Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / nfs / nfs_subs.c
blob47289bb37c44a037aabc97eff9f5b36c8aef9e28
1 /* $NetBSD: nfs_subs.c,v 1.217 2009/05/14 15:42:22 yamt Exp $ */
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.217 2009/05/14 15:42:22 yamt Exp $");
75 #ifdef _KERNEL_OPT
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #endif
81 * These functions support the macros and help fiddle mbuf chains for
82 * the nfs op functions. They do things like create the rpc header and
83 * copy data between mbuf chains and uio lists.
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kmem.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/filedesc.h>
97 #include <sys/time.h>
98 #include <sys/dirent.h>
99 #include <sys/once.h>
100 #include <sys/kauth.h>
101 #include <sys/atomic.h>
103 #include <uvm/uvm_extern.h>
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
115 #include <miscfs/specfs/specdev.h>
117 #include <netinet/in.h>
119 static u_int32_t nfs_xid;
121 int nuidhash_max = NFS_MAXUIDHASH;
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
144 /* NFS client/server stats. */
145 struct nfsstats nfsstats;
148 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 const int nfsv3_procid[NFS_NPROCS] = {
151 NFSPROC_NULL,
152 NFSPROC_GETATTR,
153 NFSPROC_SETATTR,
154 NFSPROC_NOOP,
155 NFSPROC_LOOKUP,
156 NFSPROC_READLINK,
157 NFSPROC_READ,
158 NFSPROC_NOOP,
159 NFSPROC_WRITE,
160 NFSPROC_CREATE,
161 NFSPROC_REMOVE,
162 NFSPROC_RENAME,
163 NFSPROC_LINK,
164 NFSPROC_SYMLINK,
165 NFSPROC_MKDIR,
166 NFSPROC_RMDIR,
167 NFSPROC_READDIR,
168 NFSPROC_FSSTAT,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP
177 * and the reverse mapping from generic to Version 2 procedure numbers
179 const int nfsv2_procid[NFS_NPROCS] = {
180 NFSV2PROC_NULL,
181 NFSV2PROC_GETATTR,
182 NFSV2PROC_SETATTR,
183 NFSV2PROC_LOOKUP,
184 NFSV2PROC_NOOP,
185 NFSV2PROC_READLINK,
186 NFSV2PROC_READ,
187 NFSV2PROC_WRITE,
188 NFSV2PROC_CREATE,
189 NFSV2PROC_MKDIR,
190 NFSV2PROC_SYMLINK,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_REMOVE,
193 NFSV2PROC_RMDIR,
194 NFSV2PROC_RENAME,
195 NFSV2PROC_LINK,
196 NFSV2PROC_READDIR,
197 NFSV2PROC_NOOP,
198 NFSV2PROC_STATFS,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
206 * Maps errno values to nfs error numbers.
207 * Use NFSERR_IO as the catch all for ones not specifically defined in
208 * RFC 1094.
210 static const u_char nfsrv_v2errmap[ELAST] = {
211 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
212 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
213 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
214 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
215 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
224 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO,
231 * Maps errno values to nfs error numbers.
232 * Although it is not obvious whether or not NFS clients really care if
233 * a returned error value is in the specified list for the procedure, the
234 * safest thing to do is filter them appropriately. For Version 2, the
235 * X/Open XNFS document is the only specification that defines error values
236 * for each RPC (The RFC simply lists all possible error values for all RPCs),
237 * so I have decided to not do this for Version 2.
238 * The first entry is the default error return and the rest are the valid
239 * errors for that RPC in increasing numeric order.
241 static const short nfsv3err_null[] = {
246 static const short nfsv3err_getattr[] = {
247 NFSERR_IO,
248 NFSERR_IO,
249 NFSERR_STALE,
250 NFSERR_BADHANDLE,
251 NFSERR_SERVERFAULT,
255 static const short nfsv3err_setattr[] = {
256 NFSERR_IO,
257 NFSERR_PERM,
258 NFSERR_IO,
259 NFSERR_ACCES,
260 NFSERR_INVAL,
261 NFSERR_NOSPC,
262 NFSERR_ROFS,
263 NFSERR_DQUOT,
264 NFSERR_STALE,
265 NFSERR_BADHANDLE,
266 NFSERR_NOT_SYNC,
267 NFSERR_SERVERFAULT,
271 static const short nfsv3err_lookup[] = {
272 NFSERR_IO,
273 NFSERR_NOENT,
274 NFSERR_IO,
275 NFSERR_ACCES,
276 NFSERR_NOTDIR,
277 NFSERR_NAMETOL,
278 NFSERR_STALE,
279 NFSERR_BADHANDLE,
280 NFSERR_SERVERFAULT,
284 static const short nfsv3err_access[] = {
285 NFSERR_IO,
286 NFSERR_IO,
287 NFSERR_STALE,
288 NFSERR_BADHANDLE,
289 NFSERR_SERVERFAULT,
293 static const short nfsv3err_readlink[] = {
294 NFSERR_IO,
295 NFSERR_IO,
296 NFSERR_ACCES,
297 NFSERR_INVAL,
298 NFSERR_STALE,
299 NFSERR_BADHANDLE,
300 NFSERR_NOTSUPP,
301 NFSERR_SERVERFAULT,
305 static const short nfsv3err_read[] = {
306 NFSERR_IO,
307 NFSERR_IO,
308 NFSERR_NXIO,
309 NFSERR_ACCES,
310 NFSERR_INVAL,
311 NFSERR_STALE,
312 NFSERR_BADHANDLE,
313 NFSERR_SERVERFAULT,
314 NFSERR_JUKEBOX,
318 static const short nfsv3err_write[] = {
319 NFSERR_IO,
320 NFSERR_IO,
321 NFSERR_ACCES,
322 NFSERR_INVAL,
323 NFSERR_FBIG,
324 NFSERR_NOSPC,
325 NFSERR_ROFS,
326 NFSERR_DQUOT,
327 NFSERR_STALE,
328 NFSERR_BADHANDLE,
329 NFSERR_SERVERFAULT,
330 NFSERR_JUKEBOX,
334 static const short nfsv3err_create[] = {
335 NFSERR_IO,
336 NFSERR_IO,
337 NFSERR_ACCES,
338 NFSERR_EXIST,
339 NFSERR_NOTDIR,
340 NFSERR_NOSPC,
341 NFSERR_ROFS,
342 NFSERR_NAMETOL,
343 NFSERR_DQUOT,
344 NFSERR_STALE,
345 NFSERR_BADHANDLE,
346 NFSERR_NOTSUPP,
347 NFSERR_SERVERFAULT,
351 static const short nfsv3err_mkdir[] = {
352 NFSERR_IO,
353 NFSERR_IO,
354 NFSERR_ACCES,
355 NFSERR_EXIST,
356 NFSERR_NOTDIR,
357 NFSERR_NOSPC,
358 NFSERR_ROFS,
359 NFSERR_NAMETOL,
360 NFSERR_DQUOT,
361 NFSERR_STALE,
362 NFSERR_BADHANDLE,
363 NFSERR_NOTSUPP,
364 NFSERR_SERVERFAULT,
368 static const short nfsv3err_symlink[] = {
369 NFSERR_IO,
370 NFSERR_IO,
371 NFSERR_ACCES,
372 NFSERR_EXIST,
373 NFSERR_NOTDIR,
374 NFSERR_NOSPC,
375 NFSERR_ROFS,
376 NFSERR_NAMETOL,
377 NFSERR_DQUOT,
378 NFSERR_STALE,
379 NFSERR_BADHANDLE,
380 NFSERR_NOTSUPP,
381 NFSERR_SERVERFAULT,
385 static const short nfsv3err_mknod[] = {
386 NFSERR_IO,
387 NFSERR_IO,
388 NFSERR_ACCES,
389 NFSERR_EXIST,
390 NFSERR_NOTDIR,
391 NFSERR_NOSPC,
392 NFSERR_ROFS,
393 NFSERR_NAMETOL,
394 NFSERR_DQUOT,
395 NFSERR_STALE,
396 NFSERR_BADHANDLE,
397 NFSERR_NOTSUPP,
398 NFSERR_SERVERFAULT,
399 NFSERR_BADTYPE,
