Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / vme / if_ie_vme.c
blob631070fa7802b97d079aefb7a031504255bc8bd8
1 /* $NetBSD: if_ie_vme.c,v 1.26 2009/05/12 13:22:28 cegger Exp $ */
3 /*-
4 * Copyright (c) 1995 Charles D. Cranor
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Charles D. Cranor.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 * Converted to SUN ie driver by Charles D. Cranor,
35 * October 1994, January 1995.
39 * The i82586 is a very painful chip, found in sun3's, sun-4/100's
40 * sun-4/200's, and VME based suns. The byte order is all wrong for a
41 * SUN, making life difficult. Programming this chip is mostly the same,
42 * but certain details differ from system to system. This driver is
43 * written so that different "ie" interfaces can be controled by the same
44 * driver.
48 * programming notes:
50 * the ie chip operates in a 24 bit address space.
52 * most ie interfaces appear to be divided into two parts:
53 * - generic 586 stuff
54 * - board specific
56 * generic:
57 * the generic stuff of the ie chip is all done with data structures
58 * that live in the chip's memory address space. the chip expects
59 * its main data structure (the sys conf ptr -- SCP) to be at a fixed
60 * address in its 24 bit space: 0xfffff4
62 * the SCP points to another structure called the ISCP.
63 * the ISCP points to another structure called the SCB.
64 * the SCB has a status field, a linked list of "commands", and
65 * a linked list of "receive buffers". these are data structures that
66 * live in memory, not registers.
68 * board:
69 * to get the chip to do anything, you first put a command in the
70 * command data structure list. then you have to signal "attention"
71 * to the chip to get it to look at the command. how you
72 * signal attention depends on what board you have... on PC's
73 * there is an i/o port number to do this, on sun's there is a
74 * register bit you toggle.
76 * to get data from the chip you program it to interrupt...
79 * sun issues:
81 * there are 3 kinds of sun "ie" interfaces:
82 * 1 - a VME/multibus card
83 * 2 - an on-board interface (sun3's, sun-4/100's, and sun-4/200's)
84 * 3 - another VME board called the 3E
86 * the VME boards lives in vme16 space. only 16 and 8 bit accesses
87 * are allowed, so functions that copy data must be aware of this.
89 * the chip is an intel chip. this means that the byte order
90 * on all the "short"s in the chip's data structures is wrong.
91 * so, constants described in the intel docs are swapped for the sun.
92 * that means that any buffer pointers you give the chip must be
93 * swapped to intel format. yuck.
95 * VME/multibus interface:
96 * for the multibus interface the board ignores the top 4 bits
97 * of the chip address. the multibus interface has its own
98 * MMU like page map (without protections or valid bits, etc).
99 * there are 256 pages of physical memory on the board (each page
100 * is 1024 bytes). There are 1024 slots in the page map. so,
101 * a 1024 byte page takes up 10 bits of address for the offset,
102 * and if there are 1024 slots in the page that is another 10 bits
103 * of the address. That makes a 20 bit address, and as stated
104 * earlier the board ignores the top 4 bits, so that accounts
105 * for all 24 bits of address.
107 * Note that the last entry of the page map maps the top of the
108 * 24 bit address space and that the SCP is supposed to be at
109 * 0xfffff4 (taking into account allignment). so,
110 * for multibus, that entry in the page map has to be used for the SCP.
112 * The page map effects BOTH how the ie chip sees the
113 * memory, and how the host sees it.
115 * The page map is part of the "register" area of the board
117 * The page map to control where ram appears in the address space.
118 * We choose to have RAM start at 0 in the 24 bit address space.
120 * to get the phyiscal address of the board's RAM you must take the
121 * top 12 bits of the physical address of the register address and
122 * or in the 4 bits from the status word as bits 17-20 (remember that
123 * the board ignores the chip's top 4 address lines). For example:
124 * if the register is @ 0xffe88000, then the top 12 bits are 0xffe00000.
125 * to get the 4 bits from the status word just do status & IEVME_HADDR.
126 * suppose the value is "4". Then just shift it left 16 bits to get
127 * it into bits 17-20 (e.g. 0x40000). Then or it to get the
128 * address of RAM (in our example: 0xffe40000). see the attach routine!
