Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / netinet6 / ip6_output.c
blob752b10bdddbbaa5e5a291c2b42f530102bbb4217
1 /* $NetBSD: ip6_output.c,v 1.138 2009/05/06 21:41:59 elad Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.138 2009/05/06 21:41:59 elad Exp $");
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/ip6_private.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/nd6.h>
99 #include <netinet6/ip6protosw.h>
100 #include <netinet6/scope6_var.h>
102 #ifdef IPSEC
103 #include <netinet6/ipsec.h>
104 #include <netinet6/ipsec_private.h>
105 #include <netkey/key.h>
106 #endif /* IPSEC */
108 #ifdef FAST_IPSEC
109 #include <netipsec/ipsec.h>
110 #include <netipsec/ipsec6.h>
111 #include <netipsec/key.h>
112 #include <netipsec/xform.h>
113 #endif
116 #include <net/net_osdep.h>
118 #ifdef PFIL_HOOKS
119 extern struct pfil_head inet6_pfil_hook; /* XXX */
120 #endif
122 struct ip6_exthdrs {
123 struct mbuf *ip6e_ip6;
124 struct mbuf *ip6e_hbh;
125 struct mbuf *ip6e_dest1;
126 struct mbuf *ip6e_rthdr;
127 struct mbuf *ip6e_dest2;
130 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
131 kauth_cred_t, int);
132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
133 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
134 int, int, int);
135 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
136 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
137 static int ip6_copyexthdr(struct mbuf **, void *, int);
138 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
139 struct ip6_frag **);
140 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
141 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
142 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
143 const struct in6_addr *, u_long *, int *);
144 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
146 #ifdef RFC2292
147 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
148 #endif
150 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
151 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
152 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
153 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
156 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
157 * header (with pri, len, nxt, hlim, src, dst).
158 * This function may modify ver and hlim only.
159 * The mbuf chain containing the packet will be freed.
160 * The mbuf opt, if present, will not be freed.
162 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
163 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
164 * which is rt_rmx.rmx_mtu.
167 ip6_output(
168 struct mbuf *m0,
169 struct ip6_pktopts *opt,
170 struct route *ro,
171 int flags,
172 struct ip6_moptions *im6o,
173 struct socket *so,
174 struct ifnet **ifpp /* XXX: just for statistics */
177 struct ip6_hdr *ip6, *mhip6;
178 struct ifnet *ifp, *origifp;
179 struct mbuf *m = m0;
180 int hlen, tlen, len, off;
181 bool tso;
182 struct route ip6route;
183 struct rtentry *rt = NULL;
184 const struct sockaddr_in6 *dst = NULL;
185 struct sockaddr_in6 src_sa, dst_sa;
186 int error = 0;
187 struct in6_ifaddr *ia = NULL;
188 u_long mtu;
189 int alwaysfrag, dontfrag;
190 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
191 struct ip6_exthdrs exthdrs;
192 struct in6_addr finaldst, src0, dst0;
193 u_int32_t zone;
194 struct route *ro_pmtu = NULL;
195 int hdrsplit = 0;
196 int needipsec = 0;
197 #ifdef IPSEC
198 int needipsectun = 0;
199 struct secpolicy *sp = NULL;
201 ip6 = mtod(m, struct ip6_hdr *);
202 #endif /* IPSEC */
203 #ifdef FAST_IPSEC
204 struct secpolicy *sp = NULL;
205 int s;
206 #endif
208 memset(&ip6route, 0, sizeof(ip6route));
210 #ifdef DIAGNOSTIC
211 if ((m->m_flags & M_PKTHDR) == 0)
212 panic("ip6_output: no HDR");
214 if ((m->m_pkthdr.csum_flags &
215 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
216 panic("ip6_output: IPv4 checksum offload flags: %d",
217 m->m_pkthdr.csum_flags);
220 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
221 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
222 panic("ip6_output: conflicting checksum offload flags: %d",
223 m->m_pkthdr.csum_flags);
225 #endif
227 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
229 #define MAKE_EXTHDR(hp, mp) \
230 do { \
231 if (hp) { \
232 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
233 error = ip6_copyexthdr((mp), (void *)(hp), \
234 ((eh)->ip6e_len + 1) << 3); \
235 if (error) \
236 goto freehdrs; \
238 } while (/*CONSTCOND*/ 0)
240 memset(&exthdrs, 0, sizeof(exthdrs));
241 if (opt) {
242 /* Hop-by-Hop options header */
243 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
244 /* Destination options header(1st part) */
245 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
246 /* Routing header */
247 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
248 /* Destination options header(2nd part) */
249 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
252 #ifdef IPSEC
253 if ((flags & IPV6_FORWARDING) != 0) {
254 needipsec = 0;
255 goto skippolicycheck;
258 /* get a security policy for this packet */
259 if (so == NULL)
260 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
261 else {
262 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
263 IPSEC_DIR_OUTBOUND)) {
264 needipsec = 0;
265 goto skippolicycheck;
267 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
270 if (sp == NULL) {
271 IPSEC6_STATINC(IPSEC_STAT_OUT_INVAL);
272 goto freehdrs;
275 error = 0;
277 /* check policy */
278 switch (sp->policy) {
279 case IPSEC_POLICY_DISCARD:
281 * This packet is just discarded.
283 IPSEC6_STATINC(IPSEC_STAT_OUT_POLVIO);
284 goto freehdrs;
286 case IPSEC_POLICY_BYPASS:
287 case IPSEC_POLICY_NONE:
288 /* no need to do IPsec. */
289 needipsec = 0;
290 break;
292 case IPSEC_POLICY_IPSEC:
293 if (sp->req == NULL) {
294 /* XXX should be panic ? */
295 printf("ip6_output: No IPsec request specified.\n");
296 error = EINVAL;
297 goto freehdrs;
299 needipsec = 1;
300 break;
302 case IPSEC_POLICY_ENTRUST:
303 default:
304 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
307 skippolicycheck:;
308 #endif /* IPSEC */
311 * Calculate the total length of the extension header chain.
312 * Keep the length of the unfragmentable part for fragmentation.
314 optlen = 0;
315 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
316 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
317 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
318 unfragpartlen = optlen + sizeof(struct ip6_hdr);
319 /* NOTE: we don't add AH/ESP length here. do that later. */
320 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
322 #ifdef FAST_IPSEC
323 /* Check the security policy (SP) for the packet */
325 /* XXX For moment, we doesn't support packet with extented action */
326 if (optlen !=0)
327 goto freehdrs;
329 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
330 if (error != 0) {
332 * Hack: -EINVAL is used to signal that a packet
333 * should be silently discarded. This is typically
334 * because we asked key management for an SA and
335 * it was delayed (e.g. kicked up to IKE).
337 if (error == -EINVAL)
338 error = 0;
339 goto freehdrs;
341 #endif /* FAST_IPSEC */
344 if (needipsec &&
345 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
346 in6_delayed_cksum(m);
347 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
352 * If we need IPsec, or there is at least one extension header,
353 * separate IP6 header from the payload.
355 if ((needipsec || optlen) && !hdrsplit) {
356 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
357 m = NULL;
358 goto freehdrs;
360 m = exthdrs.ip6e_ip6;
361 hdrsplit++;
364 /* adjust pointer */
365 ip6 = mtod(m, struct ip6_hdr *);
367 /* adjust mbuf packet header length */
368 m->m_pkthdr.len += optlen;
369 plen = m->m_pkthdr.len - sizeof(*ip6);
371 /* If this is a jumbo payload, insert a jumbo payload option. */
372 if (plen > IPV6_MAXPACKET) {
373 if (!hdrsplit) {
374 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
375 m = NULL;
376 goto freehdrs;
378 m = exthdrs.ip6e_ip6;
379 hdrsplit++;
381 /* adjust pointer */
382 ip6 = mtod(m, struct ip6_hdr *);
383 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
384 goto freehdrs;
385 optlen += 8; /* XXX JUMBOOPTLEN */
386 ip6->ip6_plen = 0;
387 } else
388 ip6->ip6_plen = htons(plen);
391 * Concatenate headers and fill in next header fields.
392 * Here we have, on "m"
393 * IPv6 payload
394 * and we insert headers accordingly. Finally, we should be getting:
395 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
397 * during the header composing process, "m" points to IPv6 header.
398 * "mprev" points to an extension header prior to esp.
401 u_char *nexthdrp = &ip6->ip6_nxt;
402 struct mbuf *mprev = m;
405 * we treat dest2 specially. this makes IPsec processing
406 * much easier. the goal here is to make mprev point the
407 * mbuf prior to dest2.
409 * result: IPv6 dest2 payload
410 * m and mprev will point to IPv6 header.
412 if (exthdrs.ip6e_dest2) {
413 if (!hdrsplit)
414 panic("assumption failed: hdr not split");
415 exthdrs.ip6e_dest2->m_next = m->m_next;
416 m->m_next = exthdrs.ip6e_dest2;
417 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
418 ip6->ip6_nxt = IPPROTO_DSTOPTS;
421 #define MAKE_CHAIN(m, mp, p, i)\
422 do {\
423 if (m) {\
424 if (!hdrsplit) \
425 panic("assumption failed: hdr not split"); \
426 *mtod((m), u_char *) = *(p);\
427 *(p) = (i);\
428 p = mtod((m), u_char *);\
429 (m)->m_next = (mp)->m_next;\
430 (mp)->m_next = (m);\
431 (mp) = (m);\
433 } while (/*CONSTCOND*/ 0)
435 * result: IPv6 hbh dest1 rthdr dest2 payload
436 * m will point to IPv6 header. mprev will point to the
437 * extension header prior to dest2 (rthdr in the above case).
439 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
440 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
441 IPPROTO_DSTOPTS);
442 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
443 IPPROTO_ROUTING);
445 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
446 sizeof(struct ip6_hdr) + optlen);
448 #ifdef IPSEC
449 if (!needipsec)
450 goto skip_ipsec2;
453 * pointers after IPsec headers are not valid any more.
454 * other pointers need a great care too.
455 * (IPsec routines should not mangle mbufs prior to AH/ESP)
457 exthdrs.ip6e_dest2 = NULL;
460 struct ip6_rthdr *rh = NULL;
461 int segleft_org = 0;
462 struct ipsec_output_state state;
464 if (exthdrs.ip6e_rthdr) {
465 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
466 segleft_org = rh->ip6r_segleft;
467 rh->ip6r_segleft = 0;
470 memset(&state, 0, sizeof(state));
471 state.m = m;
472 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
473 &needipsectun);
474 m = state.m;
475 if (error) {
476 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
477 /* mbuf is already reclaimed in ipsec6_output_trans. */
478 m = NULL;
479 switch (error) {
480 case EHOSTUNREACH:
481 case ENETUNREACH:
482 case EMSGSIZE:
483 case ENOBUFS:
484 case ENOMEM:
485 break;
486 default:
487 printf("ip6_output (ipsec): error code %d\n", error);
488 /* FALLTHROUGH */
489 case ENOENT:
490 /* don't show these error codes to the user */
491 error = 0;
492 break;
494 goto bad;
496 if (exthdrs.ip6e_rthdr) {
497 /* ah6_output doesn't modify mbuf chain */
498 rh->ip6r_segleft = segleft_org;
501 skip_ipsec2:;
502 #endif
506 * If there is a routing header, replace destination address field
507 * with the first hop of the routing header.