403 static const short nfsv3err_remove[] = {
404 NFSERR_IO,
405 NFSERR_NOENT,
406 NFSERR_IO,
407 NFSERR_ACCES,
408 NFSERR_NOTDIR,
409 NFSERR_ROFS,
410 NFSERR_NAMETOL,
411 NFSERR_STALE,
412 NFSERR_BADHANDLE,
413 NFSERR_SERVERFAULT,
417 static const short nfsv3err_rmdir[] = {
418 NFSERR_IO,
419 NFSERR_NOENT,
420 NFSERR_IO,
421 NFSERR_ACCES,
422 NFSERR_EXIST,
423 NFSERR_NOTDIR,
424 NFSERR_INVAL,
425 NFSERR_ROFS,
426 NFSERR_NAMETOL,
427 NFSERR_NOTEMPTY,
428 NFSERR_STALE,
429 NFSERR_BADHANDLE,
430 NFSERR_NOTSUPP,
431 NFSERR_SERVERFAULT,
435 static const short nfsv3err_rename[] = {
436 NFSERR_IO,
437 NFSERR_NOENT,
438 NFSERR_IO,
439 NFSERR_ACCES,
440 NFSERR_EXIST,
441 NFSERR_XDEV,
442 NFSERR_NOTDIR,
443 NFSERR_ISDIR,
444 NFSERR_INVAL,
445 NFSERR_NOSPC,
446 NFSERR_ROFS,
447 NFSERR_MLINK,
448 NFSERR_NAMETOL,
449 NFSERR_NOTEMPTY,
450 NFSERR_DQUOT,
451 NFSERR_STALE,
452 NFSERR_BADHANDLE,
453 NFSERR_NOTSUPP,
454 NFSERR_SERVERFAULT,
458 static const short nfsv3err_link[] = {
459 NFSERR_IO,
460 NFSERR_IO,
461 NFSERR_ACCES,
462 NFSERR_EXIST,
463 NFSERR_XDEV,
464 NFSERR_NOTDIR,
465 NFSERR_INVAL,
466 NFSERR_NOSPC,
467 NFSERR_ROFS,
468 NFSERR_MLINK,
469 NFSERR_NAMETOL,
470 NFSERR_DQUOT,
471 NFSERR_STALE,
472 NFSERR_BADHANDLE,
473 NFSERR_NOTSUPP,
474 NFSERR_SERVERFAULT,
478 static const short nfsv3err_readdir[] = {
479 NFSERR_IO,
480 NFSERR_IO,
481 NFSERR_ACCES,
482 NFSERR_NOTDIR,
483 NFSERR_STALE,
484 NFSERR_BADHANDLE,
485 NFSERR_BAD_COOKIE,
486 NFSERR_TOOSMALL,
487 NFSERR_SERVERFAULT,
491 static const short nfsv3err_readdirplus[] = {
492 NFSERR_IO,
493 NFSERR_IO,
494 NFSERR_ACCES,
495 NFSERR_NOTDIR,
496 NFSERR_STALE,
497 NFSERR_BADHANDLE,
498 NFSERR_BAD_COOKIE,
499 NFSERR_NOTSUPP,
500 NFSERR_TOOSMALL,
501 NFSERR_SERVERFAULT,
505 static const short nfsv3err_fsstat[] = {
506 NFSERR_IO,
507 NFSERR_IO,
508 NFSERR_STALE,
509 NFSERR_BADHANDLE,
510 NFSERR_SERVERFAULT,
514 static const short nfsv3err_fsinfo[] = {
515 NFSERR_STALE,
516 NFSERR_STALE,
517 NFSERR_BADHANDLE,
518 NFSERR_SERVERFAULT,
522 static const short nfsv3err_pathconf[] = {
523 NFSERR_STALE,
524 NFSERR_STALE,
525 NFSERR_BADHANDLE,
526 NFSERR_SERVERFAULT,
530 static const short nfsv3err_commit[] = {
531 NFSERR_IO,
532 NFSERR_IO,
533 NFSERR_STALE,
534 NFSERR_BADHANDLE,
535 NFSERR_SERVERFAULT,
539 static const short * const nfsrv_v3errmap[] = {
540 nfsv3err_null,
541 nfsv3err_getattr,
542 nfsv3err_setattr,
543 nfsv3err_lookup,
544 nfsv3err_access,
545 nfsv3err_readlink,
546 nfsv3err_read,
547 nfsv3err_write,
548 nfsv3err_create,
549 nfsv3err_mkdir,
550 nfsv3err_symlink,
551 nfsv3err_mknod,
552 nfsv3err_remove,
553 nfsv3err_rmdir,
554 nfsv3err_rename,
555 nfsv3err_link,
556 nfsv3err_readdir,
557 nfsv3err_readdirplus,
558 nfsv3err_fsstat,
559 nfsv3err_fsinfo,
560 nfsv3err_pathconf,
561 nfsv3err_commit,
564 extern struct nfsrtt nfsrtt;
566 u_long nfsdirhashmask;
568 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
571 * Create the header for an rpc request packet
572 * The hsiz is the size of the rest of the nfs request header.
573 * (just used to decide if a cluster is a good idea)
575 struct mbuf *
576 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
578 struct mbuf *mb;
579 char *bpos;
581 mb = m_get(M_WAIT, MT_DATA);
582 MCLAIM(mb, &nfs_mowner);
583 if (hsiz >= MINCLSIZE)
584 m_clget(mb, M_WAIT);
585 mb->m_len = 0;
586 bpos = mtod(mb, void *);
588 /* Finally, return values */
589 *bposp = bpos;
590 return (mb);
594 * Build the RPC header and fill in the authorization info.
595 * The authorization string argument is only used when the credentials
596 * come from outside of the kernel.
597 * Returns the head of the mbuf list.
599 struct mbuf *
600 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
601 int auth_type, int auth_len, char *auth_str, int verf_len,
602 char *verf_str, struct mbuf *mrest, int mrest_len,
603 struct mbuf **mbp, uint32_t *xidp)
605 struct mbuf *mb;
606 u_int32_t *tl;
607 char *bpos;
608 int i;
609 struct mbuf *mreq;
610 int siz, grpsiz, authsiz;
612 authsiz = nfsm_rndup(auth_len);
613 mb = m_gethdr(M_WAIT, MT_DATA);
614 MCLAIM(mb, &nfs_mowner);
615 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
616 m_clget(mb, M_WAIT);
617 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
618 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
619 } else {
620 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
622 mb->m_len = 0;
623 mreq = mb;
624 bpos = mtod(mb, void *);
627 * First the RPC header.
629 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
631 *tl++ = *xidp = nfs_getxid();
632 *tl++ = rpc_call;
633 *tl++ = rpc_vers;
634 *tl++ = txdr_unsigned(NFS_PROG);
635 if (nmflag & NFSMNT_NFSV3)
636 *tl++ = txdr_unsigned(NFS_VER3);
637 else
638 *tl++ = txdr_unsigned(NFS_VER2);
639 if (nmflag & NFSMNT_NFSV3)
640 *tl++ = txdr_unsigned(procid);
641 else
642 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
645 * And then the authorization cred.
647 *tl++ = txdr_unsigned(auth_type);
648 *tl = txdr_unsigned(authsiz);
649 switch (auth_type) {
650 case RPCAUTH_UNIX:
651 nfsm_build(tl, u_int32_t *, auth_len);
652 *tl++ = 0; /* stamp ?? */
653 *tl++ = 0; /* NULL hostname */
654 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
655 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
656 grpsiz = (auth_len >> 2) - 5;
657 *tl++ = txdr_unsigned(grpsiz);
658 for (i = 0; i < grpsiz; i++)
659 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
660 break;
661 case RPCAUTH_KERB4:
662 siz = auth_len;
663 while (siz > 0) {
664 if (M_TRAILINGSPACE(mb) == 0) {
665 struct mbuf *mb2;
666 mb2 = m_get(M_WAIT, MT_DATA);
667 MCLAIM(mb2, &nfs_mowner);
668 if (siz >= MINCLSIZE)
669 m_clget(mb2, M_WAIT);
670 mb->m_next = mb2;
671 mb = mb2;
672 mb->m_len = 0;
673 bpos = mtod(mb, void *);
675 i = min(siz, M_TRAILINGSPACE(mb));
676 memcpy(bpos, auth_str, i);
677 mb->m_len += i;
678 auth_str += i;
679 bpos += i;
680 siz -= i;
682 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
683 for (i = 0; i < siz; i++)
684 *bpos++ = '\0';
685 mb->m_len += siz;
687 break;
691 * And the verifier...
