Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / kern / kern_rwlock.c
blob0472746ee668e9a69e102cac246a6fa3a7471b5b
1 /* $NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $ */
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Kernel reader/writer lock implementation, modeled after those
34 * found in Solaris, a description of which can be found in:
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.32 2009/05/16 08:36:32 yamt Exp $");
43 #define __RWLOCK_PRIVATE
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54 #include <sys/lock.h>
56 #include <dev/lockstat.h>
59 * LOCKDEBUG
62 #if defined(LOCKDEBUG)
64 #define RW_WANTLOCK(rw, op, t) \
65 LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
66 (uintptr_t)__builtin_return_address(0), op == RW_READER, t);
67 #define RW_LOCKED(rw, op) \
68 LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
69 (uintptr_t)__builtin_return_address(0), op == RW_READER);
70 #define RW_UNLOCKED(rw, op) \
71 LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
72 (uintptr_t)__builtin_return_address(0), op == RW_READER);
73 #define RW_DASSERT(rw, cond) \
74 do { \
75 if (!(cond)) \
76 rw_abort(rw, __func__, "assertion failed: " #cond); \
77 } while (/* CONSTCOND */ 0);
79 #else /* LOCKDEBUG */
81 #define RW_WANTLOCK(rw, op, t) /* nothing */
82 #define RW_LOCKED(rw, op) /* nothing */
83 #define RW_UNLOCKED(rw, op) /* nothing */
84 #define RW_DASSERT(rw, cond) /* nothing */
86 #endif /* LOCKDEBUG */
89 * DIAGNOSTIC
92 #if defined(DIAGNOSTIC)
94 #define RW_ASSERT(rw, cond) \
95 do { \
96 if (!(cond)) \
97 rw_abort(rw, __func__, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0)
100 #else
102 #define RW_ASSERT(rw, cond) /* nothing */
104 #endif /* DIAGNOSTIC */
106 #define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? RW_DEBUG : 0)
107 #define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_DEBUG) != 0)
108 #if defined(LOCKDEBUG)
109 #define RW_INHERITDEBUG(new, old) (new) |= (old) & RW_DEBUG
110 #else /* defined(LOCKDEBUG) */
111 #define RW_INHERITDEBUG(new, old) /* nothing */
112 #endif /* defined(LOCKDEBUG) */
114 static void rw_abort(krwlock_t *, const char *, const char *);
115 static void rw_dump(volatile void *);
116 static lwp_t *rw_owner(wchan_t);
118 static inline uintptr_t
119 rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
122 RW_INHERITDEBUG(n, o);
123 return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
124 (void *)o, (void *)n);
127 static inline void
128 rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
131 RW_INHERITDEBUG(n, o);
132 n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
133 (void *)n);
134 RW_DASSERT(rw, n == o);
138 * For platforms that do not provide stubs, or for the LOCKDEBUG case.
140 #ifdef LOCKDEBUG
141 #undef __HAVE_RW_STUBS
142 #endif
144 #ifndef __HAVE_RW_STUBS
145 __strong_alias(rw_enter,rw_vector_enter);
146 __strong_alias(rw_exit,rw_vector_exit);
147 __strong_alias(rw_tryenter,rw_vector_tryenter);
148 #endif
150 lockops_t rwlock_lockops = {
151 "Reader / writer lock",
152 LOCKOPS_SLEEP,
153 rw_dump
156 syncobj_t rw_syncobj = {
157 SOBJ_SLEEPQ_SORTED,
158 turnstile_unsleep,
159 turnstile_changepri,
160 sleepq_lendpri,
161 rw_owner,
165 * rw_dump:
167 * Dump the contents of a rwlock structure.
169 static void
170 rw_dump(volatile void *cookie)
172 volatile krwlock_t *rw = cookie;
174 printf_nolog("owner/count : %#018lx flags : %#018x\n",
175 (long)RW_OWNER(rw), (int)RW_FLAGS(rw));
179 * rw_abort:
181 * Dump information about an error and panic the system. This
182 * generates a lot of machine code in the DIAGNOSTIC case, so
183 * we ask the compiler to not inline it.
