Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / kern / subr_pool.c
bloba8e7e7b191452f606c018d19250b00e0bf633369
1 /* $NetBSD: subr_pool.c,v 1.180 2010/01/03 01:07:19 mlelstv Exp $ */
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.180 2010/01/03 01:07:19 mlelstv Exp $");
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
56 #include <uvm/uvm.h>
59 * Pool resource management utility.
61 * Memory is allocated in pages which are split into pieces according to
62 * the pool item size. Each page is kept on one of three lists in the
63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64 * for empty, full and partially-full pages respectively. The individual
65 * pool items are on a linked list headed by `ph_itemlist' in each page
66 * header. The memory for building the page list is either taken from
67 * the allocated pages themselves (for small pool items) or taken from
68 * an internal pool of page headers (`phpool').
71 /* List of all pools */
72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74 /* Private pool for page header structures */
75 #define PHPOOL_MAX 8
76 static struct pool phpool[PHPOOL_MAX];
77 #define PHPOOL_FREELIST_NELEM(idx) \
78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
107 /* This lock protects initialization of a potentially shared pool allocator */
108 static kmutex_t pool_allocator_lock;
110 typedef uint32_t pool_item_bitmap_t;
111 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
112 #define BITMAP_MASK (BITMAP_SIZE - 1)
114 struct pool_item_header {
115 /* Page headers */
116 LIST_ENTRY(pool_item_header)
117 ph_pagelist; /* pool page list */
118 SPLAY_ENTRY(pool_item_header)
119 ph_node; /* Off-page page headers */
120 void * ph_page; /* this page's address */
121 uint32_t ph_time; /* last referenced */
122 uint16_t ph_nmissing; /* # of chunks in use */
123 uint16_t ph_off; /* start offset in page */
124 union {
125 /* !PR_NOTOUCH */
126 struct {
127 LIST_HEAD(, pool_item)
128 phu_itemlist; /* chunk list for this page */
129 } phu_normal;
130 /* PR_NOTOUCH */
131 struct {
132 pool_item_bitmap_t phu_bitmap[1];
133 } phu_notouch;
134 } ph_u;
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
139 struct pool_item {
140 #ifdef DIAGNOSTIC
141 u_int pi_magic;
142 #endif
143 #define PI_MAGIC 0xdeaddeadU
144 /* Other entries use only this list entry */
145 LIST_ENTRY(pool_item) pi_list;
148 #define POOL_NEEDS_CATCHUP(pp) \
149 ((pp)->pr_nitems < (pp)->pr_minitems)
152 * Pool cache management.
154 * Pool caches provide a way for constructed objects to be cached by the
155 * pool subsystem. This can lead to performance improvements by avoiding
156 * needless object construction/destruction; it is deferred until absolutely
157 * necessary.
159 * Caches are grouped into cache groups. Each cache group references up
160 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
161 * object from the pool, it calls the object's constructor and places it
162 * into a cache group. When a cache group frees an object back to the
163 * pool, it first calls the object's destructor. This allows the object
164 * to persist in constructed form while freed to the cache.
166 * The pool references each cache, so that when a pool is drained by the
167 * pagedaemon, it can drain each individual cache as well. Each time a
168 * cache is drained, the most idle cache group is freed to the pool in
169 * its entirety.
171 * Pool caches are layed on top of pools. By layering them, we can avoid
172 * the complexity of cache management for pools which would not benefit
173 * from it.
176 static struct pool pcg_normal_pool;
177 static struct pool pcg_large_pool;
178 static struct pool cache_pool;
179 static struct pool cache_cpu_pool;
181 /* List of all caches. */
182 TAILQ_HEAD(,pool_cache) pool_cache_head =
183 TAILQ_HEAD_INITIALIZER(pool_cache_head);
185 int pool_cache_disable; /* global disable for caching */
186 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
188 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
189 void *);
190 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
195 static void pool_cache_xcall(pool_cache_t);
197 static int pool_catchup(struct pool *);
198 static void pool_prime_page(struct pool *, void *,
199 struct pool_item_header *);
200 static void pool_update_curpage(struct pool *);
202 static int pool_grow(struct pool *, int);
203 static void *pool_allocator_alloc(struct pool *, int);
204 static void pool_allocator_free(struct pool *, void *);
206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
207 void (*)(const char *, ...));
208 static void pool_print1(struct pool *, const char *,
209 void (*)(const char *, ...));
211 static int pool_chk_page(struct pool *, const char *,
212 struct pool_item_header *);
215 * Pool log entry. An array of these is allocated in pool_init().
217 struct pool_log {
218 const char *pl_file;
219 long pl_line;
220 int pl_action;
221 #define PRLOG_GET 1
222 #define PRLOG_PUT 2
223 void *pl_addr;
226 #ifdef POOL_DIAGNOSTIC
227 /* Number of entries in pool log buffers */
228 #ifndef POOL_LOGSIZE
229 #define POOL_LOGSIZE 10
230 #endif
232 int pool_logsize = POOL_LOGSIZE;
234 static inline void
235 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 int n;
238 struct pool_log *pl;
240 if ((pp->pr_roflags & PR_LOGGING) == 0)
241 return;
243 if (pp->pr_log == NULL) {
244 if (kmem_map != NULL)
245 pp->pr_log = malloc(
246 pool_logsize * sizeof(struct pool_log),
247 M_TEMP, M_NOWAIT | M_ZERO);
248 if (pp->pr_log == NULL)
249 return;
250 pp->pr_curlogentry = 0;
251 pp->pr_logsize = pool_logsize;
255 * Fill in the current entry. Wrap around and overwrite
256 * the oldest entry if necessary.
258 n = pp->pr_curlogentry;
259 pl = &pp->pr_log[n];
260 pl->pl_file = file;
261 pl->pl_line = line;
262 pl->pl_action = action;
263 pl->pl_addr = v;
264 if (++n >= pp->pr_logsize)
265 n = 0;
266 pp->pr_curlogentry = n;
269 static void
270 pr_printlog(struct pool *pp, struct pool_item *pi,
271 void (*pr)(const char *, ...))
273 int i = pp->pr_logsize;
274 int n = pp->pr_curlogentry;
276 if (pp->pr_log == NULL)
277 return;
280 * Print all entries in this pool's log.
282 while (i-- > 0) {
283 struct pool_log *pl = &pp->pr_log[n];
284 if (pl->pl_action != 0) {
285 if (pi == NULL || pi == pl->pl_addr) {
286 (*pr)("\tlog entry %d:\n", i);
287 (*pr)("\t\taction = %s, addr = %p\n",
288 pl->pl_action == PRLOG_GET ? "get" : "put",
289 pl->pl_addr);
290 (*pr)("\t\tfile: %s at line %lu\n",
291 pl->pl_file, pl->pl_line);
294 if (++n >= pp->pr_logsize)
295 n = 0;
299 static inline void
300 pr_enter(struct pool *pp, const char *file, long line)
303 if (__predict_false(pp->pr_entered_file != NULL)) {
304 printf("pool %s: reentrancy at file %s line %ld\n",
305 pp->pr_wchan, file, line);
306 printf(" previous entry at file %s line %ld\n",
307 pp->pr_entered_file, pp->pr_entered_line);
308 panic("pr_enter");
311 pp->pr_entered_file = file;
312 pp->pr_entered_line = line;
315 static inline void
316 pr_leave(struct pool *pp)
319 if (__predict_false(pp->pr_entered_file == NULL)) {
320 printf("pool %s not entered?\n", pp->pr_wchan);
321 panic("pr_leave");
324 pp->pr_entered_file = NULL;
325 pp->pr_entered_line = 0;
328 static inline void
329 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
332 if (pp->pr_entered_file != NULL)
333 (*pr)("\n\tcurrently entered from file %s line %ld\n",
334 pp->pr_entered_file, pp->pr_entered_line);
336 #else
337 #define pr_log(pp, v, action, file, line)
338 #define pr_printlog(pp, pi, pr)
339 #define pr_enter(pp, file, line)
340 #define pr_leave(pp)
341 #define pr_enter_check(pp, pr)
342 #endif /* POOL_DIAGNOSTIC */
344 static inline unsigned int
345 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
346 const void *v)
348 const char *cp = v;
349 unsigned int idx;
351 KASSERT(pp->pr_roflags & PR_NOTOUCH);
352 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
353 KASSERT(idx < pp->pr_itemsperpage);
354 return idx;
357 static inline void
358 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
359 void *obj)
361 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
362 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
363 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
365 KASSERT((*bitmap & mask) == 0);
366 *bitmap |= mask;
369 static inline void *
370 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
372 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
373 unsigned int idx;
374 int i;
376 for (i = 0; ; i++) {
377 int bit;
379 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
380 bit = ffs32(bitmap[i]);
381 if (bit) {
382 pool_item_bitmap_t mask;
384 bit--;
385 idx = (i * BITMAP_SIZE) + bit;
386 mask = 1 << bit;
387 KASSERT((bitmap[i] & mask) != 0);
388 bitmap[i] &= ~mask;
389 break;
392 KASSERT(idx < pp->pr_itemsperpage);
393 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
396 static inline void
397 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
399 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
400 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
401 int i;
403 for (i = 0; i < n; i++) {
404 bitmap[i] = (pool_item_bitmap_t)-1;
408 static inline int
409 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
413 * we consider pool_item_header with smaller ph_page bigger.
414 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
417 if (a->ph_page < b->ph_page)
418 return (1);
419 else if (a->ph_page > b->ph_page)
420 return (-1);
421 else
422 return (0);
425 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
426 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
428 static inline struct pool_item_header *
429 pr_find_pagehead_noalign(struct pool *pp, void *v)
431 struct pool_item_header *ph, tmp;
433 tmp.ph_page = (void *)(uintptr_t)v;
434 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
435 if (ph == NULL) {
436 ph = SPLAY_ROOT(&pp->pr_phtree);
437 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
438 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
440 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
443 return ph;
447 * Return the pool page header based on item address.
