Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / pci / if_sk.c
blob2cb4f7f50537b3ebd69d8f5bcbc93eaf940b994a
1 /* $NetBSD: if_sk.c,v 1.62 2009/11/26 15:17:10 njoly Exp $ */
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
95 * Written by Bill Paul <wpaul@ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.62 2009/11/26 15:17:10 njoly Exp $");
120 #include "bpfilter.h"
121 #include "rnd.h"
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
141 #include <net/if_media.h>
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
158 /* #define SK_USEIOSPACE */
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
197 void sk_update_int_mod(struct sk_softc *);
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
213 static bool skc_suspend(device_t dv, pmf_qual_t qual);
214 static bool skc_resume(device_t dv, pmf_qual_t qual);
215 static bool sk_resume(device_t dv, pmf_qual_t qual);
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
234 /* supported device vendors */
235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
236 static const struct sk_product {
237 pci_vendor_id_t sk_vendor;
238 pci_product_id_t sk_product;
239 } sk_products[] = {
240 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
333 int i;
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
343 if (i == SK_TIMEOUT)
344 return 0;
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
352 int i;
353 u_int8_t *ptr;
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 void
361 sk_vpd_read(struct sk_softc *sc)
363 int pos = 0, i;
364 struct vpd_res res;
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
373 sk_vpd_read_res(sc, &res, pos);
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error_dev(sc->sk_dev,
377 "bad VPD resource id: expected %x got %x\n",
378 VPD_RES_ID, res.vr_id);
379 return;
382 pos += sizeof(res);
383 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
384 if (sc->sk_vpd_prodname == NULL)
385 panic("sk_vpd_read");
386 for (i = 0; i < res.vr_len; i++)
387 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
388 sc->sk_vpd_prodname[i] = '\0';
389 pos += i;
391 sk_vpd_read_res(sc, &res, pos);
393 if (res.vr_id != VPD_RES_READ) {
394 aprint_error_dev(sc->sk_dev,
395 "bad VPD resource id: expected %x got %x\n",
396 VPD_RES_READ, res.vr_id);
397 return;
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
409 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
411 struct sk_if_softc *sc_if = device_private(dev);
412 int i;
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
429 if (i == SK_TIMEOUT) {
430 aprint_error_dev(sc_if->sk_dev,
431 "phy failed to come ready\n");
432 return 0;
435 DELAY(1);
436 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
439 void
440 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
442 struct sk_if_softc *sc_if = device_private(dev);
443 int i;
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 break;
453 if (i == SK_TIMEOUT) {
454 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
455 return;
458 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
459 for (i = 0; i < SK_TIMEOUT; i++) {
460 DELAY(1);
461 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
462 break;
465 if (i == SK_TIMEOUT)
466 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
469 void
470 sk_xmac_miibus_statchg(device_t dev)
472 struct sk_if_softc *sc_if = device_private(dev);
473 struct mii_data *mii = &sc_if->sk_mii;
475 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478 * If this is a GMII PHY, manually set the XMAC's
479 * duplex mode accordingly.
481 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
482 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
483 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 else
485 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
490 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
492 struct sk_if_softc *sc_if = device_private(dev);
493 u_int16_t val;
494 int i;
496 if (phy != 0 ||
497 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
498 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
499 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
500 phy, reg));
501 return 0;
504 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
505 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507 for (i = 0; i < SK_TIMEOUT; i++) {
508 DELAY(1);
509 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
510 if (val & YU_SMICR_READ_VALID)
511 break;
514 if (i == SK_TIMEOUT) {
515 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
516 return 0;
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
527 return val;
530 void
531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
533 struct sk_if_softc *sc_if = device_private(dev);
534 int i;
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
549 if (i == SK_TIMEOUT)
550 printf("%s: phy write timed out\n",
551 device_xname(sc_if->sk_dev));
554 void
555 sk_marv_miibus_statchg(device_t dev)
557 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
558 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
559 YUKON_GPCR)));
562 #define SK_HASH_BITS 6
564 u_int32_t
565 sk_xmac_hash(void *addr)
567 u_int32_t crc;
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
575 u_int32_t
576 sk_yukon_hash(void *addr)
578 u_int32_t crc;
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 u_int32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
671 ETHER_NEXT_MULTI(step, enm);
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
700 memset((char *)rd->sk_rx_ring, 0,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error_dev(sc_if->sk_dev,
720 "failed alloc of %dth mbuf\n", i);
721 return ENOBUFS;
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
727 return 0;
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
737 memset(sc_if->sk_rdata->sk_tx_ring, 0,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760 return 0;
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
771 if (m == NULL) {
772 void *buf = NULL;
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error_dev(sc_if->sk_dev,
777 "no memory for rx list -- packet dropped!\n");
778 return ENOBUFS;
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
794 } else {
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
804 m_adj(m_new, ETHER_ALIGN);
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
816 return 0;
820 * Memory management for jumbo frames.
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
832 state = error = 0;
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
838 return ENOBUFS;
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error_dev(sc->sk_dev,
845 "can't map dma buffers (%d bytes)\n",
846 SK_JMEM);
847 error = ENOBUFS;
848 goto out;
851 state = 2;
852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
855 error = ENOBUFS;
856 goto out;
859 state = 3;
860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
863 error = ENOBUFS;
864 goto out;
867 state = 4;
868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
871 LIST_INIT(&sc_if->sk_jfree_listhead);
872 LIST_INIT(&sc_if->sk_jinuse_listhead);
873 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
876 * Now divide it up into 9K pieces and save the addresses
877 * in an array.
879 ptr = sc_if->sk_cdata.sk_jumbo_buf;
880 for (i = 0; i < SK_JSLOTS; i++) {
881 sc_if->sk_cdata.sk_jslots[i] = ptr;
882 ptr += SK_JLEN;
883 entry = malloc(sizeof(struct sk_jpool_entry),
884 M_DEVBUF, M_NOWAIT);
885 if (entry == NULL) {
886 aprint_error_dev(sc->sk_dev,
887 "no memory for jumbo buffer queue!\n");
888 error = ENOBUFS;
889 goto out;
891 entry->slot = i;
892 if (i)
893 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
894 entry, jpool_entries);
895 else
896 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
897 entry, jpool_entries);
899 out:
900 if (error != 0) {
901 switch (state) {
902 case 4:
903 bus_dmamap_unload(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 case 3:
906 bus_dmamap_destroy(sc->sc_dmatag,
907 sc_if->sk_cdata.sk_rx_jumbo_map);
908 case 2:
909 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
910 case 1:
911 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
912 break;
913 default:
914 break;
918 return error;
922 * Allocate a jumbo buffer.
924 void *
925 sk_jalloc(struct sk_if_softc *sc_if)
927 struct sk_jpool_entry *entry;
929 mutex_enter(&sc_if->sk_jpool_mtx);
930 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
932 if (entry == NULL) {
933 mutex_exit(&sc_if->sk_jpool_mtx);
934 return NULL;
937 LIST_REMOVE(entry, jpool_entries);
938 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
939 mutex_exit(&sc_if->sk_jpool_mtx);
940 return sc_if->sk_cdata.sk_jslots[entry->slot];
944 * Release a jumbo buffer.
