Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / uvm / uvm_fault.c
blob699f0a2c76ef9a4fba560cf621945b9cf3be91fb
1 /* $NetBSD: uvm_fault.c,v 1.128 2009/12/05 22:34:43 pooka Exp $ */
3 /*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
38 * uvm_fault.c: fault handler
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.128 2009/12/05 22:34:43 pooka Exp $");
44 #include "opt_uvmhist.h"
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
53 #include <uvm/uvm.h>
57 * a word on page faults:
59 * types of page faults we handle:
61 * CASE 1: upper layer faults CASE 2: lower layer faults
63 * CASE 1A CASE 1B CASE 2A CASE 2B
64 * read/write1 write>1 read/write +-cow_write/zero
65 * | | | |
66 * +--|--+ +--|--+ +-----+ + | + | +-----+
67 * amap | V | | ---------> new | | | | ^ |
68 * +-----+ +-----+ +-----+ + | + | +--|--+
69 * | | |
70 * +-----+ +-----+ +--|--+ | +--|--+
71 * uobj | d/c | | d/c | | V | +----+ |
72 * +-----+ +-----+ +-----+ +-----+
74 * d/c = don't care
76 * case [0]: layerless fault
77 * no amap or uobj is present. this is an error.
79 * case [1]: upper layer fault [anon active]
80 * 1A: [read] or [write with anon->an_ref == 1]
81 * I/O takes place in upper level anon and uobj is not touched.
82 * 1B: [write with anon->an_ref > 1]
83 * new anon is alloc'd and data is copied off ["COW"]
85 * case [2]: lower layer fault [uobj]
86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87 * I/O takes place directly in object.
88 * 2B: [write to copy_on_write] or [read on NULL uobj]
89 * data is "promoted" from uobj to a new anon.
90 * if uobj is null, then we zero fill.
92 * we follow the standard UVM locking protocol ordering:
94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95 * we hold a PG_BUSY page if we unlock for I/O
98 * the code is structured as follows:
100 * - init the "IN" params in the ufi structure
101 * ReFault:
102 * - do lookups [locks maps], check protection, handle needs_copy
103 * - check for case 0 fault (error)
104 * - establish "range" of fault
105 * - if we have an amap lock it and extract the anons
106 * - if sequential advice deactivate pages behind us
107 * - at the same time check pmap for unmapped areas and anon for pages
108 * that we could map in (and do map it if found)
109 * - check object for resident pages that we could map in
110 * - if (case 2) goto Case2
111 * - >>> handle case 1
112 * - ensure source anon is resident in RAM
113 * - if case 1B alloc new anon and copy from source
114 * - map the correct page in
115 * Case2:
116 * - >>> handle case 2
117 * - ensure source page is resident (if uobj)
118 * - if case 2B alloc new anon and copy from source (could be zero
119 * fill if uobj == NULL)
120 * - map the correct page in
121 * - done!
123 * note on paging:
124 * if we have to do I/O we place a PG_BUSY page in the correct object,
125 * unlock everything, and do the I/O. when I/O is done we must reverify
126 * the state of the world before assuming that our data structures are
127 * valid. [because mappings could change while the map is unlocked]
129 * alternative 1: unbusy the page in question and restart the page fault
130 * from the top (ReFault). this is easy but does not take advantage
131 * of the information that we already have from our previous lookup,
132 * although it is possible that the "hints" in the vm_map will help here.
134 * alternative 2: the system already keeps track of a "version" number of
135 * a map. [i.e. every time you write-lock a map (e.g. to change a
136 * mapping) you bump the version number up by one...] so, we can save
137 * the version number of the map before we release the lock and start I/O.
138 * then when I/O is done we can relock and check the version numbers
139 * to see if anything changed. this might save us some over 1 because
140 * we don't have to unbusy the page and may be less compares(?).
142 * alternative 3: put in backpointers or a way to "hold" part of a map
143 * in place while I/O is in progress. this could be complex to
144 * implement (especially with structures like amap that can be referenced
145 * by multiple map entries, and figuring out what should wait could be
146 * complex as well...).
148 * we use alternative 2. given that we are multi-threaded now we may want
149 * to reconsider the choice.