449 static inline struct pool_item_header *
450 pr_find_pagehead(struct pool *pp, void *v)
452 struct pool_item_header *ph, tmp;
454 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
455 ph = pr_find_pagehead_noalign(pp, v);
456 } else {
457 void *page =
458 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
460 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
461 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
462 } else {
463 tmp.ph_page = page;
464 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
468 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
469 ((char *)ph->ph_page <= (char *)v &&
470 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
471 return ph;
474 static void
475 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
477 struct pool_item_header *ph;
479 while ((ph = LIST_FIRST(pq)) != NULL) {
480 LIST_REMOVE(ph, ph_pagelist);
481 pool_allocator_free(pp, ph->ph_page);
482 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
483 pool_put(pp->pr_phpool, ph);
488 * Remove a page from the pool.
490 static inline void
491 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
492 struct pool_pagelist *pq)
495 KASSERT(mutex_owned(&pp->pr_lock));
498 * If the page was idle, decrement the idle page count.
500 if (ph->ph_nmissing == 0) {
501 #ifdef DIAGNOSTIC
502 if (pp->pr_nidle == 0)
503 panic("pr_rmpage: nidle inconsistent");
504 if (pp->pr_nitems < pp->pr_itemsperpage)
505 panic("pr_rmpage: nitems inconsistent");
506 #endif
507 pp->pr_nidle--;
510 pp->pr_nitems -= pp->pr_itemsperpage;
513 * Unlink the page from the pool and queue it for release.
515 LIST_REMOVE(ph, ph_pagelist);
516 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
517 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
518 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
520 pp->pr_npages--;
521 pp->pr_npagefree++;
523 pool_update_curpage(pp);
526 static bool
527 pa_starved_p(struct pool_allocator *pa)
530 if (pa->pa_backingmap != NULL) {
531 return vm_map_starved_p(pa->pa_backingmap);
533 return false;
536 static int
537 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
539 struct pool *pp = obj;
540 struct pool_allocator *pa = pp->pr_alloc;
542 KASSERT(&pp->pr_reclaimerentry == ce);
543 pool_reclaim(pp);
544 if (!pa_starved_p(pa)) {
545 return CALLBACK_CHAIN_ABORT;
547 return CALLBACK_CHAIN_CONTINUE;
550 static void
551 pool_reclaim_register(struct pool *pp)
553 struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 int s;
556 if (map == NULL) {
557 return;
560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
563 splx(s);
566 static void
567 pool_reclaim_unregister(struct pool *pp)
569 struct vm_map *map = pp->pr_alloc->pa_backingmap;
570 int s;
572 if (map == NULL) {
573 return;
576 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
577 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
578 &pp->pr_reclaimerentry);
579 splx(s);
582 static void
583 pa_reclaim_register(struct pool_allocator *pa)
585 struct vm_map *map = *pa->pa_backingmapptr;
586 struct pool *pp;
588 KASSERT(pa->pa_backingmap == NULL);
589 if (map == NULL) {
590 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
591 return;
593 pa->pa_backingmap = map;
594 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
595 pool_reclaim_register(pp);
600 * Initialize all the pools listed in the "pools" link set.
602 void
603 pool_subsystem_init(void)
605 struct pool_allocator *pa;
607 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
608 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
609 cv_init(&pool_busy, "poolbusy");
611 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
612 KASSERT(pa->pa_backingmapptr != NULL);
613 KASSERT(*pa->pa_backingmapptr != NULL);
614 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
615 pa_reclaim_register(pa);
618 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
619 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
621 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
622 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
626 * Initialize the given pool resource structure.
628 * We export this routine to allow other kernel parts to declare
629 * static pools that must be initialized before malloc() is available.
631 void
632 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
633 const char *wchan, struct pool_allocator *palloc, int ipl)
635 struct pool *pp1;
636 size_t trysize, phsize;
637 int off, slack;
639 #ifdef DEBUG
641 * Check that the pool hasn't already been initialised and
642 * added to the list of all pools.
644 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
645 if (pp == pp1)
646 panic("pool_init: pool %s already initialised",
647 wchan);
649 #endif
651 #ifdef POOL_DIAGNOSTIC
653 * Always log if POOL_DIAGNOSTIC is defined.
655 if (pool_logsize != 0)
656 flags |= PR_LOGGING;
657 #endif
659 if (palloc == NULL)
660 palloc = &pool_allocator_kmem;
661 #ifdef POOL_SUBPAGE
662 if (size > palloc->pa_pagesz) {
663 if (palloc == &pool_allocator_kmem)
664 palloc = &pool_allocator_kmem_fullpage;
665 else if (palloc == &pool_allocator_nointr)
666 palloc = &pool_allocator_nointr_fullpage;
668 #endif /* POOL_SUBPAGE */
669 if (!cold)
670 mutex_enter(&pool_allocator_lock);
671 if (palloc->pa_refcnt++ == 0) {
672 if (palloc->pa_pagesz == 0)
673 palloc->pa_pagesz = PAGE_SIZE;
675 TAILQ_INIT(&palloc->pa_list);
677 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
678 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
679 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
681 if (palloc->pa_backingmapptr != NULL) {
682 pa_reclaim_register(palloc);
685 if (!cold)
686 mutex_exit(&pool_allocator_lock);
688 if (align == 0)
689 align = ALIGN(1);
691 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
692 size = sizeof(struct pool_item);
694 size = roundup(size, align);
695 #ifdef DIAGNOSTIC
696 if (size > palloc->pa_pagesz)
697 panic("pool_init: pool item size (%zu) too large", size);
698 #endif
701 * Initialize the pool structure.
703 LIST_INIT(&pp->pr_emptypages);
704 LIST_INIT(&pp->pr_fullpages);
705 LIST_INIT(&pp->pr_partpages);
706 pp->pr_cache = NULL;
707 pp->pr_curpage = NULL;
708 pp->pr_npages = 0;
709 pp->pr_minitems = 0;
710 pp->pr_minpages = 0;
711 pp->pr_maxpages = UINT_MAX;
712 pp->pr_roflags = flags;
713 pp->pr_flags = 0;
714 pp->pr_size = size;
715 pp->pr_align = align;
716 pp->pr_wchan = wchan;
717 pp->pr_alloc = palloc;
718 pp->pr_nitems = 0;
719 pp->pr_nout = 0;
720 pp->pr_hardlimit = UINT_MAX;
721 pp->pr_hardlimit_warning = NULL;
722 pp->pr_hardlimit_ratecap.tv_sec = 0;
723 pp->pr_hardlimit_ratecap.tv_usec = 0;
724 pp->pr_hardlimit_warning_last.tv_sec = 0;
725 pp->pr_hardlimit_warning_last.tv_usec = 0;
726 pp->pr_drain_hook = NULL;
727 pp->pr_drain_hook_arg = NULL;
728 pp->pr_freecheck = NULL;
731 * Decide whether to put the page header off page to avoid
732 * wasting too large a part of the page or too big item.
733 * Off-page page headers go on a hash table, so we can match
734 * a returned item with its header based on the page address.
735 * We use 1/16 of the page size and about 8 times of the item
736 * size as the threshold (XXX: tune)
738 * However, we'll put the header into the page if we can put
739 * it without wasting any items.
741 * Silently enforce `0 <= ioff < align'.
743 pp->pr_itemoffset = ioff %= align;
744 /* See the comment below about reserved bytes. */
745 trysize = palloc->pa_pagesz - ((align - ioff) % align);
746 phsize = ALIGN(sizeof(struct pool_item_header));
747 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
748 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
749 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
750 /* Use the end of the page for the page header */
751 pp->pr_roflags |= PR_PHINPAGE;
752 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
753 } else {
754 /* The page header will be taken from our page header pool */
755 pp->pr_phoffset = 0;
756 off = palloc->pa_pagesz;
757 SPLAY_INIT(&pp->pr_phtree);
761 * Alignment is to take place at `ioff' within the item. This means
762 * we must reserve up to `align - 1' bytes on the page to allow
763 * appropriate positioning of each item.
765 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
766 KASSERT(pp->pr_itemsperpage != 0);
767 if ((pp->pr_roflags & PR_NOTOUCH)) {
768 int idx;
770 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
771 idx++) {
772 /* nothing */
774 if (idx >= PHPOOL_MAX) {
776 * if you see this panic, consider to tweak
777 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
779 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
780 pp->pr_wchan, pp->pr_itemsperpage);
782 pp->pr_phpool = &phpool[idx];
783 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
784 pp->pr_phpool = &phpool[0];
786 #if defined(DIAGNOSTIC)
787 else {
788 pp->pr_phpool = NULL;
790 #endif
793 * Use the slack between the chunks and the page header
794 * for "cache coloring".
796 slack = off - pp->pr_itemsperpage * pp->pr_size;
797 pp->pr_maxcolor = (slack / align) * align;
798 pp->pr_curcolor = 0;
800 pp->pr_nget = 0;
801 pp->pr_nfail = 0;
802 pp->pr_nput = 0;
803 pp->pr_npagealloc = 0;
804 pp->pr_npagefree = 0;
805 pp->pr_hiwat = 0;
806 pp->pr_nidle = 0;
807 pp->pr_refcnt = 0;
809 pp->pr_log = NULL;
811 pp->pr_entered_file = NULL;
812 pp->pr_entered_line = 0;
814 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
815 cv_init(&pp->pr_cv, wchan);
816 pp->pr_ipl = ipl;
819 * Initialize private page header pool and cache magazine pool if we
820 * haven't done so yet.