946 void
947 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
949 struct sk_jpool_entry *entry;
950 struct sk_if_softc *sc;
951 int i;
953 /* Extract the softc struct pointer. */
954 sc = (struct sk_if_softc *)arg;
956 if (sc == NULL)
957 panic("sk_jfree: can't find softc pointer!");
959 /* calculate the slot this buffer belongs to */
961 i = ((vaddr_t)buf
962 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
964 if ((i < 0) || (i >= SK_JSLOTS))
965 panic("sk_jfree: asked to free buffer that we don't manage!");
967 mutex_enter(&sc->sk_jpool_mtx);
968 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
969 if (entry == NULL)
970 panic("sk_jfree: buffer not in use!");
971 entry->slot = i;
972 LIST_REMOVE(entry, jpool_entries);
973 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
974 mutex_exit(&sc->sk_jpool_mtx);
976 if (__predict_true(m != NULL))
977 pool_cache_put(mb_cache, m);
981 * Set media options.
984 sk_ifmedia_upd(struct ifnet *ifp)
986 struct sk_if_softc *sc_if = ifp->if_softc;
987 int rc;
989 (void) sk_init(ifp);
990 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
991 return 0;
992 return rc;
996 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
998 struct sk_if_softc *sc_if = ifp->if_softc;
999 struct sk_softc *sc = sc_if->sk_softc;
1000 int s, error = 0;
1002 /* DPRINTFN(2, ("sk_ioctl\n")); */
1004 s = splnet();
1006 switch (command) {
1008 case SIOCSIFFLAGS:
1009 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1010 if ((error = ifioctl_common(ifp, command, data)) != 0)
1011 break;
1012 if (ifp->if_flags & IFF_UP) {
1013 if (ifp->if_flags & IFF_RUNNING &&
1014 ifp->if_flags & IFF_PROMISC &&
1015 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1016 switch (sc->sk_type) {
1017 case SK_GENESIS:
1018 SK_XM_SETBIT_4(sc_if, XM_MODE,
1019 XM_MODE_RX_PROMISC);
1020 break;
1021 case SK_YUKON:
1022 case SK_YUKON_LITE:
1023 case SK_YUKON_LP:
1024 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1025 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1026 break;
1028 sk_setmulti(sc_if);
1029 } else if (ifp->if_flags & IFF_RUNNING &&
1030 !(ifp->if_flags & IFF_PROMISC) &&
1031 sc_if->sk_if_flags & IFF_PROMISC) {
1032 switch (sc->sk_type) {
1033 case SK_GENESIS:
1034 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1035 XM_MODE_RX_PROMISC);
1036 break;
1037 case SK_YUKON:
1038 case SK_YUKON_LITE:
1039 case SK_YUKON_LP:
1040 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1041 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1042 break;
1045 sk_setmulti(sc_if);
1046 } else
1047 (void) sk_init(ifp);
1048 } else {
1049 if (ifp->if_flags & IFF_RUNNING)
1050 sk_stop(ifp,0);
1052 sc_if->sk_if_flags = ifp->if_flags;
1053 error = 0;
1054 break;
1056 default:
1057 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1058 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1059 break;
1061 error = 0;
1063 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1065 else if (ifp->if_flags & IFF_RUNNING) {
1066 sk_setmulti(sc_if);
1067 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1069 break;
1072 splx(s);
1073 return error;
1076 void
1077 sk_update_int_mod(struct sk_softc *sc)
1079 u_int32_t imtimer_ticks;
1082 * Configure interrupt moderation. The moderation timer
1083 * defers interrupts specified in the interrupt moderation
1084 * timer mask based on the timeout specified in the interrupt
1085 * moderation timer init register. Each bit in the timer
1086 * register represents one tick, so to specify a timeout in
1087 * microseconds, we have to multiply by the correct number of
1088 * ticks-per-microsecond.
1090 switch (sc->sk_type) {
1091 case SK_GENESIS:
1092 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1093 break;
1094 case SK_YUKON_EC:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1096 break;
1097 default:
1098 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1100 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1101 sc->sk_int_mod);
1102 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1103 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1104 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1105 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1106 sc->sk_int_mod_pending = 0;
1110 * Lookup: Check the PCI vendor and device, and return a pointer to
1111 * The structure if the IDs match against our list.
1114 static const struct sk_product *
1115 sk_lookup(const struct pci_attach_args *pa)
1117 const struct sk_product *psk;
1119 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1120 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1121 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1122 return psk;
1124 return NULL;
1128 * Probe for a SysKonnect GEnesis chip.
1132 skc_probe(device_t parent, cfdata_t match, void *aux)
1134 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1135 const struct sk_product *psk;
1136 pcireg_t subid;
1138 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1140 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1141 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1142 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1143 subid == SK_LINKSYS_EG1032_SUBID)
1144 return 1;
1146 if ((psk = sk_lookup(pa))) {
1147 return 1;
1149 return 0;
1153 * Force the GEnesis into reset, then bring it out of reset.
1155 void sk_reset(struct sk_softc *sc)
1157 DPRINTFN(2, ("sk_reset\n"));
1159 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1164 DELAY(1000);
1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1166 DELAY(2);
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1168 if (SK_YUKON_FAMILY(sc->sk_type))
1169 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1171 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1172 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1173 CSR_READ_2(sc, SK_LINK_CTRL)));
1175 if (sc->sk_type == SK_GENESIS) {
1176 /* Configure packet arbiter */
1177 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1178 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1179 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1180 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1181 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1184 /* Enable RAM interface */
1185 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1187 sk_update_int_mod(sc);
1191 sk_probe(device_t parent, cfdata_t match, void *aux)
1193 struct skc_attach_args *sa = aux;
1195 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1196 return 0;
1198 return 1;
1202 * Each XMAC chip is attached as a separate logical IP interface.
1203 * Single port cards will have only one logical interface of course.
1205 void
1206 sk_attach(device_t parent, device_t self, void *aux)
1208 struct sk_if_softc *sc_if = device_private(self);
1209 struct sk_softc *sc = device_private(parent);
1210 struct skc_attach_args *sa = aux;
1211 struct sk_txmap_entry *entry;
1212 struct ifnet *ifp;
1213 bus_dma_segment_t seg;
1214 bus_dmamap_t dmamap;
1215 void *kva;
1216 int i, rseg;
1217 int mii_flags = 0;
1219 aprint_naive("\n");
1221 sc_if->sk_dev = self;
1222 sc_if->sk_port = sa->skc_port;
1223 sc_if->sk_softc = sc;
1224 sc->sk_if[sa->skc_port] = sc_if;
1226 if (sa->skc_port == SK_PORT_A)
1227 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1228 if (sa->skc_port == SK_PORT_B)
1229 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1231 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1234 * Get station address for this interface. Note that
1235 * dual port cards actually come with three station
1236 * addresses: one for each port, plus an extra. The
1237 * extra one is used by the SysKonnect driver software
1238 * as a 'virtual' station address for when both ports
1239 * are operating in failover mode. Currently we don't
1240 * use this extra address.
1242 for (i = 0; i < ETHER_ADDR_LEN; i++)
1243 sc_if->sk_enaddr[i] =
1244 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1247 aprint_normal(": Ethernet address %s\n",
1248 ether_sprintf(sc_if->sk_enaddr));
1251 * Set up RAM buffer addresses. The NIC will have a certain
1252 * amount of SRAM on it, somewhere between 512K and 2MB. We
1253 * need to divide this up a) between the transmitter and
1254 * receiver and b) between the two XMACs, if this is a
1255 * dual port NIC. Our algorithm is to divide up the memory
1256 * evenly so that everyone gets a fair share.
