Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / nfs / nfs_bio.c
blob80522718719982642a09fde76d7f6b56c146a039
1 /* $NetBSD: nfs_bio.c,v 1.182 2009/03/13 15:00:34 yamt Exp $ */
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.182 2009/03/13 15:00:34 yamt Exp $");
40 #ifdef _KERNEL_OPT
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43 #endif
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/kauth.h>
58 #include <uvm/uvm_extern.h>
59 #include <uvm/uvm.h>
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs_var.h>
68 extern int nfs_numasync;
69 extern int nfs_commitsize;
70 extern struct nfsstats nfsstats;
72 static int nfs_doio_read(struct buf *, struct uio *);
73 static int nfs_doio_write(struct buf *, struct uio *);
74 static int nfs_doio_phys(struct buf *, struct uio *);
77 * Vnode op for read using bio
78 * Any similarity to readip() is purely coincidental
80 int
81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
82 kauth_cred_t cred, int cflag)
84 struct nfsnode *np = VTONFS(vp);
85 struct buf *bp = NULL, *rabp;
86 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
87 struct nfsdircache *ndp = NULL, *nndp = NULL;
88 void *baddr;
89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
90 int enough = 0;
91 struct dirent *dp, *pdp, *edp, *ep;
92 off_t curoff = 0;
93 int advice;
94 struct lwp *l = curlwp;
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 #ifndef NFS_V2_ONLY
105 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
107 (void)nfs_fsinfo(nmp, vp, cred, l);
108 #endif
109 if (vp->v_type != VDIR &&
110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 return (EFBIG);
114 * For nfs, cache consistency can only be maintained approximately.
115 * Although RFC1094 does not specify the criteria, the following is
116 * believed to be compatible with the reference port.
118 * If the file's modify time on the server has changed since the
119 * last read rpc or you have written to the file,
120 * you may have lost data cache consistency with the
121 * server, so flush all of the file's data out of the cache.
122 * Then force a getattr rpc to ensure that you have up to date
123 * attributes.
124 * NB: This implies that cache data can be read when up to
125 * nfs_attrtimeo seconds out of date. If you find that you need current
126 * attributes this could be forced by setting n_attrstamp to 0 before
127 * the VOP_GETATTR() call.
130 if (vp->v_type != VLNK) {
131 error = nfs_flushstalebuf(vp, cred, l,
132 NFS_FLUSHSTALEBUF_MYWRITE);
133 if (error)
134 return error;
137 do {
139 * Don't cache symlinks.
141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
142 return (nfs_readlinkrpc(vp, uio, cred));
144 baddr = (void *)0;
145 switch (vp->v_type) {
146 case VREG:
147 nfsstats.biocache_reads++;
149 advice = IO_ADV_DECODE(ioflag);
150 error = 0;
151 while (uio->uio_resid > 0) {
152 vsize_t bytelen;
154 nfs_delayedtruncate(vp);
155 if (np->n_size <= uio->uio_offset) {
156 break;
158 bytelen =
159 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
161 advice, UBC_READ | UBC_PARTIALOK |
162 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
163 if (error) {
165 * XXXkludge
166 * the file has been truncated on the server.
167 * there isn't much we can do.
169 if (uio->uio_offset >= np->n_size) {
170 /* end of file */
171 error = 0;
172 } else {
173 break;
177 break;
179 case VLNK:
180 nfsstats.biocache_readlinks++;
181 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
182 if (!bp)
183 return (EINTR);
184 if ((bp->b_oflags & BO_DONE) == 0) {
185 bp->b_flags |= B_READ;
186 error = nfs_doio(bp);
187 if (error) {
188 brelse(bp, 0);
189 return (error);
192 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
193 got_buf = 1;
194 on = 0;
195 break;
196 case VDIR:
197 diragain:
198 nfsstats.biocache_readdirs++;
199 ndp = nfs_searchdircache(vp, uio->uio_offset,
200 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
201 if (!ndp) {
203 * We've been handed a cookie that is not
204 * in the cache. If we're not translating
205 * 32 <-> 64, it may be a value that was
206 * flushed out of the cache because it grew
207 * too big. Let the server judge if it's
208 * valid or not. In the translation case,
209 * we have no way of validating this value,
210 * so punt.