821 * XXX LOCKING.
823 if (phpool[0].pr_size == 0) {
824 int idx;
825 for (idx = 0; idx < PHPOOL_MAX; idx++) {
826 static char phpool_names[PHPOOL_MAX][6+1+6+1];
827 int nelem;
828 size_t sz;
830 nelem = PHPOOL_FREELIST_NELEM(idx);
831 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
832 "phpool-%d", nelem);
833 sz = sizeof(struct pool_item_header);
834 if (nelem) {
835 sz = offsetof(struct pool_item_header,
836 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
838 pool_init(&phpool[idx], sz, 0, 0, 0,
839 phpool_names[idx], &pool_allocator_meta, IPL_VM);
841 #ifdef POOL_SUBPAGE
842 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
843 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
844 #endif
846 size = sizeof(pcg_t) +
847 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
848 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
849 "pcgnormal", &pool_allocator_meta, IPL_VM);
851 size = sizeof(pcg_t) +
852 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
853 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
854 "pcglarge", &pool_allocator_meta, IPL_VM);
857 /* Insert into the list of all pools. */
858 if (!cold)
859 mutex_enter(&pool_head_lock);
860 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
861 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
862 break;
864 if (pp1 == NULL)
865 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
866 else
867 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
868 if (!cold)
869 mutex_exit(&pool_head_lock);
871 /* Insert this into the list of pools using this allocator. */
872 if (!cold)
873 mutex_enter(&palloc->pa_lock);
874 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
875 if (!cold)
876 mutex_exit(&palloc->pa_lock);
878 pool_reclaim_register(pp);
882 * De-commision a pool resource.
884 void
885 pool_destroy(struct pool *pp)
887 struct pool_pagelist pq;
888 struct pool_item_header *ph;
890 /* Remove from global pool list */
891 mutex_enter(&pool_head_lock);
892 while (pp->pr_refcnt != 0)
893 cv_wait(&pool_busy, &pool_head_lock);
894 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
895 if (drainpp == pp)
896 drainpp = NULL;
897 mutex_exit(&pool_head_lock);
899 /* Remove this pool from its allocator's list of pools. */
900 pool_reclaim_unregister(pp);
901 mutex_enter(&pp->pr_alloc->pa_lock);
902 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
903 mutex_exit(&pp->pr_alloc->pa_lock);
905 mutex_enter(&pool_allocator_lock);
906 if (--pp->pr_alloc->pa_refcnt == 0)
907 mutex_destroy(&pp->pr_alloc->pa_lock);
908 mutex_exit(&pool_allocator_lock);
910 mutex_enter(&pp->pr_lock);
912 KASSERT(pp->pr_cache == NULL);
914 #ifdef DIAGNOSTIC
915 if (pp->pr_nout != 0) {
916 pr_printlog(pp, NULL, printf);
917 panic("pool_destroy: pool busy: still out: %u",
918 pp->pr_nout);
920 #endif
922 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
923 KASSERT(LIST_EMPTY(&pp->pr_partpages));
925 /* Remove all pages */
926 LIST_INIT(&pq);
927 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
928 pr_rmpage(pp, ph, &pq);
930 mutex_exit(&pp->pr_lock);
932 pr_pagelist_free(pp, &pq);
934 #ifdef POOL_DIAGNOSTIC
935 if (pp->pr_log != NULL) {
936 free(pp->pr_log, M_TEMP);
937 pp->pr_log = NULL;
939 #endif
941 cv_destroy(&pp->pr_cv);
942 mutex_destroy(&pp->pr_lock);
945 void
946 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
949 /* XXX no locking -- must be used just after pool_init() */
950 #ifdef DIAGNOSTIC
951 if (pp->pr_drain_hook != NULL)
952 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
953 #endif
954 pp->pr_drain_hook = fn;
955 pp->pr_drain_hook_arg = arg;
958 static struct pool_item_header *
959 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
961 struct pool_item_header *ph;
963 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
964 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
965 else
966 ph = pool_get(pp->pr_phpool, flags);
968 return (ph);
972 * Grab an item from the pool.
974 void *
975 #ifdef POOL_DIAGNOSTIC
976 _pool_get(struct pool *pp, int flags, const char *file, long line)
977 #else
978 pool_get(struct pool *pp, int flags)
979 #endif
981 struct pool_item *pi;
982 struct pool_item_header *ph;
983 void *v;
985 #ifdef DIAGNOSTIC
986 if (__predict_false(pp->pr_itemsperpage == 0))
987 panic("pool_get: pool %p: pr_itemsperpage is zero, "
988 "pool not initialized?", pp);
989 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
990 (flags & PR_WAITOK) != 0))
991 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
993 #endif /* DIAGNOSTIC */
994 #ifdef LOCKDEBUG
995 if (flags & PR_WAITOK) {
996 ASSERT_SLEEPABLE();
998 #endif
1000 mutex_enter(&pp->pr_lock);
1001 pr_enter(pp, file, line);
1003 startover:
1005 * Check to see if we've reached the hard limit. If we have,
1006 * and we can wait, then wait until an item has been returned to
1007 * the pool.
1009 #ifdef DIAGNOSTIC
1010 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1011 pr_leave(pp);
1012 mutex_exit(&pp->pr_lock);
1013 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1015 #endif
1016 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1017 if (pp->pr_drain_hook != NULL) {
1019 * Since the drain hook is going to free things
1020 * back to the pool, unlock, call the hook, re-lock,
1021 * and check the hardlimit condition again.
1023 pr_leave(pp);
1024 mutex_exit(&pp->pr_lock);
1025 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1026 mutex_enter(&pp->pr_lock);
1027 pr_enter(pp, file, line);
1028 if (pp->pr_nout < pp->pr_hardlimit)
1029 goto startover;
1032 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1034 * XXX: A warning isn't logged in this case. Should
1035 * it be?
1037 pp->pr_flags |= PR_WANTED;
1038 pr_leave(pp);
1039 cv_wait(&pp->pr_cv, &pp->pr_lock);
1040 pr_enter(pp, file, line);
1041 goto startover;
1045 * Log a message that the hard limit has been hit.
1047 if (pp->pr_hardlimit_warning != NULL &&
1048 ratecheck(&pp->pr_hardlimit_warning_last,
1049 &pp->pr_hardlimit_ratecap))
1050 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1052 pp->pr_nfail++;
1054 pr_leave(pp);
1055 mutex_exit(&pp->pr_lock);
1056 return (NULL);
1060 * The convention we use is that if `curpage' is not NULL, then
1061 * it points at a non-empty bucket. In particular, `curpage'
1062 * never points at a page header which has PR_PHINPAGE set and
1063 * has no items in its bucket.
1065 if ((ph = pp->pr_curpage) == NULL) {
1066 int error;
1068 #ifdef DIAGNOSTIC
1069 if (pp->pr_nitems != 0) {
1070 mutex_exit(&pp->pr_lock);
1071 printf("pool_get: %s: curpage NULL, nitems %u\n",
1072 pp->pr_wchan, pp->pr_nitems);
1073 panic("pool_get: nitems inconsistent");
1075 #endif
1078 * Call the back-end page allocator for more memory.
1079 * Release the pool lock, as the back-end page allocator
1080 * may block.
1082 pr_leave(pp);
1083 error = pool_grow(pp, flags);
1084 pr_enter(pp, file, line);
1085 if (error != 0) {
1087 * We were unable to allocate a page or item
1088 * header, but we released the lock during
1089 * allocation, so perhaps items were freed
1090 * back to the pool. Check for this case.
1092 if (pp->pr_curpage != NULL)
1093 goto startover;
1095 pp->pr_nfail++;
1096 pr_leave(pp);
1097 mutex_exit(&pp->pr_lock);
1098 return (NULL);
1101 /* Start the allocation process over. */
1102 goto startover;
1104 if (pp->pr_roflags & PR_NOTOUCH) {
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1107 pr_leave(pp);
1108 mutex_exit(&pp->pr_lock);
1109 panic("pool_get: %s: page empty", pp->pr_wchan);
1111 #endif
1112 v = pr_item_notouch_get(pp, ph);
1113 #ifdef POOL_DIAGNOSTIC
1114 pr_log(pp, v, PRLOG_GET, file, line);
1115 #endif
1116 } else {
1117 v = pi = LIST_FIRST(&ph->ph_itemlist);
1118 if (__predict_false(v == NULL)) {
1119 pr_leave(pp);
1120 mutex_exit(&pp->pr_lock);
1121 panic("pool_get: %s: page empty", pp->pr_wchan);
1123 #ifdef DIAGNOSTIC
1124 if (__predict_false(pp->pr_nitems == 0)) {
1125 pr_leave(pp);
1126 mutex_exit(&pp->pr_lock);
1127 printf("pool_get: %s: items on itemlist, nitems %u\n",
1128 pp->pr_wchan, pp->pr_nitems);
1129 panic("pool_get: nitems inconsistent");
1131 #endif
1133 #ifdef POOL_DIAGNOSTIC
1134 pr_log(pp, v, PRLOG_GET, file, line);
1135 #endif
1137 #ifdef DIAGNOSTIC
1138 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1139 pr_printlog(pp, pi, printf);
1140 panic("pool_get(%s): free list modified: "
1141 "magic=%x; page %p; item addr %p\n",
1142 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1144 #endif
1147 * Remove from item list.