509 if (exthdrs.ip6e_rthdr) {
510 struct ip6_rthdr *rh;
511 struct ip6_rthdr0 *rh0;
512 struct in6_addr *addr;
513 struct sockaddr_in6 sa;
515 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
516 struct ip6_rthdr *));
517 finaldst = ip6->ip6_dst;
518 switch (rh->ip6r_type) {
519 case IPV6_RTHDR_TYPE_0:
520 rh0 = (struct ip6_rthdr0 *)rh;
521 addr = (struct in6_addr *)(rh0 + 1);
524 * construct a sockaddr_in6 form of
525 * the first hop.
527 * XXX: we may not have enough
528 * information about its scope zone;
529 * there is no standard API to pass
530 * the information from the
531 * application.
533 sockaddr_in6_init(&sa, addr, 0, 0, 0);
534 if ((error = sa6_embedscope(&sa,
535 ip6_use_defzone)) != 0) {
536 goto bad;
538 ip6->ip6_dst = sa.sin6_addr;
539 (void)memmove(&addr[0], &addr[1],
540 sizeof(struct in6_addr) *
541 (rh0->ip6r0_segleft - 1));
542 addr[rh0->ip6r0_segleft - 1] = finaldst;
543 /* XXX */
544 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
545 break;
546 default: /* is it possible? */
547 error = EINVAL;
548 goto bad;
552 /* Source address validation */
553 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
554 (flags & IPV6_UNSPECSRC) == 0) {
555 error = EOPNOTSUPP;
556 IP6_STATINC(IP6_STAT_BADSCOPE);
557 goto bad;
559 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
560 error = EOPNOTSUPP;
561 IP6_STATINC(IP6_STAT_BADSCOPE);
562 goto bad;
565 IP6_STATINC(IP6_STAT_LOCALOUT);
568 * Route packet.
570 /* initialize cached route */
571 if (ro == NULL) {
572 ro = &ip6route;
574 ro_pmtu = ro;
575 if (opt && opt->ip6po_rthdr)
576 ro = &opt->ip6po_route;
579 * if specified, try to fill in the traffic class field.
580 * do not override if a non-zero value is already set.
581 * we check the diffserv field and the ecn field separately.
583 if (opt && opt->ip6po_tclass >= 0) {
584 int mask = 0;
586 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
587 mask |= 0xfc;
588 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
589 mask |= 0x03;
590 if (mask != 0)
591 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
594 /* fill in or override the hop limit field, if necessary. */
595 if (opt && opt->ip6po_hlim != -1)
596 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
597 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
598 if (im6o != NULL)
599 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
600 else
601 ip6->ip6_hlim = ip6_defmcasthlim;
604 #ifdef IPSEC
605 if (needipsec && needipsectun) {
606 struct ipsec_output_state state;
609 * All the extension headers will become inaccessible
610 * (since they can be encrypted).
611 * Don't panic, we need no more updates to extension headers
612 * on inner IPv6 packet (since they are now encapsulated).
614 * IPv6 [ESP|AH] IPv6 [extension headers] payload
616 memset(&exthdrs, 0, sizeof(exthdrs));
617 exthdrs.ip6e_ip6 = m;
619 memset(&state, 0, sizeof(state));
620 state.m = m;
621 state.ro = ro;
622 state.dst = rtcache_getdst(ro);
624 error = ipsec6_output_tunnel(&state, sp, flags);
626 m = state.m;
627 ro_pmtu = ro = state.ro;
628 dst = satocsin6(state.dst);
629 if (error) {
630 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
631 m0 = m = NULL;
632 m = NULL;
633 switch (error) {
634 case EHOSTUNREACH:
635 case ENETUNREACH:
636 case EMSGSIZE:
637 case ENOBUFS:
638 case ENOMEM:
639 break;
640 default:
641 printf("ip6_output (ipsec): error code %d\n", error);
642 /* FALLTHROUGH */
643 case ENOENT:
644 /* don't show these error codes to the user */
645 error = 0;
646 break;
648 goto bad;
651 exthdrs.ip6e_ip6 = m;
653 #endif /* IPSEC */
654 #ifdef FAST_IPSEC
655 if (needipsec) {
656 s = splsoftnet();
657 error = ipsec6_process_packet(m,sp->req);
660 * Preserve KAME behaviour: ENOENT can be returned
661 * when an SA acquire is in progress. Don't propagate
662 * this to user-level; it confuses applications.
663 * XXX this will go away when the SADB is redone.
665 if (error == ENOENT)
666 error = 0;
667 splx(s);
668 goto done;
670 #endif /* FAST_IPSEC */
674 /* adjust pointer */
675 ip6 = mtod(m, struct ip6_hdr *);
677 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
678 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
679 &ifp, &rt, 0)) != 0) {
680 if (ifp != NULL)
681 in6_ifstat_inc(ifp, ifs6_out_discard);
682 goto bad;
684 if (rt == NULL) {
686 * If in6_selectroute() does not return a route entry,
687 * dst may not have been updated.
689 rtcache_setdst(ro, sin6tosa(&dst_sa));
693 * then rt (for unicast) and ifp must be non-NULL valid values.
695 if ((flags & IPV6_FORWARDING) == 0) {
696 /* XXX: the FORWARDING flag can be set for mrouting. */
697 in6_ifstat_inc(ifp, ifs6_out_request);
699 if (rt != NULL) {
700 ia = (struct in6_ifaddr *)(rt->rt_ifa);
701 rt->rt_use++;
705 * The outgoing interface must be in the zone of source and
706 * destination addresses. We should use ia_ifp to support the
707 * case of sending packets to an address of our own.
709 if (ia != NULL && ia->ia_ifp)
710 origifp = ia->ia_ifp;
711 else
712 origifp = ifp;
714 src0 = ip6->ip6_src;
715 if (in6_setscope(&src0, origifp, &zone))
716 goto badscope;
717 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
718 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
719 goto badscope;
721 dst0 = ip6->ip6_dst;
722 if (in6_setscope(&dst0, origifp, &zone))
723 goto badscope;
724 /* re-initialize to be sure */
725 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
726 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
727 goto badscope;
729 /* scope check is done. */
731 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
732 if (dst == NULL)
733 dst = satocsin6(rtcache_getdst(ro));
734 KASSERT(dst != NULL);
735 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
737 * The nexthop is explicitly specified by the
738 * application. We assume the next hop is an IPv6
739 * address.
741 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
742 } else if ((rt->rt_flags & RTF_GATEWAY))
743 dst = (struct sockaddr_in6 *)rt->rt_gateway;
744 else if (dst == NULL)
745 dst = satocsin6(rtcache_getdst(ro));
748 * XXXXXX: original code follows:
750 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
751 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
752 else {
753 struct in6_multi *in6m;
755 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
757 in6_ifstat_inc(ifp, ifs6_out_mcast);
760 * Confirm that the outgoing interface supports multicast.
762 if (!(ifp->if_flags & IFF_MULTICAST)) {
763 IP6_STATINC(IP6_STAT_NOROUTE);
764 in6_ifstat_inc(ifp, ifs6_out_discard);
765 error = ENETUNREACH;
766 goto bad;
769 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
770 if (in6m != NULL &&
771 (im6o == NULL || im6o->im6o_multicast_loop)) {
773 * If we belong to the destination multicast group
774 * on the outgoing interface, and the caller did not
775 * forbid loopback, loop back a copy.
777 KASSERT(dst != NULL);
778 ip6_mloopback(ifp, m, dst);
779 } else {
781 * If we are acting as a multicast router, perform
782 * multicast forwarding as if the packet had just
783 * arrived on the interface to which we are about
784 * to send. The multicast forwarding function
785 * recursively calls this function, using the
786 * IPV6_FORWARDING flag to prevent infinite recursion.
788 * Multicasts that are looped back by ip6_mloopback(),
789 * above, will be forwarded by the ip6_input() routine,
790 * if necessary.
792 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
793 if (ip6_mforward(ip6, ifp, m) != 0) {
794 m_freem(m);
795 goto done;
800 * Multicasts with a hoplimit of zero may be looped back,
801 * above, but must not be transmitted on a network.
802 * Also, multicasts addressed to the loopback interface
803 * are not sent -- the above call to ip6_mloopback() will
804 * loop back a copy if this host actually belongs to the
805 * destination group on the loopback interface.
807 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
808 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
809 m_freem(m);
810 goto done;
815 * Fill the outgoing inteface to tell the upper layer
816 * to increment per-interface statistics.
818 if (ifpp)
819 *ifpp = ifp;
821 /* Determine path MTU. */
822 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
823 &alwaysfrag)) != 0)
824 goto bad;
825 #ifdef IPSEC
826 if (needipsectun)
827 mtu = IPV6_MMTU;
828 #endif
831 * The caller of this function may specify to use the minimum MTU
832 * in some cases.
833 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
834 * setting. The logic is a bit complicated; by default, unicast
835 * packets will follow path MTU while multicast packets will be sent at
836 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
837 * including unicast ones will be sent at the minimum MTU. Multicast
838 * packets will always be sent at the minimum MTU unless
839 * IP6PO_MINMTU_DISABLE is explicitly specified.
840 * See RFC 3542 for more details.
842 if (mtu > IPV6_MMTU) {
843 if ((flags & IPV6_MINMTU))
844 mtu = IPV6_MMTU;
845 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
846 mtu = IPV6_MMTU;
847 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
848 (opt == NULL ||
849 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
850 mtu = IPV6_MMTU;
855 * clear embedded scope identifiers if necessary.
856 * in6_clearscope will touch the addresses only when necessary.
858 in6_clearscope(&ip6->ip6_src);
859 in6_clearscope(&ip6->ip6_dst);
862 * If the outgoing packet contains a hop-by-hop options header,
863 * it must be examined and processed even by the source node.
864 * (RFC 2460, section 4.)
866 if (exthdrs.ip6e_hbh) {
867 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
868 u_int32_t dummy1; /* XXX unused */
869 u_int32_t dummy2; /* XXX unused */
872 * XXX: if we have to send an ICMPv6 error to the sender,
873 * we need the M_LOOP flag since icmp6_error() expects
874 * the IPv6 and the hop-by-hop options header are
875 * continuous unless the flag is set.
877 m->m_flags |= M_LOOP;
878 m->m_pkthdr.rcvif = ifp;
879 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
880 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
881 &dummy1, &dummy2) < 0) {
882 /* m was already freed at this point */
883 error = EINVAL;/* better error? */
884 goto done;
886 m->m_flags &= ~M_LOOP; /* XXX */
887 m->m_pkthdr.rcvif = NULL;
890 #ifdef PFIL_HOOKS
892 * Run through list of hooks for output packets.
894 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
895 goto done;
896 if (m == NULL)
897 goto done;
898 ip6 = mtod(m, struct ip6_hdr *);
899 #endif /* PFIL_HOOKS */
901 * Send the packet to the outgoing interface.
902 * If necessary, do IPv6 fragmentation before sending.