1258 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1259 u_int32_t chunk, val;
1261 chunk = sc->sk_ramsize / 2;
1262 val = sc->sk_rboff / sizeof(u_int64_t);
1263 sc_if->sk_rx_ramstart = val;
1264 val += (chunk / sizeof(u_int64_t));
1265 sc_if->sk_rx_ramend = val - 1;
1266 sc_if->sk_tx_ramstart = val;
1267 val += (chunk / sizeof(u_int64_t));
1268 sc_if->sk_tx_ramend = val - 1;
1269 } else {
1270 u_int32_t chunk, val;
1272 chunk = sc->sk_ramsize / 4;
1273 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1274 sizeof(u_int64_t);
1275 sc_if->sk_rx_ramstart = val;
1276 val += (chunk / sizeof(u_int64_t));
1277 sc_if->sk_rx_ramend = val - 1;
1278 sc_if->sk_tx_ramstart = val;
1279 val += (chunk / sizeof(u_int64_t));
1280 sc_if->sk_tx_ramend = val - 1;
1283 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1284 " tx_ramstart=%#x tx_ramend=%#x\n",
1285 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1286 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1288 /* Read and save PHY type and set PHY address */
1289 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1290 switch (sc_if->sk_phytype) {
1291 case SK_PHYTYPE_XMAC:
1292 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1293 break;
1294 case SK_PHYTYPE_BCOM:
1295 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1296 break;
1297 case SK_PHYTYPE_MARV_COPPER:
1298 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1299 break;
1300 default:
1301 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1302 sc_if->sk_phytype);
1303 return;
1306 /* Allocate the descriptor queues. */
1307 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1308 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1309 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1310 goto fail;
1312 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1313 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1314 aprint_error_dev(sc_if->sk_dev,
1315 "can't map dma buffers (%lu bytes)\n",
1316 (u_long) sizeof(struct sk_ring_data));
1317 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1318 goto fail;
1320 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1321 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1322 &sc_if->sk_ring_map)) {
1323 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1324 bus_dmamem_unmap(sc->sc_dmatag, kva,
1325 sizeof(struct sk_ring_data));
1326 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1327 goto fail;
1329 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1330 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1331 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1332 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1333 bus_dmamem_unmap(sc->sc_dmatag, kva,
1334 sizeof(struct sk_ring_data));
1335 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1336 goto fail;
1339 for (i = 0; i < SK_RX_RING_CNT; i++)
1340 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1342 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1343 for (i = 0; i < SK_TX_RING_CNT; i++) {
1344 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1346 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1347 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1348 aprint_error_dev(sc_if->sk_dev,
1349 "Can't create TX dmamap\n");
1350 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1351 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1352 bus_dmamem_unmap(sc->sc_dmatag, kva,
1353 sizeof(struct sk_ring_data));
1354 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1355 goto fail;
1358 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1359 if (!entry) {
1360 aprint_error_dev(sc_if->sk_dev,
1361 "Can't alloc txmap entry\n");
1362 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 sizeof(struct sk_ring_data));
1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 goto fail;
1370 entry->dmamap = dmamap;
1371 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1374 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1375 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1377 ifp = &sc_if->sk_ethercom.ec_if;
1378 /* Try to allocate memory for jumbo buffers. */
1379 if (sk_alloc_jumbo_mem(sc_if)) {
1380 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1381 goto fail;
1383 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1384 | ETHERCAP_JUMBO_MTU;
1386 ifp->if_softc = sc_if;
1387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1388 ifp->if_ioctl = sk_ioctl;
1389 ifp->if_start = sk_start;
1390 ifp->if_stop = sk_stop;
1391 ifp->if_init = sk_init;
1392 ifp->if_watchdog = sk_watchdog;
1393 ifp->if_capabilities = 0;
1394 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1395 IFQ_SET_READY(&ifp->if_snd);
1396 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1399 * Do miibus setup.
1401 switch (sc->sk_type) {
1402 case SK_GENESIS:
1403 sk_init_xmac(sc_if);
1404 break;
1405 case SK_YUKON:
1406 case SK_YUKON_LITE:
1407 case SK_YUKON_LP:
1408 sk_init_yukon(sc_if);
1409 break;
1410 default:
1411 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1412 sc->sk_type);
1413 goto fail;
1416 DPRINTFN(2, ("sk_attach: 1\n"));
1418 sc_if->sk_mii.mii_ifp = ifp;
1419 switch (sc->sk_type) {
1420 case SK_GENESIS:
1421 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1422 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1423 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1424 break;
1425 case SK_YUKON:
1426 case SK_YUKON_LITE:
1427 case SK_YUKON_LP:
1428 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1429 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1430 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1431 mii_flags = MIIF_DOPAUSE;
1432 break;
1435 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1436 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1437 sk_ifmedia_upd, ether_mediastatus);
1438 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1439 MII_OFFSET_ANY, mii_flags);
1440 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1441 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1442 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1443 0, NULL);
1444 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1445 } else
1446 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1448 callout_init(&sc_if->sk_tick_ch, 0);
1449 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1451 DPRINTFN(2, ("sk_attach: 1\n"));
1454 * Call MI attach routines.
1456 if_attach(ifp);
1458 ether_ifattach(ifp, sc_if->sk_enaddr);
1460 #if NRND > 0
1461 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1462 RND_TYPE_NET, 0);
1463 #endif
1465 if (pmf_device_register(self, NULL, sk_resume))
1466 pmf_class_network_register(self, ifp);
1467 else
1468 aprint_error_dev(self, "couldn't establish power handler\n");
1470 DPRINTFN(2, ("sk_attach: end\n"));
1472 return;
1474 fail:
1475 sc->sk_if[sa->skc_port] = NULL;
1479 skcprint(void *aux, const char *pnp)
1481 struct skc_attach_args *sa = aux;
1483 if (pnp)
1484 aprint_normal("sk port %c at %s",
1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1486 else
1487 aprint_normal(" port %c",
1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1489 return UNCONF;
1493 * Attach the interface. Allocate softc structures, do ifmedia
1494 * setup and ethernet/BPF attach.
1496 void
1497 skc_attach(device_t parent, device_t self, void *aux)
1499 struct sk_softc *sc = device_private(self);
1500 struct pci_attach_args *pa = aux;
1501 struct skc_attach_args skca;
1502 pci_chipset_tag_t pc = pa->pa_pc;
1503 #ifndef SK_USEIOSPACE
1504 pcireg_t memtype;
1505 #endif
1506 pci_intr_handle_t ih;
1507 const char *intrstr = NULL;
1508 bus_addr_t iobase;
1509 bus_size_t iosize;
1510 int rc, sk_nodenum;
1511 u_int32_t command;
1512 const char *revstr;
1513 const struct sysctlnode *node;
1515 sc->sk_dev = self;
1516 aprint_naive("\n");
1518 DPRINTFN(2, ("begin skc_attach\n"));
1521 * Handle power management nonsense.
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1525 if (command == 0x01) {
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1527 if (command & SK_PSTATE_MASK) {
1528 u_int32_t xiobase, membase, irq;
1530 /* Save important PCI config data. */
1531 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1532 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1533 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1535 /* Reset the power state. */
1536 aprint_normal_dev(sc->sk_dev,
1537 "chip is in D%d power mode -- setting to D0\n",
1538 command & SK_PSTATE_MASK);
1539 command &= 0xFFFFFFFC;
1540 pci_conf_write(pc, pa->pa_tag,
1541 SK_PCI_PWRMGMTCTRL, command);
1543 /* Restore PCI config data. */
1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1551 * Map control/status registers.