185 static void __noinline
186 rw_abort(krwlock_t *rw, const char *func, const char *msg)
189 if (panicstr != NULL)
190 return;
192 LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
196 * rw_init:
198 * Initialize a rwlock for use.
200 void
201 rw_init(krwlock_t *rw)
203 bool dodebug;
205 memset(rw, 0, sizeof(*rw));
207 dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
208 (uintptr_t)__builtin_return_address(0));
209 RW_SETDEBUG(rw, dodebug);
213 * rw_destroy:
215 * Tear down a rwlock.
217 void
218 rw_destroy(krwlock_t *rw)
221 RW_ASSERT(rw, (rw->rw_owner & ~RW_DEBUG) == 0);
222 LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
226 * rw_onproc:
228 * Return true if an rwlock owner is running on a CPU in the system.
229 * If the target is waiting on the kernel big lock, then we must
230 * release it. This is necessary to avoid deadlock.
232 * Note that we can't use the rwlock owner field as an LWP pointer. We
233 * don't have full control over the timing of our execution, and so the
234 * pointer could be completely invalid by the time we dereference it.
236 static int
237 rw_onproc(uintptr_t owner, struct cpu_info **cip)
239 #ifdef MULTIPROCESSOR
240 CPU_INFO_ITERATOR cii;
241 struct cpu_info *ci;
242 lwp_t *l;
244 if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED)
245 return 0;
246 l = (lwp_t *)(owner & RW_THREAD);
248 /* See if the target is running on a CPU somewhere. */
249 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
250 goto run;
251 for (CPU_INFO_FOREACH(cii, ci))
252 if (ci->ci_curlwp == l)
253 goto run;
255 /* No: it may be safe to block now. */
256 *cip = NULL;
257 return 0;
259 run:
260 /* Target is running; do we need to block? */
261 *cip = ci;
262 return ci->ci_biglock_wanted != l;
263 #else
264 return 0;
265 #endif /* MULTIPROCESSOR */
269 * rw_vector_enter:
271 * Acquire a rwlock.
273 void
274 rw_vector_enter(krwlock_t *rw, const krw_t op)
276 uintptr_t owner, incr, need_wait, set_wait, curthread, next;
277 struct cpu_info *ci;
278 turnstile_t *ts;
279 int queue;
280 lwp_t *l;
281 LOCKSTAT_TIMER(slptime);
282 LOCKSTAT_TIMER(slpcnt);
283 LOCKSTAT_TIMER(spintime);
284 LOCKSTAT_COUNTER(spincnt);
285 LOCKSTAT_FLAG(lsflag);
287 l = curlwp;
288 curthread = (uintptr_t)l;
290 RW_ASSERT(rw, !cpu_intr_p());
291 RW_ASSERT(rw, curthread != 0);
292 RW_WANTLOCK(rw, op, false);
294 if (panicstr == NULL) {
295 LOCKDEBUG_BARRIER(&kernel_lock, 1);
299 * We play a slight trick here. If we're a reader, we want
300 * increment the read count. If we're a writer, we want to
301 * set the owner field and whe WRITE_LOCKED bit.
303 * In the latter case, we expect those bits to be zero,
304 * therefore we can use an add operation to set them, which
305 * means an add operation for both cases.
307 if (__predict_true(op == RW_READER)) {
308 incr = RW_READ_INCR;
309 set_wait = RW_HAS_WAITERS;
310 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
311 queue = TS_READER_Q;
312 } else {
313 RW_DASSERT(rw, op == RW_WRITER);
314 incr = curthread | RW_WRITE_LOCKED;
315 set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
316 need_wait = RW_WRITE_LOCKED | RW_THREAD;
317 queue = TS_WRITER_Q;
320 LOCKSTAT_ENTER(lsflag);
322 for (ci = NULL, owner = rw->rw_owner;;) {
324 * Read the lock owner field. If the need-to-wait
325 * indicator is clear, then try to acquire the lock.