693 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
694 if (verf_str) {
695 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
696 *tl = txdr_unsigned(verf_len);
697 siz = verf_len;
698 while (siz > 0) {
699 if (M_TRAILINGSPACE(mb) == 0) {
700 struct mbuf *mb2;
701 mb2 = m_get(M_WAIT, MT_DATA);
702 MCLAIM(mb2, &nfs_mowner);
703 if (siz >= MINCLSIZE)
704 m_clget(mb2, M_WAIT);
705 mb->m_next = mb2;
706 mb = mb2;
707 mb->m_len = 0;
708 bpos = mtod(mb, void *);
710 i = min(siz, M_TRAILINGSPACE(mb));
711 memcpy(bpos, verf_str, i);
712 mb->m_len += i;
713 verf_str += i;
714 bpos += i;
715 siz -= i;
717 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
718 for (i = 0; i < siz; i++)
719 *bpos++ = '\0';
720 mb->m_len += siz;
722 } else {
723 *tl++ = txdr_unsigned(RPCAUTH_NULL);
724 *tl = 0;
726 mb->m_next = mrest;
727 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
728 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
729 *mbp = mb;
730 return (mreq);
734 * copies mbuf chain to the uio scatter/gather list
737 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
739 char *mbufcp, *uiocp;
740 int xfer, left, len;
741 struct mbuf *mp;
742 long uiosiz, rem;
743 int error = 0;
745 mp = *mrep;
746 mbufcp = *dpos;
747 len = mtod(mp, char *) + mp->m_len - mbufcp;
748 rem = nfsm_rndup(siz)-siz;
749 while (siz > 0) {
750 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
751 return (EFBIG);
752 left = uiop->uio_iov->iov_len;
753 uiocp = uiop->uio_iov->iov_base;
754 if (left > siz)
755 left = siz;
756 uiosiz = left;
757 while (left > 0) {
758 while (len == 0) {
759 mp = mp->m_next;
760 if (mp == NULL)
761 return (EBADRPC);
762 mbufcp = mtod(mp, void *);
763 len = mp->m_len;
765 xfer = (left > len) ? len : left;
766 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
767 uiocp, xfer);
768 if (error) {
769 return error;
771 left -= xfer;
772 len -= xfer;
773 mbufcp += xfer;
774 uiocp += xfer;
775 uiop->uio_offset += xfer;
776 uiop->uio_resid -= xfer;
778 if (uiop->uio_iov->iov_len <= siz) {
779 uiop->uio_iovcnt--;
780 uiop->uio_iov++;
781 } else {
782 uiop->uio_iov->iov_base =
783 (char *)uiop->uio_iov->iov_base + uiosiz;
784 uiop->uio_iov->iov_len -= uiosiz;
786 siz -= uiosiz;
788 *dpos = mbufcp;
789 *mrep = mp;
790 if (rem > 0) {
791 if (len < rem)
792 error = nfs_adv(mrep, dpos, rem, len);
793 else
794 *dpos += rem;
796 return (error);
800 * copies a uio scatter/gather list to an mbuf chain.
801 * NOTE: can ony handle iovcnt == 1
804 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
806 char *uiocp;
807 struct mbuf *mp, *mp2;
808 int xfer, left, mlen;
809 int uiosiz, clflg, rem;
810 char *cp;
811 int error;
813 #ifdef DIAGNOSTIC
814 if (uiop->uio_iovcnt != 1)
815 panic("nfsm_uiotombuf: iovcnt != 1");
816 #endif
818 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
819 clflg = 1;
820 else
821 clflg = 0;
822 rem = nfsm_rndup(siz)-siz;
823 mp = mp2 = *mq;
824 while (siz > 0) {
825 left = uiop->uio_iov->iov_len;
826 uiocp = uiop->uio_iov->iov_base;
827 if (left > siz)
828 left = siz;
829 uiosiz = left;
830 while (left > 0) {
831 mlen = M_TRAILINGSPACE(mp);
832 if (mlen == 0) {
833 mp = m_get(M_WAIT, MT_DATA);
834 MCLAIM(mp, &nfs_mowner);
835 if (clflg)
836 m_clget(mp, M_WAIT);
837 mp->m_len = 0;
838 mp2->m_next = mp;
839 mp2 = mp;
840 mlen = M_TRAILINGSPACE(mp);
842 xfer = (left > mlen) ? mlen : left;
843 cp = mtod(mp, char *) + mp->m_len;
844 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
845 xfer);
846 if (error) {
847 /* XXX */
849 mp->m_len += xfer;
850 left -= xfer;
851 uiocp += xfer;
852 uiop->uio_offset += xfer;
853 uiop->uio_resid -= xfer;
855 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
856 uiosiz;
857 uiop->uio_iov->iov_len -= uiosiz;
858 siz -= uiosiz;
860 if (rem > 0) {
861 if (rem > M_TRAILINGSPACE(mp)) {
862 mp = m_get(M_WAIT, MT_DATA);
863 MCLAIM(mp, &nfs_mowner);
864 mp->m_len = 0;
865 mp2->m_next = mp;
867 cp = mtod(mp, char *) + mp->m_len;
868 for (left = 0; left < rem; left++)
869 *cp++ = '\0';
870 mp->m_len += rem;
871 *bpos = cp;
872 } else
873 *bpos = mtod(mp, char *) + mp->m_len;
874 *mq = mp;
875 return (0);
879 * Get at least "siz" bytes of correctly aligned data.
880 * When called the mbuf pointers are not necessarily correct,
881 * dsosp points to what ought to be in m_data and left contains
882 * what ought to be in m_len.
883 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
884 * cases. (The macros use the vars. dpos and dpos2)
887 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
889 struct mbuf *m1, *m2;
890 struct mbuf *havebuf = NULL;
891 char *src = *dposp;
892 char *dst;
893 int len;
895 #ifdef DEBUG
896 if (left < 0)
897 panic("nfsm_disct: left < 0");
898 #endif
899 m1 = *mdp;
901 * Skip through the mbuf chain looking for an mbuf with
902 * some data. If the first mbuf found has enough data
903 * and it is correctly aligned return it.
905 while (left == 0) {
906 havebuf = m1;
907 *mdp = m1 = m1->m_next;
908 if (m1 == NULL)
909 return (EBADRPC);
910 src = mtod(m1, void *);
911 left = m1->m_len;
913 * If we start a new mbuf and it is big enough
914 * and correctly aligned just return it, don't
915 * do any pull up.
917 if (left >= siz && nfsm_aligned(src)) {
918 *cp2 = src;
919 *dposp = src + siz;
920 return (0);
923 if ((m1->m_flags & M_EXT) != 0) {
924 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
925 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
927 * If the first mbuf with data has external data
928 * and there is a previous mbuf with some trailing
929 * space, use it to move the data into.
931 m2 = m1;
932 *mdp = m1 = havebuf;
933 *cp2 = mtod(m1, char *) + m1->m_len;
934 } else if (havebuf) {
936 * If the first mbuf has a external data
937 * and there is no previous empty mbuf
938 * allocate a new mbuf and move the external
939 * data to the new mbuf. Also make the first
940 * mbuf look empty.
