Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / kern / sys_select.c
blob1256b3cc4762b9cadd14b463d22080b644fccbbf
1 /* $NetBSD: sys_select.c,v 1.20 2009/12/12 17:47:05 dsl Exp $ */
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
65 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
69 * System calls of synchronous I/O multiplexing subsystem.
71 * Locking
73 * Two locks are used: <object-lock> and selcpu_t::sc_lock.
75 * The <object-lock> might be a device driver or another subsystem, e.g.
76 * socket or pipe. This lock is not exported, and thus invisible to this
77 * subsystem. Mainly, synchronisation between selrecord() and selnotify()
78 * routines depends on this lock, as it will be described in the comments.
80 * Lock order
82 * <object-lock> ->
83 * selcpu_t::sc_lock
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.20 2009/12/12 17:47:05 dsl Exp $");
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/filedesc.h>
92 #include <sys/ioctl.h>
93 #include <sys/file.h>
94 #include <sys/proc.h>
95 #include <sys/socketvar.h>
96 #include <sys/signalvar.h>
97 #include <sys/uio.h>
98 #include <sys/kernel.h>
99 #include <sys/stat.h>
100 #include <sys/poll.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/syscallargs.h>
104 #include <sys/cpu.h>
105 #include <sys/atomic.h>
106 #include <sys/socketvar.h>
107 #include <sys/sleepq.h>
109 /* Flags for lwp::l_selflag. */
110 #define SEL_RESET 0 /* awoken, interrupted, or not yet polling */
111 #define SEL_SCANNING 1 /* polling descriptors */
112 #define SEL_BLOCKING 2 /* about to block on select_cv */
114 /* Per-CPU state for select()/poll(). */
115 #if MAXCPUS > 32
116 #error adjust this code
117 #endif
118 typedef struct selcpu {
119 kmutex_t *sc_lock;
120 sleepq_t sc_sleepq;
121 int sc_ncoll;
122 uint32_t sc_mask;
123 } selcpu_t;
125 static inline int selscan(char *, u_int, register_t *);
126 static inline int pollscan(struct pollfd *, u_int, register_t *);
127 static void selclear(void);
129 static syncobj_t select_sobj = {
130 SOBJ_SLEEPQ_FIFO,
131 sleepq_unsleep,
132 sleepq_changepri,
133 sleepq_lendpri,
134 syncobj_noowner,
138 * Select system call.
141 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
142 register_t *retval)
144 /* {
145 syscallarg(int) nd;
146 syscallarg(fd_set *) in;
147 syscallarg(fd_set *) ou;
148 syscallarg(fd_set *) ex;
149 syscallarg(const struct timespec *) ts;
150 syscallarg(sigset_t *) mask;
151 } */
152 struct timespec ats, *ts = NULL;
153 sigset_t amask, *mask = NULL;
154 int error;
156 if (SCARG(uap, ts)) {
157 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
158 if (error)
159 return error;
160 ts = &ats;
162 if (SCARG(uap, mask) != NULL) {
163 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
164 if (error)
165 return error;
166 mask = &amask;
169 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
170 SCARG(uap, ou), SCARG(uap, ex), ts, mask);
174 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
175 register_t *retval)
177 /* {
178 syscallarg(int) nd;
179 syscallarg(fd_set *) in;
180 syscallarg(fd_set *) ou;
181 syscallarg(fd_set *) ex;
182 syscallarg(struct timeval *) tv;
183 } */
184 struct timeval atv;
185 struct timespec ats, *ts = NULL;
186 int error;
188 if (SCARG(uap, tv)) {
189 error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
190 if (error)
191 return error;
192 TIMEVAL_TO_TIMESPEC(&atv, &ats);
193 ts = &ats;
196 return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
197 SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
201 * sel_do_scan: common code to perform the scan on descriptors.