1149 LIST_REMOVE(pi, pi_list);
1151 pp->pr_nitems--;
1152 pp->pr_nout++;
1153 if (ph->ph_nmissing == 0) {
1154 #ifdef DIAGNOSTIC
1155 if (__predict_false(pp->pr_nidle == 0))
1156 panic("pool_get: nidle inconsistent");
1157 #endif
1158 pp->pr_nidle--;
1161 * This page was previously empty. Move it to the list of
1162 * partially-full pages. This page is already curpage.
1164 LIST_REMOVE(ph, ph_pagelist);
1165 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1167 ph->ph_nmissing++;
1168 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1169 #ifdef DIAGNOSTIC
1170 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1171 !LIST_EMPTY(&ph->ph_itemlist))) {
1172 pr_leave(pp);
1173 mutex_exit(&pp->pr_lock);
1174 panic("pool_get: %s: nmissing inconsistent",
1175 pp->pr_wchan);
1177 #endif
1179 * This page is now full. Move it to the full list
1180 * and select a new current page.
1182 LIST_REMOVE(ph, ph_pagelist);
1183 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1184 pool_update_curpage(pp);
1187 pp->pr_nget++;
1188 pr_leave(pp);
1191 * If we have a low water mark and we are now below that low
1192 * water mark, add more items to the pool.
1194 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1196 * XXX: Should we log a warning? Should we set up a timeout
1197 * to try again in a second or so? The latter could break
1198 * a caller's assumptions about interrupt protection, etc.
1202 mutex_exit(&pp->pr_lock);
1203 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1204 FREECHECK_OUT(&pp->pr_freecheck, v);
1205 return (v);
1209 * Internal version of pool_put(). Pool is already locked/entered.
1211 static void
1212 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1214 struct pool_item *pi = v;
1215 struct pool_item_header *ph;
1217 KASSERT(mutex_owned(&pp->pr_lock));
1218 FREECHECK_IN(&pp->pr_freecheck, v);
1219 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1221 #ifdef DIAGNOSTIC
1222 if (__predict_false(pp->pr_nout == 0)) {
1223 printf("pool %s: putting with none out\n",
1224 pp->pr_wchan);
1225 panic("pool_put");
1227 #endif
1229 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1230 pr_printlog(pp, NULL, printf);
1231 panic("pool_put: %s: page header missing", pp->pr_wchan);
1235 * Return to item list.
1237 if (pp->pr_roflags & PR_NOTOUCH) {
1238 pr_item_notouch_put(pp, ph, v);
1239 } else {
1240 #ifdef DIAGNOSTIC
1241 pi->pi_magic = PI_MAGIC;
1242 #endif
1243 #ifdef DEBUG
1245 int i, *ip = v;
1247 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1248 *ip++ = PI_MAGIC;
1251 #endif
1253 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1255 KDASSERT(ph->ph_nmissing != 0);
1256 ph->ph_nmissing--;
1257 pp->pr_nput++;
1258 pp->pr_nitems++;
1259 pp->pr_nout--;
1261 /* Cancel "pool empty" condition if it exists */
1262 if (pp->pr_curpage == NULL)
1263 pp->pr_curpage = ph;
1265 if (pp->pr_flags & PR_WANTED) {
1266 pp->pr_flags &= ~PR_WANTED;
1267 cv_broadcast(&pp->pr_cv);
1271 * If this page is now empty, do one of two things:
1273 * (1) If we have more pages than the page high water mark,
1274 * free the page back to the system. ONLY CONSIDER
1275 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1276 * CLAIM.
1278 * (2) Otherwise, move the page to the empty page list.
1280 * Either way, select a new current page (so we use a partially-full
1281 * page if one is available).
1283 if (ph->ph_nmissing == 0) {
1284 pp->pr_nidle++;
1285 if (pp->pr_npages > pp->pr_minpages &&
1286 pp->pr_npages > pp->pr_maxpages) {
1287 pr_rmpage(pp, ph, pq);
1288 } else {
1289 LIST_REMOVE(ph, ph_pagelist);
1290 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1293 * Update the timestamp on the page. A page must
1294 * be idle for some period of time before it can
1295 * be reclaimed by the pagedaemon. This minimizes
1296 * ping-pong'ing for memory.
1298 * note for 64-bit time_t: truncating to 32-bit is not
1299 * a problem for our usage.
1301 ph->ph_time = time_uptime;
1303 pool_update_curpage(pp);
1307 * If the page was previously completely full, move it to the
1308 * partially-full list and make it the current page. The next
1309 * allocation will get the item from this page, instead of
1310 * further fragmenting the pool.
1312 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1313 LIST_REMOVE(ph, ph_pagelist);
1314 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1315 pp->pr_curpage = ph;
1320 * Return resource to the pool.
1322 #ifdef POOL_DIAGNOSTIC
1323 void
1324 _pool_put(struct pool *pp, void *v, const char *file, long line)
1326 struct pool_pagelist pq;
1328 LIST_INIT(&pq);
1330 mutex_enter(&pp->pr_lock);
1331 pr_enter(pp, file, line);
1333 pr_log(pp, v, PRLOG_PUT, file, line);
1335 pool_do_put(pp, v, &pq);
1337 pr_leave(pp);
1338 mutex_exit(&pp->pr_lock);
1340 pr_pagelist_free(pp, &pq);
1342 #undef pool_put
1343 #endif /* POOL_DIAGNOSTIC */
1345 void
1346 pool_put(struct pool *pp, void *v)
1348 struct pool_pagelist pq;
1350 LIST_INIT(&pq);
1352 mutex_enter(&pp->pr_lock);
1353 pool_do_put(pp, v, &pq);
1354 mutex_exit(&pp->pr_lock);
1356 pr_pagelist_free(pp, &pq);
1359 #ifdef POOL_DIAGNOSTIC
1360 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1361 #endif
1364 * pool_grow: grow a pool by a page.
1366 * => called with pool locked.
1367 * => unlock and relock the pool.
1368 * => return with pool locked.
1371 static int
1372 pool_grow(struct pool *pp, int flags)
1374 struct pool_item_header *ph = NULL;
1375 char *cp;
1377 mutex_exit(&pp->pr_lock);
1378 cp = pool_allocator_alloc(pp, flags);
1379 if (__predict_true(cp != NULL)) {
1380 ph = pool_alloc_item_header(pp, cp, flags);
1382 if (__predict_false(cp == NULL || ph == NULL)) {
1383 if (cp != NULL) {
1384 pool_allocator_free(pp, cp);
1386 mutex_enter(&pp->pr_lock);
1387 return ENOMEM;
1390 mutex_enter(&pp->pr_lock);
1391 pool_prime_page(pp, cp, ph);
1392 pp->pr_npagealloc++;
1393 return 0;
1397 * Add N items to the pool.
1400 pool_prime(struct pool *pp, int n)
1402 int newpages;
1403 int error = 0;
1405 mutex_enter(&pp->pr_lock);
1407 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1409 while (newpages-- > 0) {
1410 error = pool_grow(pp, PR_NOWAIT);
1411 if (error) {
1412 break;
1414 pp->pr_minpages++;
1417 if (pp->pr_minpages >= pp->pr_maxpages)
1418 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1420 mutex_exit(&pp->pr_lock);
1421 return error;
1425 * Add a page worth of items to the pool.
1427 * Note, we must be called with the pool descriptor LOCKED.
1429 static void
1430 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1432 struct pool_item *pi;
1433 void *cp = storage;
1434 const unsigned int align = pp->pr_align;
1435 const unsigned int ioff = pp->pr_itemoffset;
1436 int n;
1438 KASSERT(mutex_owned(&pp->pr_lock));
1440 #ifdef DIAGNOSTIC
1441 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1442 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1443 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1444 #endif
1447 * Insert page header.
1449 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1450 LIST_INIT(&ph->ph_itemlist);
1451 ph->ph_page = storage;
1452 ph->ph_nmissing = 0;
1453 ph->ph_time = time_uptime;
1454 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1455 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1457 pp->pr_nidle++;
1460 * Color this page.
1462 ph->ph_off = pp->pr_curcolor;
1463 cp = (char *)cp + ph->ph_off;
1464 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1465 pp->pr_curcolor = 0;
1468 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1470 if (ioff != 0)
1471 cp = (char *)cp + align - ioff;
1473 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1476 * Insert remaining chunks on the bucket list.
1478 n = pp->pr_itemsperpage;
1479 pp->pr_nitems += n;
1481 if (pp->pr_roflags & PR_NOTOUCH) {
1482 pr_item_notouch_init(pp, ph);
1483 } else {
1484 while (n--) {
1485 pi = (struct pool_item *)cp;
1487 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1489 /* Insert on page list */
1490 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1491 #ifdef DIAGNOSTIC
1492 pi->pi_magic = PI_MAGIC;
1493 #endif
1494 cp = (char *)cp + pp->pr_size;
1496 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1501 * If the pool was depleted, point at the new page.
1503 if (pp->pr_curpage == NULL)
1504 pp->pr_curpage = ph;
1506 if (++pp->pr_npages > pp->pr_hiwat)
1507 pp->pr_hiwat = pp->pr_npages;
1511 * Used by pool_get() when nitems drops below the low water mark. This
1512 * is used to catch up pr_nitems with the low water mark.
1514 * Note 1, we never wait for memory here, we let the caller decide what to do.
1516 * Note 2, we must be called with the pool already locked, and we return
1517 * with it locked.
1519 static int
1520 pool_catchup(struct pool *pp)
1522 int error = 0;
1524 while (POOL_NEEDS_CATCHUP(pp)) {
1525 error = pool_grow(pp, PR_NOWAIT);
1526 if (error) {
1527 break;
1530 return error;
1533 static void
1534 pool_update_curpage(struct pool *pp)
1537 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1538 if (pp->pr_curpage == NULL) {
1539 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1541 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1542 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1545 void
1546 pool_setlowat(struct pool *pp, int n)
1549 mutex_enter(&pp->pr_lock);
1551 pp->pr_minitems = n;
1552 pp->pr_minpages = (n == 0)
1554 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1556 /* Make sure we're caught up with the newly-set low water mark. */
1557 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1559 * XXX: Should we log a warning? Should we set up a timeout
1560 * to try again in a second or so? The latter could break
1561 * a caller's assumptions about interrupt protection, etc.