942 m2 = m1;
943 *mdp = m1 = m_get(M_WAIT, MT_DATA);
944 MCLAIM(m1, m2->m_owner);
945 if ((m2->m_flags & M_PKTHDR) != 0) {
946 /* XXX MOVE */
947 M_COPY_PKTHDR(m1, m2);
948 m_tag_delete_chain(m2, NULL);
949 m2->m_flags &= ~M_PKTHDR;
951 if (havebuf) {
952 havebuf->m_next = m1;
954 m1->m_next = m2;
955 MRESETDATA(m1);
956 m1->m_len = 0;
957 m2->m_data = src;
958 m2->m_len = left;
959 *cp2 = mtod(m1, char *);
960 } else {
961 struct mbuf **nextp = &m1->m_next;
963 m1->m_len -= left;
964 do {
965 m2 = m_get(M_WAIT, MT_DATA);
966 MCLAIM(m2, m1->m_owner);
967 if (left >= MINCLSIZE) {
968 MCLGET(m2, M_WAIT);
970 m2->m_next = *nextp;
971 *nextp = m2;
972 nextp = &m2->m_next;
973 len = (m2->m_flags & M_EXT) != 0 ?
974 MCLBYTES : MLEN;
975 if (len > left) {
976 len = left;
978 memcpy(mtod(m2, char *), src, len);
979 m2->m_len = len;
980 src += len;
981 left -= len;
982 } while (left > 0);
983 *mdp = m1 = m1->m_next;
984 m2 = m1->m_next;
985 *cp2 = mtod(m1, char *);
987 } else {
989 * If the first mbuf has no external data
990 * move the data to the front of the mbuf.
992 MRESETDATA(m1);
993 dst = mtod(m1, char *);
994 if (dst != src) {
995 memmove(dst, src, left);
997 m1->m_len = left;
998 m2 = m1->m_next;
999 *cp2 = m1->m_data;
1001 *dposp = *cp2 + siz;
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1007 dst = mtod(m1, char *) + m1->m_len;
1008 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1009 if ((len = min(len, m2->m_len)) != 0) {
1010 memcpy(dst, mtod(m2, char *), len);
1012 m1->m_len += len;
1013 dst += len;
1014 m2->m_data += len;
1015 m2->m_len -= len;
1016 m2 = m2->m_next;
1018 if (m1->m_len < siz)
1019 return (EBADRPC);
1020 return (0);
1024 * Advance the position in the mbuf chain.
1027 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
1029 struct mbuf *m;
1030 int s;
1032 m = *mdp;
1033 s = left;
1034 while (s < offs) {
1035 offs -= s;
1036 m = m->m_next;
1037 if (m == NULL)
1038 return (EBADRPC);
1039 s = m->m_len;
1041 *mdp = m;
1042 *dposp = mtod(m, char *) + offs;
1043 return (0);
1047 * Copy a string into mbufs for the hard cases...
1050 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1052 struct mbuf *m1 = NULL, *m2;
1053 long left, xfer, len, tlen;
1054 u_int32_t *tl;
1055 int putsize;
1057 putsize = 1;
1058 m2 = *mb;
1059 left = M_TRAILINGSPACE(m2);
1060 if (left > 0) {
1061 tl = ((u_int32_t *)(*bpos));
1062 *tl++ = txdr_unsigned(siz);
1063 putsize = 0;
1064 left -= NFSX_UNSIGNED;
1065 m2->m_len += NFSX_UNSIGNED;
1066 if (left > 0) {
1067 memcpy((void *) tl, cp, left);
1068 siz -= left;
1069 cp += left;
1070 m2->m_len += left;
1071 left = 0;
1074 /* Loop around adding mbufs */
1075 while (siz > 0) {
1076 m1 = m_get(M_WAIT, MT_DATA);
1077 MCLAIM(m1, &nfs_mowner);
1078 if (siz > MLEN)
1079 m_clget(m1, M_WAIT);
1080 m1->m_len = NFSMSIZ(m1);
1081 m2->m_next = m1;
1082 m2 = m1;
1083 tl = mtod(m1, u_int32_t *);
1084 tlen = 0;
1085 if (putsize) {
1086 *tl++ = txdr_unsigned(siz);
1087 m1->m_len -= NFSX_UNSIGNED;
1088 tlen = NFSX_UNSIGNED;
1089 putsize = 0;
1091 if (siz < m1->m_len) {
1092 len = nfsm_rndup(siz);
1093 xfer = siz;
1094 if (xfer < len)
1095 *(tl+(xfer>>2)) = 0;
1096 } else {
1097 xfer = len = m1->m_len;
1099 memcpy((void *) tl, cp, xfer);
1100 m1->m_len = len+tlen;
1101 siz -= xfer;
1102 cp += xfer;
1104 *mb = m1;
1105 *bpos = mtod(m1, char *) + m1->m_len;
1106 return (0);
1110 * Directory caching routines. They work as follows:
1111 * - a cache is maintained per VDIR nfsnode.
1112 * - for each offset cookie that is exported to userspace, and can
1113 * thus be thrown back at us as an offset to VOP_READDIR, store
1114 * information in the cache.
1115 * - cached are:
1116 * - cookie itself
1117 * - blocknumber (essentially just a search key in the buffer cache)
1118 * - entry number in block.
1119 * - offset cookie of block in which this entry is stored
1120 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1121 * - entries are looked up in a hash table
1122 * - also maintained is an LRU list of entries, used to determine
1123 * which ones to delete if the cache grows too large.
1124 * - if 32 <-> 64 translation mode is requested for a filesystem,
1125 * the cache also functions as a translation table
1126 * - in the translation case, invalidating the cache does not mean
1127 * flushing it, but just marking entries as invalid, except for
1128 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1129 * still be able to use the cache as a translation table.
1130 * - 32 bit cookies are uniquely created by combining the hash table
1131 * entry value, and one generation count per hash table entry,
1132 * incremented each time an entry is appended to the chain.
1133 * - the cache is invalidated each time a direcory is modified
1134 * - sanity checks are also done; if an entry in a block turns
1135 * out not to have a matching cookie, the cache is invalidated
1136 * and a new block starting from the wanted offset is fetched from
1137 * the server.
1138 * - directory entries as read from the server are extended to contain
1139 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1140 * the cache and exporting them to userspace through the cookie
1141 * argument to VOP_READDIR.
1144 u_long
1145 nfs_dirhash(off_t off)
1147 int i;
1148 char *cp = (char *)&off;
1149 u_long sum = 0L;
1151 for (i = 0 ; i < sizeof (off); i++)
1152 sum += *cp++;
1154 return sum;
1157 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1158 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1159 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1160 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1162 void
1163 nfs_initdircache(struct vnode *vp)
1165 struct nfsnode *np = VTONFS(vp);
1166 struct nfsdirhashhead *dircache;
1168 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1169 &nfsdirhashmask);
1171 NFSDC_LOCK(np);
1172 if (np->n_dircache == NULL) {
1173 np->n_dircachesize = 0;
1174 np->n_dircache = dircache;
1175 dircache = NULL;
1176 TAILQ_INIT(&np->n_dirchain);
1178 NFSDC_UNLOCK(np);
1179 if (dircache)
1180 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1183 void
1184 nfs_initdirxlatecookie(struct vnode *vp)
1186 struct nfsnode *np = VTONFS(vp);
1187 unsigned *dirgens;
1189 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1191 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1192 NFSDC_LOCK(np);
1193 if (np->n_dirgens == NULL) {
1194 np->n_dirgens = dirgens;
1195 dirgens = NULL;
1197 NFSDC_UNLOCK(np);
1198 if (dirgens)
1199 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1202 static const struct nfsdircache dzero;
1204 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1205 static void nfs_putdircache_unlocked(struct nfsnode *,
1206 struct nfsdircache *);
1208 static void
1209 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
1212 NFSDC_ASSERT_LOCKED(np);
1213 KASSERT(ndp != &dzero);
1215 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1216 return;
1218 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1219 LIST_REMOVE(ndp, dc_hash);
1220 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1222 nfs_putdircache_unlocked(np, ndp);
1225 void
1226 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
1228 int ref;
1230 if (ndp == &dzero)
1231 return;
1233 KASSERT(ndp->dc_refcnt > 0);
1234 NFSDC_LOCK(np);
1235 ref = --ndp->dc_refcnt;
1236 NFSDC_UNLOCK(np);
1238 if (ref == 0)
1239 kmem_free(ndp, sizeof(*ndp));
1242 static void
1243 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1245 int ref;
1247 NFSDC_ASSERT_LOCKED(np);
1249 if (ndp == &dzero)
1250 return;
1252 KASSERT(ndp->dc_refcnt > 0);
1253 ref = --ndp->dc_refcnt;
1254 if (ref == 0)
1255 kmem_free(ndp, sizeof(*ndp));
1258 struct nfsdircache *
1259 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
1261 struct nfsdirhashhead *ndhp;
1262 struct nfsdircache *ndp = NULL;
1263 struct nfsnode *np = VTONFS(vp);
1264 unsigned ent;
1267 * Zero is always a valid cookie.