212 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
213 return (EINVAL);
214 ndp = nfs_enterdircache(vp, uio->uio_offset,
215 uio->uio_offset, 0, 0);
218 if (NFS_EOFVALID(np) &&
219 ndp->dc_cookie == np->n_direofoffset) {
220 nfs_putdircache(np, ndp);
221 nfsstats.direofcache_hits++;
222 return (0);
225 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
226 if (!bp)
227 return (EINTR);
228 if ((bp->b_oflags & BO_DONE) == 0) {
229 bp->b_flags |= B_READ;
230 bp->b_dcookie = ndp->dc_blkcookie;
231 error = nfs_doio(bp);
232 if (error) {
234 * Yuck! The directory has been modified on the
235 * server. Punt and let the userland code
236 * deal with it.
238 nfs_putdircache(np, ndp);
239 brelse(bp, 0);
241 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
243 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
244 nfs_invaldircache(vp, 0);
245 nfs_vinvalbuf(vp, 0, cred, l, 1);
247 return (error);
252 * Just return if we hit EOF right away with this
253 * block. Always check here, because direofoffset
254 * may have been set by an nfsiod since the last
255 * check.
257 * also, empty block implies EOF.
260 if (bp->b_bcount == bp->b_resid ||
261 (NFS_EOFVALID(np) &&
262 ndp->dc_blkcookie == np->n_direofoffset)) {
263 KASSERT(bp->b_bcount != bp->b_resid ||
264 ndp->dc_blkcookie == bp->b_dcookie);
265 nfs_putdircache(np, ndp);
266 brelse(bp, BC_NOCACHE);
267 return 0;
271 * Find the entry we were looking for in the block.
274 en = ndp->dc_entry;
276 pdp = dp = (struct dirent *)bp->b_data;
277 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
278 bp->b_resid);
279 enn = 0;
280 while (enn < en && dp < edp) {
281 pdp = dp;
282 dp = _DIRENT_NEXT(dp);
283 enn++;
287 * If the entry number was bigger than the number of
288 * entries in the block, or the cookie of the previous
289 * entry doesn't match, the directory cache is
290 * stale. Flush it and try again (i.e. go to
291 * the server).
293 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
294 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
295 #ifdef DEBUG
296 printf("invalid cache: %p %p %p off %jx %jx\n",
297 pdp, dp, edp,
298 (uintmax_t)uio->uio_offset,
299 (uintmax_t)NFS_GETCOOKIE(pdp));
300 #endif
301 nfs_putdircache(np, ndp);
302 brelse(bp, 0);
303 nfs_invaldircache(vp, 0);
304 nfs_vinvalbuf(vp, 0, cred, l, 0);
305 goto diragain;
308 on = (char *)dp - (char *)bp->b_data;
311 * Cache all entries that may be exported to the
312 * user, as they may be thrown back at us. The
313 * NFSBIO_CACHECOOKIES flag indicates that all
314 * entries are being 'exported', so cache them all.
317 if (en == 0 && pdp == dp) {
318 dp = _DIRENT_NEXT(dp);
319 enn++;
322 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
323 n = uio->uio_resid;
324 enough = 1;
325 } else
326 n = bp->b_bcount - bp->b_resid - on;
328 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
331 * Find last complete entry to copy, caching entries
332 * (if requested) as we go.
335 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
336 if (cflag & NFSBIO_CACHECOOKIES) {
337 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
338 ndp->dc_blkcookie, enn, bp->b_lblkno);
339 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
340 NFS_STASHCOOKIE32(pdp,
341 nndp->dc_cookie32);
343 nfs_putdircache(np, nndp);
345 pdp = dp;
346 dp = _DIRENT_NEXT(dp);
347 enn++;
349 nfs_putdircache(np, ndp);
352 * If the last requested entry was not the last in the
353 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
354 * cache the cookie of the last requested one, and
355 * set of the offset to it.
358 if ((on + n) < bp->b_bcount - bp->b_resid) {
359 curoff = NFS_GETCOOKIE(pdp);
360 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
361 enn, bp->b_lblkno);
362 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
363 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
364 curoff = nndp->dc_cookie32;
366 nfs_putdircache(np, nndp);
367 } else
368 curoff = bp->b_dcookie;
371 * Always cache the entry for the next block,
372 * so that readaheads can use it.
374 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
375 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
376 if (curoff == bp->b_dcookie) {
377 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
378 curoff = nndp->dc_cookie32;
382 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
385 * If not eof and read aheads are enabled, start one.
386 * (You need the current block first, so that you have the
387 * directory offset cookie of the next block.)
