: asked to free buffer %d!", i);
604 s = splvm();
605 entry = sc->sc_entry + i;
606 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
608 if (__predict_true(m != NULL))
609 pool_cache_put(mb_cache, m);
610 splx(s);
612 #endif
614 static void dge_start(struct ifnet *);
615 static void dge_watchdog(struct ifnet *);
616 static int dge_ioctl(struct ifnet *, u_long, void *);
617 static int dge_init(struct ifnet *);
618 static void dge_stop(struct ifnet *, int);
620 static bool dge_shutdown(device_t, int);
622 static void dge_reset(struct dge_softc *);
623 static void dge_rxdrain(struct dge_softc *);
624 static int dge_add_rxbuf(struct dge_softc *, int);
626 static void dge_set_filter(struct dge_softc *);
628 static int dge_intr(void *);
629 static void dge_txintr(struct dge_softc *);
630 static void dge_rxintr(struct dge_softc *);
631 static void dge_linkintr(struct dge_softc *, uint32_t);
633 static int dge_match(device_t, cfdata_t, void *);
634 static void dge_attach(device_t, device_t, void *);
636 static int dge_read_eeprom(struct dge_softc *sc);
637 static int dge_eeprom_clockin(struct dge_softc *sc);
638 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
639 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
640 static int dge_xgmii_mediachange(struct ifnet *);
641 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
642 static void dge_xgmii_reset(struct dge_softc *);
643 static void dge_xgmii_writereg(device_t, int, int, int);
646 CFATTACH_DECL(dge, sizeof(struct dge_softc),
647 dge_match, dge_attach, NULL, NULL);
649 #ifdef DGE_EVENT_COUNTERS
650 #if DGE_NTXSEGS > 100
651 #error Update dge_txseg_evcnt_names
652 #endif
653 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
654 #endif /* DGE_EVENT_COUNTERS */
656 static int
657 dge_match(device_t parent, cfdata_t cf, void *aux)
659 struct pci_attach_args *pa = aux;
661 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
662 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
663 return (1);
665 return (0);
668 static void
669 dge_attach(device_t parent, device_t self, void *aux)
671 struct dge_softc *sc = device_private(self);
672 struct pci_attach_args *pa = aux;
673 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
674 pci_chipset_tag_t pc = pa->pa_pc;
675 pci_intr_handle_t ih;
676 const char *intrstr = NULL;
677 bus_dma_segment_t seg;
678 int i, rseg, error;
679 uint8_t enaddr[ETHER_ADDR_LEN];
680 pcireg_t preg, memtype;
681 uint32_t reg;
683 sc->sc_dmat = pa->pa_dmat;
684 sc->sc_pc = pa->pa_pc;
685 sc->sc_pt = pa->pa_tag;
687 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
688 aprint_naive(": Ethernet controller\n");
689 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
691 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
692 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
693 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
694 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
695 return;
698 /* Enable bus mastering */
699 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
700 preg |= PCI_COMMAND_MASTER_ENABLE;
701 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
704 * Map and establish our interrupt.
706 if (pci_intr_map(pa, &ih)) {
707 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
708 return;
710 intrstr = pci_intr_string(pc, ih);
711 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
712 if (sc->sc_ih == NULL) {
713 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
714 if (intrstr != NULL)
715 aprint_error(" at %s", intrstr);
716 aprint_error("\n");
717 return;
719 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
722 * Determine a few things about the bus we're connected to.
724 reg = CSR_READ(sc, DGE_STATUS);
725 if (reg & STATUS_BUS64)
726 sc->sc_flags |= DGE_F_BUS64;
728 sc->sc_flags |= DGE_F_PCIX;
729 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
730 PCI_CAP_PCIX,
731 &sc->sc_pcix_offset, NULL) == 0)
732 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
733 "capability\n");
735 if (sc->sc_flags & DGE_F_PCIX) {
736 switch (reg & STATUS_PCIX_MSK) {
737 case STATUS_PCIX_66:
738 sc->sc_bus_speed = 66;
739 break;
740 case STATUS_PCIX_100:
741 sc->sc_bus_speed = 100;
742 break;
743 case STATUS_PCIX_133:
744 sc->sc_bus_speed = 133;
745 break;
746 default:
747 aprint_error_dev(&sc->sc_dev,
748 "unknown PCIXSPD %d; assuming 66MHz\n",
749 reg & STATUS_PCIX_MSK);
750 sc->sc_bus_speed = 66;
752 } else
753 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
754 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
755 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
756 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
759 * Allocate the control data structures, and create and load the
760 * DMA map for it.
762 if ((error = bus_dmamem_alloc(sc->sc_dmat,
763 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
764 0)) != 0) {
765 aprint_error_dev(&sc->sc_dev,
766 "unable to allocate control data, error = %d\n",
767 error);
768 goto fail_0;
771 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
772 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
773 0)) != 0) {
774 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
775 error);
776 goto fail_1;
779 if ((error = bus_dmamap_create(sc->sc_dmat,
780 sizeof(struct dge_control_data), 1,
781 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
782 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
783 "error = %d\n", error);
784 goto fail_2;
787 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
788 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
789 0)) != 0) {
790 aprint_error_dev(&sc->sc_dev,
791 "unable to load control data DMA map, error = %d\n",
792 error);
793 goto fail_3;
796 #ifdef DGE_OFFBYONE_RXBUG
797 if (dge_alloc_rcvmem(sc) != 0)
798 return; /* Already complained */
799 #endif
801 * Create the transmit buffer DMA maps.
803 for (i = 0; i < DGE_TXQUEUELEN; i++) {
804 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
805 DGE_NTXSEGS, MCLBYTES, 0, 0,
806 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
807 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
808 "error = %d\n", i, error);
809 goto fail_4;
814 * Create the receive buffer DMA maps.