1553 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1554 command |= PCI_COMMAND_IO_ENABLE |
1555 PCI_COMMAND_MEM_ENABLE |
1556 PCI_COMMAND_MASTER_ENABLE;
1557 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1558 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1560 #ifdef SK_USEIOSPACE
1561 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1562 aprint_error(": failed to enable I/O ports!\n");
1563 return;
1566 * Map control/status registers.
1568 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1569 &sc->sk_btag, &sc->sk_bhandle,
1570 &iobase, &iosize)) {
1571 aprint_error(": can't find i/o space\n");
1572 return;
1574 #else
1575 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1576 aprint_error(": failed to enable memory mapping!\n");
1577 return;
1579 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1580 switch (memtype) {
1581 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1582 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1583 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1584 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1585 &iobase, &iosize) == 0)
1586 break;
1587 default:
1588 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1589 return;
1592 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase,
1593 (u_long)iosize));
1594 #endif
1595 sc->sc_dmatag = pa->pa_dmat;
1597 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1598 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1600 /* bail out here if chip is not recognized */
1601 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1602 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1603 goto fail;
1605 if (SK_IS_YUKON2(sc)) {
1606 aprint_error_dev(sc->sk_dev,
1607 "Does not support Yukon2--try msk(4).\n");
1608 goto fail;
1610 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1612 /* Allocate interrupt */
1613 if (pci_intr_map(pa, &ih)) {
1614 aprint_error(": couldn't map interrupt\n");
1615 goto fail;
1618 intrstr = pci_intr_string(pc, ih);
1619 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1620 if (sc->sk_intrhand == NULL) {
1621 aprint_error(": couldn't establish interrupt");
1622 if (intrstr != NULL)
1623 aprint_error(" at %s", intrstr);
1624 aprint_error("\n");
1625 goto fail;
1627 aprint_normal(": %s\n", intrstr);
1629 /* Reset the adapter. */
1630 sk_reset(sc);
1632 /* Read and save vital product data from EEPROM. */
1633 sk_vpd_read(sc);
1635 if (sc->sk_type == SK_GENESIS) {
1636 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1637 /* Read and save RAM size and RAMbuffer offset */
1638 switch (val) {
1639 case SK_RAMSIZE_512K_64:
1640 sc->sk_ramsize = 0x80000;
1641 sc->sk_rboff = SK_RBOFF_0;
1642 break;
1643 case SK_RAMSIZE_1024K_64:
1644 sc->sk_ramsize = 0x100000;
1645 sc->sk_rboff = SK_RBOFF_80000;
1646 break;
1647 case SK_RAMSIZE_1024K_128:
1648 sc->sk_ramsize = 0x100000;
1649 sc->sk_rboff = SK_RBOFF_0;
1650 break;
1651 case SK_RAMSIZE_2048K_128:
1652 sc->sk_ramsize = 0x200000;
1653 sc->sk_rboff = SK_RBOFF_0;
1654 break;
1655 default:
1656 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1657 val);
1658 goto fail_1;
1659 break;
1662 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1663 sc->sk_ramsize, sc->sk_ramsize / 1024,
1664 sc->sk_rboff));
1665 } else {
1666 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1667 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1668 sc->sk_rboff = SK_RBOFF_0;
1670 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1671 sc->sk_ramsize / 1024, sc->sk_ramsize,
1672 sc->sk_rboff));
1675 /* Read and save physical media type */
1676 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1677 case SK_PMD_1000BASESX:
1678 sc->sk_pmd = IFM_1000_SX;
1679 break;
1680 case SK_PMD_1000BASELX:
1681 sc->sk_pmd = IFM_1000_LX;
1682 break;
1683 case SK_PMD_1000BASECX:
1684 sc->sk_pmd = IFM_1000_CX;
1685 break;
1686 case SK_PMD_1000BASETX:
1687 case SK_PMD_1000BASETX_ALT:
1688 sc->sk_pmd = IFM_1000_T;
1689 break;
1690 default:
1691 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1692 sk_win_read_1(sc, SK_PMDTYPE));
1693 goto fail_1;
1696 /* determine whether to name it with vpd or just make it up */
1697 /* Marvell Yukon VPD's can freqently be bogus */
1699 switch (pa->pa_id) {
1700 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1701 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1702 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1703 case PCI_PRODUCT_3COM_3C940:
1704 case PCI_PRODUCT_DLINK_DGE530T:
1705 case PCI_PRODUCT_DLINK_DGE560T:
1706 case PCI_PRODUCT_DLINK_DGE560T_2:
1707 case PCI_PRODUCT_LINKSYS_EG1032:
1708 case PCI_PRODUCT_LINKSYS_EG1064:
1709 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1710 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1711 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1712 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1713 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1714 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1715 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1716 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1717 sc->sk_name = sc->sk_vpd_prodname;
1718 break;
1719 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1720 /* whoops yukon vpd prodname bears no resemblance to reality */
1721 switch (sc->sk_type) {
1722 case SK_GENESIS:
1723 sc->sk_name = sc->sk_vpd_prodname;
1724 break;
1725 case SK_YUKON:
1726 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1727 break;
1728 case SK_YUKON_LITE:
1729 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1730 break;
1731 case SK_YUKON_LP:
1732 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1733 break;
1734 default:
1735 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1738 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1740 if ( sc->sk_type == SK_YUKON ) {
1741 uint32_t flashaddr;
1742 uint8_t testbyte;
1744 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1746 /* test Flash-Address Register */
1747 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1748 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1750 if (testbyte != 0) {
1751 /* this is yukon lite Rev. A0 */
1752 sc->sk_type = SK_YUKON_LITE;
1753 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1754 /* restore Flash-Address Register */
1755 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1758 break;
1759 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1760 sc->sk_name = sc->sk_vpd_prodname;
1761 break;
1762 default:
1763 sc->sk_name = "Unknown Marvell";
1767 if ( sc->sk_type == SK_YUKON_LITE ) {
1768 switch (sc->sk_rev) {
1769 case SK_YUKON_LITE_REV_A0:
1770 revstr = "A0";
1771 break;
1772 case SK_YUKON_LITE_REV_A1:
1773 revstr = "A1";
1774 break;
1775 case SK_YUKON_LITE_REV_A3:
1776 revstr = "A3";
1777 break;
1778 default:
1779 revstr = "";
1781 } else {
1782 revstr = "";
1785 /* Announce the product name. */
1786 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1787 sc->sk_name, revstr, sc->sk_rev);
1789 skca.skc_port = SK_PORT_A;
1790 (void)config_found(sc->sk_dev, &skca, skcprint);
1792 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1793 skca.skc_port = SK_PORT_B;
1794 (void)config_found(sc->sk_dev, &skca, skcprint);
1797 /* Turn on the 'driver is loaded' LED. */
1798 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1800 /* skc sysctl setup */
1802 sc->sk_int_mod = SK_IM_DEFAULT;
1803 sc->sk_int_mod_pending = 0;
1805 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1806 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1807 SYSCTL_DESCR("skc per-controller controls"),
1808 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1809 CTL_EOL)) != 0) {
1810 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1811 goto fail_1;
1814 sk_nodenum = node->sysctl_num;
1816 /* interrupt moderation time in usecs */
1817 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1818 CTLFLAG_READWRITE,
1819 CTLTYPE_INT, "int_mod",
1820 SYSCTL_DESCR("sk interrupt moderation timer"),
1821 sk_sysctl_handler, 0, sc,
1822 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1823 CTL_EOL)) != 0) {
1824 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1825 goto fail_1;
1828 if (!pmf_device_register(self, skc_suspend, skc_resume))
1829 aprint_error_dev(self, "couldn't establish power handler\n");
1831 return;
1833 fail_1:
1834 pci_intr_disestablish(pc, sc->sk_intrhand);
1835 fail:
1836 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1840 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1842 struct sk_softc *sc = sc_if->sk_softc;
1843 struct sk_tx_desc *f = NULL;
1844 u_int32_t frag, cur, cnt = 0, sk_ctl;
1845 int i;
1846 struct sk_txmap_entry *entry;
1847 bus_dmamap_t txmap;
1849 DPRINTFN(3, ("sk_encap\n"));
1851 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1852 if (entry == NULL) {
1853 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1854 return ENOBUFS;
1856 txmap = entry->dmamap;
1858 cur = frag = *txidx;
1860 #ifdef SK_DEBUG
1861 if (skdebug >= 3)
1862 sk_dump_mbuf(m_head);
1863 #endif
1866 * Start packing the mbufs in this chain into
1867 * the fragment pointers. Stop when we run out
1868 * of fragments or hit the end of the mbuf chain.