1269 if (off == 0)
1270 /* XXXUNCONST */
1271 return (struct nfsdircache *)__UNCONST(&dzero);
1273 if (!np->n_dircache)
1274 return NULL;
1277 * We use a 32bit cookie as search key, directly reconstruct
1278 * the hashentry. Else use the hashfunction.
1280 if (do32) {
1281 ent = (u_int32_t)off >> 24;
1282 if (ent >= NFS_DIRHASHSIZ)
1283 return NULL;
1284 ndhp = &np->n_dircache[ent];
1285 } else {
1286 ndhp = NFSDIRHASH(np, off);
1289 if (hashent)
1290 *hashent = (int)(ndhp - np->n_dircache);
1292 NFSDC_LOCK(np);
1293 if (do32) {
1294 LIST_FOREACH(ndp, ndhp, dc_hash) {
1295 if (ndp->dc_cookie32 == (u_int32_t)off) {
1297 * An invalidated entry will become the
1298 * start of a new block fetched from
1299 * the server.
1301 if (ndp->dc_flags & NFSDC_INVALID) {
1302 ndp->dc_blkcookie = ndp->dc_cookie;
1303 ndp->dc_entry = 0;
1304 ndp->dc_flags &= ~NFSDC_INVALID;
1306 break;
1309 } else {
1310 LIST_FOREACH(ndp, ndhp, dc_hash) {
1311 if (ndp->dc_cookie == off)
1312 break;
1315 if (ndp != NULL)
1316 ndp->dc_refcnt++;
1317 NFSDC_UNLOCK(np);
1318 return ndp;
1322 struct nfsdircache *
1323 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1324 daddr_t blkno)
1326 struct nfsnode *np = VTONFS(vp);
1327 struct nfsdirhashhead *ndhp;
1328 struct nfsdircache *ndp = NULL;
1329 struct nfsdircache *newndp = NULL;
1330 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1331 int hashent = 0, gen, overwrite; /* XXX: GCC */
1334 * XXX refuse entries for offset 0. amd(8) erroneously sets
1335 * cookie 0 for the '.' entry, making this necessary. This
1336 * isn't so bad, as 0 is a special case anyway.
1338 if (off == 0)
1339 /* XXXUNCONST */
1340 return (struct nfsdircache *)__UNCONST(&dzero);
1342 if (!np->n_dircache)
1344 * XXX would like to do this in nfs_nget but vtype
1345 * isn't known at that time.
1347 nfs_initdircache(vp);
1349 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1350 nfs_initdirxlatecookie(vp);
1352 retry:
1353 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1355 NFSDC_LOCK(np);
1356 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1358 * Overwriting an old entry. Check if it's the same.
1359 * If so, just return. If not, remove the old entry.
1361 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1362 goto done;
1363 nfs_unlinkdircache(np, ndp);
1364 nfs_putdircache_unlocked(np, ndp);
1365 ndp = NULL;
1368 ndhp = &np->n_dircache[hashent];
1370 if (!ndp) {
1371 if (newndp == NULL) {
1372 NFSDC_UNLOCK(np);
1373 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1374 newndp->dc_refcnt = 1;
1375 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1376 goto retry;
1378 ndp = newndp;
1379 newndp = NULL;
1380 overwrite = 0;
1381 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1383 * We're allocating a new entry, so bump the
1384 * generation number.
1386 KASSERT(np->n_dirgens);
1387 gen = ++np->n_dirgens[hashent];
1388 if (gen == 0) {
1389 np->n_dirgens[hashent]++;
1390 gen++;
1392 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1394 } else
1395 overwrite = 1;
1397 ndp->dc_cookie = off;
1398 ndp->dc_blkcookie = blkoff;
1399 ndp->dc_entry = en;
1400 ndp->dc_flags = 0;
1402 if (overwrite)
1403 goto done;
1406 * If the maximum directory cookie cache size has been reached
1407 * for this node, take one off the front. The idea is that
1408 * directories are typically read front-to-back once, so that
1409 * the oldest entries can be thrown away without much performance
1410 * loss.
1412 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1413 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1414 } else
1415 np->n_dircachesize++;
1417 KASSERT(ndp->dc_refcnt == 1);
1418 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1419 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1420 ndp->dc_refcnt++;
1421 done:
1422 KASSERT(ndp->dc_refcnt > 0);
1423 NFSDC_UNLOCK(np);
1424 if (newndp)
1425 nfs_putdircache(np, newndp);
1426 return ndp;
1429 void
1430 nfs_invaldircache(struct vnode *vp, int flags)
1432 struct nfsnode *np = VTONFS(vp);
1433 struct nfsdircache *ndp = NULL;
1434 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1435 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1437 #ifdef DIAGNOSTIC
1438 if (vp->v_type != VDIR)
1439 panic("nfs: invaldircache: not dir");
1440 #endif
1442 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1443 np->n_flag &= ~NEOFVALID;
1445 if (!np->n_dircache)
1446 return;
1448 NFSDC_LOCK(np);
1449 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1450 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1451 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1452 nfs_unlinkdircache(np, ndp);
1454 np->n_dircachesize = 0;
1455 if (forcefree && np->n_dirgens) {
1456 kmem_free(np->n_dirgens,
1457 NFS_DIRHASHSIZ * sizeof(unsigned));
1458 np->n_dirgens = NULL;
1460 } else {
1461 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1462 ndp->dc_flags |= NFSDC_INVALID;
1465 NFSDC_UNLOCK(np);
1469 * Called once before VFS init to initialize shared and
1470 * server-specific data structures.
1472 static int
1473 nfs_init0(void)
1476 nfsrtt.pos = 0;
1477 rpc_vers = txdr_unsigned(RPC_VER2);
1478 rpc_call = txdr_unsigned(RPC_CALL);
1479 rpc_reply = txdr_unsigned(RPC_REPLY);
1480 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1481 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1482 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1483 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1484 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1485 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1486 nfs_prog = txdr_unsigned(NFS_PROG);
1487 nfs_true = txdr_unsigned(true);
1488 nfs_false = txdr_unsigned(false);
1489 nfs_xdrneg1 = txdr_unsigned(-1);
1490 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1491 if (nfs_ticks < 1)
1492 nfs_ticks = 1;
1493 nfs_xid = arc4random();
1494 nfsdreq_init();
1497 * Initialize reply list and start timer
1499 TAILQ_INIT(&nfs_reqq);
1500 nfs_timer_init();
1501 MOWNER_ATTACH(&nfs_mowner);
1503 #ifdef NFS
1504 /* Initialize the kqueue structures */
1505 nfs_kqinit();
1506 /* Initialize the iod structures */
1507 nfs_iodinit();
1508 #endif
1510 return 0;
1514 * This is disgusting, but it must support both modular and monolothic
1515 * configurations. For monolithic builds NFSSERVER may not imply NFS.
1517 * Yuck.
1519 void
1520 nfs_init(void)
1522 static ONCE_DECL(nfs_init_once);
1524 RUN_ONCE(&nfs_init_once, nfs_init0);
1527 void
1528 nfs_fini(void)
1531 #ifdef NFS
1532 nfs_kqfini();
1533 nfs_iodfini();
1534 #endif
1535 nfsdreq_fini();
1536 nfs_timer_fini();
1537 MOWNER_DETACH(&nfs_mowner);
1540 #ifdef NFS
1542 * Called once at VFS init to initialize client-specific data structures.