131 * on-board interface:
133 * on the onboard ie interface the 24 bit address space is hardwired
134 * to be 0xff000000 -> 0xffffffff of KVA. this means that sc_iobase
135 * will be 0xff000000. sc_maddr will be where ever we allocate RAM
136 * in KVA. note that since the SCP is at a fixed address it means
137 * that we have to allocate a fixed KVA for the SCP.
138 * <fill in useful info later>
141 * VME3E interface:
143 * <fill in useful info later>
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: if_ie_vme.c,v 1.26 2009/05/12 13:22:28 cegger Exp $");
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/errno.h>
153 #include <sys/device.h>
154 #include <sys/protosw.h>
155 #include <sys/socket.h>
157 #include <net/if.h>
158 #include <net/if_types.h>
159 #include <net/if_dl.h>
160 #include <net/if_media.h>
161 #include <net/if_ether.h>
163 #include <sys/bus.h>
164 #include <sys/intr.h>
165 #ifdef __sparc__
166 #include <machine/autoconf.h>
167 #endif
168 #include <dev/vme/vmevar.h>
170 #include <dev/ic/i82586reg.h>
171 #include <dev/ic/i82586var.h>
173 #include "locators.h"
176 * VME/multibus definitions
178 #define IEVME_PAGESIZE 1024 /* bytes */
179 #define IEVME_PAGSHIFT 10 /* bits */
180 #define IEVME_NPAGES 256 /* number of pages on chip */
181 #define IEVME_MAPSZ 1024 /* number of entries in the map */
184 * PTE for the page map
186 #define IEVME_SBORDR 0x8000 /* sun byte order */
187 #define IEVME_IBORDR 0x0000 /* intel byte ordr */
189 #define IEVME_P2MEM 0x2000 /* memory is on P2 */
190 #define IEVME_OBMEM 0x0000 /* memory is on board */
192 #define IEVME_PGMASK 0x0fff /* gives the physical page frame number */
194 struct ievme {
195 u_int16_t pgmap[IEVME_MAPSZ];
196 u_int16_t xxx[32]; /* prom */
197 u_int16_t status; /* see below for bits */
198 u_int16_t xxx2; /* filler */
199 u_int16_t pectrl; /* parity control (see below) */
200 u_int16_t peaddr; /* low 16 bits of address */
204 * status bits
206 #define IEVME_RESET 0x8000 /* reset board */
207 #define IEVME_ONAIR 0x4000 /* go out of loopback 'on-air' */
208 #define IEVME_ATTEN 0x2000 /* attention */
209 #define IEVME_IENAB 0x1000 /* interrupt enable */
210 #define IEVME_PEINT 0x0800 /* parity error interrupt enable */
211 #define IEVME_PERR 0x0200 /* parity error flag */
212 #define IEVME_INT 0x0100 /* interrupt flag */
213 #define IEVME_P2EN 0x0020 /* enable p2 bus */
214 #define IEVME_256K 0x0010 /* 256kb rams */
215 #define IEVME_HADDR 0x000f /* mask for bits 17-20 of address */
218 * parity control
220 #define IEVME_PARACK 0x0100 /* parity error ack */
221 #define IEVME_PARSRC 0x0080 /* parity error source */
222 #define IEVME_PAREND 0x0040 /* which end of the data got the error */
223 #define IEVME_PARADR 0x000f /* mask to get bits 17-20 of parity address */
225 /* Supported media */
226 static int media[] = {
227 IFM_ETHER | IFM_10_2,
229 #define NMEDIA (sizeof(media) / sizeof(media[0]))
232 * the 3E board not supported (yet?)