816 for (i = 0; i < DGE_NRXDESC; i++) {
817 #ifdef DGE_OFFBYONE_RXBUG
818 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
819 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
820 #else
821 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
822 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
823 #endif
824 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
825 "error = %d\n", i, error);
826 goto fail_5;
828 sc->sc_rxsoft[i].rxs_mbuf = NULL;
832 * Set bits in ctrl0 register.
833 * Should get the software defined pins out of EEPROM?
835 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
836 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
837 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
840 * Reset the chip to a known state.
842 dge_reset(sc);
845 * Reset the PHY.
847 dge_xgmii_reset(sc);
850 * Read in EEPROM data.
852 if (dge_read_eeprom(sc)) {
853 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
854 return;
858 * Get the ethernet address.
860 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
861 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
862 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
863 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
864 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
865 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
867 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
868 ether_sprintf(enaddr));
871 * Setup media stuff.
873 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
874 dge_xgmii_mediastatus);
875 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
876 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
878 ifp = &sc->sc_ethercom.ec_if;
879 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
880 ifp->if_softc = sc;
881 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
882 ifp->if_ioctl = dge_ioctl;
883 ifp->if_start = dge_start;
884 ifp->if_watchdog = dge_watchdog;
885 ifp->if_init = dge_init;
886 ifp->if_stop = dge_stop;
887 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
888 IFQ_SET_READY(&ifp->if_snd);
890 sc->sc_ethercom.ec_capabilities |=
891 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
894 * We can perform TCPv4 and UDPv4 checkums in-bound.
896 ifp->if_capabilities |=
897 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
898 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
899 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
902 * Attach the interface.
904 if_attach(ifp);
905 ether_ifattach(ifp, enaddr);
906 #if NRND > 0
907 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
908 RND_TYPE_NET, 0);
909 #endif
911 #ifdef DGE_EVENT_COUNTERS
912 /* Fix segment event naming */
913 if (dge_txseg_evcnt_names == NULL) {
914 dge_txseg_evcnt_names =
915 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
916 for (i = 0; i < DGE_NTXSEGS; i++)
917 snprintf((*dge_txseg_evcnt_names)[i],
918 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
921 /* Attach event counters. */
922 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
923 NULL, device_xname(&sc->sc_dev), "txsstall");
924 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
925 NULL, device_xname(&sc->sc_dev), "txdstall");
926 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
927 NULL, device_xname(&sc->sc_dev), "txforceintr");
928 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
929 NULL, device_xname(&sc->sc_dev), "txdw");
930 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
931 NULL, device_xname(&sc->sc_dev), "txqe");
932 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
933 NULL, device_xname(&sc->sc_dev), "rxintr");
934 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
935 NULL, device_xname(&sc->sc_dev), "linkintr");
937 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
938 NULL, device_xname(&sc->sc_dev), "rxipsum");
939 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
940 NULL, device_xname(&sc->sc_dev), "rxtusum");
941 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
942 NULL, device_xname(&sc->sc_dev), "txipsum");
943 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
944 NULL, device_xname(&sc->sc_dev), "txtusum");
946 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
947 NULL, device_xname(&sc->sc_dev), "txctx init");
948 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
949 NULL, device_xname(&sc->sc_dev), "txctx hit");
950 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
951 NULL, device_xname(&sc->sc_dev), "txctx miss");
953 for (i = 0; i < DGE_NTXSEGS; i++)
954 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
955 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
957 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
958 NULL, device_xname(&sc->sc_dev), "txdrop");
960 #endif /* DGE_EVENT_COUNTERS */
963 * Make sure the interface is shutdown during reboot.
965 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
966 pmf_class_network_register(self, ifp);
967 else
968 aprint_error_dev(self, "couldn't establish power handler\n");
970 return;
973 * Free any resources we've allocated during the failed attach
974 * attempt. Do this in reverse order and fall through.
976 fail_5:
977 for (i = 0; i < DGE_NRXDESC; i++) {
978 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
979 bus_dmamap_destroy(sc->sc_dmat,
980 sc->sc_rxsoft[i].rxs_dmamap);
982 fail_4:
983 for (i = 0; i < DGE_TXQUEUELEN; i++) {
984 if (sc->sc_txsoft[i].txs_dmamap != NULL)
985 bus_dmamap_destroy(sc->sc_dmat,
986 sc->sc_txsoft[i].txs_dmamap);
988 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
989 fail_3:
990 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
991 fail_2:
992 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
993 sizeof(struct dge_control_data));
994 fail_1:
995 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
996 fail_0:
997 return;
1001 * dge_shutdown:
1003 * Make sure the interface is stopped at reboot time.
1005 static bool
1006 dge_shutdown(device_t self, int howto)
1008 struct dge_softc *sc;
1010 sc = device_private(self);
1011 dge_stop(&sc->sc_ethercom.ec_if, 1);
1013 return true;
1017 * dge_tx_cksum:
1019 * Set up TCP/IP checksumming parameters for the
1020 * specified packet.
1022 static int
1023 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1025 struct mbuf *m0 = txs->txs_mbuf;
1026 struct dge_ctdes *t;
1027 uint32_t ipcs, tucs;
1028 struct ether_header *eh;
1029 int offset, iphl;
1030 uint8_t fields = 0;
1033 * XXX It would be nice if the mbuf pkthdr had offset
1034 * fields for the protocol headers.
1037 eh = mtod(m0, struct ether_header *);
1038 switch (htons(eh->ether_type)) {
1039 case ETHERTYPE_IP:
1040 offset = ETHER_HDR_LEN;
1041 break;
1043 case ETHERTYPE_VLAN:
1044 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1045 break;
1047 default:
1049 * Don't support this protocol or encapsulation.
1051 *fieldsp = 0;
1052 return (0);
1055 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1058 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1059 * offload feature, if we load the context descriptor, we
1060 * MUST provide valid values for IPCSS and TUCSS fields.