389 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
390 !NFS_EOFVALID(np)) {
391 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
392 NFS_DIRBLKSIZ, l);
393 if (rabp) {
394 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
395 rabp->b_dcookie = nndp->dc_cookie;
396 rabp->b_flags |= (B_READ | B_ASYNC);
397 if (nfs_asyncio(rabp)) {
398 brelse(rabp, BC_INVAL);
400 } else
401 brelse(rabp, 0);
404 nfs_putdircache(np, nndp);
405 got_buf = 1;
406 break;
407 default:
408 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
409 break;
412 if (n > 0) {
413 if (!baddr)
414 baddr = bp->b_data;
415 error = uiomove((char *)baddr + on, (int)n, uio);
417 switch (vp->v_type) {
418 case VREG:
419 break;
420 case VLNK:
421 n = 0;
422 break;
423 case VDIR:
424 uio->uio_offset = curoff;
425 if (enough)
426 n = 0;
427 break;
428 default:
429 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
431 if (got_buf)
432 brelse(bp, 0);
433 } while (error == 0 && uio->uio_resid > 0 && n > 0);
434 return (error);
438 * Vnode op for write using bio
441 nfs_write(void *v)
443 struct vop_write_args /* {
444 struct vnode *a_vp;
445 struct uio *a_uio;
446 int a_ioflag;
447 kauth_cred_t a_cred;
448 } */ *ap = v;
449 struct uio *uio = ap->a_uio;
450 struct lwp *l = curlwp;
451 struct vnode *vp = ap->a_vp;
452 struct nfsnode *np = VTONFS(vp);
453 kauth_cred_t cred = ap->a_cred;
454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
455 voff_t oldoff, origoff;
456 vsize_t bytelen;
457 int error = 0;
458 int ioflag = ap->a_ioflag;
459 int extended = 0, wrotedata = 0;
461 #ifdef DIAGNOSTIC
462 if (uio->uio_rw != UIO_WRITE)
463 panic("nfs_write mode");
464 #endif
465 if (vp->v_type != VREG)
466 return (EIO);
467 if (np->n_flag & NWRITEERR) {
468 np->n_flag &= ~NWRITEERR;
469 return (np->n_error);
471 #ifndef NFS_V2_ONLY
472 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
473 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
474 (void)nfs_fsinfo(nmp, vp, cred, l);
475 #endif
476 if (ioflag & IO_APPEND) {
477 NFS_INVALIDATE_ATTRCACHE(np);
478 error = nfs_flushstalebuf(vp, cred, l,
479 NFS_FLUSHSTALEBUF_MYWRITE);
480 if (error)
481 return (error);
482 uio->uio_offset = np->n_size;
484 if (uio->uio_offset < 0)
485 return (EINVAL);
486 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
487 return (EFBIG);
488 if (uio->uio_resid == 0)
489 return (0);
491 * Maybe this should be above the vnode op call, but so long as
492 * file servers have no limits, i don't think it matters
494 if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
495 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
496 mutex_enter(proc_lock);
497 psignal(l->l_proc, SIGXFSZ);
498 mutex_exit(proc_lock);
499 return (EFBIG);
502 origoff = uio->uio_offset;
503 do {
504 bool overwrite; /* if we are overwriting whole pages */
505 u_quad_t oldsize;
506 oldoff = uio->uio_offset;
507 bytelen = uio->uio_resid;
509 nfsstats.biocache_writes++;
511 oldsize = np->n_size;
512 np->n_flag |= NMODIFIED;
513 if (np->n_size < uio->uio_offset + bytelen) {
514 np->n_size = uio->uio_offset + bytelen;
516 overwrite = false;
517 if ((uio->uio_offset & PAGE_MASK) == 0) {
518 if ((vp->v_vflag & VV_MAPPED) == 0 &&
519 bytelen > PAGE_SIZE) {
520 bytelen = trunc_page(bytelen);
521 overwrite = true;
522 } else if ((bytelen & PAGE_MASK) == 0 &&
523 uio->uio_offset >= vp->v_size) {
524 overwrite = true;
527 if (vp->v_size < uio->uio_offset + bytelen) {
528 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
530 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
531 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
532 (overwrite ? UBC_FAULTBUSY : 0) |
533 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
534 if (error) {
535 uvm_vnp_setwritesize(vp, vp->v_size);
536 if (overwrite && np->n_size != oldsize) {
538 * backout size and free pages past eof.