236 static void ie_vmereset(struct ie_softc *, int);
237 static void ie_vmeattend(struct ie_softc *, int);
238 static void ie_vmerun(struct ie_softc *);
239 static int ie_vmeintr(struct ie_softc *, int);
241 int ie_vme_match(device_t, cfdata_t, void *);
242 void ie_vme_attach(device_t, device_t, void *);
244 struct ie_vme_softc {
245 struct ie_softc ie;
246 bus_space_tag_t ievt;
247 bus_space_handle_t ievh;
250 CFATTACH_DECL(ie_vme, sizeof(struct ie_vme_softc),
251 ie_vme_match, ie_vme_attach, NULL, NULL);
253 #define read_iev(sc, reg) \
254 bus_space_read_2(sc->ievt, sc->ievh, offsetof(struct ievme, reg))
255 #define write_iev(sc, reg, val) \
256 bus_space_write_2(sc->ievt, sc->ievh, offsetof(struct ievme, reg), val)
259 * MULTIBUS/VME support routines
261 void
262 ie_vmereset(struct ie_softc *sc, int what)
264 struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
265 write_iev(vsc, status, IEVME_RESET);
266 delay(100); /* XXX could be shorter? */
267 write_iev(vsc, status, 0);
270 void
271 ie_vmeattend(struct ie_softc *sc, int why)
273 struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
275 /* flag! */
276 write_iev(vsc, status, read_iev(vsc, status) | IEVME_ATTEN);
277 /* down. */
278 write_iev(vsc, status, read_iev(vsc, status) & ~IEVME_ATTEN);
281 void
282 ie_vmerun(struct ie_softc *sc)
284 struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
286 write_iev(vsc, status, read_iev(vsc, status)
287 | IEVME_ONAIR | IEVME_IENAB | IEVME_PEINT);
291 ie_vmeintr(struct ie_softc *sc, int where)
293 struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
295 if (where != INTR_ENTER)
296 return (0);
299 * check for parity error
301 if (read_iev(vsc, status) & IEVME_PERR) {
302 aprint_error_dev(&sc->sc_dev, "parity error (ctrl 0x%x @ 0x%02x%04x)\n",
303 read_iev(vsc, pectrl),
304 read_iev(vsc, pectrl) & IEVME_HADDR,
305 read_iev(vsc, peaddr));
306 write_iev(vsc, pectrl, read_iev(vsc, pectrl) | IEVME_PARACK);
308 return (0);
311 void ie_memcopyin(struct ie_softc *, void *, int, size_t);
312 void ie_memcopyout(struct ie_softc *, const void *, int, size_t);
315 * Copy board memory to kernel.
317 void
318 ie_memcopyin(struct ie_softc *sc, void *p, int offset, size_t size)
320 size_t help;
322 if ((offset & 1) && ((u_long)p & 1) && size > 0) {
323 *(u_int8_t *)p = bus_space_read_1(sc->bt, sc->bh, offset);
324 offset++;
325 p = (u_int8_t *)p + 1;
326 size--;
329 if ((offset & 1) || ((u_long)p & 1)) {
330 bus_space_read_region_1(sc->bt, sc->bh, offset, p, size);
331 return;
334 help = size / 2;
335 bus_space_read_region_2(sc->bt, sc->bh, offset, p, help);
336 if (2 * help == size)
337 return;
339 offset += 2 * help;
340 p = (u_int16_t *)p + help;
341 *(u_int8_t *)p = bus_space_read_1(sc->bt, sc->bh, offset);
345 * Copy from kernel space to board memory.