1565 mutex_exit(&pp->pr_lock);
1568 void
1569 pool_sethiwat(struct pool *pp, int n)
1572 mutex_enter(&pp->pr_lock);
1574 pp->pr_maxpages = (n == 0)
1576 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1578 mutex_exit(&pp->pr_lock);
1581 void
1582 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1585 mutex_enter(&pp->pr_lock);
1587 pp->pr_hardlimit = n;
1588 pp->pr_hardlimit_warning = warnmess;
1589 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1590 pp->pr_hardlimit_warning_last.tv_sec = 0;
1591 pp->pr_hardlimit_warning_last.tv_usec = 0;
1594 * In-line version of pool_sethiwat(), because we don't want to
1595 * release the lock.
1597 pp->pr_maxpages = (n == 0)
1599 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1601 mutex_exit(&pp->pr_lock);
1605 * Release all complete pages that have not been used recently.
1608 #ifdef POOL_DIAGNOSTIC
1609 _pool_reclaim(struct pool *pp, const char *file, long line)
1610 #else
1611 pool_reclaim(struct pool *pp)
1612 #endif
1614 struct pool_item_header *ph, *phnext;
1615 struct pool_pagelist pq;
1616 uint32_t curtime;
1617 bool klock;
1618 int rv;
1620 if (pp->pr_drain_hook != NULL) {
1622 * The drain hook must be called with the pool unlocked.
1624 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1628 * XXXSMP Because we do not want to cause non-MPSAFE code
1629 * to block.
1631 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1632 pp->pr_ipl == IPL_SOFTSERIAL) {
1633 KERNEL_LOCK(1, NULL);
1634 klock = true;
1635 } else
1636 klock = false;
1638 /* Reclaim items from the pool's cache (if any). */
1639 if (pp->pr_cache != NULL)
1640 pool_cache_invalidate(pp->pr_cache);
1642 if (mutex_tryenter(&pp->pr_lock) == 0) {
1643 if (klock) {
1644 KERNEL_UNLOCK_ONE(NULL);
1646 return (0);
1648 pr_enter(pp, file, line);
1650 LIST_INIT(&pq);
1652 curtime = time_uptime;
1654 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1655 phnext = LIST_NEXT(ph, ph_pagelist);
1657 /* Check our minimum page claim */
1658 if (pp->pr_npages <= pp->pr_minpages)
1659 break;
1661 KASSERT(ph->ph_nmissing == 0);
1662 if (curtime - ph->ph_time < pool_inactive_time
1663 && !pa_starved_p(pp->pr_alloc))
1664 continue;
1667 * If freeing this page would put us below
1668 * the low water mark, stop now.
1670 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1671 pp->pr_minitems)
1672 break;
1674 pr_rmpage(pp, ph, &pq);
1677 pr_leave(pp);
1678 mutex_exit(&pp->pr_lock);
1680 if (LIST_EMPTY(&pq))
1681 rv = 0;
1682 else {
1683 pr_pagelist_free(pp, &pq);
1684 rv = 1;
1687 if (klock) {
1688 KERNEL_UNLOCK_ONE(NULL);
1691 return (rv);
1695 * Drain pools, one at a time. This is a two stage process;
1696 * drain_start kicks off a cross call to drain CPU-level caches
1697 * if the pool has an associated pool_cache. drain_end waits
1698 * for those cross calls to finish, and then drains the cache
1699 * (if any) and pool.
1701 * Note, must never be called from interrupt context.
1703 void
1704 pool_drain_start(struct pool **ppp, uint64_t *wp)
1706 struct pool *pp;
1708 KASSERT(!TAILQ_EMPTY(&pool_head));
1710 pp = NULL;
1712 /* Find next pool to drain, and add a reference. */
1713 mutex_enter(&pool_head_lock);
1714 do {
1715 if (drainpp == NULL) {
1716 drainpp = TAILQ_FIRST(&pool_head);
1718 if (drainpp != NULL) {
1719 pp = drainpp;
1720 drainpp = TAILQ_NEXT(pp, pr_poollist);
1723 * Skip completely idle pools. We depend on at least
1724 * one pool in the system being active.
1726 } while (pp == NULL || pp->pr_npages == 0);
1727 pp->pr_refcnt++;
1728 mutex_exit(&pool_head_lock);
1730 /* If there is a pool_cache, drain CPU level caches. */
1731 *ppp = pp;
1732 if (pp->pr_cache != NULL) {
1733 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1734 pp->pr_cache, NULL);
1738 void
1739 pool_drain_end(struct pool *pp, uint64_t where)
1742 if (pp == NULL)
1743 return;
1745 KASSERT(pp->pr_refcnt > 0);
1747 /* Wait for remote draining to complete. */
1748 if (pp->pr_cache != NULL)
1749 xc_wait(where);
1751 /* Drain the cache (if any) and pool.. */
1752 pool_reclaim(pp);
1754 /* Finally, unlock the pool. */
1755 mutex_enter(&pool_head_lock);
1756 pp->pr_refcnt--;
1757 cv_broadcast(&pool_busy);
1758 mutex_exit(&pool_head_lock);
1762 * Diagnostic helpers.
1764 void
1765 pool_print(struct pool *pp, const char *modif)
1768 pool_print1(pp, modif, printf);
1771 void
1772 pool_printall(const char *modif, void (*pr)(const char *, ...))
1774 struct pool *pp;
1776 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1777 pool_printit(pp, modif, pr);
1781 void
1782 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1785 if (pp == NULL) {
1786 (*pr)("Must specify a pool to print.\n");
1787 return;
1790 pool_print1(pp, modif, pr);
1793 static void
1794 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1795 void (*pr)(const char *, ...))
1797 struct pool_item_header *ph;
1798 #ifdef DIAGNOSTIC
1799 struct pool_item *pi;
1800 #endif
1802 LIST_FOREACH(ph, pl, ph_pagelist) {
1803 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1804 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1805 #ifdef DIAGNOSTIC
1806 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1807 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1808 if (pi->pi_magic != PI_MAGIC) {
1809 (*pr)("\t\t\titem %p, magic 0x%x\n",
1810 pi, pi->pi_magic);
1814 #endif
1818 static void
1819 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1821 struct pool_item_header *ph;
1822 pool_cache_t pc;
1823 pcg_t *pcg;
1824 pool_cache_cpu_t *cc;
1825 uint64_t cpuhit, cpumiss;
1826 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1827 char c;
1829 while ((c = *modif++) != '\0') {
1830 if (c == 'l')
1831 print_log = 1;
1832 if (c == 'p')
1833 print_pagelist = 1;
1834 if (c == 'c')
1835 print_cache = 1;
1838 if ((pc = pp->pr_cache) != NULL) {
1839 (*pr)("POOL CACHE");
1840 } else {
1841 (*pr)("POOL");
1844 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1845 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1846 pp->pr_roflags);
1847 (*pr)("\talloc %p\n", pp->pr_alloc);
1848 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1849 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1850 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1851 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1853 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1854 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1855 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1856 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1858 if (print_pagelist == 0)
1859 goto skip_pagelist;
1861 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1862 (*pr)("\n\tempty page list:\n");
1863 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1864 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1865 (*pr)("\n\tfull page list:\n");
1866 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1867 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1868 (*pr)("\n\tpartial-page list:\n");
1869 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1871 if (pp->pr_curpage == NULL)
1872 (*pr)("\tno current page\n");
1873 else
1874 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1876 skip_pagelist:
1877 if (print_log == 0)
1878 goto skip_log;
1880 (*pr)("\n");
1881 if ((pp->pr_roflags & PR_LOGGING) == 0)
1882 (*pr)("\tno log\n");
1883 else {
1884 pr_printlog(pp, NULL, pr);
1887 skip_log:
1889 #define PR_GROUPLIST(pcg) \
1890 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1891 for (i = 0; i < pcg->pcg_size; i++) { \
1892 if (pcg->pcg_objects[i].pcgo_pa != \
1893 POOL_PADDR_INVALID) { \
1894 (*pr)("\t\t\t%p, 0x%llx\n", \
1895 pcg->pcg_objects[i].pcgo_va, \
1896 (unsigned long long) \
1897 pcg->pcg_objects[i].pcgo_pa); \
1898 } else { \
1899 (*pr)("\t\t\t%p\n", \
1900 pcg->pcg_objects[i].pcgo_va); \
1904 if (pc != NULL) {
1905 cpuhit = 0;
1906 cpumiss = 0;
1907 for (i = 0; i < MAXCPUS; i++) {
1908 if ((cc = pc->pc_cpus[i]) == NULL)
1909 continue;
1910 cpuhit += cc->cc_hits;
1911 cpumiss += cc->cc_misses;
1913 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1914 (*pr)("\tcache layer hits %llu misses %llu\n",
1915 pc->pc_hits, pc->pc_misses);
1916 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1917 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1918 pc->pc_contended);
1919 (*pr)("\tcache layer empty groups %u full groups %u\n",
1920 pc->pc_nempty, pc->pc_nfull);
1921 if (print_cache) {
1922 (*pr)("\tfull cache groups:\n");
1923 for (pcg = pc->pc_fullgroups; pcg != NULL;
1924 pcg = pcg->pcg_next) {
1925 PR_GROUPLIST(pcg);
1927 (*pr)("\tempty cache groups:\n");
1928 for (pcg = pc->pc_emptygroups; pcg != NULL;
1929 pcg = pcg->pcg_next) {
1930 PR_GROUPLIST(pcg);
1934 #undef PR_GROUPLIST
1936 pr_enter_check(pp, pr);
1939 static int
1940 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1942 struct pool_item *pi;
1943 void *page;
1944 int n;
1946 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1947 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1948 if (page != ph->ph_page &&
1949 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1950 if (label != NULL)
1951 printf("%s: ", label);
1952 printf("pool(%p:%s): page inconsistency: page %p;"
1953 " at page head addr %p (p %p)\n", pp,
1954 pp->pr_wchan, ph->ph_page,
1955 ph, page);
1956 return 1;
1960 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1961 return 0;
1963 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1964 pi != NULL;
1965 pi = LIST_NEXT(pi,pi_list), n++) {
1967 #ifdef DIAGNOSTIC
1968 if (pi->pi_magic != PI_MAGIC) {
1969 if (label != NULL)
1970 printf("%s: ", label);
1971 printf("pool(%s): free list modified: magic=%x;"
1972 " page %p; item ordinal %d; addr %p\n",
1973 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1974 n, pi);
1975 panic("pool");
1977 #endif
1978 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1979 continue;
1981 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1982 if (page == ph->ph_page)
1983 continue;
1985 if (label != NULL)
1986 printf("%s: ", label);
1987 printf("pool(%p:%s): page inconsistency: page %p;"
1988 " item ordinal %d; addr %p (p %p)\n", pp,
1989 pp->pr_wchan, ph->ph_page,
1990 n, pi, page);
1991 return 1;
1993 return 0;
1998 pool_chk(struct pool *pp, const char *label)
2000 struct pool_item_header *ph;
2001 int r = 0;
2003 mutex_enter(&pp->pr_lock);
2004 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2005 r = pool_chk_page(pp, label, ph);
2006 if (r) {
2007 goto out;
2010 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2011 r = pool_chk_page(pp, label, ph);
2012 if (r) {
2013 goto out;
2016 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2017 r = pool_chk_page(pp, label, ph);
2018 if (r) {
2019 goto out;
2023 out:
2024 mutex_exit(&pp->pr_lock);
2025 return (r);
2029 * pool_cache_init:
2031 * Initialize a pool cache.