1544 void
1545 nfs_vfs_init(void)
1548 /* Initialize NFS server / client shared data. */
1549 nfs_init();
1550 nfs_node_init();
1552 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1555 void
1556 nfs_vfs_done(void)
1559 nfs_node_done();
1563 * Attribute cache routines.
1564 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1565 * that are on the mbuf list
1566 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1567 * error otherwise
1571 * Load the attribute cache (that lives in the nfsnode entry) with
1572 * the values on the mbuf list and
1573 * Iff vap not NULL
1574 * copy the attributes to *vaper
1577 nfsm_loadattrcache(struct vnode **vpp, struct mbuf **mdp, char **dposp, struct vattr *vaper, int flags)
1579 int32_t t1;
1580 char *cp2;
1581 int error = 0;
1582 struct mbuf *md;
1583 int v3 = NFS_ISV3(*vpp);
1585 md = *mdp;
1586 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1587 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1588 if (error)
1589 return (error);
1590 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1594 nfs_loadattrcache(struct vnode **vpp, struct nfs_fattr *fp, struct vattr *vaper, int flags)
1596 struct vnode *vp = *vpp;
1597 struct vattr *vap;
1598 int v3 = NFS_ISV3(vp);
1599 enum vtype vtyp;
1600 u_short vmode;
1601 struct timespec mtime;
1602 struct timespec ctime;
1603 int32_t rdev;
1604 struct nfsnode *np;
1605 extern int (**spec_nfsv2nodeop_p)(void *);
1606 uid_t uid;
1607 gid_t gid;
1609 if (v3) {
1610 vtyp = nfsv3tov_type(fp->fa_type);
1611 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1612 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1613 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1614 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1615 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1616 } else {
1617 vtyp = nfsv2tov_type(fp->fa_type);
1618 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1619 if (vtyp == VNON || vtyp == VREG)
1620 vtyp = IFTOVT(vmode);
1621 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1622 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1623 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1624 fp->fa2_ctime.nfsv2_sec);
1625 ctime.tv_nsec = 0;
1628 * Really ugly NFSv2 kludge.
1630 if (vtyp == VCHR && rdev == 0xffffffff)
1631 vtyp = VFIFO;
1634 vmode &= ALLPERMS;
1637 * If v_type == VNON it is a new node, so fill in the v_type,
1638 * n_mtime fields. Check to see if it represents a special
1639 * device, and if so, check for a possible alias. Once the
1640 * correct vnode has been obtained, fill in the rest of the
1641 * information.
1643 np = VTONFS(vp);
1644 if (vp->v_type == VNON) {
1645 vp->v_type = vtyp;
1646 if (vp->v_type == VFIFO) {
1647 extern int (**fifo_nfsv2nodeop_p)(void *);
1648 vp->v_op = fifo_nfsv2nodeop_p;
1649 } else if (vp->v_type == VREG) {
1650 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1651 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1652 vp->v_op = spec_nfsv2nodeop_p;
1653 spec_node_init(vp, (dev_t)rdev);
1655 np->n_mtime = mtime;
1657 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1658 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1659 vap = np->n_vattr;
1662 * Invalidate access cache if uid, gid, mode or ctime changed.
1664 if (np->n_accstamp != -1 &&
1665 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1666 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1667 np->n_accstamp = -1;
1669 vap->va_type = vtyp;
1670 vap->va_mode = vmode;
1671 vap->va_rdev = (dev_t)rdev;
1672 vap->va_mtime = mtime;
1673 vap->va_ctime = ctime;
1674 vap->va_birthtime.tv_sec = VNOVAL;
1675 vap->va_birthtime.tv_nsec = VNOVAL;
1676 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1677 switch (vtyp) {
1678 case VDIR:
1679 vap->va_blocksize = NFS_DIRFRAGSIZ;
1680 break;
1681 case VBLK:
1682 vap->va_blocksize = BLKDEV_IOSIZE;
1683 break;
1684 case VCHR:
1685 vap->va_blocksize = MAXBSIZE;
1686 break;
1687 default:
1688 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1689 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1690 break;
1692 if (v3) {
1693 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1694 vap->va_uid = uid;
1695 vap->va_gid = gid;
1696 vap->va_size = fxdr_hyper(&fp->fa3_size);
1697 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1698 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1699 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1700 vap->va_flags = 0;
1701 vap->va_filerev = 0;
1702 } else {
1703 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1704 vap->va_uid = uid;
1705 vap->va_gid = gid;
1706 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1707 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1708 * NFS_FABLKSIZE;
1709 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1710 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1711 vap->va_flags = 0;
1712 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1713 vap->va_filerev = 0;
1715 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1716 return EFBIG;
1718 if (vap->va_size != np->n_size) {
1719 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1720 vap->va_size = np->n_size;
1721 } else {
1722 np->n_size = vap->va_size;
1723 if (vap->va_type == VREG) {
1725 * we can't free pages if NAC_NOTRUNC because
1726 * the pages can be owned by ourselves.
1728 if (flags & NAC_NOTRUNC) {
1729 np->n_flag |= NTRUNCDELAYED;
1730 } else {
1731 genfs_node_wrlock(vp);
1732 mutex_enter(&vp->v_interlock);
1733 (void)VOP_PUTPAGES(vp, 0,
1734 0, PGO_SYNCIO | PGO_CLEANIT |
1735 PGO_FREE | PGO_ALLPAGES);
1736 uvm_vnp_setsize(vp, np->n_size);
1737 genfs_node_unlock(vp);
1742 np->n_attrstamp = time_second;
1743 if (vaper != NULL) {
1744 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1745 if (np->n_flag & NCHG) {
1746 if (np->n_flag & NACC)
1747 vaper->va_atime = np->n_atim;
1748 if (np->n_flag & NUPD)
1749 vaper->va_mtime = np->n_mtim;
1752 return (0);
1756 * Check the time stamp
1757 * If the cache is valid, copy contents to *vap and return 0
1758 * otherwise return an error
1761 nfs_getattrcache(struct vnode *vp, struct vattr *vaper)
1763 struct nfsnode *np = VTONFS(vp);
1764 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1765 struct vattr *vap;
1767 if (np->n_attrstamp == 0 ||
1768 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1769 nfsstats.attrcache_misses++;
1770 return (ENOENT);
1772 nfsstats.attrcache_hits++;
1773 vap = np->n_vattr;
1774 if (vap->va_size != np->n_size) {
1775 if (vap->va_type == VREG) {
1776 if ((np->n_flag & NMODIFIED) != 0 &&
1777 vap->va_size < np->n_size) {
1778 vap->va_size = np->n_size;
1779 } else {
1780 np->n_size = vap->va_size;
1782 genfs_node_wrlock(vp);
1783 uvm_vnp_setsize(vp, np->n_size);
1784 genfs_node_unlock(vp);
1785 } else
1786 np->n_size = vap->va_size;
1788 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1789 if (np->n_flag & NCHG) {
1790 if (np->n_flag & NACC)
1791 vaper->va_atime = np->n_atim;
1792 if (np->n_flag & NUPD)
1793 vaper->va_mtime = np->n_mtim;
1795 return (0);
1798 void
1799 nfs_delayedtruncate(struct vnode *vp)
1801 struct nfsnode *np = VTONFS(vp);
1803 if (np->n_flag & NTRUNCDELAYED) {
1804 np->n_flag &= ~NTRUNCDELAYED;
1805 genfs_node_wrlock(vp);
1806 mutex_enter(&vp->v_interlock);
1807 (void)VOP_PUTPAGES(vp, 0,
1808 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1809 uvm_vnp_setsize(vp, np->n_size);
1810 genfs_node_unlock(vp);
1814 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1815 #define NFS_WCCKLUDGE(nmp, now) \
1816 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1817 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1820 * nfs_check_wccdata: check inaccurate wcc_data
1822 * => return non-zero if we shouldn't trust the wcc_data.