347 void
348 ie_memcopyout(struct ie_softc *sc, const void *p, int offset, size_t size)
350 size_t help;
352 if ((offset & 1) && ((u_long)p & 1) && size > 0) {
353 bus_space_write_1(sc->bt, sc->bh, offset, *(const u_int8_t *)p);
354 offset++;
355 p = (const u_int8_t *)p + 1;
356 size--;
359 if ((offset & 1) || ((u_long)p & 1)) {
360 bus_space_write_region_1(sc->bt, sc->bh, offset, p, size);
361 return;
364 help = size / 2;
365 bus_space_write_region_2(sc->bt, sc->bh, offset, p, help);
366 if (2 * help == size)
367 return;
369 offset += 2 * help;
370 p = (const u_int16_t *)p + help;
371 bus_space_write_1(sc->bt, sc->bh, offset, *(const u_int8_t *)p);
374 /* read a 16-bit value at BH offset */
375 u_int16_t ie_vme_read16(struct ie_softc *, int offset);
376 /* write a 16-bit value at BH offset */
377 void ie_vme_write16(struct ie_softc *, int offset, u_int16_t value);
378 void ie_vme_write24(struct ie_softc *, int offset, int addr);
380 u_int16_t
381 ie_vme_read16(struct ie_softc *sc, int offset)
383 u_int16_t v;
385 bus_space_barrier(sc->bt, sc->bh, offset, 2, BUS_SPACE_BARRIER_READ);
386 v = bus_space_read_2(sc->bt, sc->bh, offset);
387 return (((v&0xff)<<8) | ((v>>8)&0xff));
390 void
391 ie_vme_write16(struct ie_softc *sc, int offset, u_int16_t v)
393 int v0 = ((((v)&0xff)<<8) | (((v)>>8)&0xff));
394 bus_space_write_2(sc->bt, sc->bh, offset, v0);
395 bus_space_barrier(sc->bt, sc->bh, offset, 2, BUS_SPACE_BARRIER_WRITE);
398 void
399 ie_vme_write24(struct ie_softc *sc, int offset, int addr)
401 u_char *f = (u_char *)&addr;
402 u_int16_t v0, v1;
403 u_char *t;
405 t = (u_char *)&v0;
406 t[0] = f[3]; t[1] = f[2];
407 bus_space_write_2(sc->bt, sc->bh, offset, v0);
409 t = (u_char *)&v1;
410 t[0] = f[1]; t[1] = 0;
411 bus_space_write_2(sc->bt, sc->bh, offset+2, v1);
413 bus_space_barrier(sc->bt, sc->bh, offset, 4, BUS_SPACE_BARRIER_WRITE);
417 ie_vme_match(device_t parent, cfdata_t cf, void *aux)
419 struct vme_attach_args *va = aux;
420 vme_chipset_tag_t ct = va->va_vct;
421 vme_am_t mod;
422 int error;
424 if (va->numcfranges < 2) {
425 printf("ie_vme_match: need 2 ranges\n");
426 return (0);
428 if ((va->r[1].offset & 0xff0fffff) ||
429 ((va->r[0].offset & 0xfff00000)
430 != (va->r[1].offset & 0xfff00000))) {
431 printf("ie_vme_match: base address mismatch\n");
432 return (0);
434 if (va->r[0].size != VMECF_LEN_DEFAULT &&
435 va->r[0].size != sizeof(sizeof(struct ievme))) {
436 printf("ie_vme_match: bad csr size\n");
437 return (0);
439 if (va->r[1].size == VMECF_LEN_DEFAULT) {
440 printf("ie_vme_match: must specify memory size\n");
441 return (0);
444 mod = 0x3d; /* VME_AM_A24|VME_AM_MBO|VME_AM_SUPER|VME_AM_DATA */
446 if (va->r[0].am != VMECF_AM_DEFAULT &&
447 va->r[0].am != mod)
448 return (0);
450 if (vme_space_alloc(va->va_vct, va->r[0].offset,
451 sizeof(struct ievme), mod))
452 return (0);
453 if (vme_space_alloc(va->va_vct, va->r[1].offset,
454 va->r[1].size, mod)) {
455 vme_space_free(va->va_vct, va->r[0].offset,
456 sizeof(struct ievme), mod);
457 return (0);
459 error = vme_probe(ct, va->r[0].offset, 2, mod, VME_D16, 0, 0);
460 vme_space_free(va->va_vct, va->r[0].offset, sizeof(struct ievme), mod);
461 vme_space_free(va->va_vct, va->r[1].offset, va->r[1].size, mod);
463 return (error == 0);
466 void
467 ie_vme_attach(device_t parent, device_t self, void *aux)
469 u_int8_t myaddr[ETHER_ADDR_LEN];
470 struct ie_vme_softc *vsc = (void *) self;
471 struct vme_attach_args *va = aux;
472 vme_chipset_tag_t ct = va->va_vct;
473 struct ie_softc *sc;
474 vme_intr_handle_t ih;
475 vme_addr_t rampaddr;
476 vme_size_t memsize;
477 vme_mapresc_t resc;
478 int lcv;
480 vme_am_t mod;
483 * *note*: we don't detect the difference between a VME3E and
484 * a multibus/vme card. if you want to use a 3E you'll have
485 * to fix this.