1063 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1064 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1065 fields |= TDESC_POPTS_IXSM;
1066 ipcs = DGE_TCPIP_IPCSS(offset) |
1067 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1068 DGE_TCPIP_IPCSE(offset + iphl - 1);
1069 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1070 /* Use the cached value. */
1071 ipcs = sc->sc_txctx_ipcs;
1072 } else {
1073 /* Just initialize it to the likely value anyway. */
1074 ipcs = DGE_TCPIP_IPCSS(offset) |
1075 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1076 DGE_TCPIP_IPCSE(offset + iphl - 1);
1078 DPRINTF(DGE_DEBUG_CKSUM,
1079 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1080 device_xname(&sc->sc_dev), offset, ipcs));
1082 offset += iphl;
1084 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1085 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1086 fields |= TDESC_POPTS_TXSM;
1087 tucs = DGE_TCPIP_TUCSS(offset) |
1088 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1089 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1090 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1091 /* Use the cached value. */
1092 tucs = sc->sc_txctx_tucs;
1093 } else {
1094 /* Just initialize it to a valid TCP context. */
1095 tucs = DGE_TCPIP_TUCSS(offset) |
1096 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1097 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1100 DPRINTF(DGE_DEBUG_CKSUM,
1101 ("%s: CKSUM: offset %d tucs 0x%x\n",
1102 device_xname(&sc->sc_dev), offset, tucs));
1104 if (sc->sc_txctx_ipcs == ipcs &&
1105 sc->sc_txctx_tucs == tucs) {
1106 /* Cached context is fine. */
1107 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1108 } else {
1109 /* Fill in the context descriptor. */
1110 #ifdef DGE_EVENT_COUNTERS
1111 if (sc->sc_txctx_ipcs == 0xffffffff &&
1112 sc->sc_txctx_tucs == 0xffffffff)
1113 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1114 else
1115 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1116 #endif
1117 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1118 t->dc_tcpip_ipcs = htole32(ipcs);
1119 t->dc_tcpip_tucs = htole32(tucs);
1120 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1121 t->dc_tcpip_seg = 0;
1122 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1124 sc->sc_txctx_ipcs = ipcs;
1125 sc->sc_txctx_tucs = tucs;
1127 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1128 txs->txs_ndesc++;
1131 *fieldsp = fields;
1133 return (0);
1137 * dge_start: [ifnet interface function]
1139 * Start packet transmission on the interface.
1141 static void
1142 dge_start(struct ifnet *ifp)
1144 struct dge_softc *sc = ifp->if_softc;
1145 struct mbuf *m0;
1146 struct dge_txsoft *txs;
1147 bus_dmamap_t dmamap;
1148 int error, nexttx, lasttx = -1, ofree, seg;
1149 uint32_t cksumcmd;
1150 uint8_t cksumfields;
1152 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1153 return;
1156 * Remember the previous number of free descriptors.
1158 ofree = sc->sc_txfree;
1161 * Loop through the send queue, setting up transmit descriptors
1162 * until we drain the queue, or use up all available transmit
1163 * descriptors.
1165 for (;;) {
1166 /* Grab a packet off the queue. */
1167 IFQ_POLL(&ifp->if_snd, m0);
1168 if (m0 == NULL)
1169 break;
1171 DPRINTF(DGE_DEBUG_TX,
1172 ("%s: TX: have packet to transmit: %p\n",
1173 device_xname(&sc->sc_dev), m0));
1175 /* Get a work queue entry. */
1176 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1177 dge_txintr(sc);
1178 if (sc->sc_txsfree == 0) {
1179 DPRINTF(DGE_DEBUG_TX,
1180 ("%s: TX: no free job descriptors\n",
1181 device_xname(&sc->sc_dev)));
1182 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1183 break;
1187 txs = &sc->sc_txsoft[sc->sc_txsnext];
1188 dmamap = txs->txs_dmamap;
1191 * Load the DMA map. If this fails, the packet either
1192 * didn't fit in the allotted number of segments, or we
1193 * were short on resources. For the too-many-segments
1194 * case, we simply report an error and drop the packet,
1195 * since we can't sanely copy a jumbo packet to a single
1196 * buffer.
1198 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1199 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1200 if (error) {
1201 if (error == EFBIG) {
1202 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1203 printf("%s: Tx packet consumes too many "
1204 "DMA segments, dropping...\n",
1205 device_xname(&sc->sc_dev));
1206 IFQ_DEQUEUE(&ifp->if_snd, m0);
1207 m_freem(m0);
1208 continue;
1211 * Short on resources, just stop for now.
1213 DPRINTF(DGE_DEBUG_TX,
1214 ("%s: TX: dmamap load failed: %d\n",
1215 device_xname(&sc->sc_dev), error));
1216 break;
1220 * Ensure we have enough descriptors free to describe
1221 * the packet. Note, we always reserve one descriptor
1222 * at the end of the ring due to the semantics of the
1223 * TDT register, plus one more in the event we need
1224 * to re-load checksum offload context.
1226 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1228 * Not enough free descriptors to transmit this
1229 * packet. We haven't committed anything yet,
1230 * so just unload the DMA map, put the packet
1231 * pack on the queue, and punt. Notify the upper
1232 * layer that there are no more slots left.
1234 DPRINTF(DGE_DEBUG_TX,
1235 ("%s: TX: need %d descriptors, have %d\n",
1236 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1237 sc->sc_txfree - 1));
1238 ifp->if_flags |= IFF_OACTIVE;
1239 bus_dmamap_unload(sc->sc_dmat, dmamap);
1240 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1241 break;
1244 IFQ_DEQUEUE(&ifp->if_snd, m0);
1247 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1250 /* Sync the DMA map. */
1251 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1252 BUS_DMASYNC_PREWRITE);
1254 DPRINTF(DGE_DEBUG_TX,
1255 ("%s: TX: packet has %d DMA segments\n",
1256 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1258 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1261 * Store a pointer to the packet so that we can free it
1262 * later.
1264 * Initially, we consider the number of descriptors the
1265 * packet uses the number of DMA segments. This may be
1266 * incremented by 1 if we do checksum offload (a descriptor
1267 * is used to set the checksum context).