1823 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1827 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1828 struct timespec *mtime, bool docheck)
1830 int error = 0;
1832 #if !defined(NFS_V2_ONLY)
1834 if (docheck) {
1835 struct vnode *vp = NFSTOV(np);
1836 struct nfsmount *nmp;
1837 long now = time_second;
1838 const struct timespec *omtime = &np->n_vattr->va_mtime;
1839 const struct timespec *octime = &np->n_vattr->va_ctime;
1840 const char *reason = NULL; /* XXX: gcc */
1842 if (timespeccmp(omtime, mtime, <=)) {
1843 reason = "mtime";
1844 error = EINVAL;
1847 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1848 reason = "ctime";
1849 error = EINVAL;
1852 nmp = VFSTONFS(vp->v_mount);
1853 if (error) {
1856 * despite of the fact that we've updated the file,
1857 * timestamps of the file were not updated as we
1858 * expected.
1859 * it means that the server has incompatible
1860 * semantics of timestamps or (more likely)
1861 * the server time is not precise enough to
1862 * track each modifications.
1863 * in that case, we disable wcc processing.
1865 * yes, strictly speaking, we should disable all
1866 * caching. it's a compromise.
1869 mutex_enter(&nmp->nm_lock);
1870 if (!NFS_WCCKLUDGE(nmp, now)) {
1871 printf("%s: inaccurate wcc data (%s) detected,"
1872 " disabling wcc"
1873 " (ctime %u.%09u %u.%09u,"
1874 " mtime %u.%09u %u.%09u)\n",
1875 vp->v_mount->mnt_stat.f_mntfromname,
1876 reason,
1877 (unsigned int)octime->tv_sec,
1878 (unsigned int)octime->tv_nsec,
1879 (unsigned int)ctime->tv_sec,
1880 (unsigned int)ctime->tv_nsec,
1881 (unsigned int)omtime->tv_sec,
1882 (unsigned int)omtime->tv_nsec,
1883 (unsigned int)mtime->tv_sec,
1884 (unsigned int)mtime->tv_nsec);
1886 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1887 nmp->nm_wcckludgetime = now;
1888 mutex_exit(&nmp->nm_lock);
1889 } else if (NFS_WCCKLUDGE(nmp, now)) {
1890 error = EPERM; /* XXX */
1891 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1892 mutex_enter(&nmp->nm_lock);
1893 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1894 printf("%s: re-enabling wcc\n",
1895 vp->v_mount->mnt_stat.f_mntfromname);
1896 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1898 mutex_exit(&nmp->nm_lock);
1902 #endif /* !defined(NFS_V2_ONLY) */
1904 return error;
1908 * Heuristic to see if the server XDR encodes directory cookies or not.
1909 * it is not supposed to, but a lot of servers may do this. Also, since
1910 * most/all servers will implement V2 as well, it is expected that they
1911 * may return just 32 bits worth of cookie information, so we need to
1912 * find out in which 32 bits this information is available. We do this
1913 * to avoid trouble with emulated binaries that can't handle 64 bit
1914 * directory offsets.
1917 void
1918 nfs_cookieheuristic(struct vnode *vp, int *flagp, struct lwp *l, kauth_cred_t cred)
1920 struct uio auio;
1921 struct iovec aiov;
1922 char *tbuf, *cp;
1923 struct dirent *dp;
1924 off_t *cookies = NULL, *cop;
1925 int error, eof, nc, len;
1927 tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1929 aiov.iov_base = tbuf;
1930 aiov.iov_len = NFS_DIRFRAGSIZ;
1931 auio.uio_iov = &aiov;
1932 auio.uio_iovcnt = 1;
1933 auio.uio_rw = UIO_READ;
1934 auio.uio_resid = NFS_DIRFRAGSIZ;
1935 auio.uio_offset = 0;
1936 UIO_SETUP_SYSSPACE(&auio);
1938 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1940 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1941 if (error || len == 0) {
1942 free(tbuf, M_TEMP);
1943 if (cookies)
1944 free(cookies, M_TEMP);
1945 return;
1949 * Find the first valid entry and look at its offset cookie.
1952 cp = tbuf;
1953 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1954 dp = (struct dirent *)cp;
1955 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1956 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1957 *flagp |= NFSMNT_SWAPCOOKIE;
1958 nfs_invaldircache(vp, 0);
1959 nfs_vinvalbuf(vp, 0, cred, l, 1);
1961 break;
1963 cop++;
1964 cp += dp->d_reclen;
1967 free(tbuf, M_TEMP);
1968 free(cookies, M_TEMP);
1970 #endif /* NFS */
1973 * A fiddled version of m_adj() that ensures null fill to a 32-bit
1974 * boundary and only trims off the back end
1976 * 1. trim off 'len' bytes as m_adj(mp, -len).
1977 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
1979 void
1980 nfs_zeropad(struct mbuf *mp, int len, int nul)
1982 struct mbuf *m;
1983 int count;
1986 * Trim from tail. Scan the mbuf chain,
1987 * calculating its length and finding the last mbuf.
1988 * If the adjustment only affects this mbuf, then just
1989 * adjust and return. Otherwise, rescan and truncate
1990 * after the remaining size.
1992 count = 0;
1993 m = mp;
1994 for (;;) {
1995 count += m->m_len;
1996 if (m->m_next == NULL)
1997 break;
1998 m = m->m_next;
2001 KDASSERT(count >= len);
2003 if (m->m_len >= len) {
2004 m->m_len -= len;
2005 } else {
2006 count -= len;
2008 * Correct length for chain is "count".
2009 * Find the mbuf with last data, adjust its length,
2010 * and toss data from remaining mbufs on chain.
2012 for (m = mp; m; m = m->m_next) {
2013 if (m->m_len >= count) {
2014 m->m_len = count;
2015 break;
2017 count -= m->m_len;
2019 KASSERT(m && m->m_next);
2020 m_freem(m->m_next);
2021 m->m_next = NULL;
2024 KDASSERT(m->m_next == NULL);
2027 * zero-padding.
2029 if (nul > 0) {
2030 char *cp;
2031 int i;
2033 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2034 struct mbuf *n;
2036 KDASSERT(MLEN >= nul);
2037 n = m_get(M_WAIT, MT_DATA);
2038 MCLAIM(n, &nfs_mowner);
2039 n->m_len = nul;
2040 n->m_next = NULL;
2041 m->m_next = n;
2042 cp = mtod(n, void *);
2043 } else {
2044 cp = mtod(m, char *) + m->m_len;
2045 m->m_len += nul;
2047 for (i = 0; i < nul; i++)
2048 *cp++ = '\0';
2050 return;
2054 * Make these functions instead of macros, so that the kernel text size
2055 * doesn't get too big...
2057 void
2058 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
2060 struct mbuf *mb = *mbp;
2061 char *bpos = *bposp;
2062 u_int32_t *tl;
2064 if (before_ret) {
2065 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2066 *tl = nfs_false;
2067 } else {
2068 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2069 *tl++ = nfs_true;
2070 txdr_hyper(before_vap->va_size, tl);
2071 tl += 2;
2072 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2073 tl += 2;
2074 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2076 *bposp = bpos;
2077 *mbp = mb;
2078 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2081 void
2082 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
2084 struct mbuf *mb = *mbp;
2085 char *bpos = *bposp;
2086 u_int32_t *tl;
2087 struct nfs_fattr *fp;
2089 if (after_ret) {
2090 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2091 *tl = nfs_false;
2092 } else {
2093 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2094 *tl++ = nfs_true;
2095 fp = (struct nfs_fattr *)tl;
2096 nfsm_srvfattr(nfsd, after_vap, fp);
2098 *mbp = mb;
2099 *bposp = bpos;
2102 void
2103 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
2106 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2107 fp->fa_uid = txdr_unsigned(vap->va_uid);
2108 fp->fa_gid = txdr_unsigned(vap->va_gid);
2109 if (nfsd->nd_flag & ND_NFSV3) {
2110 fp->fa_type = vtonfsv3_type(vap->va_type);
2111 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2112 txdr_hyper(vap->va_size, &fp->fa3_size);
2113 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2114 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2115 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2116 fp->fa3_fsid.nfsuquad[0] = 0;
2117 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2118 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2119 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2120 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2121 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2122 } else {
2123 fp->fa_type = vtonfsv2_type(vap->va_type);
2124 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2125 fp->fa2_size = txdr_unsigned(vap->va_size);
2126 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2127 if (vap->va_type == VFIFO)
2128 fp->fa2_rdev = 0xffffffff;
2129 else
2130 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2131 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2132 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2133 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2134 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2135 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2136 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2141 * This function compares two net addresses by family and returns true
2142 * if they are the same host.