540 np->n_size = oldsize;
541 mutex_enter(&vp->v_interlock);
542 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
543 0, PGO_SYNCIO | PGO_FREE);
545 break;
547 wrotedata = 1;
550 * update UVM's notion of the size now that we've
551 * copied the data into the vnode's pages.
554 if (vp->v_size < uio->uio_offset) {
555 uvm_vnp_setsize(vp, uio->uio_offset);
556 extended = 1;
559 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
560 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
561 mutex_enter(&vp->v_interlock);
562 error = VOP_PUTPAGES(vp,
563 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
564 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
565 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
567 } while (uio->uio_resid > 0);
568 if (wrotedata)
569 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
570 if (error == 0 && (ioflag & IO_SYNC) != 0) {
571 mutex_enter(&vp->v_interlock);
572 error = VOP_PUTPAGES(vp,
573 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
574 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
575 ~(nmp->nm_wsize - 1)),
576 PGO_CLEANIT | PGO_SYNCIO);
578 return error;
582 * Get an nfs cache block.
583 * Allocate a new one if the block isn't currently in the cache
584 * and return the block marked busy. If the calling process is
585 * interrupted by a signal for an interruptible mount point, return
586 * NULL.
588 struct buf *
589 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
591 struct buf *bp;
592 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
594 if (nmp->nm_flag & NFSMNT_INT) {
595 bp = getblk(vp, bn, size, PCATCH, 0);
596 while (bp == NULL) {
597 if (nfs_sigintr(nmp, NULL, l))
598 return (NULL);
599 bp = getblk(vp, bn, size, 0, 2 * hz);
601 } else
602 bp = getblk(vp, bn, size, 0, 0);
603 return (bp);
607 * Flush and invalidate all dirty buffers. If another process is already
608 * doing the flush, just wait for completion.
611 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
612 struct lwp *l, int intrflg)
614 struct nfsnode *np = VTONFS(vp);
615 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
616 int error = 0, slptimeo;
617 bool catch;
619 if ((nmp->nm_flag & NFSMNT_INT) == 0)
620 intrflg = 0;
621 if (intrflg) {
622 catch = true;
623 slptimeo = 2 * hz;
624 } else {
625 catch = false;
626 slptimeo = 0;
629 * First wait for any other process doing a flush to complete.
631 mutex_enter(&vp->v_interlock);
632 while (np->n_flag & NFLUSHINPROG) {
633 np->n_flag |= NFLUSHWANT;
634 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
635 slptimeo, &vp->v_interlock);
636 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
637 mutex_exit(&vp->v_interlock);
638 return EINTR;
643 * Now, flush as required.
645 np->n_flag |= NFLUSHINPROG;
646 mutex_exit(&vp->v_interlock);
647 error = vinvalbuf(vp, flags, cred, l, catch, 0);
648 while (error) {
649 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
650 error = EINTR;
651 break;
653 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
655 mutex_enter(&vp->v_interlock);
656 if (error == 0)
657 np->n_flag &= ~NMODIFIED;
658 np->n_flag &= ~NFLUSHINPROG;
659 if (np->n_flag & NFLUSHWANT) {
660 np->n_flag &= ~NFLUSHWANT;
661 wakeup(&np->n_flag);
663 mutex_exit(&vp->v_interlock);
664 return error;
668 * nfs_flushstalebuf: flush cache if it's stale.
670 * => caller shouldn't own any pages or buffers which belong to the vnode.
674 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
675 int flags)
677 struct nfsnode *np = VTONFS(vp);
678 struct vattr vattr;
679 int error;
681 if (np->n_flag & NMODIFIED) {
682 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
683 || vp->v_type != VREG) {
684 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
685 if (error)
686 return error;
687 if (vp->v_type == VDIR) {
688 nfs_invaldircache(vp, 0);
690 } else {
692 * XXX assuming writes are ours.
695 NFS_INVALIDATE_ATTRCACHE(np);
696 error = VOP_GETATTR(vp, &vattr, cred);
697 if (error)
698 return error;
699 np->n_mtime = vattr.va_mtime;
700 } else {
701 error = VOP_GETATTR(vp, &vattr, cred);
702 if (error)
703 return error;
704 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
705 if (vp->v_type == VDIR) {
706 nfs_invaldircache(vp, 0);
708 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
709 if (error)
710 return error;
711 np->n_mtime = vattr.va_mtime;
715 return error;
719 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
720 * This is mainly to avoid queueing async I/O requests when the nfsiods
721 * are all hung on a dead server.