1269 txs->txs_mbuf = m0;
1270 txs->txs_firstdesc = sc->sc_txnext;
1271 txs->txs_ndesc = dmamap->dm_nsegs;
1274 * Set up checksum offload parameters for
1275 * this packet.
1277 if (m0->m_pkthdr.csum_flags &
1278 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1279 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1280 /* Error message already displayed. */
1281 bus_dmamap_unload(sc->sc_dmat, dmamap);
1282 continue;
1284 } else {
1285 cksumfields = 0;
1288 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1291 * Initialize the transmit descriptor.
1293 for (nexttx = sc->sc_txnext, seg = 0;
1294 seg < dmamap->dm_nsegs;
1295 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1297 * Note: we currently only use 32-bit DMA
1298 * addresses.
1300 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1301 sc->sc_txdescs[nexttx].dt_baddrl =
1302 htole32(dmamap->dm_segs[seg].ds_addr);
1303 sc->sc_txdescs[nexttx].dt_ctl =
1304 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1305 sc->sc_txdescs[nexttx].dt_status = 0;
1306 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1307 sc->sc_txdescs[nexttx].dt_vlan = 0;
1308 lasttx = nexttx;
1310 DPRINTF(DGE_DEBUG_TX,
1311 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1312 device_xname(&sc->sc_dev), nexttx,
1313 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1314 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1317 KASSERT(lasttx != -1);
1320 * Set up the command byte on the last descriptor of
1321 * the packet. If we're in the interrupt delay window,
1322 * delay the interrupt.
1324 sc->sc_txdescs[lasttx].dt_ctl |=
1325 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1327 txs->txs_lastdesc = lasttx;
1329 DPRINTF(DGE_DEBUG_TX,
1330 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1331 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1333 /* Sync the descriptors we're using. */
1334 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1335 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1337 /* Give the packet to the chip. */
1338 CSR_WRITE(sc, DGE_TDT, nexttx);
1340 DPRINTF(DGE_DEBUG_TX,
1341 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1343 DPRINTF(DGE_DEBUG_TX,
1344 ("%s: TX: finished transmitting packet, job %d\n",
1345 device_xname(&sc->sc_dev), sc->sc_txsnext));
1347 /* Advance the tx pointer. */
1348 sc->sc_txfree -= txs->txs_ndesc;
1349 sc->sc_txnext = nexttx;
1351 sc->sc_txsfree--;
1352 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1354 #if NBPFILTER > 0
1355 /* Pass the packet to any BPF listeners. */
1356 if (ifp->if_bpf)
1357 bpf_mtap(ifp->if_bpf, m0);
1358 #endif /* NBPFILTER > 0 */
1361 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1362 /* No more slots; notify upper layer. */
1363 ifp->if_flags |= IFF_OACTIVE;
1366 if (sc->sc_txfree != ofree) {
1367 /* Set a watchdog timer in case the chip flakes out. */
1368 ifp->if_timer = 5;
1373 * dge_watchdog: [ifnet interface function]
1375 * Watchdog timer handler.
1377 static void
1378 dge_watchdog(struct ifnet *ifp)
1380 struct dge_softc *sc = ifp->if_softc;
1383 * Since we're using delayed interrupts, sweep up
1384 * before we report an error.
1386 dge_txintr(sc);
1388 if (sc->sc_txfree != DGE_NTXDESC) {
1389 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1390 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1391 sc->sc_txnext);
1392 ifp->if_oerrors++;
1394 /* Reset the interface. */
1395 (void) dge_init(ifp);
1398 /* Try to get more packets going. */
1399 dge_start(ifp);
1403 * dge_ioctl: [ifnet interface function]
1405 * Handle control requests from the operator.
1407 static int
1408 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1410 struct dge_softc *sc = ifp->if_softc;
1411 struct ifreq *ifr = (struct ifreq *) data;
1412 pcireg_t preg;
1413 int s, error, mmrbc;
1415 s = splnet();
1417 switch (cmd) {
1418 case SIOCSIFMEDIA:
1419 case SIOCGIFMEDIA:
1420 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1421 break;
1423 case SIOCSIFMTU:
1424 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1425 error = EINVAL;
1426 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1427 break;
1428 else if (ifp->if_flags & IFF_UP)
1429 error = (*ifp->if_init)(ifp);
1430 else
1431 error = 0;
1432 break;
1434 case SIOCSIFFLAGS:
1435 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1436 break;
1437 /* extract link flags */
1438 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1439 (ifp->if_flags & IFF_LINK1) == 0)
1440 mmrbc = PCIX_MMRBC_512;
1441 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1442 (ifp->if_flags & IFF_LINK1) != 0)
1443 mmrbc = PCIX_MMRBC_1024;
1444 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1445 (ifp->if_flags & IFF_LINK1) == 0)
1446 mmrbc = PCIX_MMRBC_2048;
1447 else
1448 mmrbc = PCIX_MMRBC_4096;
1449 if (mmrbc != sc->sc_mmrbc) {
1450 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1451 preg &= ~PCIX_MMRBC_MSK;
1452 preg |= mmrbc;
1453 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1454 sc->sc_mmrbc = mmrbc;
1456 /* FALLTHROUGH */
1457 default:
1458 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1459 break;
1461 error = 0;
1463 if (cmd == SIOCSIFCAP)
1464 error = (*ifp->if_init)(ifp);
1465 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1467 else if (ifp->if_flags & IFF_RUNNING) {
1469 * Multicast list has changed; set the hardware filter
1470 * accordingly.
1472 dge_set_filter(sc);
1474 break;
1477 /* Try to get more packets going. */
1478 dge_start(ifp);
1480 splx(s);
1481 return (error);
1485 * dge_intr:
1487 * Interrupt service routine.