1870 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1871 BUS_DMA_NOWAIT)) {
1872 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1873 return ENOBUFS;
1876 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1878 /* Sync the DMA map. */
1879 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1880 BUS_DMASYNC_PREWRITE);
1882 for (i = 0; i < txmap->dm_nsegs; i++) {
1883 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1884 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1885 return ENOBUFS;
1887 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1888 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1889 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1890 if (cnt == 0)
1891 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1892 else
1893 sk_ctl |= SK_TXCTL_OWN;
1894 f->sk_ctl = htole32(sk_ctl);
1895 cur = frag;
1896 SK_INC(frag, SK_TX_RING_CNT);
1897 cnt++;
1900 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1901 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1903 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1904 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1905 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1907 /* Sync descriptors before handing to chip */
1908 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1909 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1911 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1912 htole32(SK_TXCTL_OWN);
1914 /* Sync first descriptor to hand it off */
1915 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1917 sc_if->sk_cdata.sk_tx_cnt += cnt;
1919 #ifdef SK_DEBUG
1920 if (skdebug >= 3) {
1921 struct sk_tx_desc *desc;
1922 u_int32_t idx;
1923 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1924 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1925 sk_dump_txdesc(desc, idx);
1928 #endif
1930 *txidx = frag;
1932 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1934 return 0;
1937 void
1938 sk_start(struct ifnet *ifp)
1940 struct sk_if_softc *sc_if = ifp->if_softc;
1941 struct sk_softc *sc = sc_if->sk_softc;
1942 struct mbuf *m_head = NULL;
1943 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1944 int pkts = 0;
1946 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1947 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1949 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1950 IFQ_POLL(&ifp->if_snd, m_head);
1951 if (m_head == NULL)
1952 break;
1955 * Pack the data into the transmit ring. If we
1956 * don't have room, set the OACTIVE flag and wait
1957 * for the NIC to drain the ring.
1959 if (sk_encap(sc_if, m_head, &idx)) {
1960 ifp->if_flags |= IFF_OACTIVE;
1961 break;
1964 /* now we are committed to transmit the packet */
1965 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1966 pkts++;
1969 * If there's a BPF listener, bounce a copy of this frame
1970 * to him.
1972 #if NBPFILTER > 0
1973 if (ifp->if_bpf)
1974 bpf_mtap(ifp->if_bpf, m_head);
1975 #endif
1977 if (pkts == 0)
1978 return;
1980 /* Transmit */
1981 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1982 sc_if->sk_cdata.sk_tx_prod = idx;
1983 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1985 /* Set a timeout in case the chip goes out to lunch. */
1986 ifp->if_timer = 5;
1991 void
1992 sk_watchdog(struct ifnet *ifp)
1994 struct sk_if_softc *sc_if = ifp->if_softc;
1997 * Reclaim first as there is a possibility of losing Tx completion
1998 * interrupts.
2000 sk_txeof(sc_if);
2001 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2002 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2004 ifp->if_oerrors++;
2006 sk_init(ifp);
2010 void
2011 sk_shutdown(void *v)
2013 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2014 struct sk_softc *sc = sc_if->sk_softc;
2015 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2017 DPRINTFN(2, ("sk_shutdown\n"));
2018 sk_stop(ifp,1);
2020 /* Turn off the 'driver is loaded' LED. */
2021 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2024 * Reset the GEnesis controller. Doing this should also
2025 * assert the resets on the attached XMAC(s).
2027 sk_reset(sc);
2030 void
2031 sk_rxeof(struct sk_if_softc *sc_if)
2033 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2034 struct mbuf *m;
2035 struct sk_chain *cur_rx;
2036 struct sk_rx_desc *cur_desc;
2037 int i, cur, total_len = 0;
2038 u_int32_t rxstat, sk_ctl;
2039 bus_dmamap_t dmamap;
2041 i = sc_if->sk_cdata.sk_rx_prod;
2043 DPRINTFN(3, ("sk_rxeof %d\n", i));
2045 for (;;) {
2046 cur = i;
2048 /* Sync the descriptor */
2049 SK_CDRXSYNC(sc_if, cur,
2050 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2053 if (sk_ctl & SK_RXCTL_OWN) {
2054 /* Invalidate the descriptor -- it's not ready yet */
2055 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2056 sc_if->sk_cdata.sk_rx_prod = i;
2057 break;
2060 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2061 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2062 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2064 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2065 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2067 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2068 m = cur_rx->sk_mbuf;
2069 cur_rx->sk_mbuf = NULL;
2070 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2072 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2074 SK_INC(i, SK_RX_RING_CNT);
2076 if (rxstat & XM_RXSTAT_ERRFRAME) {
2077 ifp->if_ierrors++;
2078 sk_newbuf(sc_if, cur, m, dmamap);
2079 continue;
2083 * Try to allocate a new jumbo buffer. If that
2084 * fails, copy the packet to mbufs and put the
2085 * jumbo buffer back in the ring so it can be
2086 * re-used. If allocating mbufs fails, then we
2087 * have to drop the packet.
2089 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2090 struct mbuf *m0;
2091 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2092 total_len + ETHER_ALIGN, 0, ifp, NULL);
2093 sk_newbuf(sc_if, cur, m, dmamap);
2094 if (m0 == NULL) {
2095 aprint_error_dev(sc_if->sk_dev, "no receive "
2096 "buffers available -- packet dropped!\n");
2097 ifp->if_ierrors++;
2098 continue;
2100 m_adj(m0, ETHER_ALIGN);
2101 m = m0;
2102 } else {
2103 m->m_pkthdr.rcvif = ifp;
2104 m->m_pkthdr.len = m->m_len = total_len;
2107 ifp->if_ipackets++;
2109 #if NBPFILTER > 0
2110 if (ifp->if_bpf)
2111 bpf_mtap(ifp->if_bpf, m);
2112 #endif
2113 /* pass it on. */
2114 (*ifp->if_input)(ifp, m);
2118 void
2119 sk_txeof(struct sk_if_softc *sc_if)
2121 struct sk_softc *sc = sc_if->sk_softc;
2122 struct sk_tx_desc *cur_tx;
2123 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2124 u_int32_t idx, sk_ctl;
2125 struct sk_txmap_entry *entry;
2127 DPRINTFN(3, ("sk_txeof\n"));
2130 * Go through our tx ring and free mbufs for those
2131 * frames that have been sent.