904 * the logic here is rather complex:
905 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
906 * 1-a: send as is if tlen <= path mtu
907 * 1-b: fragment if tlen > path mtu
909 * 2: if user asks us not to fragment (dontfrag == 1)
910 * 2-a: send as is if tlen <= interface mtu
911 * 2-b: error if tlen > interface mtu
913 * 3: if we always need to attach fragment header (alwaysfrag == 1)
914 * always fragment
916 * 4: if dontfrag == 1 && alwaysfrag == 1
917 * error, as we cannot handle this conflicting request
919 tlen = m->m_pkthdr.len;
920 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
921 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
922 dontfrag = 1;
923 else
924 dontfrag = 0;
926 if (dontfrag && alwaysfrag) { /* case 4 */
927 /* conflicting request - can't transmit */
928 error = EMSGSIZE;
929 goto bad;
931 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
933 * Even if the DONTFRAG option is specified, we cannot send the
934 * packet when the data length is larger than the MTU of the
935 * outgoing interface.
936 * Notify the error by sending IPV6_PATHMTU ancillary data as
937 * well as returning an error code (the latter is not described
938 * in the API spec.)
940 u_int32_t mtu32;
941 struct ip6ctlparam ip6cp;
943 mtu32 = (u_int32_t)mtu;
944 memset(&ip6cp, 0, sizeof(ip6cp));
945 ip6cp.ip6c_cmdarg = (void *)&mtu32;
946 pfctlinput2(PRC_MSGSIZE,
947 rtcache_getdst(ro_pmtu), &ip6cp);
949 error = EMSGSIZE;
950 goto bad;
954 * transmit packet without fragmentation
956 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
957 /* case 1-a and 2-a */
958 struct in6_ifaddr *ia6;
959 int sw_csum;
961 ip6 = mtod(m, struct ip6_hdr *);
962 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
963 if (ia6) {
964 /* Record statistics for this interface address. */
965 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
967 #ifdef IPSEC
968 /* clean ipsec history once it goes out of the node */
969 ipsec_delaux(m);
970 #endif
972 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
973 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
974 if (IN6_NEED_CHECKSUM(ifp,
975 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
976 in6_delayed_cksum(m);
978 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
981 KASSERT(dst != NULL);
982 if (__predict_true(!tso ||
983 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
984 error = nd6_output(ifp, origifp, m, dst, rt);
985 } else {
986 error = ip6_tso_output(ifp, origifp, m, dst, rt);
988 goto done;
991 if (tso) {
992 error = EINVAL; /* XXX */
993 goto bad;
997 * try to fragment the packet. case 1-b and 3
999 if (mtu < IPV6_MMTU) {
1000 /* path MTU cannot be less than IPV6_MMTU */
1001 error = EMSGSIZE;
1002 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1003 goto bad;
1004 } else if (ip6->ip6_plen == 0) {
1005 /* jumbo payload cannot be fragmented */
1006 error = EMSGSIZE;
1007 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1008 goto bad;
1009 } else {
1010 struct mbuf **mnext, *m_frgpart;
1011 struct ip6_frag *ip6f;
1012 u_int32_t id = htonl(ip6_randomid());
1013 u_char nextproto;
1014 #if 0 /* see below */
1015 struct ip6ctlparam ip6cp;
1016 u_int32_t mtu32;
1017 #endif
1020 * Too large for the destination or interface;
1021 * fragment if possible.
1022 * Must be able to put at least 8 bytes per fragment.
1024 hlen = unfragpartlen;
1025 if (mtu > IPV6_MAXPACKET)
1026 mtu = IPV6_MAXPACKET;
1028 #if 0
1030 * It is believed this code is a leftover from the
1031 * development of the IPV6_RECVPATHMTU sockopt and
1032 * associated work to implement RFC3542.
1033 * It's not entirely clear what the intent of the API
1034 * is at this point, so disable this code for now.
1035 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1036 * will send notifications if the application requests.
1039 /* Notify a proper path MTU to applications. */
1040 mtu32 = (u_int32_t)mtu;
1041 memset(&ip6cp, 0, sizeof(ip6cp));
1042 ip6cp.ip6c_cmdarg = (void *)&mtu32;
1043 pfctlinput2(PRC_MSGSIZE,
1044 rtcache_getdst(ro_pmtu), &ip6cp);
1045 #endif
1047 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1048 if (len < 8) {
1049 error = EMSGSIZE;
1050 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1051 goto bad;
1054 mnext = &m->m_nextpkt;
1057 * Change the next header field of the last header in the
1058 * unfragmentable part.
1060 if (exthdrs.ip6e_rthdr) {
1061 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1062 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1063 } else if (exthdrs.ip6e_dest1) {
1064 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1065 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1066 } else if (exthdrs.ip6e_hbh) {
1067 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1068 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1069 } else {
1070 nextproto = ip6->ip6_nxt;
1071 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1074 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1075 != 0) {
1076 if (IN6_NEED_CHECKSUM(ifp,
1077 m->m_pkthdr.csum_flags &
1078 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1079 in6_delayed_cksum(m);
1081 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1085 * Loop through length of segment after first fragment,
1086 * make new header and copy data of each part and link onto
1087 * chain.
1089 m0 = m;
1090 for (off = hlen; off < tlen; off += len) {
1091 struct mbuf *mlast;
1093 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1094 if (!m) {
1095 error = ENOBUFS;
1096 IP6_STATINC(IP6_STAT_ODROPPED);
1097 goto sendorfree;
1099 m->m_pkthdr.rcvif = NULL;
1100 m->m_flags = m0->m_flags & M_COPYFLAGS;
1101 *mnext = m;
1102 mnext = &m->m_nextpkt;
1103 m->m_data += max_linkhdr;
1104 mhip6 = mtod(m, struct ip6_hdr *);
1105 *mhip6 = *ip6;
1106 m->m_len = sizeof(*mhip6);
1107 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1108 if (error) {
1109 IP6_STATINC(IP6_STAT_ODROPPED);
1110 goto sendorfree;
1112 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1113 if (off + len >= tlen)
1114 len = tlen - off;
1115 else
1116 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1117 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1118 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1119 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1120 error = ENOBUFS;
1121 IP6_STATINC(IP6_STAT_ODROPPED);
1122 goto sendorfree;
1124 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1126 mlast->m_next = m_frgpart;
1127 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1128 m->m_pkthdr.rcvif = (struct ifnet *)0;
1129 ip6f->ip6f_reserved = 0;
1130 ip6f->ip6f_ident = id;
1131 ip6f->ip6f_nxt = nextproto;
1132 IP6_STATINC(IP6_STAT_OFRAGMENTS);
1133 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1136 in6_ifstat_inc(ifp, ifs6_out_fragok);
1140 * Remove leading garbages.
1142 sendorfree:
1143 m = m0->m_nextpkt;
1144 m0->m_nextpkt = 0;
1145 m_freem(m0);
1146 for (m0 = m; m; m = m0) {
1147 m0 = m->m_nextpkt;
1148 m->m_nextpkt = 0;
1149 if (error == 0) {
1150 struct in6_ifaddr *ia6;
1151 ip6 = mtod(m, struct ip6_hdr *);
1152 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1153 if (ia6) {
1155 * Record statistics for this interface
1156 * address.
1158 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1159 m->m_pkthdr.len;
1161 #ifdef IPSEC
1162 /* clean ipsec history once it goes out of the node */
1163 ipsec_delaux(m);
1164 #endif
1165 KASSERT(dst != NULL);
1166 error = nd6_output(ifp, origifp, m, dst, rt);
1167 } else
1168 m_freem(m);
1171 if (error == 0)
1172 IP6_STATINC(IP6_STAT_FRAGMENTED);
1174 done:
1175 rtcache_free(&ip6route);
1177 #ifdef IPSEC
1178 if (sp != NULL)
1179 key_freesp(sp);
1180 #endif /* IPSEC */
1181 #ifdef FAST_IPSEC
1182 if (sp != NULL)
1183 KEY_FREESP(&sp);
1184 #endif /* FAST_IPSEC */
1187 return (error);
1189 freehdrs:
1190 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1191 m_freem(exthdrs.ip6e_dest1);
1192 m_freem(exthdrs.ip6e_rthdr);
1193 m_freem(exthdrs.ip6e_dest2);
1194 /* FALLTHROUGH */
1195 bad:
1196 m_freem(m);
1197 goto done;
1198 badscope:
1199 IP6_STATINC(IP6_STAT_BADSCOPE);
1200 in6_ifstat_inc(origifp, ifs6_out_discard);
1201 if (error == 0)
1202 error = EHOSTUNREACH; /* XXX */
1203 goto bad;
1206 static int
1207 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1209 struct mbuf *m;
1211 if (hlen > MCLBYTES)
1212 return (ENOBUFS); /* XXX */
1214 MGET(m, M_DONTWAIT, MT_DATA);
1215 if (!m)
1216 return (ENOBUFS);
1218 if (hlen > MLEN) {
1219 MCLGET(m, M_DONTWAIT);
1220 if ((m->m_flags & M_EXT) == 0) {
1221 m_free(m);
1222 return (ENOBUFS);
1225 m->m_len = hlen;
1226 if (hdr)
1227 bcopy(hdr, mtod(m, void *), hlen);
1229 *mp = m;
1230 return (0);
1234 * Process a delayed payload checksum calculation.
1236 void
1237 in6_delayed_cksum(struct mbuf *m)
1239 uint16_t csum, offset;
1241 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1242 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1243 KASSERT((m->m_pkthdr.csum_flags
1244 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1246 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1247 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1248 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1249 csum = 0xffff;
1252 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1253 if ((offset + sizeof(csum)) > m->m_len) {
1254 m_copyback(m, offset, sizeof(csum), &csum);
1255 } else {
1256 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1261 * Insert jumbo payload option.
1263 static int
1264 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1266 struct mbuf *mopt;
1267 u_int8_t *optbuf;
1268 u_int32_t v;
1270 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1273 * If there is no hop-by-hop options header, allocate new one.
1274 * If there is one but it doesn't have enough space to store the
1275 * jumbo payload option, allocate a cluster to store the whole options.
1276 * Otherwise, use it to store the options.
1278 if (exthdrs->ip6e_hbh == 0) {
1279 MGET(mopt, M_DONTWAIT, MT_DATA);
1280 if (mopt == 0)
1281 return (ENOBUFS);
1282 mopt->m_len = JUMBOOPTLEN;
1283 optbuf = mtod(mopt, u_int8_t *);
1284 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1285 exthdrs->ip6e_hbh = mopt;
1286 } else {
1287 struct ip6_hbh *hbh;
1289 mopt = exthdrs->ip6e_hbh;
1290 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1292 * XXX assumption:
1293 * - exthdrs->ip6e_hbh is not referenced from places
1294 * other than exthdrs.
1295 * - exthdrs->ip6e_hbh is not an mbuf chain.
1297 int oldoptlen = mopt->m_len;
1298 struct mbuf *n;
1301 * XXX: give up if the whole (new) hbh header does
1302 * not fit even in an mbuf cluster.
1304 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1305 return (ENOBUFS);
1308 * As a consequence, we must always prepare a cluster
1309 * at this point.