1489 static int
1490 dge_intr(void *arg)
1492 struct dge_softc *sc = arg;
1493 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1494 uint32_t icr;
1495 int wantinit, handled = 0;
1497 for (wantinit = 0; wantinit == 0;) {
1498 icr = CSR_READ(sc, DGE_ICR);
1499 if ((icr & sc->sc_icr) == 0)
1500 break;
1502 #if 0 /*NRND > 0*/
1503 if (RND_ENABLED(&sc->rnd_source))
1504 rnd_add_uint32(&sc->rnd_source, icr);
1505 #endif
1507 handled = 1;
1509 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1510 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1511 DPRINTF(DGE_DEBUG_RX,
1512 ("%s: RX: got Rx intr 0x%08x\n",
1513 device_xname(&sc->sc_dev),
1514 icr & (ICR_RXDMT0|ICR_RXT0)));
1515 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1517 #endif
1518 dge_rxintr(sc);
1520 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1521 if (icr & ICR_TXDW) {
1522 DPRINTF(DGE_DEBUG_TX,
1523 ("%s: TX: got TXDW interrupt\n",
1524 device_xname(&sc->sc_dev)));
1525 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1527 if (icr & ICR_TXQE)
1528 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1529 #endif
1530 dge_txintr(sc);
1532 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1533 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1534 dge_linkintr(sc, icr);
1537 if (icr & ICR_RXO) {
1538 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1539 wantinit = 1;
1543 if (handled) {
1544 if (wantinit)
1545 dge_init(ifp);
1547 /* Try to get more packets going. */
1548 dge_start(ifp);
1551 return (handled);
1555 * dge_txintr:
1557 * Helper; handle transmit interrupts.
1559 static void
1560 dge_txintr(struct dge_softc *sc)
1562 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1563 struct dge_txsoft *txs;
1564 uint8_t status;
1565 int i;
1567 ifp->if_flags &= ~IFF_OACTIVE;
1570 * Go through the Tx list and free mbufs for those
1571 * frames which have been transmitted.
1573 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1574 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1575 txs = &sc->sc_txsoft[i];
1577 DPRINTF(DGE_DEBUG_TX,
1578 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1580 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1581 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1583 status =
1584 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1585 if ((status & TDESC_STA_DD) == 0) {
1586 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1587 BUS_DMASYNC_PREREAD);
1588 break;
1591 DPRINTF(DGE_DEBUG_TX,
1592 ("%s: TX: job %d done: descs %d..%d\n",
1593 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1594 txs->txs_lastdesc));
1596 ifp->if_opackets++;
1597 sc->sc_txfree += txs->txs_ndesc;
1598 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1599 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1600 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1601 m_freem(txs->txs_mbuf);
1602 txs->txs_mbuf = NULL;
1605 /* Update the dirty transmit buffer pointer. */
1606 sc->sc_txsdirty = i;
1607 DPRINTF(DGE_DEBUG_TX,
1608 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1611 * If there are no more pending transmissions, cancel the watchdog
1612 * timer.
1614 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1615 ifp->if_timer = 0;
1619 * dge_rxintr:
1621 * Helper; handle receive interrupts.
1623 static void
1624 dge_rxintr(struct dge_softc *sc)
1626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1627 struct dge_rxsoft *rxs;
1628 struct mbuf *m;
1629 int i, len;
1630 uint8_t status, errors;
1632 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1633 rxs = &sc->sc_rxsoft[i];
1635 DPRINTF(DGE_DEBUG_RX,
1636 ("%s: RX: checking descriptor %d\n",
1637 device_xname(&sc->sc_dev), i));
1639 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1641 status = sc->sc_rxdescs[i].dr_status;
1642 errors = sc->sc_rxdescs[i].dr_errors;
1643 len = le16toh(sc->sc_rxdescs[i].dr_len);
1645 if ((status & RDESC_STS_DD) == 0) {
1647 * We have processed all of the receive descriptors.
1649 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1650 break;
1653 if (__predict_false(sc->sc_rxdiscard)) {
1654 DPRINTF(DGE_DEBUG_RX,
1655 ("%s: RX: discarding contents of descriptor %d\n",
1656 device_xname(&sc->sc_dev), i));
1657 DGE_INIT_RXDESC(sc, i);
1658 if (status & RDESC_STS_EOP) {
1659 /* Reset our state. */
1660 DPRINTF(DGE_DEBUG_RX,
1661 ("%s: RX: resetting rxdiscard -> 0\n",
1662 device_xname(&sc->sc_dev)));
1663 sc->sc_rxdiscard = 0;
1665 continue;
1668 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1669 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1671 m = rxs->rxs_mbuf;
1674 * Add a new receive buffer to the ring.
1676 if (dge_add_rxbuf(sc, i) != 0) {
1678 * Failed, throw away what we've done so
1679 * far, and discard the rest of the packet.
1681 ifp->if_ierrors++;
1682 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1683 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1684 DGE_INIT_RXDESC(sc, i);
1685 if ((status & RDESC_STS_EOP) == 0)
1686 sc->sc_rxdiscard = 1;
1687 if (sc->sc_rxhead != NULL)
1688 m_freem(sc->sc_rxhead);
1689 DGE_RXCHAIN_RESET(sc);
1690 DPRINTF(DGE_DEBUG_RX,
1691 ("%s: RX: Rx buffer allocation failed, "
1692 "dropping packet%s\n", device_xname(&sc->sc_dev),
1693 sc->sc_rxdiscard ? " (discard)" : ""));
1694 continue;
1696 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1698 DGE_RXCHAIN_LINK(sc, m);
1700 m->m_len = len;
1702 DPRINTF(DGE_DEBUG_RX,
1703 ("%s: RX: buffer at %p len %d\n",
1704 device_xname(&sc->sc_dev), m->m_data, len));
1707 * If this is not the end of the packet, keep
1708 * looking.
1710 if ((status & RDESC_STS_EOP) == 0) {
1711 sc->sc_rxlen += len;
1712 DPRINTF(DGE_DEBUG_RX,
1713 ("%s: RX: not yet EOP, rxlen -> %d\n",
1714 device_xname(&sc->sc_dev), sc->sc_rxlen));
1715 continue;
1719 * Okay, we have the entire packet now...