203 static int
204 sel_do_scan(void *fds, u_int nfds, struct timespec *ts, sigset_t *mask,
205 register_t *retval, int selpoll)
207 lwp_t * const l = curlwp;
208 proc_t * const p = l->l_proc;
209 selcpu_t *sc;
210 kmutex_t *lock;
211 sigset_t oldmask;
212 struct timespec sleepts;
213 int error, timo;
215 timo = 0;
216 if (ts && inittimeleft(ts, &sleepts) == -1) {
217 return EINVAL;
220 if (__predict_false(mask)) {
221 sigminusset(&sigcantmask, mask);
222 mutex_enter(p->p_lock);
223 oldmask = l->l_sigmask;
224 l->l_sigmask = *mask;
225 mutex_exit(p->p_lock);
226 } else {
227 /* XXXgcc */
228 oldmask = l->l_sigmask;
231 sc = curcpu()->ci_data.cpu_selcpu;
232 lock = sc->sc_lock;
233 l->l_selcpu = sc;
234 SLIST_INIT(&l->l_selwait);
235 for (;;) {
236 int ncoll;
239 * No need to lock. If this is overwritten by another value
240 * while scanning, we will retry below. We only need to see
241 * exact state from the descriptors that we are about to poll,
242 * and lock activity resulting from fo_poll is enough to
243 * provide an up to date value for new polling activity.
245 l->l_selflag = SEL_SCANNING;
246 ncoll = sc->sc_ncoll;
248 if (selpoll) {
249 error = selscan((char *)fds, nfds, retval);
250 } else {
251 error = pollscan((struct pollfd *)fds, nfds, retval);
254 if (error || *retval)
255 break;
256 if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
257 break;
258 mutex_spin_enter(lock);
259 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
260 mutex_spin_exit(lock);
261 continue;
263 l->l_selflag = SEL_BLOCKING;
264 l->l_kpriority = true;
265 sleepq_enter(&sc->sc_sleepq, l, lock);
266 sleepq_enqueue(&sc->sc_sleepq, sc, "select", &select_sobj);
267 error = sleepq_block(timo, true);
268 if (error != 0)
269 break;
271 selclear();
273 if (__predict_false(mask)) {
274 mutex_enter(p->p_lock);
275 l->l_sigmask = oldmask;
276 mutex_exit(p->p_lock);
279 /* select and poll are not restarted after signals... */
280 if (error == ERESTART)
281 return EINTR;
282 if (error == EWOULDBLOCK)
283 return 0;
284 return error;
288 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
289 fd_set *u_ex, struct timespec *ts, sigset_t *mask)
291 char smallbits[howmany(FD_SETSIZE, NFDBITS) *
292 sizeof(fd_mask) * 6];
293 char *bits;
294 int error, nf;
295 size_t ni;
297 if (nd < 0)
298 return (EINVAL);
299 nf = curlwp->l_fd->fd_dt->dt_nfiles;
300 if (nd > nf) {
301 /* forgiving; slightly wrong */
302 nd = nf;
304 ni = howmany(nd, NFDBITS) * sizeof(fd_mask);
305 if (ni * 6 > sizeof(smallbits)) {
306 bits = kmem_alloc(ni * 6, KM_SLEEP);
307 if (bits == NULL)
308 return ENOMEM;
309 } else
310 bits = smallbits;
312 #define getbits(name, x) \
313 if (u_ ## name) { \
314 error = copyin(u_ ## name, bits + ni * x, ni); \
315 if (error) \
316 goto fail; \
317 } else \
318 memset(bits + ni * x, 0, ni);
319 getbits(in, 0);
320 getbits(ou, 1);
321 getbits(ex, 2);
322 #undef getbits
324 error = sel_do_scan(bits, nd, ts, mask, retval, 1);
325 if (error == 0 && u_in != NULL)
326 error = copyout(bits + ni * 3, u_in, ni);
327 if (error == 0 && u_ou != NULL)
328 error = copyout(bits + ni * 4, u_ou, ni);
329 if (error == 0 && u_ex != NULL)
330 error = copyout(bits + ni * 5, u_ex, ni);
331 fail:
332 if (bits != smallbits)
333 kmem_free(bits, ni * 6);
334 return (error);
337 static inline int
338 selscan(char *bits, u_int nfd, register_t *retval)
340 static const int flag[3] = { POLLRDNORM | POLLHUP | POLLERR,
341 POLLWRNORM | POLLHUP | POLLERR,
342 POLLRDBAND };
343 fd_mask *ibitp, *obitp;
344 int msk, i, j, fd, ni, n;
345 fd_mask ibits, obits;
346 file_t *fp;
348 ni = howmany(nfd, NFDBITS) * sizeof(fd_mask);
349 ibitp = (fd_mask *)(bits + ni * 0);
350 obitp = (fd_mask *)(bits + ni * 3);
351 n = 0;
353 for (msk = 0; msk < 3; msk++) {
354 for (i = 0; i < nfd; i += NFDBITS) {
355 ibits = *ibitp++;
356 obits = 0;
357 while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
358 ibits &= ~(1 << j);
359 if ((fp = fd_getfile(fd)) == NULL)
360 return (EBADF);
361 if ((*fp->f_ops->fo_poll)(fp, flag[msk])) {
362 obits |= (1 << j);
363 n++;
365 fd_putfile(fd);
367 *obitp++ = obits;
370 *retval = n;
371 return (0);
375 * Poll system call.