2133 idx = sc_if->sk_cdata.sk_tx_cons;
2134 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2135 SK_CDTXSYNC(sc_if, idx, 1,
2136 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2138 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2139 sk_ctl = le32toh(cur_tx->sk_ctl);
2140 #ifdef SK_DEBUG
2141 if (skdebug >= 3)
2142 sk_dump_txdesc(cur_tx, idx);
2143 #endif
2144 if (sk_ctl & SK_TXCTL_OWN) {
2145 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2146 break;
2148 if (sk_ctl & SK_TXCTL_LASTFRAG)
2149 ifp->if_opackets++;
2150 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2151 entry = sc_if->sk_cdata.sk_tx_map[idx];
2153 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2154 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2156 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2157 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2159 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2160 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2161 link);
2162 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2164 sc_if->sk_cdata.sk_tx_cnt--;
2165 SK_INC(idx, SK_TX_RING_CNT);
2167 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2168 ifp->if_timer = 0;
2169 else /* nudge chip to keep tx ring moving */
2170 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2172 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2173 ifp->if_flags &= ~IFF_OACTIVE;
2175 sc_if->sk_cdata.sk_tx_cons = idx;
2178 void
2179 sk_tick(void *xsc_if)
2181 struct sk_if_softc *sc_if = xsc_if;
2182 struct mii_data *mii = &sc_if->sk_mii;
2183 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2184 int i;
2186 DPRINTFN(3, ("sk_tick\n"));
2188 if (!(ifp->if_flags & IFF_UP))
2189 return;
2191 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2192 sk_intr_bcom(sc_if);
2193 return;
2197 * According to SysKonnect, the correct way to verify that
2198 * the link has come back up is to poll bit 0 of the GPIO
2199 * register three times. This pin has the signal from the
2200 * link sync pin connected to it; if we read the same link
2201 * state 3 times in a row, we know the link is up.
2203 for (i = 0; i < 3; i++) {
2204 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2205 break;
2208 if (i != 3) {
2209 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2210 return;
2213 /* Turn the GP0 interrupt back on. */
2214 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2215 SK_XM_READ_2(sc_if, XM_ISR);
2216 mii_tick(mii);
2217 mii_pollstat(mii);
2218 callout_stop(&sc_if->sk_tick_ch);
2221 void
2222 sk_intr_bcom(struct sk_if_softc *sc_if)
2224 struct mii_data *mii = &sc_if->sk_mii;
2225 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2226 int status;
2229 DPRINTFN(3, ("sk_intr_bcom\n"));
2231 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2234 * Read the PHY interrupt register to make sure
2235 * we clear any pending interrupts.
2237 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2238 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2240 if (!(ifp->if_flags & IFF_RUNNING)) {
2241 sk_init_xmac(sc_if);
2242 return;
2245 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2246 int lstat;
2247 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2248 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2250 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2251 (void)mii_mediachg(mii);
2252 /* Turn off the link LED. */
2253 SK_IF_WRITE_1(sc_if, 0,
2254 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2255 sc_if->sk_link = 0;
2256 } else if (status & BRGPHY_ISR_LNK_CHG) {
2257 sk_xmac_miibus_writereg(sc_if->sk_dev,
2258 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2259 mii_tick(mii);
2260 sc_if->sk_link = 1;
2261 /* Turn on the link LED. */
2262 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2263 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2264 SK_LINKLED_BLINK_OFF);
2265 mii_pollstat(mii);
2266 } else {
2267 mii_tick(mii);
2268 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2272 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2275 void
2276 sk_intr_xmac(struct sk_if_softc *sc_if)
2278 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2280 DPRINTFN(3, ("sk_intr_xmac\n"));
2282 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2283 if (status & XM_ISR_GP0_SET) {
2284 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2285 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2288 if (status & XM_ISR_AUTONEG_DONE) {
2289 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2293 if (status & XM_IMR_TX_UNDERRUN)
2294 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2296 if (status & XM_IMR_RX_OVERRUN)
2297 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2300 void
2301 sk_intr_yukon(struct sk_if_softc *sc_if)
2303 int status;
2305 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2307 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2311 sk_intr(void *xsc)
2313 struct sk_softc *sc = xsc;
2314 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2315 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2316 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2317 u_int32_t status;
2318 int claimed = 0;
2320 if (sc_if0 != NULL)
2321 ifp0 = &sc_if0->sk_ethercom.ec_if;
2322 if (sc_if1 != NULL)
2323 ifp1 = &sc_if1->sk_ethercom.ec_if;
2325 for (;;) {
2326 status = CSR_READ_4(sc, SK_ISSR);
2327 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2329 if (!(status & sc->sk_intrmask))
2330 break;
2332 claimed = 1;
2334 /* Handle receive interrupts first. */
2335 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2336 sk_rxeof(sc_if0);
2337 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2338 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2340 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2341 sk_rxeof(sc_if1);
2342 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2343 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 /* Then transmit interrupts. */
2347 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2348 sk_txeof(sc_if0);
2349 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2350 SK_TXBMU_CLR_IRQ_EOF);
2352 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2353 sk_txeof(sc_if1);
2354 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2355 SK_TXBMU_CLR_IRQ_EOF);
2358 /* Then MAC interrupts. */
2359 if (sc_if0 && (status & SK_ISR_MAC1) &&
2360 (ifp0->if_flags & IFF_RUNNING)) {
2361 if (sc->sk_type == SK_GENESIS)
2362 sk_intr_xmac(sc_if0);
2363 else
2364 sk_intr_yukon(sc_if0);
2367 if (sc_if1 && (status & SK_ISR_MAC2) &&
2368 (ifp1->if_flags & IFF_RUNNING)) {
2369 if (sc->sk_type == SK_GENESIS)
2370 sk_intr_xmac(sc_if1);
2371 else
2372 sk_intr_yukon(sc_if1);
2376 if (status & SK_ISR_EXTERNAL_REG) {
2377 if (sc_if0 != NULL &&
2378 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2379 sk_intr_bcom(sc_if0);
2381 if (sc_if1 != NULL &&
2382 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2383 sk_intr_bcom(sc_if1);
2387 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2389 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2390 sk_start(ifp0);
2391 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2392 sk_start(ifp1);
2394 #if NRND > 0
2395 if (RND_ENABLED(&sc->rnd_source))
2396 rnd_add_uint32(&sc->rnd_source, status);
2397 #endif
2399 if (sc->sk_int_mod_pending)
2400 sk_update_int_mod(sc);
2402 return claimed;
2405 void
2406 sk_init_xmac(struct sk_if_softc *sc_if)
2408 struct sk_softc *sc = sc_if->sk_softc;
2409 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2410 static const struct sk_bcom_hack bhack[] = {
2411 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2412 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2413 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2414 { 0, 0 } };
2416 DPRINTFN(1, ("sk_init_xmac\n"));
2418 /* Unreset the XMAC. */
2419 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2420 DELAY(1000);
2422 /* Reset the XMAC's internal state. */
2423 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2425 /* Save the XMAC II revision */
2426 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429 * Perform additional initialization for external PHYs,
2430 * namely for the 1000baseTX cards that use the XMAC's
2431 * GMII mode.
2433 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2434 int i = 0;
2435 u_int32_t val;
2437 /* Take PHY out of reset. */
2438 val = sk_win_read_4(sc, SK_GPIO);
2439 if (sc_if->sk_port == SK_PORT_A)
2440 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2441 else
2442 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2443 sk_win_write_4(sc, SK_GPIO, val);
2445 /* Enable GMII mode on the XMAC. */
2446 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2448 sk_xmac_miibus_writereg(sc_if->sk_dev,
2449 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2450 DELAY(10000);
2451 sk_xmac_miibus_writereg(sc_if->sk_dev,
2452 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455 * Early versions of the BCM5400 apparently have
2456 * a bug that requires them to have their reserved
2457 * registers initialized to some magic values. I don't
2458 * know what the numbers do, I'm just the messenger.