725 nfs_asyncio(struct buf *bp)
727 struct nfs_iod *iod;
728 struct nfsmount *nmp;
729 int slptimeo = 0, error;
730 bool catch = false;
732 if (nfs_numasync == 0)
733 return (EIO);
735 nmp = VFSTONFS(bp->b_vp->v_mount);
736 again:
737 if (nmp->nm_flag & NFSMNT_INT)
738 catch = true;
741 * Find a free iod to process this request.
744 mutex_enter(&nfs_iodlist_lock);
745 iod = LIST_FIRST(&nfs_iodlist_idle);
746 if (iod) {
748 * Found one, so wake it up and tell it which
749 * mount to process.
751 LIST_REMOVE(iod, nid_idle);
752 mutex_enter(&iod->nid_lock);
753 mutex_exit(&nfs_iodlist_lock);
754 KASSERT(iod->nid_mount == NULL);
755 iod->nid_mount = nmp;
756 cv_signal(&iod->nid_cv);
757 mutex_enter(&nmp->nm_lock);
758 mutex_exit(&iod->nid_lock);
759 nmp->nm_bufqiods++;
760 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
761 cv_broadcast(&nmp->nm_aiocv);
763 } else {
764 mutex_exit(&nfs_iodlist_lock);
765 mutex_enter(&nmp->nm_lock);
768 KASSERT(mutex_owned(&nmp->nm_lock));
771 * If we have an iod which can process the request, then queue
772 * the buffer. However, even if we have an iod, do not initiate
773 * queue cleaning if curproc is the pageout daemon. if the NFS mount
774 * is via local loopback, we may put curproc (pagedaemon) to sleep
775 * waiting for the writes to complete. But the server (ourself)
776 * may block the write, waiting for its (ie., our) pagedaemon
777 * to produce clean pages to handle the write: deadlock.
778 * XXX: start non-loopback mounts straight away? If "lots free",
779 * let pagedaemon start loopback writes anyway?
781 if (nmp->nm_bufqiods > 0) {
784 * Ensure that the queue never grows too large.
786 if (curlwp == uvm.pagedaemon_lwp) {
787 /* Enque for later, to avoid free-page deadlock */
788 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
789 if (catch) {
790 error = cv_timedwait_sig(&nmp->nm_aiocv,
791 &nmp->nm_lock, slptimeo);
792 } else {
793 error = cv_timedwait(&nmp->nm_aiocv,
794 &nmp->nm_lock, slptimeo);
796 if (error) {
797 if (nfs_sigintr(nmp, NULL, curlwp)) {
798 mutex_exit(&nmp->nm_lock);
799 return (EINTR);
801 if (catch) {
802 catch = false;
803 slptimeo = 2 * hz;
808 * We might have lost our iod while sleeping,
809 * so check and loop if necessary.
812 if (nmp->nm_bufqiods == 0) {
813 mutex_exit(&nmp->nm_lock);
814 goto again;
817 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
818 nmp->nm_bufqlen++;
819 mutex_exit(&nmp->nm_lock);
820 return (0);
822 mutex_exit(&nmp->nm_lock);
825 * All the iods are busy on other mounts, so return EIO to
826 * force the caller to process the i/o synchronously.
829 return (EIO);
833 * nfs_doio for read.
835 static int
836 nfs_doio_read(struct buf *bp, struct uio *uiop)
838 struct vnode *vp = bp->b_vp;
839 struct nfsnode *np = VTONFS(vp);
840 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
841 int error = 0;
843 uiop->uio_rw = UIO_READ;
844 switch (vp->v_type) {
845 case VREG:
846 nfsstats.read_bios++;
847 error = nfs_readrpc(vp, uiop);
848 if (!error && uiop->uio_resid) {
849 int diff, len;
852 * If uio_resid > 0, there is a hole in the file and
853 * no writes after the hole have been pushed to
854 * the server yet or the file has been truncated
855 * on the server.
856 * Just zero fill the rest of the valid area.