327 if ((owner & need_wait) == 0) {
328 next = rw_cas(rw, owner, (owner + incr) &
329 ~RW_WRITE_WANTED);
330 if (__predict_true(next == owner)) {
331 /* Got it! */
332 membar_enter();
333 break;
337 * Didn't get it -- spin around again (we'll
338 * probably sleep on the next iteration).
340 owner = next;
341 continue;
344 if (__predict_false(panicstr != NULL))
345 return;
346 if (__predict_false(RW_OWNER(rw) == curthread))
347 rw_abort(rw, __func__, "locking against myself");
350 * If the lock owner is running on another CPU, and
351 * there are no existing waiters, then spin.
353 if (rw_onproc(owner, &ci)) {
354 LOCKSTAT_START_TIMER(lsflag, spintime);
355 u_int count = SPINLOCK_BACKOFF_MIN;
356 do {
357 SPINLOCK_BACKOFF(count);
358 owner = rw->rw_owner;
359 } while (rw_onproc(owner, &ci));
360 LOCKSTAT_STOP_TIMER(lsflag, spintime);
361 LOCKSTAT_COUNT(spincnt, 1);
362 if ((owner & need_wait) == 0)
363 continue;
367 * Grab the turnstile chain lock. Once we have that, we
368 * can adjust the waiter bits and sleep queue.
370 ts = turnstile_lookup(rw);
373 * Mark the rwlock as having waiters. If the set fails,
374 * then we may not need to sleep and should spin again.
375 * Reload rw_owner because turnstile_lookup() may have
376 * spun on the turnstile chain lock.
378 owner = rw->rw_owner;
379 if ((owner & need_wait) == 0 || rw_onproc(owner, &ci)) {
380 turnstile_exit(rw);
381 continue;
383 next = rw_cas(rw, owner, owner | set_wait);
384 if (__predict_false(next != owner)) {
385 turnstile_exit(rw);
386 owner = next;
387 continue;
390 LOCKSTAT_START_TIMER(lsflag, slptime);
391 turnstile_block(ts, queue, rw, &rw_syncobj);
392 LOCKSTAT_STOP_TIMER(lsflag, slptime);
393 LOCKSTAT_COUNT(slpcnt, 1);
396 * No need for a memory barrier because of context switch.
397 * If not handed the lock, then spin again.
399 if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
400 break;
403 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
404 (op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
405 LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
406 LOCKSTAT_EXIT(lsflag);
408 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
409 (op == RW_READER && RW_COUNT(rw) != 0));
410 RW_LOCKED(rw, op);
414 * rw_vector_exit:
416 * Release a rwlock.
418 void
419 rw_vector_exit(krwlock_t *rw)
421 uintptr_t curthread, owner, decr, new, next;
422 turnstile_t *ts;
423 int rcnt, wcnt;
424 lwp_t *l;
426 curthread = (uintptr_t)curlwp;
427 RW_ASSERT(rw, curthread != 0);
429 if (__predict_false(panicstr != NULL))
430 return;
433 * Again, we use a trick. Since we used an add operation to
434 * set the required lock bits, we can use a subtract to clear
435 * them, which makes the read-release and write-release path
436 * the same.
438 owner = rw->rw_owner;
439 if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
440 RW_UNLOCKED(rw, RW_WRITER);
441 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
442 decr = curthread | RW_WRITE_LOCKED;
443 } else {
444 RW_UNLOCKED(rw, RW_READER);
445 RW_ASSERT(rw, RW_COUNT(rw) != 0);
446 decr = RW_READ_INCR;
450 * Compute what we expect the new value of the lock to be. Only
451 * proceed to do direct handoff if there are waiters, and if the
452 * lock would become unowned.
454 membar_exit();
455 for (;;) {
456 new = (owner - decr);
457 if ((new & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
458 break;
459 next = rw_cas(rw, owner, new);
460 if (__predict_true(next == owner))
461 return;
462 owner = next;
466 * Grab the turnstile chain lock. This gets the interlock
467 * on the sleep queue. Once we have that, we can adjust the
468 * waiter bits.