1721 *sc->sc_rxtailp = NULL;
1722 m = sc->sc_rxhead;
1723 len += sc->sc_rxlen;
1725 DGE_RXCHAIN_RESET(sc);
1727 DPRINTF(DGE_DEBUG_RX,
1728 ("%s: RX: have entire packet, len -> %d\n",
1729 device_xname(&sc->sc_dev), len));
1732 * If an error occurred, update stats and drop the packet.
1734 if (errors &
1735 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1736 ifp->if_ierrors++;
1737 if (errors & RDESC_ERR_SE)
1738 printf("%s: symbol error\n",
1739 device_xname(&sc->sc_dev));
1740 else if (errors & RDESC_ERR_P)
1741 printf("%s: parity error\n",
1742 device_xname(&sc->sc_dev));
1743 else if (errors & RDESC_ERR_CE)
1744 printf("%s: CRC error\n",
1745 device_xname(&sc->sc_dev));
1746 m_freem(m);
1747 continue;
1751 * No errors. Receive the packet.
1753 m->m_pkthdr.rcvif = ifp;
1754 m->m_pkthdr.len = len;
1757 * Set up checksum info for this packet.
1759 if (status & RDESC_STS_IPCS) {
1760 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1761 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1762 if (errors & RDESC_ERR_IPE)
1763 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1765 if (status & RDESC_STS_TCPCS) {
1767 * Note: we don't know if this was TCP or UDP,
1768 * so we just set both bits, and expect the
1769 * upper layers to deal.
1771 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1772 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1773 if (errors & RDESC_ERR_TCPE)
1774 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1777 ifp->if_ipackets++;
1779 #if NBPFILTER > 0
1780 /* Pass this up to any BPF listeners. */
1781 if (ifp->if_bpf)
1782 bpf_mtap(ifp->if_bpf, m);
1783 #endif /* NBPFILTER > 0 */
1785 /* Pass it on. */
1786 (*ifp->if_input)(ifp, m);
1789 /* Update the receive pointer. */
1790 sc->sc_rxptr = i;
1792 DPRINTF(DGE_DEBUG_RX,
1793 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1797 * dge_linkintr:
1799 * Helper; handle link interrupts.
1801 static void
1802 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1804 uint32_t status;
1806 if (icr & ICR_LSC) {
1807 status = CSR_READ(sc, DGE_STATUS);
1808 if (status & STATUS_LINKUP) {
1809 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1810 device_xname(&sc->sc_dev)));
1811 } else {
1812 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1813 device_xname(&sc->sc_dev)));
1815 } else if (icr & ICR_RXSEQ) {
1816 DPRINTF(DGE_DEBUG_LINK,
1817 ("%s: LINK: Receive sequence error\n",
1818 device_xname(&sc->sc_dev)));
1820 /* XXX - fix errata */
1824 * dge_reset:
1826 * Reset the i82597 chip.
1828 static void
1829 dge_reset(struct dge_softc *sc)
1831 int i;
1834 * Do a chip reset.
1836 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1838 delay(10000);
1840 for (i = 0; i < 1000; i++) {
1841 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1842 break;
1843 delay(20);
1846 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1847 printf("%s: WARNING: reset failed to complete\n",
1848 device_xname(&sc->sc_dev));
1850 * Reset the EEPROM logic.
1851 * This will cause the chip to reread its default values,
1852 * which doesn't happen otherwise (errata).
1854 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1855 delay(10000);
1859 * dge_init: [ifnet interface function]
1861 * Initialize the interface. Must be called at splnet().
1863 static int
1864 dge_init(struct ifnet *ifp)
1866 struct dge_softc *sc = ifp->if_softc;
1867 struct dge_rxsoft *rxs;
1868 int i, error = 0;
1869 uint32_t reg;
1872 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1873 * There is a small but measurable benefit to avoiding the adjusment
1874 * of the descriptor so that the headers are aligned, for normal mtu,
1875 * on such platforms. One possibility is that the DMA itself is
1876 * slightly more efficient if the front of the entire packet (instead
1877 * of the front of the headers) is aligned.
1879 * Note we must always set align_tweak to 0 if we are using
1880 * jumbo frames.
1882 #ifdef __NO_STRICT_ALIGNMENT
1883 sc->sc_align_tweak = 0;
1884 #else
1885 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1886 sc->sc_align_tweak = 0;
1887 else
1888 sc->sc_align_tweak = 2;
1889 #endif /* __NO_STRICT_ALIGNMENT */
1891 /* Cancel any pending I/O. */
1892 dge_stop(ifp, 0);
1894 /* Reset the chip to a known state. */
1895 dge_reset(sc);
1897 /* Initialize the transmit descriptor ring. */
1898 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1899 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1900 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1901 sc->sc_txfree = DGE_NTXDESC;
1902 sc->sc_txnext = 0;
1904 sc->sc_txctx_ipcs = 0xffffffff;
1905 sc->sc_txctx_tucs = 0xffffffff;
1907 CSR_WRITE(sc, DGE_TDBAH, 0);
1908 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1909 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1910 CSR_WRITE(sc, DGE_TDH, 0);
1911 CSR_WRITE(sc, DGE_TDT, 0);
1912 CSR_WRITE(sc, DGE_TIDV, TIDV);
1914 #if 0
1915 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1916 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1917 #endif
1918 CSR_WRITE(sc, DGE_RXDCTL,
1919 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1920 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1921 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1923 /* Initialize the transmit job descriptors. */
1924 for (i = 0; i < DGE_TXQUEUELEN; i++)
1925 sc->sc_txsoft[i].txs_mbuf = NULL;
1926 sc->sc_txsfree = DGE_TXQUEUELEN;
1927 sc->sc_txsnext = 0;
1928 sc->sc_txsdirty = 0;
1931 * Initialize the receive descriptor and receive job
1932 * descriptor rings.