2033 pool_cache_t
2034 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2035 const char *wchan, struct pool_allocator *palloc, int ipl,
2036 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2038 pool_cache_t pc;
2040 pc = pool_get(&cache_pool, PR_WAITOK);
2041 if (pc == NULL)
2042 return NULL;
2044 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2045 palloc, ipl, ctor, dtor, arg);
2047 return pc;
2051 * pool_cache_bootstrap:
2053 * Kernel-private version of pool_cache_init(). The caller
2054 * provides initial storage.
2056 void
2057 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2058 u_int align_offset, u_int flags, const char *wchan,
2059 struct pool_allocator *palloc, int ipl,
2060 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2061 void *arg)
2063 CPU_INFO_ITERATOR cii;
2064 pool_cache_t pc1;
2065 struct cpu_info *ci;
2066 struct pool *pp;
2068 pp = &pc->pc_pool;
2069 if (palloc == NULL && ipl == IPL_NONE)
2070 palloc = &pool_allocator_nointr;
2071 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2072 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2074 if (ctor == NULL) {
2075 ctor = (int (*)(void *, void *, int))nullop;
2077 if (dtor == NULL) {
2078 dtor = (void (*)(void *, void *))nullop;
2081 pc->pc_emptygroups = NULL;
2082 pc->pc_fullgroups = NULL;
2083 pc->pc_partgroups = NULL;
2084 pc->pc_ctor = ctor;
2085 pc->pc_dtor = dtor;
2086 pc->pc_arg = arg;
2087 pc->pc_hits = 0;
2088 pc->pc_misses = 0;
2089 pc->pc_nempty = 0;
2090 pc->pc_npart = 0;
2091 pc->pc_nfull = 0;
2092 pc->pc_contended = 0;
2093 pc->pc_refcnt = 0;
2094 pc->pc_freecheck = NULL;
2096 if ((flags & PR_LARGECACHE) != 0) {
2097 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2098 pc->pc_pcgpool = &pcg_large_pool;
2099 } else {
2100 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2101 pc->pc_pcgpool = &pcg_normal_pool;
2104 /* Allocate per-CPU caches. */
2105 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2106 pc->pc_ncpu = 0;
2107 if (ncpu < 2) {
2108 /* XXX For sparc: boot CPU is not attached yet. */
2109 pool_cache_cpu_init1(curcpu(), pc);
2110 } else {
2111 for (CPU_INFO_FOREACH(cii, ci)) {
2112 pool_cache_cpu_init1(ci, pc);
2116 /* Add to list of all pools. */
2117 if (__predict_true(!cold))
2118 mutex_enter(&pool_head_lock);
2119 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2120 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2121 break;
2123 if (pc1 == NULL)
2124 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2125 else
2126 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2127 if (__predict_true(!cold))
2128 mutex_exit(&pool_head_lock);
2130 membar_sync();
2131 pp->pr_cache = pc;
2135 * pool_cache_destroy:
2137 * Destroy a pool cache.
2139 void
2140 pool_cache_destroy(pool_cache_t pc)
2142 struct pool *pp = &pc->pc_pool;
2143 u_int i;
2145 /* Remove it from the global list. */
2146 mutex_enter(&pool_head_lock);
2147 while (pc->pc_refcnt != 0)
2148 cv_wait(&pool_busy, &pool_head_lock);
2149 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2150 mutex_exit(&pool_head_lock);
2152 /* First, invalidate the entire cache. */
2153 pool_cache_invalidate(pc);
2155 /* Disassociate it from the pool. */
2156 mutex_enter(&pp->pr_lock);
2157 pp->pr_cache = NULL;
2158 mutex_exit(&pp->pr_lock);
2160 /* Destroy per-CPU data */
2161 for (i = 0; i < MAXCPUS; i++)
2162 pool_cache_invalidate_cpu(pc, i);
2164 /* Finally, destroy it. */
2165 mutex_destroy(&pc->pc_lock);
2166 pool_destroy(pp);
2167 pool_put(&cache_pool, pc);
2171 * pool_cache_cpu_init1:
2173 * Called for each pool_cache whenever a new CPU is attached.
2175 static void
2176 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2178 pool_cache_cpu_t *cc;
2179 int index;
2181 index = ci->ci_index;
2183 KASSERT(index < MAXCPUS);
2185 if ((cc = pc->pc_cpus[index]) != NULL) {
2186 KASSERT(cc->cc_cpuindex == index);
2187 return;
2191 * The first CPU is 'free'. This needs to be the case for
2192 * bootstrap - we may not be able to allocate yet.
2194 if (pc->pc_ncpu == 0) {
2195 cc = &pc->pc_cpu0;
2196 pc->pc_ncpu = 1;
2197 } else {
2198 mutex_enter(&pc->pc_lock);
2199 pc->pc_ncpu++;
2200 mutex_exit(&pc->pc_lock);
2201 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2204 cc->cc_ipl = pc->pc_pool.pr_ipl;
2205 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2206 cc->cc_cache = pc;
2207 cc->cc_cpuindex = index;
2208 cc->cc_hits = 0;
2209 cc->cc_misses = 0;
2210 cc->cc_current = __UNCONST(&pcg_dummy);
2211 cc->cc_previous = __UNCONST(&pcg_dummy);
2213 pc->pc_cpus[index] = cc;
2217 * pool_cache_cpu_init:
2219 * Called whenever a new CPU is attached.
2221 void
2222 pool_cache_cpu_init(struct cpu_info *ci)
2224 pool_cache_t pc;
2226 mutex_enter(&pool_head_lock);
2227 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2228 pc->pc_refcnt++;
2229 mutex_exit(&pool_head_lock);
2231 pool_cache_cpu_init1(ci, pc);
2233 mutex_enter(&pool_head_lock);
2234 pc->pc_refcnt--;
2235 cv_broadcast(&pool_busy);
2237 mutex_exit(&pool_head_lock);
2241 * pool_cache_reclaim:
2243 * Reclaim memory from a pool cache.
2245 bool
2246 pool_cache_reclaim(pool_cache_t pc)
2249 return pool_reclaim(&pc->pc_pool);
2252 static void
2253 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2256 (*pc->pc_dtor)(pc->pc_arg, object);
2257 pool_put(&pc->pc_pool, object);
2261 * pool_cache_destruct_object:
2263 * Force destruction of an object and its release back into
2264 * the pool.
2266 void
2267 pool_cache_destruct_object(pool_cache_t pc, void *object)
2270 FREECHECK_IN(&pc->pc_freecheck, object);
2272 pool_cache_destruct_object1(pc, object);
2276 * pool_cache_invalidate_groups:
2278 * Invalidate a chain of groups and destruct all objects.
2280 static void
2281 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2283 void *object;
2284 pcg_t *next;
2285 int i;
2287 for (; pcg != NULL; pcg = next) {
2288 next = pcg->pcg_next;
2290 for (i = 0; i < pcg->pcg_avail; i++) {
2291 object = pcg->pcg_objects[i].pcgo_va;
2292 pool_cache_destruct_object1(pc, object);
2295 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2296 pool_put(&pcg_large_pool, pcg);
2297 } else {
2298 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2299 pool_put(&pcg_normal_pool, pcg);
2305 * pool_cache_invalidate:
2307 * Invalidate a pool cache (destruct and release all of the
2308 * cached objects). Does not reclaim objects from the pool.