378 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
380 /* {
381 syscallarg(struct pollfd *) fds;
382 syscallarg(u_int) nfds;
383 syscallarg(int) timeout;
384 } */
385 struct timespec ats, *ts = NULL;
387 if (SCARG(uap, timeout) != INFTIM) {
388 ats.tv_sec = SCARG(uap, timeout) / 1000;
389 ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
390 ts = &ats;
393 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
397 * Poll system call.
400 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
401 register_t *retval)
403 /* {
404 syscallarg(struct pollfd *) fds;
405 syscallarg(u_int) nfds;
406 syscallarg(const struct timespec *) ts;
407 syscallarg(const sigset_t *) mask;
408 } */
409 struct timespec ats, *ts = NULL;
410 sigset_t amask, *mask = NULL;
411 int error;
413 if (SCARG(uap, ts)) {
414 error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
415 if (error)
416 return error;
417 ts = &ats;
419 if (SCARG(uap, mask)) {
420 error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
421 if (error)
422 return error;
423 mask = &amask;
426 return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
430 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
431 struct timespec *ts, sigset_t *mask)
433 struct pollfd smallfds[32];
434 struct pollfd *fds;
435 int error;
436 size_t ni;
438 if (nfds > 1000 + curlwp->l_fd->fd_dt->dt_nfiles) {
440 * Either the user passed in a very sparse 'fds' or junk!
441 * The kmem_alloc() call below would be bad news.
442 * We could process the 'fds' array in chunks, but that
443 * is a lot of code that isn't normally useful.
444 * (Or just move the copyin/out into pollscan().)
445 * Historically the code silently truncated 'fds' to
446 * dt_nfiles entries - but that does cause issues.
448 return EINVAL;
450 ni = nfds * sizeof(struct pollfd);
451 if (ni > sizeof(smallfds)) {
452 fds = kmem_alloc(ni, KM_SLEEP);
453 if (fds == NULL)
454 return ENOMEM;
455 } else
456 fds = smallfds;
458 error = copyin(u_fds, fds, ni);
459 if (error)
460 goto fail;
462 error = sel_do_scan(fds, nfds, ts, mask, retval, 0);
463 if (error == 0)
464 error = copyout(fds, u_fds, ni);
465 fail:
466 if (fds != smallfds)
467 kmem_free(fds, ni);
468 return (error);
471 static inline int
472 pollscan(struct pollfd *fds, u_int nfd, register_t *retval)
474 int i, n;
475 file_t *fp;
477 n = 0;
478 for (i = 0; i < nfd; i++, fds++) {
479 if (fds->fd < 0) {
480 fds->revents = 0;
481 } else if ((fp = fd_getfile(fds->fd)) == NULL) {
482 fds->revents = POLLNVAL;
483 n++;
484 } else {
485 fds->revents = (*fp->f_ops->fo_poll)(fp,
486 fds->events | POLLERR | POLLHUP);
487 if (fds->revents != 0)
488 n++;
489 fd_putfile(fds->fd);
492 *retval = n;
493 return (0);
496 /*ARGSUSED*/
498 seltrue(dev_t dev, int events, lwp_t *l)
501 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
505 * Record a select request. Concurrency issues:
507 * The caller holds the same lock across calls to selrecord() and
508 * selnotify(), so we don't need to consider a concurrent wakeup
509 * while in this routine.
511 * The only activity we need to guard against is selclear(), called by
512 * another thread that is exiting sel_do_scan().