1934 CSR_WRITE(sc, DGE_RDBAH, 0);
1935 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1936 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1937 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1938 CSR_WRITE(sc, DGE_RDT, 0);
1939 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1940 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1941 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1943 for (i = 0; i < DGE_NRXDESC; i++) {
1944 rxs = &sc->sc_rxsoft[i];
1945 if (rxs->rxs_mbuf == NULL) {
1946 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1947 printf("%s: unable to allocate or map rx "
1948 "buffer %d, error = %d\n",
1949 device_xname(&sc->sc_dev), i, error);
1951 * XXX Should attempt to run with fewer receive
1952 * XXX buffers instead of just failing.
1954 dge_rxdrain(sc);
1955 goto out;
1958 DGE_INIT_RXDESC(sc, i);
1960 sc->sc_rxptr = DGE_RXSPACE;
1961 sc->sc_rxdiscard = 0;
1962 DGE_RXCHAIN_RESET(sc);
1964 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1965 sc->sc_ctrl0 |= CTRL0_JFE;
1966 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1969 /* Write the control registers. */
1970 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1973 * Set up checksum offload parameters.
1975 reg = CSR_READ(sc, DGE_RXCSUM);
1976 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1977 reg |= RXCSUM_IPOFL;
1978 else
1979 reg &= ~RXCSUM_IPOFL;
1980 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1981 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1982 else {
1983 reg &= ~RXCSUM_TUOFL;
1984 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1985 reg &= ~RXCSUM_IPOFL;
1987 CSR_WRITE(sc, DGE_RXCSUM, reg);
1990 * Set up the interrupt registers.
1992 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1993 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1994 ICR_RXO | ICR_RXT0;
1996 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1999 * Set up the transmit control register.
2001 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2002 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2005 * Set up the receive control register; we actually program
2006 * the register when we set the receive filter. Use multicast
2007 * address offset type 0.
2009 sc->sc_mchash_type = 0;
2011 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2012 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2014 #ifdef DGE_OFFBYONE_RXBUG
2015 sc->sc_rctl |= RCTL_BSIZE_16k;
2016 #else
2017 switch(MCLBYTES) {
2018 case 2048:
2019 sc->sc_rctl |= RCTL_BSIZE_2k;
2020 break;
2021 case 4096:
2022 sc->sc_rctl |= RCTL_BSIZE_4k;
2023 break;
2024 case 8192:
2025 sc->sc_rctl |= RCTL_BSIZE_8k;
2026 break;
2027 case 16384:
2028 sc->sc_rctl |= RCTL_BSIZE_16k;
2029 break;
2030 default:
2031 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2033 #endif
2035 /* Set the receive filter. */
2036 /* Also sets RCTL */
2037 dge_set_filter(sc);
2039 /* ...all done! */
2040 ifp->if_flags |= IFF_RUNNING;
2041 ifp->if_flags &= ~IFF_OACTIVE;
2043 out:
2044 if (error)
2045 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2046 return (error);
2050 * dge_rxdrain:
2052 * Drain the receive queue.
2054 static void
2055 dge_rxdrain(struct dge_softc *sc)
2057 struct dge_rxsoft *rxs;
2058 int i;
2060 for (i = 0; i < DGE_NRXDESC; i++) {
2061 rxs = &sc->sc_rxsoft[i];
2062 if (rxs->rxs_mbuf != NULL) {
2063 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2064 m_freem(rxs->rxs_mbuf);
2065 rxs->rxs_mbuf = NULL;
2071 * dge_stop: [ifnet interface function]
2073 * Stop transmission on the interface.
2075 static void
2076 dge_stop(struct ifnet *ifp, int disable)
2078 struct dge_softc *sc = ifp->if_softc;
2079 struct dge_txsoft *txs;
2080 int i;
2082 /* Stop the transmit and receive processes. */
2083 CSR_WRITE(sc, DGE_TCTL, 0);
2084 CSR_WRITE(sc, DGE_RCTL, 0);
2086 /* Release any queued transmit buffers. */
2087 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2088 txs = &sc->sc_txsoft[i];
2089 if (txs->txs_mbuf != NULL) {
2090 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2091 m_freem(txs->txs_mbuf);
2092 txs->txs_mbuf = NULL;
2096 /* Mark the interface as down and cancel the watchdog timer. */
2097 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2098 ifp->if_timer = 0;
2100 if (disable)
2101 dge_rxdrain(sc);
2105 * dge_add_rxbuf:
2107 * Add a receive buffer to the indiciated descriptor.
2109 static int
2110 dge_add_rxbuf(struct dge_softc *sc, int idx)
2112 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2113 struct mbuf *m;
2114 int error;
2115 #ifdef DGE_OFFBYONE_RXBUG
2116 void *buf;
2117 #endif
2119 MGETHDR(m, M_DONTWAIT, MT_DATA);
2120 if (m == NULL)
2121 return (ENOBUFS);
2123 #ifdef DGE_OFFBYONE_RXBUG
2124 if ((buf = dge_getbuf(sc)) == NULL)
2125 return ENOBUFS;
2127 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2128 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2129 m->m_flags |= M_EXT_RW;
2131 if (rxs->rxs_mbuf != NULL)
2132 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2133 rxs->rxs_mbuf = m;
2135 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2136 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2137 #else
2138 MCLGET(m, M_DONTWAIT);
2139 if ((m->m_flags & M_EXT) == 0) {
2140 m_freem(m);
2141 return (ENOBUFS);
2144 if (rxs->rxs_mbuf != NULL)
2145 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2147 rxs->rxs_mbuf = m;
2149 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2150 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2151 BUS_DMA_READ|BUS_DMA_NOWAIT);
2152 #endif
2153 if (error) {
2154 printf("%s: unable to load rx DMA map %d, error = %d\n",
2155 device_xname(&sc->sc_dev), idx, error);
2156 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2158 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2159 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2161 return (0);
2165 * dge_set_ral:
2167 * Set an entry in the receive address list.