1311 MGET(n, M_DONTWAIT, MT_DATA);
1312 if (n) {
1313 MCLGET(n, M_DONTWAIT);
1314 if ((n->m_flags & M_EXT) == 0) {
1315 m_freem(n);
1316 n = NULL;
1319 if (!n)
1320 return (ENOBUFS);
1321 n->m_len = oldoptlen + JUMBOOPTLEN;
1322 bcopy(mtod(mopt, void *), mtod(n, void *),
1323 oldoptlen);
1324 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1325 m_freem(mopt);
1326 mopt = exthdrs->ip6e_hbh = n;
1327 } else {
1328 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1329 mopt->m_len += JUMBOOPTLEN;
1331 optbuf[0] = IP6OPT_PADN;
1332 optbuf[1] = 0;
1335 * Adjust the header length according to the pad and
1336 * the jumbo payload option.
1338 hbh = mtod(mopt, struct ip6_hbh *);
1339 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1342 /* fill in the option. */
1343 optbuf[2] = IP6OPT_JUMBO;
1344 optbuf[3] = 4;
1345 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1346 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1348 /* finally, adjust the packet header length */
1349 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1351 return (0);
1352 #undef JUMBOOPTLEN
1356 * Insert fragment header and copy unfragmentable header portions.
1358 static int
1359 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1360 struct ip6_frag **frghdrp)
1362 struct mbuf *n, *mlast;
1364 if (hlen > sizeof(struct ip6_hdr)) {
1365 n = m_copym(m0, sizeof(struct ip6_hdr),
1366 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1367 if (n == 0)
1368 return (ENOBUFS);
1369 m->m_next = n;
1370 } else
1371 n = m;
1373 /* Search for the last mbuf of unfragmentable part. */
1374 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1377 if ((mlast->m_flags & M_EXT) == 0 &&
1378 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1379 /* use the trailing space of the last mbuf for the fragment hdr */
1380 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1381 mlast->m_len);
1382 mlast->m_len += sizeof(struct ip6_frag);
1383 m->m_pkthdr.len += sizeof(struct ip6_frag);
1384 } else {
1385 /* allocate a new mbuf for the fragment header */
1386 struct mbuf *mfrg;
1388 MGET(mfrg, M_DONTWAIT, MT_DATA);
1389 if (mfrg == 0)
1390 return (ENOBUFS);
1391 mfrg->m_len = sizeof(struct ip6_frag);
1392 *frghdrp = mtod(mfrg, struct ip6_frag *);
1393 mlast->m_next = mfrg;
1396 return (0);
1399 static int
1400 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1401 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1403 struct rtentry *rt;
1404 u_int32_t mtu = 0;
1405 int alwaysfrag = 0;
1406 int error = 0;
1408 if (ro_pmtu != ro) {
1409 union {
1410 struct sockaddr dst;
1411 struct sockaddr_in6 dst6;
1412 } u;
1414 /* The first hop and the final destination may differ. */
1415 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1416 rt = rtcache_lookup(ro_pmtu, &u.dst);
1417 } else
1418 rt = rtcache_validate(ro_pmtu);
1419 if (rt != NULL) {
1420 u_int32_t ifmtu;
1422 if (ifp == NULL)
1423 ifp = rt->rt_ifp;
1424 ifmtu = IN6_LINKMTU(ifp);
1425 mtu = rt->rt_rmx.rmx_mtu;
1426 if (mtu == 0)
1427 mtu = ifmtu;
1428 else if (mtu < IPV6_MMTU) {
1430 * RFC2460 section 5, last paragraph:
1431 * if we record ICMPv6 too big message with
1432 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1433 * or smaller, with fragment header attached.
1434 * (fragment header is needed regardless from the
1435 * packet size, for translators to identify packets)
1437 alwaysfrag = 1;
1438 mtu = IPV6_MMTU;
1439 } else if (mtu > ifmtu) {
1441 * The MTU on the route is larger than the MTU on
1442 * the interface! This shouldn't happen, unless the
1443 * MTU of the interface has been changed after the
1444 * interface was brought up. Change the MTU in the
1445 * route to match the interface MTU (as long as the
1446 * field isn't locked).
1448 mtu = ifmtu;
1449 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1450 rt->rt_rmx.rmx_mtu = mtu;
1452 } else if (ifp) {
1453 mtu = IN6_LINKMTU(ifp);
1454 } else
1455 error = EHOSTUNREACH; /* XXX */
1457 *mtup = mtu;
1458 if (alwaysfragp)
1459 *alwaysfragp = alwaysfrag;
1460 return (error);
1464 * IP6 socket option processing.
1467 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1469 int optdatalen, uproto;
1470 void *optdata;
1471 struct in6pcb *in6p = sotoin6pcb(so);
1472 int error, optval;
1473 int level, optname;
1475 KASSERT(sopt != NULL);
1477 level = sopt->sopt_level;
1478 optname = sopt->sopt_name;
1480 error = optval = 0;
1481 uproto = (int)so->so_proto->pr_protocol;
1483 if (level != IPPROTO_IPV6) {
1484 return ENOPROTOOPT;
1486 switch (op) {
1487 case PRCO_SETOPT:
1488 switch (optname) {
1489 #ifdef RFC2292
1490 case IPV6_2292PKTOPTIONS:
1491 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1492 break;
1493 #endif
1496 * Use of some Hop-by-Hop options or some
1497 * Destination options, might require special
1498 * privilege. That is, normal applications
1499 * (without special privilege) might be forbidden
1500 * from setting certain options in outgoing packets,
1501 * and might never see certain options in received
1502 * packets. [RFC 2292 Section 6]
1503 * KAME specific note:
1504 * KAME prevents non-privileged users from sending or
1505 * receiving ANY hbh/dst options in order to avoid
1506 * overhead of parsing options in the kernel.
1508 case IPV6_RECVHOPOPTS:
1509 case IPV6_RECVDSTOPTS:
1510 case IPV6_RECVRTHDRDSTOPTS:
1511 error = kauth_authorize_generic(kauth_cred_get(),
1512 KAUTH_GENERIC_ISSUSER, NULL);
1513 if (error)
1514 break;
1515 /* FALLTHROUGH */
1516 case IPV6_UNICAST_HOPS:
1517 case IPV6_HOPLIMIT:
1518 case IPV6_FAITH:
1520 case IPV6_RECVPKTINFO:
1521 case IPV6_RECVHOPLIMIT:
1522 case IPV6_RECVRTHDR:
1523 case IPV6_RECVPATHMTU:
1524 case IPV6_RECVTCLASS:
1525 case IPV6_V6ONLY:
1526 error = sockopt_getint(sopt, &optval);
1527 if (error)
1528 break;
1529 switch (optname) {
1530 case IPV6_UNICAST_HOPS:
1531 if (optval < -1 || optval >= 256)
1532 error = EINVAL;
1533 else {
1534 /* -1 = kernel default */
1535 in6p->in6p_hops = optval;
1537 break;
1538 #define OPTSET(bit) \
1539 do { \
1540 if (optval) \
1541 in6p->in6p_flags |= (bit); \
1542 else \
1543 in6p->in6p_flags &= ~(bit); \
1544 } while (/*CONSTCOND*/ 0)
1546 #ifdef RFC2292
1547 #define OPTSET2292(bit) \
1548 do { \
1549 in6p->in6p_flags |= IN6P_RFC2292; \
1550 if (optval) \
1551 in6p->in6p_flags |= (bit); \
1552 else \
1553 in6p->in6p_flags &= ~(bit); \
1554 } while (/*CONSTCOND*/ 0)
1555 #endif
1557 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1559 case IPV6_RECVPKTINFO:
1560 #ifdef RFC2292
1561 /* cannot mix with RFC2292 */
1562 if (OPTBIT(IN6P_RFC2292)) {
1563 error = EINVAL;
1564 break;
1566 #endif
1567 OPTSET(IN6P_PKTINFO);
1568 break;
1570 case IPV6_HOPLIMIT:
1572 struct ip6_pktopts **optp;
1574 #ifdef RFC2292
1575 /* cannot mix with RFC2292 */
1576 if (OPTBIT(IN6P_RFC2292)) {
1577 error = EINVAL;
1578 break;
1580 #endif
1581 optp = &in6p->in6p_outputopts;
1582 error = ip6_pcbopt(IPV6_HOPLIMIT,
1583 (u_char *)&optval,
1584 sizeof(optval),
1585 optp,
1586 kauth_cred_get(), uproto);
1587 break;
1590 case IPV6_RECVHOPLIMIT:
1591 #ifdef RFC2292
1592 /* cannot mix with RFC2292 */
1593 if (OPTBIT(IN6P_RFC2292)) {
1594 error = EINVAL;
1595 break;
1597 #endif
1598 OPTSET(IN6P_HOPLIMIT);
1599 break;
1601 case IPV6_RECVHOPOPTS:
1602 #ifdef RFC2292
1603 /* cannot mix with RFC2292 */
1604 if (OPTBIT(IN6P_RFC2292)) {
1605 error = EINVAL;
1606 break;
1608 #endif
1609 OPTSET(IN6P_HOPOPTS);
1610 break;
1612 case IPV6_RECVDSTOPTS:
1613 #ifdef RFC2292
1614 /* cannot mix with RFC2292 */
1615 if (OPTBIT(IN6P_RFC2292)) {
1616 error = EINVAL;
1617 break;
1619 #endif
1620 OPTSET(IN6P_DSTOPTS);
1621 break;
1623 case IPV6_RECVRTHDRDSTOPTS:
1624 #ifdef RFC2292
1625 /* cannot mix with RFC2292 */
1626 if (OPTBIT(IN6P_RFC2292)) {
1627 error = EINVAL;
1628 break;
1630 #endif
1631 OPTSET(IN6P_RTHDRDSTOPTS);
1632 break;
1634 case IPV6_RECVRTHDR:
1635 #ifdef RFC2292
1636 /* cannot mix with RFC2292 */
1637 if (OPTBIT(IN6P_RFC2292)) {
1638 error = EINVAL;
1639 break;
1641 #endif
1642 OPTSET(IN6P_RTHDR);
1643 break;
1645 case IPV6_FAITH:
1646 OPTSET(IN6P_FAITH);
1647 break;
1649 case IPV6_RECVPATHMTU:
1651 * We ignore this option for TCP
1652 * sockets.
1653 * (RFC3542 leaves this case
1654 * unspecified.)
1656 if (uproto != IPPROTO_TCP)
1657 OPTSET(IN6P_MTU);
1658 break;
1660 case IPV6_V6ONLY:
1662 * make setsockopt(IPV6_V6ONLY)
1663 * available only prior to bind(2).
1664 * see ipng mailing list, Jun 22 2001.