859 KASSERT(vp->v_size >=
860 uiop->uio_offset + uiop->uio_resid);
861 diff = bp->b_bcount - uiop->uio_resid;
862 len = uiop->uio_resid;
863 memset((char *)bp->b_data + diff, 0, len);
864 uiop->uio_resid = 0;
866 #if 0
867 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
868 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
869 mutex_enter(proc_lock);
870 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
871 mutex_exit(proc_lock);
872 #if 0 /* XXX NJWLWP */
873 uiop->uio_lwp->l_proc->p_holdcnt++;
874 #endif
876 #endif
877 break;
878 case VLNK:
879 KASSERT(uiop->uio_offset == (off_t)0);
880 nfsstats.readlink_bios++;
881 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
882 break;
883 case VDIR:
884 nfsstats.readdir_bios++;
885 uiop->uio_offset = bp->b_dcookie;
886 #ifndef NFS_V2_ONLY
887 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
888 error = nfs_readdirplusrpc(vp, uiop,
889 curlwp->l_cred);
891 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
893 if (error == ENOTSUP)
894 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
896 #else
897 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
898 #endif
899 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
900 error = nfs_readdirrpc(vp, uiop,
901 curlwp->l_cred);
902 if (!error) {
903 bp->b_dcookie = uiop->uio_offset;
905 break;
906 default:
907 printf("nfs_doio: type %x unexpected\n", vp->v_type);
908 break;
910 bp->b_error = error;
911 return error;
915 * nfs_doio for write.
917 static int
918 nfs_doio_write(struct buf *bp, struct uio *uiop)
920 struct vnode *vp = bp->b_vp;
921 struct nfsnode *np = VTONFS(vp);
922 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
923 int iomode;
924 bool stalewriteverf = false;
925 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
926 struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
927 #ifndef NFS_V2_ONLY
928 bool needcommit = true; /* need only COMMIT RPC */
929 #else
930 bool needcommit = false; /* need only COMMIT RPC */
931 #endif
932 bool pageprotected;
933 struct uvm_object *uobj = &vp->v_uobj;
934 int error;
935 off_t off, cnt;
937 if (npages < __arraycount(spgs))
938 pgs = spgs;
939 else {
940 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
941 NULL)
942 return ENOMEM;
945 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
946 iomode = NFSV3WRITE_UNSTABLE;
947 } else {
948 iomode = NFSV3WRITE_FILESYNC;
951 #ifndef NFS_V2_ONLY
952 again:
953 #endif
954 rw_enter(&nmp->nm_writeverflock, RW_READER);
956 for (i = 0; i < npages; i++) {
957 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
958 if (pgs[i]->uobject == uobj &&
959 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
960 KASSERT(pgs[i]->flags & PG_BUSY);
962 * this page belongs to our object.
964 mutex_enter(&uobj->vmobjlock);
966 * write out the page stably if it's about to
967 * be released because we can't resend it
968 * on the server crash.
970 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
971 * changed until unbusy the page.
973 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
974 iomode = NFSV3WRITE_FILESYNC;
976 * if we met a page which hasn't been sent yet,
977 * we need do WRITE RPC.
979 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
980 needcommit = false;
981 mutex_exit(&uobj->vmobjlock);
982 } else {
983 iomode = NFSV3WRITE_FILESYNC;
984 needcommit = false;
987 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
988 mutex_enter(&uobj->vmobjlock);
989 for (i = 0; i < npages; i++) {
990 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
991 pmap_page_protect(pgs[i], VM_PROT_READ);
993 mutex_exit(&uobj->vmobjlock);
994 pageprotected = true; /* pages can't be modified during i/o. */
995 } else
996 pageprotected = false;
999 * Send the data to the server if necessary,
1000 * otherwise just send a commit rpc.
1002 #ifndef NFS_V2_ONLY
1003 if (needcommit) {
1006 * If the buffer is in the range that we already committed,
1007 * there's nothing to do.
1009 * If it's in the range that we need to commit, push the
1010 * whole range at once, otherwise only push the buffer.
1011 * In both these cases, acquire the commit lock to avoid
1012 * other processes modifying the range.
1015 off = uiop->uio_offset;
1016 cnt = bp->b_bcount;
1017 mutex_enter(&np->n_commitlock);
1018 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1019 bool pushedrange;
1020 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1021 pushedrange = true;
1022 off = np->n_pushlo;
1023 cnt = np->n_pushhi - np->n_pushlo;
1024 } else {
1025 pushedrange = false;
1027 error = nfs_commit(vp, off, cnt, curlwp);
1028 if (error == 0) {
1029 if (pushedrange) {
1030 nfs_merge_commit_ranges(vp);
1031 } else {
1032 nfs_add_committed_range(vp, off, cnt);
1035 } else {
1036 error = 0;
1038 mutex_exit(&np->n_commitlock);
1039 rw_exit(&nmp->nm_writeverflock);
1040 if (!error) {
1042 * pages are now on stable storage.