470 ts = turnstile_lookup(rw);
471 owner = rw->rw_owner;
472 RW_DASSERT(rw, ts != NULL);
473 RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
475 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
476 rcnt = TS_WAITERS(ts, TS_READER_Q);
479 * Give the lock away.
481 * If we are releasing a write lock, then prefer to wake all
482 * outstanding readers. Otherwise, wake one writer if there
483 * are outstanding readers, or all writers if there are no
484 * pending readers. If waking one specific writer, the writer
485 * is handed the lock here. If waking multiple writers, we
486 * set WRITE_WANTED to block out new readers, and let them
487 * do the work of acquring the lock in rw_vector_enter().
489 if (rcnt == 0 || decr == RW_READ_INCR) {
490 RW_DASSERT(rw, wcnt != 0);
491 RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
493 if (rcnt != 0) {
494 /* Give the lock to the longest waiting writer. */
495 l = TS_FIRST(ts, TS_WRITER_Q);
496 new = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
497 if (wcnt > 1)
498 new |= RW_WRITE_WANTED;
499 rw_swap(rw, owner, new);
500 turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
501 } else {
502 /* Wake all writers and let them fight it out. */
503 rw_swap(rw, owner, RW_WRITE_WANTED);
504 turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
506 } else {
507 RW_DASSERT(rw, rcnt != 0);
510 * Give the lock to all blocked readers. If there
511 * is a writer waiting, new readers that arrive
512 * after the release will be blocked out.
514 new = rcnt << RW_READ_COUNT_SHIFT;
515 if (wcnt != 0)
516 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
518 /* Wake up all sleeping readers. */
519 rw_swap(rw, owner, new);
520 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
525 * rw_vector_tryenter:
527 * Try to acquire a rwlock.
530 rw_vector_tryenter(krwlock_t *rw, const krw_t op)
532 uintptr_t curthread, owner, incr, need_wait, next;
534 curthread = (uintptr_t)curlwp;
536 RW_ASSERT(rw, curthread != 0);
538 if (op == RW_READER) {
539 incr = RW_READ_INCR;
540 need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
541 } else {
542 RW_DASSERT(rw, op == RW_WRITER);
543 incr = curthread | RW_WRITE_LOCKED;
544 need_wait = RW_WRITE_LOCKED | RW_THREAD;
547 for (owner = rw->rw_owner;; owner = next) {
548 owner = rw->rw_owner;
549 if (__predict_false((owner & need_wait) != 0))
550 return 0;
551 next = rw_cas(rw, owner, owner + incr);
552 if (__predict_true(next == owner)) {
553 /* Got it! */
554 membar_enter();
555 break;
559 RW_WANTLOCK(rw, op, true);
560 RW_LOCKED(rw, op);
561 RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
562 (op == RW_READER && RW_COUNT(rw) != 0));
564 return 1;
568 * rw_downgrade:
570 * Downgrade a write lock to a read lock.
572 void
573 rw_downgrade(krwlock_t *rw)
575 uintptr_t owner, curthread, new, next;
576 turnstile_t *ts;
577 int rcnt, wcnt;
579 curthread = (uintptr_t)curlwp;
580 RW_ASSERT(rw, curthread != 0);
581 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
582 RW_ASSERT(rw, RW_OWNER(rw) == curthread);
583 RW_UNLOCKED(rw, RW_WRITER);
585 membar_producer();
586 owner = rw->rw_owner;
587 if ((owner & RW_HAS_WAITERS) == 0) {
589 * There are no waiters, so we can do this the easy way.
590 * Try swapping us down to one read hold. If it fails, the
591 * lock condition has changed and we most likely now have
592 * waiters.
594 next = rw_cas(rw, owner, RW_READ_INCR);
595 if (__predict_true(next == owner)) {
596 RW_LOCKED(rw, RW_READER);
597 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
598 RW_DASSERT(rw, RW_COUNT(rw) != 0);
599 return;
601 owner = next;
605 * Grab the turnstile chain lock. This gets the interlock
606 * on the sleep queue. Once we have that, we can adjust the
607 * waiter bits.