2310 * Note: For pool caches that provide constructed objects, there
2311 * is an assumption that another level of synchronization is occurring
2312 * between the input to the constructor and the cache invalidation.
2314 void
2315 pool_cache_invalidate(pool_cache_t pc)
2317 pcg_t *full, *empty, *part;
2318 uint64_t where;
2320 if (ncpu < 2 || !mp_online) {
2322 * We might be called early enough in the boot process
2323 * for the CPU data structures to not be fully initialized.
2324 * In this case, simply gather the local CPU's cache now
2325 * since it will be the only one running.
2327 pool_cache_xcall(pc);
2328 } else {
2330 * Gather all of the CPU-specific caches into the
2331 * global cache.
2333 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2334 xc_wait(where);
2337 mutex_enter(&pc->pc_lock);
2338 full = pc->pc_fullgroups;
2339 empty = pc->pc_emptygroups;
2340 part = pc->pc_partgroups;
2341 pc->pc_fullgroups = NULL;
2342 pc->pc_emptygroups = NULL;
2343 pc->pc_partgroups = NULL;
2344 pc->pc_nfull = 0;
2345 pc->pc_nempty = 0;
2346 pc->pc_npart = 0;
2347 mutex_exit(&pc->pc_lock);
2349 pool_cache_invalidate_groups(pc, full);
2350 pool_cache_invalidate_groups(pc, empty);
2351 pool_cache_invalidate_groups(pc, part);
2355 * pool_cache_invalidate_cpu:
2357 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2358 * identified by its associated index.
2359 * It is caller's responsibility to ensure that no operation is
2360 * taking place on this pool cache while doing this invalidation.
2361 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2362 * pool cached objects from a CPU different from the one currently running
2363 * may result in an undefined behaviour.
2365 static void
2366 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2369 pool_cache_cpu_t *cc;
2370 pcg_t *pcg;
2372 if ((cc = pc->pc_cpus[index]) == NULL)
2373 return;
2375 if ((pcg = cc->cc_current) != &pcg_dummy) {
2376 pcg->pcg_next = NULL;
2377 pool_cache_invalidate_groups(pc, pcg);
2379 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2380 pcg->pcg_next = NULL;
2381 pool_cache_invalidate_groups(pc, pcg);
2383 if (cc != &pc->pc_cpu0)
2384 pool_put(&cache_cpu_pool, cc);
2388 void
2389 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2392 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2395 void
2396 pool_cache_setlowat(pool_cache_t pc, int n)
2399 pool_setlowat(&pc->pc_pool, n);
2402 void
2403 pool_cache_sethiwat(pool_cache_t pc, int n)
2406 pool_sethiwat(&pc->pc_pool, n);
2409 void
2410 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2413 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2416 static bool __noinline
2417 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2418 paddr_t *pap, int flags)
2420 pcg_t *pcg, *cur;
2421 uint64_t ncsw;
2422 pool_cache_t pc;
2423 void *object;
2425 KASSERT(cc->cc_current->pcg_avail == 0);
2426 KASSERT(cc->cc_previous->pcg_avail == 0);
2428 pc = cc->cc_cache;
2429 cc->cc_misses++;
2432 * Nothing was available locally. Try and grab a group
2433 * from the cache.
2435 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2436 ncsw = curlwp->l_ncsw;
2437 mutex_enter(&pc->pc_lock);
2438 pc->pc_contended++;
2441 * If we context switched while locking, then
2442 * our view of the per-CPU data is invalid:
2443 * retry.
2445 if (curlwp->l_ncsw != ncsw) {
2446 mutex_exit(&pc->pc_lock);
2447 return true;
2451 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2453 * If there's a full group, release our empty
2454 * group back to the cache. Install the full
2455 * group as cc_current and return.
2457 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2458 KASSERT(cur->pcg_avail == 0);
2459 cur->pcg_next = pc->pc_emptygroups;
2460 pc->pc_emptygroups = cur;
2461 pc->pc_nempty++;
2463 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2464 cc->cc_current = pcg;
2465 pc->pc_fullgroups = pcg->pcg_next;
2466 pc->pc_hits++;
2467 pc->pc_nfull--;
2468 mutex_exit(&pc->pc_lock);
2469 return true;
2473 * Nothing available locally or in cache. Take the slow
2474 * path: fetch a new object from the pool and construct
2475 * it.
2477 pc->pc_misses++;
2478 mutex_exit(&pc->pc_lock);
2479 splx(s);
2481 object = pool_get(&pc->pc_pool, flags);
2482 *objectp = object;
2483 if (__predict_false(object == NULL))
2484 return false;
2486 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2487 pool_put(&pc->pc_pool, object);
2488 *objectp = NULL;
2489 return false;
2492 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2493 (pc->pc_pool.pr_align - 1)) == 0);
2495 if (pap != NULL) {
2496 #ifdef POOL_VTOPHYS
2497 *pap = POOL_VTOPHYS(object);
2498 #else
2499 *pap = POOL_PADDR_INVALID;
2500 #endif
2503 FREECHECK_OUT(&pc->pc_freecheck, object);
2504 return false;
2508 * pool_cache_get{,_paddr}:
2510 * Get an object from a pool cache (optionally returning
2511 * the physical address of the object).
2513 void *
2514 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2516 pool_cache_cpu_t *cc;
2517 pcg_t *pcg;
2518 void *object;
2519 int s;
2521 #ifdef LOCKDEBUG
2522 if (flags & PR_WAITOK) {
2523 ASSERT_SLEEPABLE();
2525 #endif
2527 /* Lock out interrupts and disable preemption. */
2528 s = splvm();
2529 while (/* CONSTCOND */ true) {
2530 /* Try and allocate an object from the current group. */
2531 cc = pc->pc_cpus[curcpu()->ci_index];
2532 KASSERT(cc->cc_cache == pc);
2533 pcg = cc->cc_current;
2534 if (__predict_true(pcg->pcg_avail > 0)) {
2535 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2536 if (__predict_false(pap != NULL))
2537 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2538 #if defined(DIAGNOSTIC)
2539 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2540 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2541 KASSERT(object != NULL);
2542 #endif
2543 cc->cc_hits++;
2544 splx(s);
2545 FREECHECK_OUT(&pc->pc_freecheck, object);
2546 return object;
2550 * That failed. If the previous group isn't empty, swap
2551 * it with the current group and allocate from there.
2553 pcg = cc->cc_previous;
2554 if (__predict_true(pcg->pcg_avail > 0)) {
2555 cc->cc_previous = cc->cc_current;
2556 cc->cc_current = pcg;
2557 continue;
2561 * Can't allocate from either group: try the slow path.
2562 * If get_slow() allocated an object for us, or if
2563 * no more objects are available, it will return false.
2564 * Otherwise, we need to retry.
2566 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2567 break;
2570 return object;
2573 static bool __noinline
2574 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2576 pcg_t *pcg, *cur;
2577 uint64_t ncsw;
2578 pool_cache_t pc;
2580 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2581 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2583 pc = cc->cc_cache;
2584 pcg = NULL;
2585 cc->cc_misses++;
2588 * If there are no empty groups in the cache then allocate one
2589 * while still unlocked.
2591 if (__predict_false(pc->pc_emptygroups == NULL)) {
2592 if (__predict_true(!pool_cache_disable)) {
2593 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2595 if (__predict_true(pcg != NULL)) {
2596 pcg->pcg_avail = 0;
2597 pcg->pcg_size = pc->pc_pcgsize;
2601 /* Lock the cache. */
2602 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2603 ncsw = curlwp->l_ncsw;
2604 mutex_enter(&pc->pc_lock);
2605 pc->pc_contended++;
2608 * If we context switched while locking, then our view of
2609 * the per-CPU data is invalid: retry.
2611 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2612 mutex_exit(&pc->pc_lock);
2613 if (pcg != NULL) {
2614 pool_put(pc->pc_pcgpool, pcg);
2616 return true;
2620 /* If there are no empty groups in the cache then allocate one. */
2621 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2622 pcg = pc->pc_emptygroups;
2623 pc->pc_emptygroups = pcg->pcg_next;
2624 pc->pc_nempty--;
2628 * If there's a empty group, release our full group back
2629 * to the cache. Install the empty group to the local CPU
2630 * and return.
2632 if (pcg != NULL) {
2633 KASSERT(pcg->pcg_avail == 0);
2634 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2635 cc->cc_previous = pcg;
2636 } else {
2637 cur = cc->cc_current;
2638 if (__predict_true(cur != &pcg_dummy)) {
2639 KASSERT(cur->pcg_avail == cur->pcg_size);
2640 cur->pcg_next = pc->pc_fullgroups;
2641 pc->pc_fullgroups = cur;
2642 pc->pc_nfull++;
2644 cc->cc_current = pcg;
2646 pc->pc_hits++;
2647 mutex_exit(&pc->pc_lock);
2648 return true;
2652 * Nothing available locally or in cache, and we didn't
2653 * allocate an empty group. Take the slow path and destroy
2654 * the object here and now.
2656 pc->pc_misses++;
2657 mutex_exit(&pc->pc_lock);
2658 splx(s);
2659 pool_cache_destruct_object(pc, object);
2661 return false;
2665 * pool_cache_put{,_paddr}:
2667 * Put an object back to the pool cache (optionally caching the
2668 * physical address of the object).