1666 if (in6p->in6p_lport ||
1667 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1668 error = EINVAL;
1669 break;
1671 #ifdef INET6_BINDV6ONLY
1672 if (!optval)
1673 error = EINVAL;
1674 #else
1675 OPTSET(IN6P_IPV6_V6ONLY);
1676 #endif
1677 break;
1678 case IPV6_RECVTCLASS:
1679 #ifdef RFC2292
1680 /* cannot mix with RFC2292 XXX */
1681 if (OPTBIT(IN6P_RFC2292)) {
1682 error = EINVAL;
1683 break;
1685 #endif
1686 OPTSET(IN6P_TCLASS);
1687 break;
1690 break;
1692 case IPV6_OTCLASS:
1694 struct ip6_pktopts **optp;
1695 u_int8_t tclass;
1697 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1698 if (error)
1699 break;
1700 optp = &in6p->in6p_outputopts;
1701 error = ip6_pcbopt(optname,
1702 (u_char *)&tclass,
1703 sizeof(tclass),
1704 optp,
1705 kauth_cred_get(), uproto);
1706 break;
1709 case IPV6_TCLASS:
1710 case IPV6_DONTFRAG:
1711 case IPV6_USE_MIN_MTU:
1712 error = sockopt_getint(sopt, &optval);
1713 if (error)
1714 break;
1716 struct ip6_pktopts **optp;
1717 optp = &in6p->in6p_outputopts;
1718 error = ip6_pcbopt(optname,
1719 (u_char *)&optval,
1720 sizeof(optval),
1721 optp,
1722 kauth_cred_get(), uproto);
1723 break;
1726 #ifdef RFC2292
1727 case IPV6_2292PKTINFO:
1728 case IPV6_2292HOPLIMIT:
1729 case IPV6_2292HOPOPTS:
1730 case IPV6_2292DSTOPTS:
1731 case IPV6_2292RTHDR:
1732 /* RFC 2292 */
1733 error = sockopt_getint(sopt, &optval);
1734 if (error)
1735 break;
1737 switch (optname) {
1738 case IPV6_2292PKTINFO:
1739 OPTSET2292(IN6P_PKTINFO);
1740 break;
1741 case IPV6_2292HOPLIMIT:
1742 OPTSET2292(IN6P_HOPLIMIT);
1743 break;
1744 case IPV6_2292HOPOPTS:
1746 * Check super-user privilege.
1747 * See comments for IPV6_RECVHOPOPTS.
1749 error =
1750 kauth_authorize_generic(kauth_cred_get(),
1751 KAUTH_GENERIC_ISSUSER, NULL);
1752 if (error)
1753 return (error);
1754 OPTSET2292(IN6P_HOPOPTS);
1755 break;
1756 case IPV6_2292DSTOPTS:
1757 error =
1758 kauth_authorize_generic(kauth_cred_get(),
1759 KAUTH_GENERIC_ISSUSER, NULL);
1760 if (error)
1761 return (error);
1762 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1763 break;
1764 case IPV6_2292RTHDR:
1765 OPTSET2292(IN6P_RTHDR);
1766 break;
1768 break;
1769 #endif
1770 case IPV6_PKTINFO:
1771 case IPV6_HOPOPTS:
1772 case IPV6_RTHDR:
1773 case IPV6_DSTOPTS:
1774 case IPV6_RTHDRDSTOPTS:
1775 case IPV6_NEXTHOP: {
1776 /* new advanced API (RFC3542) */
1777 void *optbuf;
1778 int optbuflen;
1779 struct ip6_pktopts **optp;
1781 #ifdef RFC2292
1782 /* cannot mix with RFC2292 */
1783 if (OPTBIT(IN6P_RFC2292)) {
1784 error = EINVAL;
1785 break;
1787 #endif
1789 optbuflen = sopt->sopt_size;
1790 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1791 if (optbuf == NULL) {
1792 error = ENOBUFS;
1793 break;
1796 sockopt_get(sopt, optbuf, optbuflen);
1797 optp = &in6p->in6p_outputopts;
1798 error = ip6_pcbopt(optname, optbuf, optbuflen,
1799 optp, kauth_cred_get(), uproto);
1800 break;
1802 #undef OPTSET
1804 case IPV6_MULTICAST_IF:
1805 case IPV6_MULTICAST_HOPS:
1806 case IPV6_MULTICAST_LOOP:
1807 case IPV6_JOIN_GROUP:
1808 case IPV6_LEAVE_GROUP:
1809 error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1810 break;
1812 case IPV6_PORTRANGE:
1813 error = sockopt_getint(sopt, &optval);
1814 if (error)
1815 break;
1817 switch (optval) {
1818 case IPV6_PORTRANGE_DEFAULT:
1819 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1820 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1821 break;
1823 case IPV6_PORTRANGE_HIGH:
1824 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1825 in6p->in6p_flags |= IN6P_HIGHPORT;
1826 break;
1828 case IPV6_PORTRANGE_LOW:
1829 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1830 in6p->in6p_flags |= IN6P_LOWPORT;
1831 break;
1833 default:
1834 error = EINVAL;
1835 break;
1837 break;
1840 #if defined(IPSEC) || defined(FAST_IPSEC)
1841 case IPV6_IPSEC_POLICY:
1842 error = ipsec6_set_policy(in6p, optname,
1843 sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
1844 break;
1845 #endif /* IPSEC */
1847 default:
1848 error = ENOPROTOOPT;
1849 break;
1851 break;
1853 case PRCO_GETOPT:
1854 switch (optname) {
1855 #ifdef RFC2292
1856 case IPV6_2292PKTOPTIONS:
1858 * RFC3542 (effectively) deprecated the
1859 * semantics of the 2292-style pktoptions.
1860 * Since it was not reliable in nature (i.e.,
1861 * applications had to expect the lack of some
1862 * information after all), it would make sense
1863 * to simplify this part by always returning
1864 * empty data.
1866 break;
1867 #endif
1869 case IPV6_RECVHOPOPTS:
1870 case IPV6_RECVDSTOPTS:
1871 case IPV6_RECVRTHDRDSTOPTS:
1872 case IPV6_UNICAST_HOPS:
1873 case IPV6_RECVPKTINFO:
1874 case IPV6_RECVHOPLIMIT:
1875 case IPV6_RECVRTHDR:
1876 case IPV6_RECVPATHMTU:
1878 case IPV6_FAITH:
1879 case IPV6_V6ONLY:
1880 case IPV6_PORTRANGE:
1881 case IPV6_RECVTCLASS:
1882 switch (optname) {
1884 case IPV6_RECVHOPOPTS:
1885 optval = OPTBIT(IN6P_HOPOPTS);
1886 break;
1888 case IPV6_RECVDSTOPTS:
1889 optval = OPTBIT(IN6P_DSTOPTS);
1890 break;
1892 case IPV6_RECVRTHDRDSTOPTS:
1893 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1894 break;
1896 case IPV6_UNICAST_HOPS:
1897 optval = in6p->in6p_hops;
1898 break;
1900 case IPV6_RECVPKTINFO:
1901 optval = OPTBIT(IN6P_PKTINFO);
1902 break;
1904 case IPV6_RECVHOPLIMIT:
1905 optval = OPTBIT(IN6P_HOPLIMIT);
1906 break;
1908 case IPV6_RECVRTHDR:
1909 optval = OPTBIT(IN6P_RTHDR);
1910 break;
1912 case IPV6_RECVPATHMTU:
1913 optval = OPTBIT(IN6P_MTU);
1914 break;
1916 case IPV6_FAITH:
1917 optval = OPTBIT(IN6P_FAITH);
1918 break;
1920 case IPV6_V6ONLY:
1921 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1922 break;
1924 case IPV6_PORTRANGE:
1926 int flags;
1927 flags = in6p->in6p_flags;
1928 if (flags & IN6P_HIGHPORT)
1929 optval = IPV6_PORTRANGE_HIGH;
1930 else if (flags & IN6P_LOWPORT)
1931 optval = IPV6_PORTRANGE_LOW;
1932 else
1933 optval = 0;
1934 break;
1936 case IPV6_RECVTCLASS:
1937 optval = OPTBIT(IN6P_TCLASS);
1938 break;
1941 if (error)
1942 break;
1943 error = sockopt_setint(sopt, optval);
1944 break;
1946 case IPV6_PATHMTU:
1948 u_long pmtu = 0;
1949 struct ip6_mtuinfo mtuinfo;
1950 struct route *ro = &in6p->in6p_route;
1952 if (!(so->so_state & SS_ISCONNECTED))
1953 return (ENOTCONN);
1955 * XXX: we dot not consider the case of source
1956 * routing, or optional information to specify
1957 * the outgoing interface.
1959 error = ip6_getpmtu(ro, NULL, NULL,
1960 &in6p->in6p_faddr, &pmtu, NULL);
1961 if (error)
1962 break;
1963 if (pmtu > IPV6_MAXPACKET)
1964 pmtu = IPV6_MAXPACKET;
1966 memset(&mtuinfo, 0, sizeof(mtuinfo));
1967 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1968 optdata = (void *)&mtuinfo;
1969 optdatalen = sizeof(mtuinfo);
1970 if (optdatalen > MCLBYTES)
1971 return (EMSGSIZE); /* XXX */
1972 error = sockopt_set(sopt, optdata, optdatalen);
1973 break;
1976 #ifdef RFC2292
1977 case IPV6_2292PKTINFO:
1978 case IPV6_2292HOPLIMIT:
1979 case IPV6_2292HOPOPTS:
1980 case IPV6_2292RTHDR:
1981 case IPV6_2292DSTOPTS:
1982 switch (optname) {
1983 case IPV6_2292PKTINFO:
1984 optval = OPTBIT(IN6P_PKTINFO);
1985 break;
1986 case IPV6_2292HOPLIMIT:
1987 optval = OPTBIT(IN6P_HOPLIMIT);
1988 break;
1989 case IPV6_2292HOPOPTS:
1990 optval = OPTBIT(IN6P_HOPOPTS);
1991 break;
1992 case IPV6_2292RTHDR:
1993 optval = OPTBIT(IN6P_RTHDR);
1994 break;
1995 case IPV6_2292DSTOPTS:
1996 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1997 break;
1999 error = sockopt_setint(sopt, optval);
2000 break;
2001 #endif
2002 case IPV6_PKTINFO:
2003 case IPV6_HOPOPTS:
2004 case IPV6_RTHDR:
2005 case IPV6_DSTOPTS:
2006 case IPV6_RTHDRDSTOPTS:
2007 case IPV6_NEXTHOP:
2008 case IPV6_OTCLASS:
2009 case IPV6_TCLASS:
2010 case IPV6_DONTFRAG:
2011 case IPV6_USE_MIN_MTU:
2012 error = ip6_getpcbopt(in6p->in6p_outputopts,
2013 optname, sopt);
2014 break;
2016 case IPV6_MULTICAST_IF:
2017 case IPV6_MULTICAST_HOPS:
2018 case IPV6_MULTICAST_LOOP:
2019 case IPV6_JOIN_GROUP:
2020 case IPV6_LEAVE_GROUP:
2021 error = ip6_getmoptions(sopt, in6p->in6p_moptions);
2022 break;
2024 #if defined(IPSEC) || defined(FAST_IPSEC)
2025 case IPV6_IPSEC_POLICY:
2027 struct mbuf *m = NULL;
2029 /* XXX this will return EINVAL as sopt is empty */
2030 error = ipsec6_get_policy(in6p, sopt->sopt_data,
2031 sopt->sopt_size, &m);
2032 if (!error)
2033 error = sockopt_setmbuf(sopt, m);
2035 break;
2037 #endif /* IPSEC */
2039 default:
2040 error = ENOPROTOOPT;
2041 break;
2043 break;
2045 return (error);
2049 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
2051 int error = 0, optval;
2052 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2053 struct in6pcb *in6p = sotoin6pcb(so);
2054 int level, optname;
2056 KASSERT(sopt != NULL);
2058 level = sopt->sopt_level;
2059 optname = sopt->sopt_name;
2061 if (level != IPPROTO_IPV6) {
2062 return ENOPROTOOPT;
2065 switch (optname) {
2066 case IPV6_CHECKSUM:
2068 * For ICMPv6 sockets, no modification allowed for checksum
2069 * offset, permit "no change" values to help existing apps.