487 mod = 0x3d; /* VME_AM_A24|VME_AM_MBO|VME_AM_SUPER|VME_AM_DATA */
488 if (vme_space_alloc(va->va_vct, va->r[0].offset,
489 sizeof(struct ievme), mod) ||
490 vme_space_alloc(va->va_vct, va->r[1].offset,
491 va->r[1].size, mod))
492 panic("if_ie: vme alloc");
494 sc = &vsc->ie;
496 sc->hwreset = ie_vmereset;
497 sc->hwinit = ie_vmerun;
498 sc->chan_attn = ie_vmeattend;
499 sc->intrhook = ie_vmeintr;
500 sc->memcopyout = ie_memcopyout;
501 sc->memcopyin = ie_memcopyin;
503 sc->ie_bus_barrier = NULL;
504 sc->ie_bus_read16 = ie_vme_read16;
505 sc->ie_bus_write16 = ie_vme_write16;
506 sc->ie_bus_write24 = ie_vme_write24;
508 memsize = va->r[1].size;
510 if (vme_space_map(ct, va->r[0].offset, sizeof(struct ievme), mod,
511 VME_D16 | VME_D8, 0,
512 &vsc->ievt, &vsc->ievh, &resc) != 0)
513 panic("if_ie: vme map csr");
515 rampaddr = va->r[1].offset;
517 /* 4 more */
518 rampaddr = rampaddr | ((read_iev(vsc, status) & IEVME_HADDR) << 16);
519 if (vme_space_map(ct, rampaddr, memsize, mod, VME_D16 | VME_D8, 0,
520 &sc->bt, &sc->bh, &resc) != 0)
521 panic("if_ie: vme map mem");
523 write_iev(vsc, pectrl, read_iev(vsc, pectrl) | IEVME_PARACK);
526 * Set up mappings, direct map except for last page
527 * which is mapped at zero and at high address (for scp)
529 for (lcv = 0; lcv < IEVME_MAPSZ - 1; lcv++)
530 write_iev(vsc, pgmap[lcv], IEVME_SBORDR | IEVME_OBMEM | lcv);
531 write_iev(vsc, pgmap[IEVME_MAPSZ - 1], IEVME_SBORDR | IEVME_OBMEM | 0);
533 /* Clear all ram */
534 bus_space_set_region_2(sc->bt, sc->bh, 0, 0, memsize/2);
537 * We use the first page to set up SCP, ICSP and SCB data
538 * structures. The remaining pages become the buffer area
539 * (managed in i82586.c).
540 * SCP is in double-mapped page, so the 586 can see it at
541 * the mandatory magic address (IE_SCP_ADDR).
543 sc->scp = (IE_SCP_ADDR & (IEVME_PAGESIZE - 1));
545 /* iscp at location zero */
546 sc->iscp = 0;
548 /* scb follows iscp */
549 sc->scb = IE_ISCP_SZ;
551 ie_vme_write16(sc, IE_ISCP_SCB((long)sc->iscp), sc->scb);
552 ie_vme_write16(sc, IE_ISCP_BASE((u_long)sc->iscp), 0);
553 ie_vme_write24(sc, IE_SCP_ISCP((u_long)sc->scp), 0);
555 if (i82586_proberam(sc) == 0) {
556 printf(": memory probe failed\n");
557 return;
561 * Rest of first page is unused; rest of ram for buffers.
563 sc->buf_area = IEVME_PAGESIZE;
564 sc->buf_area_sz = memsize - IEVME_PAGESIZE;
566 sc->do_xmitnopchain = 0;
568 printf("\n%s:", device_xname(self));
570 #ifdef __sparc__
571 prom_getether(0, myaddr);
572 #endif
573 i82586_attach(sc, "multibus/vme", myaddr, media, NMEDIA, media[0]);
575 vme_intr_map(ct, va->ilevel, va->ivector, &ih);
576 vme_intr_establish(ct, ih, IPL_NET, i82586_intr, sc);