1044 uiop->uio_resid = 0;
1045 mutex_enter(&uobj->vmobjlock);
1046 for (i = 0; i < npages; i++) {
1047 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1049 mutex_exit(&uobj->vmobjlock);
1050 return 0;
1051 } else if (error == NFSERR_STALEWRITEVERF) {
1052 nfs_clearcommit(vp->v_mount);
1053 goto again;
1055 if (error) {
1056 bp->b_error = np->n_error = error;
1057 np->n_flag |= NWRITEERR;
1059 goto out;
1061 #endif
1062 off = uiop->uio_offset;
1063 cnt = bp->b_bcount;
1064 uiop->uio_rw = UIO_WRITE;
1065 nfsstats.write_bios++;
1066 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1067 #ifndef NFS_V2_ONLY
1068 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1070 * we need to commit pages later.
1072 mutex_enter(&np->n_commitlock);
1073 nfs_add_tobecommitted_range(vp, off, cnt);
1075 * if there can be too many uncommitted pages, commit them now.
1077 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1078 off = np->n_pushlo;
1079 cnt = nfs_commitsize >> 1;
1080 error = nfs_commit(vp, off, cnt, curlwp);
1081 if (!error) {
1082 nfs_add_committed_range(vp, off, cnt);
1083 nfs_del_tobecommitted_range(vp, off, cnt);
1085 if (error == NFSERR_STALEWRITEVERF) {
1086 stalewriteverf = true;
1087 error = 0; /* it isn't a real error */
1089 } else {
1091 * re-dirty pages so that they will be passed
1092 * to us later again.
1094 mutex_enter(&uobj->vmobjlock);
1095 for (i = 0; i < npages; i++) {
1096 pgs[i]->flags &= ~PG_CLEAN;
1098 mutex_exit(&uobj->vmobjlock);
1100 mutex_exit(&np->n_commitlock);
1101 } else
1102 #endif
1103 if (!error) {
1105 * pages are now on stable storage.
1107 mutex_enter(&np->n_commitlock);
1108 nfs_del_committed_range(vp, off, cnt);
1109 mutex_exit(&np->n_commitlock);
1110 mutex_enter(&uobj->vmobjlock);
1111 for (i = 0; i < npages; i++) {
1112 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1114 mutex_exit(&uobj->vmobjlock);
1115 } else {
1117 * we got an error.
1119 bp->b_error = np->n_error = error;
1120 np->n_flag |= NWRITEERR;
1123 rw_exit(&nmp->nm_writeverflock);
1126 if (stalewriteverf) {
1127 nfs_clearcommit(vp->v_mount);
1129 #ifndef NFS_V2_ONLY
1130 out:
1131 #endif
1132 if (pgs != spgs)
1133 kmem_free(pgs, sizeof(*pgs) * npages);
1134 return error;
1138 * nfs_doio for B_PHYS.
1140 static int
1141 nfs_doio_phys(struct buf *bp, struct uio *uiop)
1143 struct vnode *vp = bp->b_vp;
1144 int error;
1146 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1147 if (bp->b_flags & B_READ) {
1148 uiop->uio_rw = UIO_READ;
1149 nfsstats.read_physios++;
1150 error = nfs_readrpc(vp, uiop);
1151 } else {
1152 int iomode = NFSV3WRITE_DATASYNC;
1153 bool stalewriteverf;
1154 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1156 uiop->uio_rw = UIO_WRITE;
1157 nfsstats.write_physios++;
1158 rw_enter(&nmp->nm_writeverflock, RW_READER);
1159 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1160 rw_exit(&nmp->nm_writeverflock);
1161 if (stalewriteverf) {
1162 nfs_clearcommit(bp->b_vp->v_mount);
1165 bp->b_error = error;
1166 return error;
1170 * Do an I/O operation to/from a cache block. This may be called
1171 * synchronously or from an nfsiod.
1174 nfs_doio(struct buf *bp)
1176 int error;
1177 struct uio uio;
1178 struct uio *uiop = &uio;
1179 struct iovec io;
1180 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1182 uiop->uio_iov = &io;
1183 uiop->uio_iovcnt = 1;
1184 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1185 UIO_SETUP_SYSSPACE(uiop);
1186 io.iov_base = bp->b_data;
1187 io.iov_len = uiop->uio_resid = bp->b_bcount;
1190 * Historically, paging was done with physio, but no more...