2071 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2072 * for an ICMPv6 socket will fail." The current
2073 * behavior does not meet RFC3542.
2075 switch (op) {
2076 case PRCO_SETOPT:
2077 error = sockopt_getint(sopt, &optval);
2078 if (error)
2079 break;
2080 if ((optval % 2) != 0) {
2081 /* the API assumes even offset values */
2082 error = EINVAL;
2083 } else if (so->so_proto->pr_protocol ==
2084 IPPROTO_ICMPV6) {
2085 if (optval != icmp6off)
2086 error = EINVAL;
2087 } else
2088 in6p->in6p_cksum = optval;
2089 break;
2091 case PRCO_GETOPT:
2092 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2093 optval = icmp6off;
2094 else
2095 optval = in6p->in6p_cksum;
2097 error = sockopt_setint(sopt, optval);
2098 break;
2100 default:
2101 error = EINVAL;
2102 break;
2104 break;
2106 default:
2107 error = ENOPROTOOPT;
2108 break;
2111 return (error);
2114 #ifdef RFC2292
2116 * Set up IP6 options in pcb for insertion in output packets or
2117 * specifying behavior of outgoing packets.
2119 static int
2120 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2121 struct sockopt *sopt)
2123 struct ip6_pktopts *opt = *pktopt;
2124 struct mbuf *m;
2125 int error = 0;
2127 /* turn off any old options. */
2128 if (opt) {
2129 #ifdef DIAGNOSTIC
2130 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2131 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2132 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2133 printf("ip6_pcbopts: all specified options are cleared.\n");
2134 #endif
2135 ip6_clearpktopts(opt, -1);
2136 } else {
2137 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2138 if (opt == NULL)
2139 return (ENOBUFS);
2141 *pktopt = NULL;
2143 if (sopt == NULL || sopt->sopt_size == 0) {
2145 * Only turning off any previous options, regardless of
2146 * whether the opt is just created or given.
2148 free(opt, M_IP6OPT);
2149 return (0);
2152 /* set options specified by user. */
2153 m = sockopt_getmbuf(sopt);
2154 if (m == NULL) {
2155 free(opt, M_IP6OPT);
2156 return (ENOBUFS);
2159 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2160 so->so_proto->pr_protocol);
2161 m_freem(m);
2162 if (error != 0) {
2163 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2164 free(opt, M_IP6OPT);
2165 return (error);
2167 *pktopt = opt;
2168 return (0);
2170 #endif
2173 * initialize ip6_pktopts. beware that there are non-zero default values in
2174 * the struct.
2176 void
2177 ip6_initpktopts(struct ip6_pktopts *opt)
2180 memset(opt, 0, sizeof(*opt));
2181 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2182 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2183 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2186 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2187 static int
2188 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2189 kauth_cred_t cred, int uproto)
2191 struct ip6_pktopts *opt;
2193 if (*pktopt == NULL) {
2194 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2195 M_NOWAIT);
2196 if (*pktopt == NULL)
2197 return (ENOBUFS);
2199 ip6_initpktopts(*pktopt);
2201 opt = *pktopt;
2203 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2206 static int
2207 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2209 void *optdata = NULL;
2210 int optdatalen = 0;
2211 struct ip6_ext *ip6e;
2212 int error = 0;
2213 struct in6_pktinfo null_pktinfo;
2214 int deftclass = 0, on;
2215 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2217 switch (optname) {
2218 case IPV6_PKTINFO:
2219 if (pktopt && pktopt->ip6po_pktinfo)
2220 optdata = (void *)pktopt->ip6po_pktinfo;
2221 else {
2222 /* XXX: we don't have to do this every time... */
2223 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2224 optdata = (void *)&null_pktinfo;
2226 optdatalen = sizeof(struct in6_pktinfo);
2227 break;
2228 case IPV6_OTCLASS:
2229 /* XXX */
2230 return (EINVAL);
2231 case IPV6_TCLASS:
2232 if (pktopt && pktopt->ip6po_tclass >= 0)
2233 optdata = (void *)&pktopt->ip6po_tclass;
2234 else
2235 optdata = (void *)&deftclass;
2236 optdatalen = sizeof(int);
2237 break;
2238 case IPV6_HOPOPTS:
2239 if (pktopt && pktopt->ip6po_hbh) {
2240 optdata = (void *)pktopt->ip6po_hbh;
2241 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2242 optdatalen = (ip6e->ip6e_len + 1) << 3;
2244 break;
2245 case IPV6_RTHDR:
2246 if (pktopt && pktopt->ip6po_rthdr) {
2247 optdata = (void *)pktopt->ip6po_rthdr;
2248 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2249 optdatalen = (ip6e->ip6e_len + 1) << 3;
2251 break;
2252 case IPV6_RTHDRDSTOPTS:
2253 if (pktopt && pktopt->ip6po_dest1) {
2254 optdata = (void *)pktopt->ip6po_dest1;
2255 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2256 optdatalen = (ip6e->ip6e_len + 1) << 3;
2258 break;
2259 case IPV6_DSTOPTS:
2260 if (pktopt && pktopt->ip6po_dest2) {
2261 optdata = (void *)pktopt->ip6po_dest2;
2262 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2263 optdatalen = (ip6e->ip6e_len + 1) << 3;
2265 break;
2266 case IPV6_NEXTHOP:
2267 if (pktopt && pktopt->ip6po_nexthop) {
2268 optdata = (void *)pktopt->ip6po_nexthop;
2269 optdatalen = pktopt->ip6po_nexthop->sa_len;
2271 break;
2272 case IPV6_USE_MIN_MTU:
2273 if (pktopt)
2274 optdata = (void *)&pktopt->ip6po_minmtu;
2275 else
2276 optdata = (void *)&defminmtu;
2277 optdatalen = sizeof(int);
2278 break;
2279 case IPV6_DONTFRAG:
2280 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2281 on = 1;
2282 else
2283 on = 0;
2284 optdata = (void *)&on;
2285 optdatalen = sizeof(on);
2286 break;
2287 default: /* should not happen */
2288 #ifdef DIAGNOSTIC
2289 panic("ip6_getpcbopt: unexpected option\n");
2290 #endif
2291 return (ENOPROTOOPT);
2294 error = sockopt_set(sopt, optdata, optdatalen);
2296 return (error);
2299 void
2300 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2302 if (optname == -1 || optname == IPV6_PKTINFO) {
2303 if (pktopt->ip6po_pktinfo)
2304 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2305 pktopt->ip6po_pktinfo = NULL;
2307 if (optname == -1 || optname == IPV6_HOPLIMIT)
2308 pktopt->ip6po_hlim = -1;
2309 if (optname == -1 || optname == IPV6_TCLASS)
2310 pktopt->ip6po_tclass = -1;
2311 if (optname == -1 || optname == IPV6_NEXTHOP) {
2312 rtcache_free(&pktopt->ip6po_nextroute);
2313 if (pktopt->ip6po_nexthop)
2314 free(pktopt->ip6po_nexthop, M_IP6OPT);
2315 pktopt->ip6po_nexthop = NULL;
2317 if (optname == -1 || optname == IPV6_HOPOPTS) {
2318 if (pktopt->ip6po_hbh)
2319 free(pktopt->ip6po_hbh, M_IP6OPT);
2320 pktopt->ip6po_hbh = NULL;
2322 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2323 if (pktopt->ip6po_dest1)
2324 free(pktopt->ip6po_dest1, M_IP6OPT);
2325 pktopt->ip6po_dest1 = NULL;
2327 if (optname == -1 || optname == IPV6_RTHDR) {
2328 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2329 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2330 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2331 rtcache_free(&pktopt->ip6po_route);
2333 if (optname == -1 || optname == IPV6_DSTOPTS) {
2334 if (pktopt->ip6po_dest2)
2335 free(pktopt->ip6po_dest2, M_IP6OPT);
2336 pktopt->ip6po_dest2 = NULL;
2340 #define PKTOPT_EXTHDRCPY(type) \
2341 do { \
2342 if (src->type) { \
2343 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2344 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2345 if (dst->type == NULL && canwait == M_NOWAIT) \
2346 goto bad; \
2347 memcpy(dst->type, src->type, hlen); \
2349 } while (/*CONSTCOND*/ 0)
2351 static int
2352 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2354 dst->ip6po_hlim = src->ip6po_hlim;
2355 dst->ip6po_tclass = src->ip6po_tclass;
2356 dst->ip6po_flags = src->ip6po_flags;
2357 if (src->ip6po_pktinfo) {
2358 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2359 M_IP6OPT, canwait);
2360 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2361 goto bad;
2362 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2364 if (src->ip6po_nexthop) {
2365 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2366 M_IP6OPT, canwait);
2367 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2368 goto bad;
2369 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2370 src->ip6po_nexthop->sa_len);
2372 PKTOPT_EXTHDRCPY(ip6po_hbh);
2373 PKTOPT_EXTHDRCPY(ip6po_dest1);
2374 PKTOPT_EXTHDRCPY(ip6po_dest2);
2375 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2376 return (0);
2378 bad:
2379 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2380 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2381 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2382 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2383 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2384 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2386 return (ENOBUFS);
2388 #undef PKTOPT_EXTHDRCPY
2390 struct ip6_pktopts *
2391 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2393 int error;
2394 struct ip6_pktopts *dst;
2396 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2397 if (dst == NULL && canwait == M_NOWAIT)
2398 return (NULL);
2399 ip6_initpktopts(dst);
2401 if ((error = copypktopts(dst, src, canwait)) != 0) {
2402 free(dst, M_IP6OPT);
2403 return (NULL);
2406 return (dst);
2409 void
2410 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2412 if (pktopt == NULL)
2413 return;
2415 ip6_clearpktopts(pktopt, -1);
2417 free(pktopt, M_IP6OPT);
2421 * Set the IP6 multicast options in response to user setsockopt().
2423 static int
2424 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2426 int error = 0;
2427 u_int loop, ifindex;
2428 struct ipv6_mreq mreq;
2429 struct ifnet *ifp;
2430 struct ip6_moptions *im6o = *im6op;
2431 struct route ro;
2432 struct in6_multi_mship *imm;
2433 struct lwp *l = curlwp; /* XXX */
2435 if (im6o == NULL) {
2437 * No multicast option buffer attached to the pcb;
2438 * allocate one and initialize to default values.
2440 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2441 if (im6o == NULL)
2442 return (ENOBUFS);
2444 *im6op = im6o;
2445 im6o->im6o_multicast_ifp = NULL;
2446 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2447 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2448 LIST_INIT(&im6o->im6o_memberships);
2451 switch (sopt->sopt_name) {
2453 case IPV6_MULTICAST_IF:
2455 * Select the interface for outgoing multicast packets.