2460 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2461 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2462 while (bhack[i].reg) {
2463 sk_xmac_miibus_writereg(sc_if->sk_dev,
2464 SK_PHYADDR_BCOM, bhack[i].reg,
2465 bhack[i].val);
2466 i++;
2471 /* Set station address */
2472 SK_XM_WRITE_2(sc_if, XM_PAR0,
2473 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2474 SK_XM_WRITE_2(sc_if, XM_PAR1,
2475 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2476 SK_XM_WRITE_2(sc_if, XM_PAR2,
2477 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2478 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2480 if (ifp->if_flags & IFF_PROMISC)
2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2482 else
2483 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2485 if (ifp->if_flags & IFF_BROADCAST)
2486 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2487 else
2488 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2490 /* We don't need the FCS appended to the packet. */
2491 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2493 /* We want short frames padded to 60 bytes. */
2494 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497 * Enable the reception of all error frames. This is is
2498 * a necessary evil due to the design of the XMAC. The
2499 * XMAC's receive FIFO is only 8K in size, however jumbo
2500 * frames can be up to 9000 bytes in length. When bad
2501 * frame filtering is enabled, the XMAC's RX FIFO operates
2502 * in 'store and forward' mode. For this to work, the
2503 * entire frame has to fit into the FIFO, but that means
2504 * that jumbo frames larger than 8192 bytes will be
2505 * truncated. Disabling all bad frame filtering causes
2506 * the RX FIFO to operate in streaming mode, in which
2507 * case the XMAC will start transfering frames out of the
2508 * RX FIFO as soon as the FIFO threshold is reached.
2510 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2511 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2512 XM_MODE_RX_INRANGELEN);
2514 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2515 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2516 else
2517 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520 * Bump up the transmit threshold. This helps hold off transmit
2521 * underruns when we're blasting traffic from both ports at once.
2523 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2525 /* Set multicast filter */
2526 sk_setmulti(sc_if);
2528 /* Clear and enable interrupts */
2529 SK_XM_READ_2(sc_if, XM_ISR);
2530 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2531 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2532 else
2533 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2535 /* Configure MAC arbiter */
2536 switch (sc_if->sk_xmac_rev) {
2537 case XM_XMAC_REV_B2:
2538 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2540 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2547 break;
2548 case XM_XMAC_REV_C1:
2549 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2551 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2558 break;
2559 default:
2560 break;
2562 sk_win_write_2(sc, SK_MACARB_CTL,
2563 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2565 sc_if->sk_link = 1;
2568 void sk_init_yukon(struct sk_if_softc *sc_if)
2570 u_int32_t /*mac, */phy;
2571 u_int16_t reg;
2572 struct sk_softc *sc;
2573 int i;
2575 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2576 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2578 sc = sc_if->sk_softc;
2579 if (sc->sk_type == SK_YUKON_LITE &&
2580 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2581 /* Take PHY out of reset. */
2582 sk_win_write_4(sc, SK_GPIO,
2583 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2587 /* GMAC and GPHY Reset */
2588 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2590 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2592 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2593 DELAY(1000);
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2595 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2596 DELAY(1000);
2599 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2601 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2602 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2604 switch (sc_if->sk_softc->sk_pmd) {
2605 case IFM_1000_SX:
2606 case IFM_1000_LX:
2607 phy |= SK_GPHY_FIBER;
2608 break;
2610 case IFM_1000_CX:
2611 case IFM_1000_T:
2612 phy |= SK_GPHY_COPPER;
2613 break;
2616 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2618 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2619 DELAY(1000);
2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2621 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2622 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2624 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2625 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2627 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2629 /* unused read of the interrupt source register */
2630 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2631 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2633 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2634 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2635 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2637 /* MIB Counter Clear Mode set */
2638 reg |= YU_PAR_MIB_CLR;
2639 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2640 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2641 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2643 /* MIB Counter Clear Mode clear */
2644 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2645 reg &= ~YU_PAR_MIB_CLR;
2646 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2648 /* receive control reg */
2649 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2650 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2651 YU_RCR_CRCR);
2653 /* transmit parameter register */
2654 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2655 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2656 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2658 /* serial mode register */
2659 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2660 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2661 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2662 YU_SMR_IPG_DATA(0x1e));
2664 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2665 /* Setup Yukon's address */
2666 for (i = 0; i < 3; i++) {
2667 /* Write Source Address 1 (unicast filter) */
2668 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2669 sc_if->sk_enaddr[i * 2] |
2670 sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 for (i = 0; i < 3; i++) {
2674 reg = sk_win_read_2(sc_if->sk_softc,
2675 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2676 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 /* Set multicast filter */
2680 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2681 sk_setmulti(sc_if);
2683 /* enable interrupt mask for counter overflows */
2684 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2685 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2686 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2687 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2689 /* Configure RX MAC FIFO */
2690 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2691 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2693 /* Configure TX MAC FIFO */
2694 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2695 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2697 DPRINTFN(6, ("sk_init_yukon: end\n"));
2701 * Note that to properly initialize any part of the GEnesis chip,
2702 * you first have to take it out of reset mode.