513 * `sel_lwp' can only become non-NULL while the caller's lock is held,
514 * so it cannot become non-NULL due to a change made by another thread
515 * while we are in this routine. It can only become _NULL_ due to a
516 * call to selclear().
518 * If it is non-NULL and != selector there is the potential for
519 * selclear() to be called by another thread. If either of those
520 * conditions are true, we're not interested in touching the `named
521 * waiter' part of the selinfo record because we need to record a
522 * collision. Hence there is no need for additional locking in this
523 * routine.
525 void
526 selrecord(lwp_t *selector, struct selinfo *sip)
528 selcpu_t *sc;
529 lwp_t *other;
531 KASSERT(selector == curlwp);
533 sc = selector->l_selcpu;
534 other = sip->sel_lwp;
536 if (other == selector) {
537 /* `selector' has already claimed it. */
538 KASSERT(sip->sel_cpu = sc);
539 } else if (other == NULL) {
541 * First named waiter, although there may be unnamed
542 * waiters (collisions). Issue a memory barrier to
543 * ensure that we access sel_lwp (above) before other
544 * fields - this guards against a call to selclear().
546 membar_enter();
547 sip->sel_lwp = selector;
548 SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
549 /* Replace selinfo's lock with our chosen CPU's lock. */
550 sip->sel_cpu = sc;
551 } else {
552 /* Multiple waiters: record a collision. */
553 sip->sel_collision |= sc->sc_mask;
554 KASSERT(sip->sel_cpu != NULL);
559 * Do a wakeup when a selectable event occurs. Concurrency issues:
561 * As per selrecord(), the caller's object lock is held. If there
562 * is a named waiter, we must acquire the associated selcpu's lock
563 * in order to synchronize with selclear() and pollers going to sleep
564 * in sel_do_scan().
566 * sip->sel_cpu cannot change at this point, as it is only changed
567 * in selrecord(), and concurrent calls to selrecord() are locked
568 * out by the caller.
570 void
571 selnotify(struct selinfo *sip, int events, long knhint)
573 selcpu_t *sc;
574 uint32_t mask;
575 int index, oflag;
576 lwp_t *l;
577 kmutex_t *lock;
579 KNOTE(&sip->sel_klist, knhint);
581 if (sip->sel_lwp != NULL) {
582 /* One named LWP is waiting. */
583 sc = sip->sel_cpu;
584 lock = sc->sc_lock;
585 mutex_spin_enter(lock);
586 /* Still there? */
587 if (sip->sel_lwp != NULL) {
588 l = sip->sel_lwp;
590 * If thread is sleeping, wake it up. If it's not
591 * yet asleep, it will notice the change in state
592 * and will re-poll the descriptors.
594 oflag = l->l_selflag;
595 l->l_selflag = SEL_RESET;
596 if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
597 KASSERT(l->l_wchan == sc);
598 sleepq_unsleep(l, false);
601 mutex_spin_exit(lock);
604 if ((mask = sip->sel_collision) != 0) {
606 * There was a collision (multiple waiters): we must
607 * inform all potentially interested waiters.
609 sip->sel_collision = 0;
610 do {
611 index = ffs(mask) - 1;
612 mask &= ~(1 << index);
613 sc = cpu_lookup(index)->ci_data.cpu_selcpu;
614 lock = sc->sc_lock;
615 mutex_spin_enter(lock);
616 sc->sc_ncoll++;
617 sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
618 } while (__predict_false(mask != 0));
623 * Remove an LWP from all objects that it is waiting for. Concurrency
624 * issues:
626 * The object owner's (e.g. device driver) lock is not held here. Calls
627 * can be made to selrecord() and we do not synchronize against those
628 * directly using locks. However, we use `sel_lwp' to lock out changes.
629 * Before clearing it we must use memory barriers to ensure that we can
630 * safely traverse the list of selinfo records.
632 static void
633 selclear(void)
635 struct selinfo *sip, *next;
636 selcpu_t *sc;
637 lwp_t *l;
638 kmutex_t *lock;
640 l = curlwp;
641 sc = l->l_selcpu;
642 lock = sc->sc_lock;
644 mutex_spin_enter(lock);
645 for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
646 KASSERT(sip->sel_lwp == l);
647 KASSERT(sip->sel_cpu == l->l_selcpu);
649 * Read link to next selinfo record, if any.