2457 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2458 if (error != 0)
2459 break;
2461 if (ifindex != 0) {
2462 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2463 error = ENXIO; /* XXX EINVAL? */
2464 break;
2466 ifp = ifindex2ifnet[ifindex];
2467 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2468 error = EADDRNOTAVAIL;
2469 break;
2471 } else
2472 ifp = NULL;
2473 im6o->im6o_multicast_ifp = ifp;
2474 break;
2476 case IPV6_MULTICAST_HOPS:
2479 * Set the IP6 hoplimit for outgoing multicast packets.
2481 int optval;
2483 error = sockopt_getint(sopt, &optval);
2484 if (error != 0)
2485 break;
2487 if (optval < -1 || optval >= 256)
2488 error = EINVAL;
2489 else if (optval == -1)
2490 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2491 else
2492 im6o->im6o_multicast_hlim = optval;
2493 break;
2496 case IPV6_MULTICAST_LOOP:
2498 * Set the loopback flag for outgoing multicast packets.
2499 * Must be zero or one.
2501 error = sockopt_get(sopt, &loop, sizeof(loop));
2502 if (error != 0)
2503 break;
2504 if (loop > 1) {
2505 error = EINVAL;
2506 break;
2508 im6o->im6o_multicast_loop = loop;
2509 break;
2511 case IPV6_JOIN_GROUP:
2513 * Add a multicast group membership.
2514 * Group must be a valid IP6 multicast address.
2516 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2517 if (error != 0)
2518 break;
2520 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2522 * We use the unspecified address to specify to accept
2523 * all multicast addresses. Only super user is allowed
2524 * to do this.
2526 if (kauth_authorize_generic(l->l_cred,
2527 KAUTH_GENERIC_ISSUSER, NULL))
2529 error = EACCES;
2530 break;
2532 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2533 error = EINVAL;
2534 break;
2538 * If no interface was explicitly specified, choose an
2539 * appropriate one according to the given multicast address.
2541 if (mreq.ipv6mr_interface == 0) {
2542 struct rtentry *rt;
2543 union {
2544 struct sockaddr dst;
2545 struct sockaddr_in6 dst6;
2546 } u;
2549 * Look up the routing table for the
2550 * address, and choose the outgoing interface.
2551 * XXX: is it a good approach?
2553 memset(&ro, 0, sizeof(ro));
2554 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2555 0, 0);
2556 rtcache_setdst(&ro, &u.dst);
2557 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2558 : NULL;
2559 rtcache_free(&ro);
2560 } else {
2562 * If the interface is specified, validate it.
2564 if (if_indexlim <= mreq.ipv6mr_interface ||
2565 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2566 error = ENXIO; /* XXX EINVAL? */
2567 break;
2569 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2573 * See if we found an interface, and confirm that it
2574 * supports multicast
2576 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2577 error = EADDRNOTAVAIL;
2578 break;
2581 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2582 error = EADDRNOTAVAIL; /* XXX: should not happen */
2583 break;
2587 * See if the membership already exists.
2589 for (imm = im6o->im6o_memberships.lh_first;
2590 imm != NULL; imm = imm->i6mm_chain.le_next)
2591 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2592 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2593 &mreq.ipv6mr_multiaddr))
2594 break;
2595 if (imm != NULL) {
2596 error = EADDRINUSE;
2597 break;
2600 * Everything looks good; add a new record to the multicast
2601 * address list for the given interface.
2603 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2604 if (imm == NULL)
2605 break;
2606 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2607 break;
2609 case IPV6_LEAVE_GROUP:
2611 * Drop a multicast group membership.
2612 * Group must be a valid IP6 multicast address.
2614 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2615 if (error != 0)
2616 break;
2619 * If an interface address was specified, get a pointer
2620 * to its ifnet structure.
2622 if (mreq.ipv6mr_interface != 0) {
2623 if (if_indexlim <= mreq.ipv6mr_interface ||
2624 !ifindex2ifnet[mreq.ipv6mr_interface]) {
2625 error = ENXIO; /* XXX EINVAL? */
2626 break;
2628 ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2629 } else
2630 ifp = NULL;
2632 /* Fill in the scope zone ID */
2633 if (ifp) {
2634 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2635 /* XXX: should not happen */
2636 error = EADDRNOTAVAIL;
2637 break;
2639 } else if (mreq.ipv6mr_interface != 0) {
2641 * XXX: This case would happens when the (positive)
2642 * index is in the valid range, but the corresponding
2643 * interface has been detached dynamically. The above
2644 * check probably avoids such case to happen here, but
2645 * we check it explicitly for safety.
2647 error = EADDRNOTAVAIL;
2648 break;
2649 } else { /* ipv6mr_interface == 0 */
2650 struct sockaddr_in6 sa6_mc;
2653 * The API spec says as follows:
2654 * If the interface index is specified as 0, the
2655 * system may choose a multicast group membership to
2656 * drop by matching the multicast address only.
2657 * On the other hand, we cannot disambiguate the scope
2658 * zone unless an interface is provided. Thus, we
2659 * check if there's ambiguity with the default scope
2660 * zone as the last resort.
2662 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2663 0, 0, 0);
2664 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2665 if (error != 0)
2666 break;
2667 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2671 * Find the membership in the membership list.
2673 for (imm = im6o->im6o_memberships.lh_first;
2674 imm != NULL; imm = imm->i6mm_chain.le_next) {
2675 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2676 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2677 &mreq.ipv6mr_multiaddr))
2678 break;
2680 if (imm == NULL) {
2681 /* Unable to resolve interface */
2682 error = EADDRNOTAVAIL;
2683 break;
2686 * Give up the multicast address record to which the
2687 * membership points.
2689 LIST_REMOVE(imm, i6mm_chain);
2690 in6_leavegroup(imm);
2691 break;
2693 default:
2694 error = EOPNOTSUPP;
2695 break;
2699 * If all options have default values, no need to keep the mbuf.
2701 if (im6o->im6o_multicast_ifp == NULL &&
2702 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2703 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2704 im6o->im6o_memberships.lh_first == NULL) {
2705 free(*im6op, M_IPMOPTS);
2706 *im6op = NULL;
2709 return (error);
2713 * Return the IP6 multicast options in response to user getsockopt().
2715 static int
2716 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2718 u_int optval;
2719 int error;
2721 switch (sopt->sopt_name) {
2722 case IPV6_MULTICAST_IF:
2723 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2724 optval = 0;
2725 else
2726 optval = im6o->im6o_multicast_ifp->if_index;
2728 error = sockopt_set(sopt, &optval, sizeof(optval));
2729 break;
2731 case IPV6_MULTICAST_HOPS:
2732 if (im6o == NULL)
2733 optval = ip6_defmcasthlim;
2734 else
2735 optval = im6o->im6o_multicast_hlim;
2737 error = sockopt_set(sopt, &optval, sizeof(optval));
2738 break;
2740 case IPV6_MULTICAST_LOOP:
2741 if (im6o == NULL)
2742 optval = ip6_defmcasthlim;
2743 else
2744 optval = im6o->im6o_multicast_loop;
2746 error = sockopt_set(sopt, &optval, sizeof(optval));
2747 break;
2749 default:
2750 error = EOPNOTSUPP;
2753 return (error);
2757 * Discard the IP6 multicast options.
2759 void
2760 ip6_freemoptions(struct ip6_moptions *im6o)
2762 struct in6_multi_mship *imm;
2764 if (im6o == NULL)
2765 return;
2767 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2768 LIST_REMOVE(imm, i6mm_chain);
2769 in6_leavegroup(imm);
2771 free(im6o, M_IPMOPTS);
2775 * Set IPv6 outgoing packet options based on advanced API.
2778 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2779 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2781 struct cmsghdr *cm = 0;
2783 if (control == NULL || opt == NULL)
2784 return (EINVAL);
2786 ip6_initpktopts(opt);
2787 if (stickyopt) {
2788 int error;
2791 * If stickyopt is provided, make a local copy of the options
2792 * for this particular packet, then override them by ancillary
2793 * objects.
2794 * XXX: copypktopts() does not copy the cached route to a next
2795 * hop (if any). This is not very good in terms of efficiency,
2796 * but we can allow this since this option should be rarely
2797 * used.
2799 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2800 return (error);
2804 * XXX: Currently, we assume all the optional information is stored
2805 * in a single mbuf.
2807 if (control->m_next)
2808 return (EINVAL);
2810 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2811 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2812 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2813 int error;
2815 if (control->m_len < CMSG_LEN(0))
2816 return (EINVAL);
2818 cm = mtod(control, struct cmsghdr *);
2819 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2820 return (EINVAL);
2821 if (cm->cmsg_level != IPPROTO_IPV6)
2822 continue;
2824 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2825 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2826 if (error)
2827 return (error);
2830 return (0);
2834 * Set a particular packet option, as a sticky option or an ancillary data
2835 * item. "len" can be 0 only when it's a sticky option.
2836 * We have 4 cases of combination of "sticky" and "cmsg":
2837 * "sticky=0, cmsg=0": impossible
2838 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2839 * "sticky=1, cmsg=0": RFC3542 socket option
2840 * "sticky=1, cmsg=1": RFC2292 socket option
2842 static int
2843 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2844 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2846 int minmtupolicy;
2847 int error;
2849 if (!sticky && !cmsg) {
2850 #ifdef DIAGNOSTIC
2851 printf("ip6_setpktopt: impossible case\n");
2852 #endif
2853 return (EINVAL);
2857 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2858 * not be specified in the context of RFC3542. Conversely,
2859 * RFC3542 types should not be specified in the context of RFC2292.
2861 if (!cmsg) {
2862 switch (optname) {
2863 case IPV6_2292PKTINFO:
2864 case IPV6_2292HOPLIMIT:
2865 case IPV6_2292NEXTHOP:
2866 case IPV6_2292HOPOPTS:
2867 case IPV6_2292DSTOPTS:
2868 case IPV6_2292RTHDR:
2869 case IPV6_2292PKTOPTIONS:
2870 return (ENOPROTOOPT);
2873 if (sticky && cmsg) {
2874 switch (optname) {
2875 case IPV6_PKTINFO:
2876 case IPV6_HOPLIMIT:
2877 case IPV6_NEXTHOP:
2878 case IPV6_HOPOPTS:
2879 case IPV6_DSTOPTS:
2880 case IPV6_RTHDRDSTOPTS:
2881 case IPV6_RTHDR:
2882 case IPV6_USE_MIN_MTU:
2883 case IPV6_DONTFRAG:
2884 case IPV6_OTCLASS:
2885 case IPV6_TCLASS:
2886 return (ENOPROTOOPT);
2890 switch (optname) {
2891 #ifdef RFC2292
2892 case IPV6_2292PKTINFO:
2893 #endif
2894 case IPV6_PKTINFO:
2896 struct ifnet *ifp = NULL;
2897 struct in6_pktinfo *pktinfo;
2899 if (len != sizeof(struct in6_pktinfo))
2900 return (EINVAL);
2902 pktinfo = (struct in6_pktinfo *)buf;
2905 * An application can clear any sticky IPV6_PKTINFO option by
2906 * doing a "regular" setsockopt with ipi6_addr being
2907 * in6addr_any and ipi6_ifindex being zero.