2705 sk_init(struct ifnet *ifp)
2707 struct sk_if_softc *sc_if = ifp->if_softc;
2708 struct sk_softc *sc = sc_if->sk_softc;
2709 struct mii_data *mii = &sc_if->sk_mii;
2710 int rc = 0, s;
2711 u_int32_t imr, imtimer_ticks;
2713 DPRINTFN(1, ("sk_init\n"));
2715 s = splnet();
2717 if (ifp->if_flags & IFF_RUNNING) {
2718 splx(s);
2719 return 0;
2722 /* Cancel pending I/O and free all RX/TX buffers. */
2723 sk_stop(ifp,0);
2725 if (sc->sk_type == SK_GENESIS) {
2726 /* Configure LINK_SYNC LED */
2727 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2729 SK_LINKLED_LINKSYNC_ON);
2731 /* Configure RX LED */
2732 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2733 SK_RXLEDCTL_COUNTER_START);
2735 /* Configure TX LED */
2736 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2737 SK_TXLEDCTL_COUNTER_START);
2740 /* Configure I2C registers */
2742 /* Configure XMAC(s) */
2743 switch (sc->sk_type) {
2744 case SK_GENESIS:
2745 sk_init_xmac(sc_if);
2746 break;
2747 case SK_YUKON:
2748 case SK_YUKON_LITE:
2749 case SK_YUKON_LP:
2750 sk_init_yukon(sc_if);
2751 break;
2753 if ((rc = mii_mediachg(mii)) == ENXIO)
2754 rc = 0;
2755 else if (rc != 0)
2756 goto out;
2758 if (sc->sk_type == SK_GENESIS) {
2759 /* Configure MAC FIFOs */
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2764 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2765 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2766 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 /* Configure transmit arbiter(s) */
2770 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2771 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2773 /* Configure RAMbuffers */
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2789 /* Configure BMUs */
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2791 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2792 SK_RX_RING_ADDR(sc_if, 0));
2793 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2796 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2797 SK_TX_RING_ADDR(sc_if, 0));
2798 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2800 /* Init descriptors */
2801 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2802 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2803 "memory for rx buffers\n");
2804 sk_stop(ifp,0);
2805 splx(s);
2806 return ENOBUFS;
2809 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2810 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2811 "memory for tx buffers\n");
2812 sk_stop(ifp,0);
2813 splx(s);
2814 return ENOBUFS;
2817 /* Set interrupt moderation if changed via sysctl. */
2818 switch (sc->sk_type) {
2819 case SK_GENESIS:
2820 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2821 break;
2822 case SK_YUKON_EC:
2823 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2824 break;
2825 default:
2826 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2828 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2829 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2830 sk_win_write_4(sc, SK_IMTIMERINIT,
2831 SK_IM_USECS(sc->sk_int_mod));
2832 aprint_verbose_dev(sc->sk_dev,
2833 "interrupt moderation is %d us\n", sc->sk_int_mod);
2836 /* Configure interrupt handling */
2837 CSR_READ_4(sc, SK_ISSR);
2838 if (sc_if->sk_port == SK_PORT_A)
2839 sc->sk_intrmask |= SK_INTRS1;
2840 else
2841 sc->sk_intrmask |= SK_INTRS2;
2843 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2845 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2847 /* Start BMUs. */
2848 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2850 if (sc->sk_type == SK_GENESIS) {
2851 /* Enable XMACs TX and RX state machines */
2852 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2853 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2854 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 if (SK_YUKON_FAMILY(sc->sk_type)) {
2858 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2859 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2860 #if 0
2861 /* XXX disable 100Mbps and full duplex mode? */
2862 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2863 #endif
2864 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2868 ifp->if_flags |= IFF_RUNNING;
2869 ifp->if_flags &= ~IFF_OACTIVE;
2871 out:
2872 splx(s);
2873 return rc;
2876 void
2877 sk_stop(struct ifnet *ifp, int disable)
2879 struct sk_if_softc *sc_if = ifp->if_softc;
2880 struct sk_softc *sc = sc_if->sk_softc;
2881 int i;
2883 DPRINTFN(1, ("sk_stop\n"));
2885 callout_stop(&sc_if->sk_tick_ch);
2887 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2888 u_int32_t val;
2890 /* Put PHY back into reset. */
2891 val = sk_win_read_4(sc, SK_GPIO);
2892 if (sc_if->sk_port == SK_PORT_A) {
2893 val |= SK_GPIO_DIR0;
2894 val &= ~SK_GPIO_DAT0;
2895 } else {
2896 val |= SK_GPIO_DIR2;
2897 val &= ~SK_GPIO_DAT2;
2899 sk_win_write_4(sc, SK_GPIO, val);
2902 /* Turn off various components of this interface. */
2903 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2904 switch (sc->sk_type) {
2905 case SK_GENESIS:
2906 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2907 SK_TXMACCTL_XMAC_RESET);
2908 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2909 break;
2910 case SK_YUKON:
2911 case SK_YUKON_LITE:
2912 case SK_YUKON_LP:
2913 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2914 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2915 break;
2917 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2918 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2919 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2920 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2921 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2922 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2923 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2924 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2925 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2927 /* Disable interrupts */
2928 if (sc_if->sk_port == SK_PORT_A)
2929 sc->sk_intrmask &= ~SK_INTRS1;
2930 else
2931 sc->sk_intrmask &= ~SK_INTRS2;
2932 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2934 SK_XM_READ_2(sc_if, XM_ISR);
2935 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2937 /* Free RX and TX mbufs still in the queues. */
2938 for (i = 0; i < SK_RX_RING_CNT; i++) {
2939 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2940 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2941 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2945 for (i = 0; i < SK_TX_RING_CNT; i++) {
2946 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2947 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2948 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2952 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2955 /* Power Management Framework */
2957 static bool
2958 skc_suspend(device_t dv, pmf_qual_t qual)
2960 struct sk_softc *sc = device_private(dv);
2962 DPRINTFN(2, ("skc_suspend\n"));
2964 /* Turn off the driver is loaded LED */
2965 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2967 return true;
2970 static bool
2971 skc_resume(device_t dv, pmf_qual_t qual)
2973 struct sk_softc *sc = device_private(dv);
2975 DPRINTFN(2, ("skc_resume\n"));
2977 sk_reset(sc);
2978 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2980 return true;
2983 static bool
2984 sk_resume(device_t dv, pmf_qual_t qual)
2986 struct sk_if_softc *sc_if = device_private(dv);
2988 sk_init_yukon(sc_if);
2989 return true;
2992 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2993 skc_probe, skc_attach, NULL, NULL);
2995 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2996 sk_probe, sk_attach, NULL, NULL);
2998 #ifdef SK_DEBUG
2999 void
3000 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3002 #define DESC_PRINT(X) \
3003 if (X) \
3004 printf("txdesc[%d]." #X "=%#x\n", \
3005 idx, X);
3007 DESC_PRINT(le32toh(desc->sk_ctl));
3008 DESC_PRINT(le32toh(desc->sk_next));
3009 DESC_PRINT(le32toh(desc->sk_data_lo));
3010 DESC_PRINT(le32toh(desc->sk_data_hi));
3011 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3012 DESC_PRINT(le16toh(desc->sk_rsvd0));
3013 DESC_PRINT(le16toh(desc->sk_csum_startval));
3014 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3015 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3016 DESC_PRINT(le16toh(desc->sk_rsvd1));
3017 #undef PRINT
3020 void
3021 sk_dump_bytes(const char *data, int len)
3023 int c, i, j;
3025 for (i = 0; i < len; i += 16) {
3026 printf("%08x ", i);
3027 c = len - i;
3028 if (c > 16) c = 16;
3030 for (j = 0; j < c; j++) {
3031 printf("%02x ", data[i + j] & 0xff);
3032 if ((j & 0xf) == 7 && j > 0)
3033 printf(" ");
3036 for (; j < 16; j++)
3037 printf(" ");
3038 printf(" ");
3040 for (j = 0; j < c; j++) {
3041 int ch = data[i + j] & 0xff;
3042 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3045 printf("\n");
3047 if (c < 16)
3048 break;
3052 void
3053 sk_dump_mbuf(struct mbuf *m)
3055 int count = m->m_pkthdr.len;
3057 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3059 while (count > 0 && m) {
3060 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3061 m, m->m_data, m->m_len);
3062 sk_dump_bytes(mtod(m, char *), m->m_len);
3064 count -= m->m_len;
3065 m = m->m_next;
3068 #endif
3070 static int
3071 sk_sysctl_handler(SYSCTLFN_ARGS)
3073 int error, t;
3074 struct sysctlnode node;
3075 struct sk_softc *sc;
3077 node = *rnode;
3078 sc = node.sysctl_data;
3079 t = sc->sk_int_mod;
3080 node.sysctl_data = &t;
3081 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3082 if (error || newp == NULL)
3083 return error;
3085 if (t < SK_IM_MIN || t > SK_IM_MAX)
3086 return EINVAL;
3088 /* update the softc with sysctl-changed value, and mark
3089 for hardware update */
3090 sc->sk_int_mod = t;
3091 sc->sk_int_mod_pending = 1;
3092 return 0;
3096 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3097 * set up in skc_attach()
3099 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3101 int rc;
3102 const struct sysctlnode *node;
3104 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3105 0, CTLTYPE_NODE, "hw", NULL,
3106 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3107 goto err;
3110 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3111 0, CTLTYPE_NODE, "sk",
3112 SYSCTL_DESCR("sk interface controls"),
3113 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3114 goto err;
3117 sk_root_num = node->sysctl_num;
3118 return;
3120 err:
3121 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);