2169 static void
2170 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2172 uint32_t ral_lo, ral_hi;
2174 if (enaddr != NULL) {
2175 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2176 (enaddr[3] << 24);
2177 ral_hi = enaddr[4] | (enaddr[5] << 8);
2178 ral_hi |= RAH_AV;
2179 } else {
2180 ral_lo = 0;
2181 ral_hi = 0;
2183 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2184 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2188 * dge_mchash:
2190 * Compute the hash of the multicast address for the 4096-bit
2191 * multicast filter.
2193 static uint32_t
2194 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2196 static const int lo_shift[4] = { 4, 3, 2, 0 };
2197 static const int hi_shift[4] = { 4, 5, 6, 8 };
2198 uint32_t hash;
2200 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2201 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2203 return (hash & 0xfff);
2207 * dge_set_filter:
2209 * Set up the receive filter.
2211 static void
2212 dge_set_filter(struct dge_softc *sc)
2214 struct ethercom *ec = &sc->sc_ethercom;
2215 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2216 struct ether_multi *enm;
2217 struct ether_multistep step;
2218 uint32_t hash, reg, bit;
2219 int i;
2221 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2223 if (ifp->if_flags & IFF_BROADCAST)
2224 sc->sc_rctl |= RCTL_BAM;
2225 if (ifp->if_flags & IFF_PROMISC) {
2226 sc->sc_rctl |= RCTL_UPE;
2227 goto allmulti;
2231 * Set the station address in the first RAL slot, and
2232 * clear the remaining slots.
2234 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2235 for (i = 1; i < RA_TABSIZE; i++)
2236 dge_set_ral(sc, NULL, i);
2238 /* Clear out the multicast table. */
2239 for (i = 0; i < MC_TABSIZE; i++)
2240 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2242 ETHER_FIRST_MULTI(step, ec, enm);
2243 while (enm != NULL) {
2244 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2246 * We must listen to a range of multicast addresses.
2247 * For now, just accept all multicasts, rather than
2248 * trying to set only those filter bits needed to match
2249 * the range. (At this time, the only use of address
2250 * ranges is for IP multicast routing, for which the
2251 * range is big enough to require all bits set.)
2253 goto allmulti;
2256 hash = dge_mchash(sc, enm->enm_addrlo);
2258 reg = (hash >> 5) & 0x7f;
2259 bit = hash & 0x1f;
2261 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2262 hash |= 1U << bit;
2264 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2266 ETHER_NEXT_MULTI(step, enm);
2269 ifp->if_flags &= ~IFF_ALLMULTI;
2270 goto setit;
2272 allmulti:
2273 ifp->if_flags |= IFF_ALLMULTI;
2274 sc->sc_rctl |= RCTL_MPE;
2276 setit:
2277 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2281 * Read in the EEPROM info and verify checksum.
2284 dge_read_eeprom(struct dge_softc *sc)
2286 uint16_t cksum;
2287 int i;
2289 cksum = 0;
2290 for (i = 0; i < EEPROM_SIZE; i++) {
2291 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2292 cksum += sc->sc_eeprom[i];
2294 return cksum != EEPROM_CKSUM;
2299 * Read a 16-bit word from address addr in the serial EEPROM.
2301 uint16_t
2302 dge_eeprom_word(struct dge_softc *sc, int addr)
2304 uint32_t reg;
2305 uint16_t rval = 0;
2306 int i;
2308 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2310 /* Lower clock pulse (and data in to chip) */
2311 CSR_WRITE(sc, DGE_EECD, reg);
2312 /* Select chip */
2313 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2315 /* Send read command */
2316 dge_eeprom_clockout(sc, 1);
2317 dge_eeprom_clockout(sc, 1);
2318 dge_eeprom_clockout(sc, 0);
2320 /* Send address */
2321 for (i = 5; i >= 0; i--)
2322 dge_eeprom_clockout(sc, (addr >> i) & 1);
2324 /* Read data */
2325 for (i = 0; i < 16; i++) {
2326 rval <<= 1;
2327 rval |= dge_eeprom_clockin(sc);
2330 /* Deselect chip */
2331 CSR_WRITE(sc, DGE_EECD, reg);
2333 return rval;
2337 * Clock out a single bit to the EEPROM.
2339 void
2340 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2342 int reg;
2344 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2345 if (bit)
2346 reg |= EECD_DI;
2348 CSR_WRITE(sc, DGE_EECD, reg);
2349 delay(2);
2350 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2351 delay(2);
2352 CSR_WRITE(sc, DGE_EECD, reg);
2353 delay(2);
2357 * Clock in a single bit from EEPROM.
2360 dge_eeprom_clockin(struct dge_softc *sc)
2362 int reg, rv;
2364 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2366 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2367 delay(2);
2368 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2369 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2370 delay(2);
2372 return rv;
2375 static void
2376 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2378 struct dge_softc *sc = ifp->if_softc;
2380 ifmr->ifm_status = IFM_AVALID;
2381 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2383 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2384 ifmr->ifm_status |= IFM_ACTIVE;
2387 static inline int
2388 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2390 int i, mdic;
2392 CSR_WRITE(sc, DGE_MDIO,
2393 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2394 for (i = 0; i < 10; i++) {
2395 delay(10);
2396 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2397 break;
2399 return mdic;
2403 static void
2404 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2406 struct dge_softc *sc = device_private(self);
2407 int mdic;
2409 CSR_WRITE(sc, DGE_MDIRW, val);
2410 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2411 printf("%s: address cycle timeout; phy %d reg %d\n",
2412 device_xname(&sc->sc_dev), phy, reg);
2413 return;
2415 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2416 printf("%s: read cycle timeout; phy %d reg %d\n",
2417 device_xname(&sc->sc_dev), phy, reg);
2418 return;
2422 static void
2423 dge_xgmii_reset(struct dge_softc *sc)
2425 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2428 static int
2429 dge_xgmii_mediachange(struct ifnet *ifp)
2431 return 0;