2908 * [RFC 3542, Section 6]
2910 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2911 pktinfo->ipi6_ifindex == 0 &&
2912 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2913 ip6_clearpktopts(opt, optname);
2914 break;
2917 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2918 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2919 return (EINVAL);
2922 /* validate the interface index if specified. */
2923 if (pktinfo->ipi6_ifindex >= if_indexlim) {
2924 return (ENXIO);
2926 if (pktinfo->ipi6_ifindex) {
2927 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2928 if (ifp == NULL)
2929 return (ENXIO);
2933 * We store the address anyway, and let in6_selectsrc()
2934 * validate the specified address. This is because ipi6_addr
2935 * may not have enough information about its scope zone, and
2936 * we may need additional information (such as outgoing
2937 * interface or the scope zone of a destination address) to
2938 * disambiguate the scope.
2939 * XXX: the delay of the validation may confuse the
2940 * application when it is used as a sticky option.
2942 if (opt->ip6po_pktinfo == NULL) {
2943 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2944 M_IP6OPT, M_NOWAIT);
2945 if (opt->ip6po_pktinfo == NULL)
2946 return (ENOBUFS);
2948 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2949 break;
2952 #ifdef RFC2292
2953 case IPV6_2292HOPLIMIT:
2954 #endif
2955 case IPV6_HOPLIMIT:
2957 int *hlimp;
2960 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2961 * to simplify the ordering among hoplimit options.
2963 if (optname == IPV6_HOPLIMIT && sticky)
2964 return (ENOPROTOOPT);
2966 if (len != sizeof(int))
2967 return (EINVAL);
2968 hlimp = (int *)buf;
2969 if (*hlimp < -1 || *hlimp > 255)
2970 return (EINVAL);
2972 opt->ip6po_hlim = *hlimp;
2973 break;
2976 case IPV6_OTCLASS:
2977 if (len != sizeof(u_int8_t))
2978 return (EINVAL);
2980 opt->ip6po_tclass = *(u_int8_t *)buf;
2981 break;
2983 case IPV6_TCLASS:
2985 int tclass;
2987 if (len != sizeof(int))
2988 return (EINVAL);
2989 tclass = *(int *)buf;
2990 if (tclass < -1 || tclass > 255)
2991 return (EINVAL);
2993 opt->ip6po_tclass = tclass;
2994 break;
2997 #ifdef RFC2292
2998 case IPV6_2292NEXTHOP:
2999 #endif
3000 case IPV6_NEXTHOP:
3001 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
3002 NULL);
3003 if (error)
3004 return (error);
3006 if (len == 0) { /* just remove the option */
3007 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3008 break;
3011 /* check if cmsg_len is large enough for sa_len */
3012 if (len < sizeof(struct sockaddr) || len < *buf)
3013 return (EINVAL);
3015 switch (((struct sockaddr *)buf)->sa_family) {
3016 case AF_INET6:
3018 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3020 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3021 return (EINVAL);
3023 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3024 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3025 return (EINVAL);
3027 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3028 != 0) {
3029 return (error);
3031 break;
3033 case AF_LINK: /* eventually be supported? */
3034 default:
3035 return (EAFNOSUPPORT);
3038 /* turn off the previous option, then set the new option. */
3039 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3040 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3041 if (opt->ip6po_nexthop == NULL)
3042 return (ENOBUFS);
3043 memcpy(opt->ip6po_nexthop, buf, *buf);
3044 break;
3046 #ifdef RFC2292
3047 case IPV6_2292HOPOPTS:
3048 #endif
3049 case IPV6_HOPOPTS:
3051 struct ip6_hbh *hbh;
3052 int hbhlen;
3055 * XXX: We don't allow a non-privileged user to set ANY HbH
3056 * options, since per-option restriction has too much
3057 * overhead.
3059 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
3060 NULL);
3061 if (error)
3062 return (error);
3064 if (len == 0) {
3065 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3066 break; /* just remove the option */
3069 /* message length validation */
3070 if (len < sizeof(struct ip6_hbh))
3071 return (EINVAL);
3072 hbh = (struct ip6_hbh *)buf;
3073 hbhlen = (hbh->ip6h_len + 1) << 3;
3074 if (len != hbhlen)
3075 return (EINVAL);
3077 /* turn off the previous option, then set the new option. */
3078 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3079 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3080 if (opt->ip6po_hbh == NULL)
3081 return (ENOBUFS);
3082 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3084 break;
3087 #ifdef RFC2292
3088 case IPV6_2292DSTOPTS:
3089 #endif
3090 case IPV6_DSTOPTS:
3091 case IPV6_RTHDRDSTOPTS:
3093 struct ip6_dest *dest, **newdest = NULL;
3094 int destlen;
3096 /* XXX: see the comment for IPV6_HOPOPTS */
3097 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
3098 NULL);
3099 if (error)
3100 return (error);
3102 if (len == 0) {
3103 ip6_clearpktopts(opt, optname);
3104 break; /* just remove the option */
3107 /* message length validation */
3108 if (len < sizeof(struct ip6_dest))
3109 return (EINVAL);
3110 dest = (struct ip6_dest *)buf;
3111 destlen = (dest->ip6d_len + 1) << 3;
3112 if (len != destlen)
3113 return (EINVAL);
3115 * Determine the position that the destination options header
3116 * should be inserted; before or after the routing header.
3118 switch (optname) {
3119 case IPV6_2292DSTOPTS:
3121 * The old advanced API is ambiguous on this point.
3122 * Our approach is to determine the position based
3123 * according to the existence of a routing header.
3124 * Note, however, that this depends on the order of the
3125 * extension headers in the ancillary data; the 1st
3126 * part of the destination options header must appear
3127 * before the routing header in the ancillary data,
3128 * too.
3129 * RFC3542 solved the ambiguity by introducing
3130 * separate ancillary data or option types.
3132 if (opt->ip6po_rthdr == NULL)
3133 newdest = &opt->ip6po_dest1;
3134 else
3135 newdest = &opt->ip6po_dest2;
3136 break;
3137 case IPV6_RTHDRDSTOPTS:
3138 newdest = &opt->ip6po_dest1;
3139 break;
3140 case IPV6_DSTOPTS:
3141 newdest = &opt->ip6po_dest2;
3142 break;
3145 /* turn off the previous option, then set the new option. */
3146 ip6_clearpktopts(opt, optname);
3147 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3148 if (*newdest == NULL)
3149 return (ENOBUFS);
3150 memcpy(*newdest, dest, destlen);
3152 break;
3155 #ifdef RFC2292
3156 case IPV6_2292RTHDR:
3157 #endif
3158 case IPV6_RTHDR:
3160 struct ip6_rthdr *rth;
3161 int rthlen;
3163 if (len == 0) {
3164 ip6_clearpktopts(opt, IPV6_RTHDR);
3165 break; /* just remove the option */
3168 /* message length validation */
3169 if (len < sizeof(struct ip6_rthdr))
3170 return (EINVAL);
3171 rth = (struct ip6_rthdr *)buf;
3172 rthlen = (rth->ip6r_len + 1) << 3;
3173 if (len != rthlen)
3174 return (EINVAL);
3175 switch (rth->ip6r_type) {
3176 case IPV6_RTHDR_TYPE_0:
3177 if (rth->ip6r_len == 0) /* must contain one addr */
3178 return (EINVAL);
3179 if (rth->ip6r_len % 2) /* length must be even */
3180 return (EINVAL);
3181 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3182 return (EINVAL);
3183 break;
3184 default:
3185 return (EINVAL); /* not supported */
3187 /* turn off the previous option */
3188 ip6_clearpktopts(opt, IPV6_RTHDR);
3189 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3190 if (opt->ip6po_rthdr == NULL)
3191 return (ENOBUFS);
3192 memcpy(opt->ip6po_rthdr, rth, rthlen);
3193 break;
3196 case IPV6_USE_MIN_MTU:
3197 if (len != sizeof(int))
3198 return (EINVAL);
3199 minmtupolicy = *(int *)buf;
3200 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3201 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3202 minmtupolicy != IP6PO_MINMTU_ALL) {
3203 return (EINVAL);
3205 opt->ip6po_minmtu = minmtupolicy;
3206 break;
3208 case IPV6_DONTFRAG:
3209 if (len != sizeof(int))
3210 return (EINVAL);
3212 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3214 * we ignore this option for TCP sockets.
3215 * (RFC3542 leaves this case unspecified.)
3217 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3218 } else
3219 opt->ip6po_flags |= IP6PO_DONTFRAG;
3220 break;
3222 default:
3223 return (ENOPROTOOPT);
3224 } /* end of switch */
3226 return (0);
3230 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3231 * packet to the input queue of a specified interface. Note that this
3232 * calls the output routine of the loopback "driver", but with an interface
3233 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3235 void
3236 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3237 const struct sockaddr_in6 *dst)
3239 struct mbuf *copym;
3240 struct ip6_hdr *ip6;
3242 copym = m_copy(m, 0, M_COPYALL);
3243 if (copym == NULL)
3244 return;
3247 * Make sure to deep-copy IPv6 header portion in case the data
3248 * is in an mbuf cluster, so that we can safely override the IPv6
3249 * header portion later.
3251 if ((copym->m_flags & M_EXT) != 0 ||
3252 copym->m_len < sizeof(struct ip6_hdr)) {
3253 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3254 if (copym == NULL)
3255 return;
3258 #ifdef DIAGNOSTIC
3259 if (copym->m_len < sizeof(*ip6)) {
3260 m_freem(copym);
3261 return;
3263 #endif
3265 ip6 = mtod(copym, struct ip6_hdr *);
3267 * clear embedded scope identifiers if necessary.
3268 * in6_clearscope will touch the addresses only when necessary.
3270 in6_clearscope(&ip6->ip6_src);
3271 in6_clearscope(&ip6->ip6_dst);
3273 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3277 * Chop IPv6 header off from the payload.
3279 static int
3280 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3282 struct mbuf *mh;
3283 struct ip6_hdr *ip6;
3285 ip6 = mtod(m, struct ip6_hdr *);
3286 if (m->m_len > sizeof(*ip6)) {
3287 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3288 if (mh == 0) {
3289 m_freem(m);
3290 return ENOBUFS;
3292 M_MOVE_PKTHDR(mh, m);
3293 MH_ALIGN(mh, sizeof(*ip6));
3294 m->m_len -= sizeof(*ip6);
3295 m->m_data += sizeof(*ip6);
3296 mh->m_next = m;
3297 m = mh;
3298 m->m_len = sizeof(*ip6);
3299 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3301 exthdrs->ip6e_ip6 = m;
3302 return 0;
3306 * Compute IPv6 extension header length.
3309 ip6_optlen(struct in6pcb *in6p)
3311 int len;
3313 if (!in6p->in6p_outputopts)
3314 return 0;
3316 len = 0;
3317 #define elen(x) \
3318 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3320 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3321 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3322 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3323 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3324 return len;
3325 #undef elen