650 * It's no longer safe to touch `sip' after clearing
651 * `sel_lwp', so ensure that the read of `sel_chain'
652 * completes before the clearing of sel_lwp becomes
653 * globally visible.
655 next = SLIST_NEXT(sip, sel_chain);
656 membar_exit();
657 /* Release the record for another named waiter to use. */
658 sip->sel_lwp = NULL;
660 mutex_spin_exit(lock);
664 * Initialize the select/poll system calls. Called once for each
665 * CPU in the system, as they are attached.
667 void
668 selsysinit(struct cpu_info *ci)
670 selcpu_t *sc;
672 sc = kmem_alloc(roundup2(sizeof(selcpu_t), coherency_unit) +
673 coherency_unit, KM_SLEEP);
674 sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
675 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
676 sleepq_init(&sc->sc_sleepq);
677 sc->sc_ncoll = 0;
678 sc->sc_mask = (1 << cpu_index(ci));
679 ci->ci_data.cpu_selcpu = sc;
683 * Initialize a selinfo record.
685 void
686 selinit(struct selinfo *sip)
689 memset(sip, 0, sizeof(*sip));
693 * Destroy a selinfo record. The owning object must not gain new
694 * references while this is in progress: all activity on the record
695 * must be stopped.
697 * Concurrency issues: we only need guard against a call to selclear()
698 * by a thread exiting sel_do_scan(). The caller has prevented further
699 * references being made to the selinfo record via selrecord(), and it
700 * won't call selwakeup() again.
702 void
703 seldestroy(struct selinfo *sip)
705 selcpu_t *sc;
706 kmutex_t *lock;
707 lwp_t *l;
709 if (sip->sel_lwp == NULL)
710 return;
713 * Lock out selclear(). The selcpu pointer can't change while
714 * we are here since it is only ever changed in selrecord(),
715 * and that will not be entered again for this record because
716 * it is dying.
718 KASSERT(sip->sel_cpu != NULL);
719 sc = sip->sel_cpu;
720 lock = sc->sc_lock;
721 mutex_spin_enter(lock);
722 if ((l = sip->sel_lwp) != NULL) {
724 * This should rarely happen, so although SLIST_REMOVE()
725 * is slow, using it here is not a problem.
727 KASSERT(l->l_selcpu == sc);
728 SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
729 sip->sel_lwp = NULL;
731 mutex_spin_exit(lock);
735 pollsock(struct socket *so, const struct timespec *tsp, int events)
737 int ncoll, error, timo;
738 struct timespec sleepts, ts;
739 selcpu_t *sc;
740 lwp_t *l;
741 kmutex_t *lock;
743 timo = 0;
744 if (tsp != NULL) {
745 ts = *tsp;
746 if (inittimeleft(&ts, &sleepts) == -1)
747 return EINVAL;
750 l = curlwp;
751 sc = l->l_cpu->ci_data.cpu_selcpu;
752 lock = sc->sc_lock;
753 l->l_selcpu = sc;
754 SLIST_INIT(&l->l_selwait);
755 error = 0;
756 for (;;) {
758 * No need to lock. If this is overwritten by another
759 * value while scanning, we will retry below. We only
760 * need to see exact state from the descriptors that
761 * we are about to poll, and lock activity resulting
762 * from fo_poll is enough to provide an up to date value
763 * for new polling activity.
765 ncoll = sc->sc_ncoll;
766 l->l_selflag = SEL_SCANNING;
767 if (sopoll(so, events) != 0)
768 break;
769 if (tsp && (timo = gettimeleft(&ts, &sleepts)) <= 0)
770 break;
771 mutex_spin_enter(lock);
772 if (l->l_selflag != SEL_SCANNING || sc->sc_ncoll != ncoll) {
773 mutex_spin_exit(lock);
774 continue;
776 l->l_selflag = SEL_BLOCKING;
777 sleepq_enter(&sc->sc_sleepq, l, lock);
778 sleepq_enqueue(&sc->sc_sleepq, sc, "pollsock", &select_sobj);
779 error = sleepq_block(timo, true);
780 if (error != 0)
781 break;
783 selclear();
784 /* poll is not restarted after signals... */
785 if (error == ERESTART)
786 error = EINTR;
787 if (error == EWOULDBLOCK)
788 error = 0;
789 return (error);