1192 if (bp->b_flags & B_PHYS) {
1194 * ...though reading /dev/drum still gets us here.
1196 error = nfs_doio_phys(bp, uiop);
1197 } else if (bp->b_flags & B_READ) {
1198 error = nfs_doio_read(bp, uiop);
1199 } else {
1200 error = nfs_doio_write(bp, uiop);
1202 bp->b_resid = uiop->uio_resid;
1203 biodone(bp);
1204 return (error);
1208 * Vnode op for VM getpages.
1212 nfs_getpages(void *v)
1214 struct vop_getpages_args /* {
1215 struct vnode *a_vp;
1216 voff_t a_offset;
1217 struct vm_page **a_m;
1218 int *a_count;
1219 int a_centeridx;
1220 vm_prot_t a_access_type;
1221 int a_advice;
1222 int a_flags;
1223 } */ *ap = v;
1225 struct vnode *vp = ap->a_vp;
1226 struct uvm_object *uobj = &vp->v_uobj;
1227 struct nfsnode *np = VTONFS(vp);
1228 const int npages = *ap->a_count;
1229 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
1230 off_t origoffset, len;
1231 int i, error;
1232 bool v3 = NFS_ISV3(vp);
1233 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1234 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1237 * If we are not locked we are not really using opgs,
1238 * so just initialize it
1240 if (!locked || npages < __arraycount(spgs))
1241 opgs = spgs;
1242 else {
1243 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
1244 NULL)
1245 return ENOMEM;
1249 * call the genfs code to get the pages. `pgs' may be NULL
1250 * when doing read-ahead.
1252 pgs = ap->a_m;
1253 if (write && locked && v3) {
1254 KASSERT(pgs != NULL);
1255 #ifdef DEBUG
1258 * If PGO_LOCKED is set, real pages shouldn't exists
1259 * in the array.
1262 for (i = 0; i < npages; i++)
1263 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1264 #endif
1265 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1267 error = genfs_getpages(v);
1268 if (error)
1269 goto out;
1272 * for read faults where the nfs node is not yet marked NMODIFIED,
1273 * set PG_RDONLY on the pages so that we come back here if someone
1274 * tries to modify later via the mapping that will be entered for
1275 * this fault.
1278 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1279 if (!locked) {
1280 mutex_enter(&uobj->vmobjlock);
1282 for (i = 0; i < npages; i++) {
1283 pg = pgs[i];
1284 if (pg == NULL || pg == PGO_DONTCARE) {
1285 continue;
1287 pg->flags |= PG_RDONLY;
1289 if (!locked) {
1290 mutex_exit(&uobj->vmobjlock);
1293 if (!write)
1294 goto out;
1297 * this is a write fault, update the commit info.
1300 origoffset = ap->a_offset;
1301 len = npages << PAGE_SHIFT;
1303 if (v3) {
1304 if (!locked) {
1305 mutex_enter(&np->n_commitlock);
1306 } else {
1307 if (!mutex_tryenter(&np->n_commitlock)) {
1310 * Since PGO_LOCKED is set, we need to unbusy
1311 * all pages fetched by genfs_getpages() above,
1312 * tell the caller that there are no pages
1313 * available and put back original pgs array.
1316 mutex_enter(&uvm_pageqlock);
1317 uvm_page_unbusy(pgs, npages);
1318 mutex_exit(&uvm_pageqlock);
1319 *ap->a_count = 0;
1320 memcpy(pgs, opgs,
1321 npages * sizeof(struct vm_pages *));
1322 error = EBUSY;
1323 goto out;
1326 nfs_del_committed_range(vp, origoffset, len);
1327 nfs_del_tobecommitted_range(vp, origoffset, len);
1329 np->n_flag |= NMODIFIED;
1330 if (!locked) {
1331 mutex_enter(&uobj->vmobjlock);
1333 for (i = 0; i < npages; i++) {
1334 pg = pgs[i];
1335 if (pg == NULL || pg == PGO_DONTCARE) {
1336 continue;
1338 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1340 if (!locked) {
1341 mutex_exit(&uobj->vmobjlock);
1343 if (v3) {
1344 mutex_exit(&np->n_commitlock);
1346 out:
1347 if (opgs != spgs)
1348 kmem_free(opgs, sizeof(*opgs) * npages);
1349 return error;