609 for (;; owner = next) {
610 ts = turnstile_lookup(rw);
611 RW_DASSERT(rw, ts != NULL);
613 rcnt = TS_WAITERS(ts, TS_READER_Q);
614 wcnt = TS_WAITERS(ts, TS_WRITER_Q);
617 * If there are no readers, just preserve the waiters
618 * bits, swap us down to one read hold and return.
620 if (rcnt == 0) {
621 RW_DASSERT(rw, wcnt != 0);
622 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
623 RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
625 new = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
626 next = rw_cas(rw, owner, new);
627 turnstile_exit(rw);
628 if (__predict_true(next == owner))
629 break;
630 } else {
632 * Give the lock to all blocked readers. We may
633 * retain one read hold if downgrading. If there
634 * is a writer waiting, new readers will be blocked
635 * out.
637 new = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
638 if (wcnt != 0)
639 new |= RW_HAS_WAITERS | RW_WRITE_WANTED;
641 next = rw_cas(rw, owner, new);
642 if (__predict_true(next == owner)) {
643 /* Wake up all sleeping readers. */
644 turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
645 break;
647 turnstile_exit(rw);
651 RW_WANTLOCK(rw, RW_READER, false);
652 RW_LOCKED(rw, RW_READER);
653 RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
654 RW_DASSERT(rw, RW_COUNT(rw) != 0);
658 * rw_tryupgrade:
660 * Try to upgrade a read lock to a write lock. We must be the
661 * only reader.
664 rw_tryupgrade(krwlock_t *rw)
666 uintptr_t owner, curthread, new, next;
668 curthread = (uintptr_t)curlwp;
669 RW_ASSERT(rw, curthread != 0);
670 RW_ASSERT(rw, rw_read_held(rw));
672 for (owner = rw->rw_owner;; owner = next) {
673 RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
674 if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
675 RW_ASSERT(rw, (owner & RW_THREAD) != 0);
676 return 0;
678 new = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
679 next = rw_cas(rw, owner, new);
680 if (__predict_true(next == owner)) {
681 membar_producer();
682 break;
686 RW_UNLOCKED(rw, RW_READER);
687 RW_WANTLOCK(rw, RW_WRITER, true);
688 RW_LOCKED(rw, RW_WRITER);
689 RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
690 RW_DASSERT(rw, RW_OWNER(rw) == curthread);
692 return 1;
696 * rw_read_held:
698 * Returns true if the rwlock is held for reading. Must only be
699 * used for diagnostic assertions, and never be used to make
700 * decisions about how to use a rwlock.
703 rw_read_held(krwlock_t *rw)
705 uintptr_t owner;
707 if (panicstr != NULL)
708 return 1;
709 if (rw == NULL)
710 return 0;
711 owner = rw->rw_owner;
712 return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
716 * rw_write_held:
718 * Returns true if the rwlock is held for writing. Must only be
719 * used for diagnostic assertions, and never be used to make
720 * decisions about how to use a rwlock.
723 rw_write_held(krwlock_t *rw)
726 if (panicstr != NULL)
727 return 1;
728 if (rw == NULL)
729 return 0;
730 return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
731 (RW_WRITE_LOCKED | (uintptr_t)curlwp);
735 * rw_lock_held:
737 * Returns true if the rwlock is held for reading or writing. Must
738 * only be used for diagnostic assertions, and never be used to make
739 * decisions about how to use a rwlock.
742 rw_lock_held(krwlock_t *rw)
745 if (panicstr != NULL)
746 return 1;
747 if (rw == NULL)
748 return 0;
749 return (rw->rw_owner & RW_THREAD) != 0;
753 * rw_owner:
755 * Return the current owner of an RW lock, but only if it is write
756 * held. Used for priority inheritance.
758 static lwp_t *
759 rw_owner(wchan_t obj)
761 krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
762 uintptr_t owner = rw->rw_owner;
764 if ((owner & RW_WRITE_LOCKED) == 0)
765 return NULL;
767 return (void *)(owner & RW_THREAD);