2670 void
2671 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2673 pool_cache_cpu_t *cc;
2674 pcg_t *pcg;
2675 int s;
2677 KASSERT(object != NULL);
2678 FREECHECK_IN(&pc->pc_freecheck, object);
2680 /* Lock out interrupts and disable preemption. */
2681 s = splvm();
2682 while (/* CONSTCOND */ true) {
2683 /* If the current group isn't full, release it there. */
2684 cc = pc->pc_cpus[curcpu()->ci_index];
2685 KASSERT(cc->cc_cache == pc);
2686 pcg = cc->cc_current;
2687 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2688 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2689 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2690 pcg->pcg_avail++;
2691 cc->cc_hits++;
2692 splx(s);
2693 return;
2697 * That failed. If the previous group isn't full, swap
2698 * it with the current group and try again.
2700 pcg = cc->cc_previous;
2701 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2702 cc->cc_previous = cc->cc_current;
2703 cc->cc_current = pcg;
2704 continue;
2708 * Can't free to either group: try the slow path.
2709 * If put_slow() releases the object for us, it
2710 * will return false. Otherwise we need to retry.
2712 if (!pool_cache_put_slow(cc, s, object))
2713 break;
2718 * pool_cache_xcall:
2720 * Transfer objects from the per-CPU cache to the global cache.
2721 * Run within a cross-call thread.
2723 static void
2724 pool_cache_xcall(pool_cache_t pc)
2726 pool_cache_cpu_t *cc;
2727 pcg_t *prev, *cur, **list;
2728 int s;
2730 s = splvm();
2731 mutex_enter(&pc->pc_lock);
2732 cc = pc->pc_cpus[curcpu()->ci_index];
2733 cur = cc->cc_current;
2734 cc->cc_current = __UNCONST(&pcg_dummy);
2735 prev = cc->cc_previous;
2736 cc->cc_previous = __UNCONST(&pcg_dummy);
2737 if (cur != &pcg_dummy) {
2738 if (cur->pcg_avail == cur->pcg_size) {
2739 list = &pc->pc_fullgroups;
2740 pc->pc_nfull++;
2741 } else if (cur->pcg_avail == 0) {
2742 list = &pc->pc_emptygroups;
2743 pc->pc_nempty++;
2744 } else {
2745 list = &pc->pc_partgroups;
2746 pc->pc_npart++;
2748 cur->pcg_next = *list;
2749 *list = cur;
2751 if (prev != &pcg_dummy) {
2752 if (prev->pcg_avail == prev->pcg_size) {
2753 list = &pc->pc_fullgroups;
2754 pc->pc_nfull++;
2755 } else if (prev->pcg_avail == 0) {
2756 list = &pc->pc_emptygroups;
2757 pc->pc_nempty++;
2758 } else {
2759 list = &pc->pc_partgroups;
2760 pc->pc_npart++;
2762 prev->pcg_next = *list;
2763 *list = prev;
2765 mutex_exit(&pc->pc_lock);
2766 splx(s);
2770 * Pool backend allocators.
2772 * Each pool has a backend allocator that handles allocation, deallocation,
2773 * and any additional draining that might be needed.
2775 * We provide two standard allocators:
2777 * pool_allocator_kmem - the default when no allocator is specified
2779 * pool_allocator_nointr - used for pools that will not be accessed
2780 * in interrupt context.
2782 void *pool_page_alloc(struct pool *, int);
2783 void pool_page_free(struct pool *, void *);
2785 #ifdef POOL_SUBPAGE
2786 struct pool_allocator pool_allocator_kmem_fullpage = {
2787 pool_page_alloc, pool_page_free, 0,
2788 .pa_backingmapptr = &kmem_map,
2790 #else
2791 struct pool_allocator pool_allocator_kmem = {
2792 pool_page_alloc, pool_page_free, 0,
2793 .pa_backingmapptr = &kmem_map,
2795 #endif
2797 void *pool_page_alloc_nointr(struct pool *, int);
2798 void pool_page_free_nointr(struct pool *, void *);
2800 #ifdef POOL_SUBPAGE
2801 struct pool_allocator pool_allocator_nointr_fullpage = {
2802 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2803 .pa_backingmapptr = &kernel_map,
2805 #else
2806 struct pool_allocator pool_allocator_nointr = {
2807 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2808 .pa_backingmapptr = &kernel_map,
2810 #endif
2812 #ifdef POOL_SUBPAGE
2813 void *pool_subpage_alloc(struct pool *, int);
2814 void pool_subpage_free(struct pool *, void *);
2816 struct pool_allocator pool_allocator_kmem = {
2817 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2818 .pa_backingmapptr = &kmem_map,
2821 void *pool_subpage_alloc_nointr(struct pool *, int);
2822 void pool_subpage_free_nointr(struct pool *, void *);
2824 struct pool_allocator pool_allocator_nointr = {
2825 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2826 .pa_backingmapptr = &kmem_map,
2828 #endif /* POOL_SUBPAGE */
2830 static void *
2831 pool_allocator_alloc(struct pool *pp, int flags)
2833 struct pool_allocator *pa = pp->pr_alloc;
2834 void *res;
2836 res = (*pa->pa_alloc)(pp, flags);
2837 if (res == NULL && (flags & PR_WAITOK) == 0) {
2839 * We only run the drain hook here if PR_NOWAIT.
2840 * In other cases, the hook will be run in
2841 * pool_reclaim().
2843 if (pp->pr_drain_hook != NULL) {
2844 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2845 res = (*pa->pa_alloc)(pp, flags);
2848 return res;
2851 static void
2852 pool_allocator_free(struct pool *pp, void *v)
2854 struct pool_allocator *pa = pp->pr_alloc;
2856 (*pa->pa_free)(pp, v);
2859 void *
2860 pool_page_alloc(struct pool *pp, int flags)
2862 bool waitok = (flags & PR_WAITOK) ? true : false;
2864 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2867 void
2868 pool_page_free(struct pool *pp, void *v)
2871 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2874 static void *
2875 pool_page_alloc_meta(struct pool *pp, int flags)
2877 bool waitok = (flags & PR_WAITOK) ? true : false;
2879 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2882 static void
2883 pool_page_free_meta(struct pool *pp, void *v)
2886 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2889 #ifdef POOL_SUBPAGE
2890 /* Sub-page allocator, for machines with large hardware pages. */
2891 void *
2892 pool_subpage_alloc(struct pool *pp, int flags)
2894 return pool_get(&psppool, flags);
2897 void
2898 pool_subpage_free(struct pool *pp, void *v)
2900 pool_put(&psppool, v);
2903 /* We don't provide a real nointr allocator. Maybe later. */
2904 void *
2905 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2908 return (pool_subpage_alloc(pp, flags));
2911 void
2912 pool_subpage_free_nointr(struct pool *pp, void *v)
2915 pool_subpage_free(pp, v);
2917 #endif /* POOL_SUBPAGE */
2918 void *
2919 pool_page_alloc_nointr(struct pool *pp, int flags)
2921 bool waitok = (flags & PR_WAITOK) ? true : false;
2923 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2926 void
2927 pool_page_free_nointr(struct pool *pp, void *v)
2930 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2933 #if defined(DDB)
2934 static bool
2935 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2938 return (uintptr_t)ph->ph_page <= addr &&
2939 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2942 static bool
2943 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2946 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2949 static bool
2950 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2952 int i;
2954 if (pcg == NULL) {
2955 return false;
2957 for (i = 0; i < pcg->pcg_avail; i++) {
2958 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2959 return true;
2962 return false;
2965 static bool
2966 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2969 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2970 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2971 pool_item_bitmap_t *bitmap =
2972 ph->ph_bitmap + (idx / BITMAP_SIZE);
2973 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2975 return (*bitmap & mask) == 0;
2976 } else {
2977 struct pool_item *pi;
2979 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2980 if (pool_in_item(pp, pi, addr)) {
2981 return false;
2984 return true;
2988 void
2989 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2991 struct pool *pp;
2993 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2994 struct pool_item_header *ph;
2995 uintptr_t item;
2996 bool allocated = true;
2997 bool incache = false;
2998 bool incpucache = false;
2999 char cpucachestr[32];
3001 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3002 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3003 if (pool_in_page(pp, ph, addr)) {
3004 goto found;
3007 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3008 if (pool_in_page(pp, ph, addr)) {
3009 allocated =
3010 pool_allocated(pp, ph, addr);
3011 goto found;
3014 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3015 if (pool_in_page(pp, ph, addr)) {
3016 allocated = false;
3017 goto found;
3020 continue;
3021 } else {
3022 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3023 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3024 continue;
3026 allocated = pool_allocated(pp, ph, addr);
3028 found:
3029 if (allocated && pp->pr_cache) {
3030 pool_cache_t pc = pp->pr_cache;
3031 struct pool_cache_group *pcg;
3032 int i;
3034 for (pcg = pc->pc_fullgroups; pcg != NULL;
3035 pcg = pcg->pcg_next) {
3036 if (pool_in_cg(pp, pcg, addr)) {
3037 incache = true;
3038 goto print;
3041 for (i = 0; i < MAXCPUS; i++) {
3042 pool_cache_cpu_t *cc;
3044 if ((cc = pc->pc_cpus[i]) == NULL) {
3045 continue;
3047 if (pool_in_cg(pp, cc->cc_current, addr) ||
3048 pool_in_cg(pp, cc->cc_previous, addr)) {
3049 struct cpu_info *ci =
3050 cpu_lookup(i);
3052 incpucache = true;
3053 snprintf(cpucachestr,
3054 sizeof(cpucachestr),
3055 "cached by CPU %u",
3056 ci->ci_index);
3057 goto print;
3061 print:
3062 item = (uintptr_t)ph->ph_page + ph->ph_off;
3063 item = item + rounddown(addr - item, pp->pr_size);
3064 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3065 (void *)addr, item, (size_t)(addr - item),
3066 pp->pr_wchan,
3067 incpucache ? cpucachestr :
3068 incache ? "cached" : allocated ? "allocated" : "free");
3071 #endif /* defined(DDB) */