2143 * If there is any doubt, return false.
2144 * The AF_INET family is handled as a special case so that address mbufs
2145 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2148 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
2150 struct sockaddr_in *inetaddr;
2152 switch (family) {
2153 case AF_INET:
2154 inetaddr = mtod(nam, struct sockaddr_in *);
2155 if (inetaddr->sin_family == AF_INET &&
2156 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2157 return (1);
2158 break;
2159 case AF_INET6:
2161 struct sockaddr_in6 *sin6_1, *sin6_2;
2163 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2164 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2165 if (sin6_1->sin6_family == AF_INET6 &&
2166 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2167 return 1;
2169 default:
2170 break;
2172 return (0);
2176 * The write verifier has changed (probably due to a server reboot), so all
2177 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2178 * as dirty or are being written out just now, all this takes is clearing
2179 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2180 * the mount point.
2182 void
2183 nfs_clearcommit(struct mount *mp)
2185 struct vnode *vp;
2186 struct nfsnode *np;
2187 struct vm_page *pg;
2188 struct nfsmount *nmp = VFSTONFS(mp);
2190 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2191 mutex_enter(&mntvnode_lock);
2192 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2193 KASSERT(vp->v_mount == mp);
2194 if (vp->v_type != VREG)
2195 continue;
2196 mutex_enter(&vp->v_interlock);
2197 if (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) {
2198 mutex_exit(&vp->v_interlock);
2199 continue;
2201 np = VTONFS(vp);
2202 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2203 np->n_pushedhi = 0;
2204 np->n_commitflags &=
2205 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2206 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2207 pg->flags &= ~PG_NEEDCOMMIT;
2209 mutex_exit(&vp->v_interlock);
2211 mutex_exit(&mntvnode_lock);
2212 mutex_enter(&nmp->nm_lock);
2213 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2214 mutex_exit(&nmp->nm_lock);
2215 rw_exit(&nmp->nm_writeverflock);
2218 void
2219 nfs_merge_commit_ranges(struct vnode *vp)
2221 struct nfsnode *np = VTONFS(vp);
2223 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2225 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2226 np->n_pushedlo = np->n_pushlo;
2227 np->n_pushedhi = np->n_pushhi;
2228 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2229 } else {
2230 if (np->n_pushlo < np->n_pushedlo)
2231 np->n_pushedlo = np->n_pushlo;
2232 if (np->n_pushhi > np->n_pushedhi)
2233 np->n_pushedhi = np->n_pushhi;
2236 np->n_pushlo = np->n_pushhi = 0;
2237 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2239 #ifdef NFS_DEBUG_COMMIT
2240 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2241 (unsigned)np->n_pushedhi);
2242 #endif
2246 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
2248 struct nfsnode *np = VTONFS(vp);
2249 off_t lo, hi;
2251 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2252 return 0;
2253 lo = off;
2254 hi = lo + len;
2256 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2260 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2262 struct nfsnode *np = VTONFS(vp);
2263 off_t lo, hi;
2265 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2266 return 0;
2267 lo = off;
2268 hi = lo + len;
2270 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2273 void
2274 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
2276 struct nfsnode *np = VTONFS(vp);
2277 off_t lo, hi;
2279 lo = off;
2280 hi = lo + len;
2282 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2283 np->n_pushedlo = lo;
2284 np->n_pushedhi = hi;
2285 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2286 } else {
2287 if (hi > np->n_pushedhi)
2288 np->n_pushedhi = hi;
2289 if (lo < np->n_pushedlo)
2290 np->n_pushedlo = lo;
2292 #ifdef NFS_DEBUG_COMMIT
2293 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2294 (unsigned)np->n_pushedhi);
2295 #endif
2298 void
2299 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
2301 struct nfsnode *np = VTONFS(vp);
2302 off_t lo, hi;
2304 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2305 return;
2307 lo = off;
2308 hi = lo + len;
2310 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2311 return;
2312 if (lo <= np->n_pushedlo)
2313 np->n_pushedlo = hi;
2314 else if (hi >= np->n_pushedhi)
2315 np->n_pushedhi = lo;
2316 else {
2318 * XXX There's only one range. If the deleted range
2319 * is in the middle, pick the largest of the
2320 * contiguous ranges that it leaves.
2322 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2323 np->n_pushedhi = lo;
2324 else
2325 np->n_pushedlo = hi;
2327 #ifdef NFS_DEBUG_COMMIT
2328 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2329 (unsigned)np->n_pushedhi);
2330 #endif
2333 void
2334 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2336 struct nfsnode *np = VTONFS(vp);
2337 off_t lo, hi;
2339 lo = off;
2340 hi = lo + len;
2342 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2343 np->n_pushlo = lo;
2344 np->n_pushhi = hi;
2345 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2346 } else {
2347 if (lo < np->n_pushlo)
2348 np->n_pushlo = lo;
2349 if (hi > np->n_pushhi)
2350 np->n_pushhi = hi;
2352 #ifdef NFS_DEBUG_COMMIT
2353 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2354 (unsigned)np->n_pushhi);
2355 #endif
2358 void
2359 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2361 struct nfsnode *np = VTONFS(vp);
2362 off_t lo, hi;
2364 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2365 return;
2367 lo = off;
2368 hi = lo + len;
2370 if (lo > np->n_pushhi || hi < np->n_pushlo)
2371 return;
2373 if (lo <= np->n_pushlo)
2374 np->n_pushlo = hi;
2375 else if (hi >= np->n_pushhi)
2376 np->n_pushhi = lo;
2377 else {
2379 * XXX There's only one range. If the deleted range
2380 * is in the middle, pick the largest of the
2381 * contiguous ranges that it leaves.
2383 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2384 np->n_pushhi = lo;
2385 else
2386 np->n_pushlo = hi;
2388 #ifdef NFS_DEBUG_COMMIT
2389 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2390 (unsigned)np->n_pushhi);
2391 #endif
2395 * Map errnos to NFS error numbers. For Version 3 also filter out error
2396 * numbers not specified for the associated procedure.
2399 nfsrv_errmap(struct nfsrv_descript *nd, int err)
2401 const short *defaulterrp, *errp;
2403 if (nd->nd_flag & ND_NFSV3) {
2404 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2405 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2406 while (*++errp) {
2407 if (*errp == err)
2408 return (err);
2409 else if (*errp > err)
2410 break;
2412 return ((int)*defaulterrp);
2413 } else
2414 return (err & 0xffff);
2416 if (err <= ELAST)
2417 return ((int)nfsrv_v2errmap[err - 1]);
2418 return (NFSERR_IO);
2421 u_int32_t
2422 nfs_getxid(void)
2424 u_int32_t newxid;
2426 /* get next xid. skip 0 */
2427 do {
2428 newxid = atomic_inc_32_nv(&nfs_xid);
2429 } while (__predict_false(newxid == 0));
2431 return txdr_unsigned(newxid);
2435 * assign a new xid for existing request.
2436 * used for NFSERR_JUKEBOX handling.
2438 void
2439 nfs_renewxid(struct nfsreq *req)
2441 u_int32_t xid;
2442 int off;
2444 xid = nfs_getxid();
2445 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2446 off = sizeof(u_int32_t); /* RPC record mark */
2447 else
2448 off = 0;
2450 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2451 req->r_xid = xid;
2454 #if defined(NFS)
2456 * Set the attribute timeout based on how recently the file has been modified.
2459 time_t
2460 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
2462 time_t timeo;
2464 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
2465 return 0;
2467 if (((np)->n_flag & NMODIFIED) != 0)
2468 return NFS_MINATTRTIMO;
2470 timeo = (time_second - np->n_mtime.tv_sec) / 10;
2471 timeo = max(timeo, NFS_MINATTRTIMO);
2472 timeo = min(timeo, NFS_MAXATTRTIMO);
2473 return timeo;
2475 #endif /* defined(NFS) */