153 * local data structures
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
168 static const struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177 * private prototypes
181 * inline functions
185 * uvmfault_anonflush: try and deactivate pages in specified anons
187 * => does not have to deactivate page if it is busy
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
193 int lcv;
194 struct vm_page *pg;
196 for (lcv = 0 ; lcv < n ; lcv++) {
197 if (anons[lcv] == NULL)
198 continue;
199 mutex_enter(&anons[lcv]->an_lock);
200 pg = anons[lcv]->an_page;
201 if (pg && (pg->flags & PG_BUSY) == 0) {
202 mutex_enter(&uvm_pageqlock);
203 if (pg->wire_count == 0) {
204 uvm_pagedeactivate(pg);
206 mutex_exit(&uvm_pageqlock);
208 mutex_exit(&anons[lcv]->an_lock);
213 * normal functions
217 * uvmfault_amapcopy: clear "needs_copy" in a map.
219 * => called with VM data structures unlocked (usually, see below)
220 * => we get a write lock on the maps and clear needs_copy for a VA
221 * => if we are out of RAM we sleep (waiting for more)
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 for (;;) {
230 * no mapping? give up.
233 if (uvmfault_lookup(ufi, true) == false)
234 return;
237 * copy if needed.
240 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245 * didn't work? must be out of RAM. unlock and sleep.
248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 uvmfault_unlockmaps(ufi, true);
250 uvm_wait("fltamapcopy");
251 continue;
255 * got it! unlock and return.
258 uvmfault_unlockmaps(ufi, true);
259 return;
261 /*NOTREACHED*/
265 * uvmfault_anonget: get data in an anon into a non-busy, non-released
266 * page in that anon.
268 * => maps, amap, and anon locked by caller.
269 * => if we fail (result != 0) we unlock everything.
270 * => if we are successful, we return with everything still locked.
271 * => we don't move the page on the queues [gets moved later]
272 * => if we allocate a new page [we_own], it gets put on the queues.
273 * either way, the result is that the page is on the queues at return time
274 * => for pages which are on loan from a uvm_object (and thus are not
275 * owned by the anon): if successful, we return with the owning object
276 * locked. the caller must unlock this object when it unlocks everything
277 * else.
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282 struct vm_anon *anon)
284 bool we_own; /* we own anon's page? */
285 bool locked; /* did we relock? */
286 struct vm_page *pg;
287 int error;
288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
290 KASSERT(mutex_owned(&anon->an_lock));
292 error = 0;
293 uvmexp.fltanget++;
294 /* bump rusage counters */
295 if (anon->an_page)
296 curlwp->l_ru.ru_minflt++;
297 else
298 curlwp->l_ru.ru_majflt++;
301 * loop until we get it, or fail.
304 for (;;) {
305 we_own = false; /* true if we set PG_BUSY on a page */
306 pg = anon->an_page;
309 * if there is a resident page and it is loaned, then anon
310 * may not own it. call out to uvm_anon_lockpage() to ensure
311 * the real owner of the page has been identified and locked.
314 if (pg && pg->loan_count)
315 pg = uvm_anon_lockloanpg(anon);
318 * page there? make sure it is not busy/released.
321 if (pg) {
324 * at this point, if the page has a uobject [meaning
325 * we have it on loan], then that uobject is locked
326 * by us! if the page is busy, we drop all the
327 * locks (including uobject) and try again.
330 if ((pg->flags & PG_BUSY) == 0) {
331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 return (0);
334 pg->flags |= PG_WANTED;
335 uvmexp.fltpgwait++;
338 * the last unlock must be an atomic unlock+wait on
339 * the owner of page
342 if (pg->uobject) { /* owner is uobject ? */
343 uvmfault_unlockall(ufi, amap, NULL, anon);
344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 0,0,0);
346 UVM_UNLOCK_AND_WAIT(pg,
347 &pg->uobject->vmobjlock,
348 false, "anonget1",0);
349 } else {
350 /* anon owns page */
351 uvmfault_unlockall(ufi, amap, NULL, NULL);
352 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 "anonget2",0);
357 } else {
358 #if defined(VMSWAP)
361 * no page, we must try and bring it in.
364 pg = uvm_pagealloc(NULL, 0, anon, 0);
365 if (pg == NULL) { /* out of RAM. */
366 uvmfault_unlockall(ufi, amap, NULL, anon);
367 uvmexp.fltnoram++;
368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
369 0,0,0);
370 if (!uvm_reclaimable()) {
371 return ENOMEM;
373 uvm_wait("flt_noram1");
374 } else {
375 /* we set the PG_BUSY bit */
376 we_own = true;
377 uvmfault_unlockall(ufi, amap, NULL, anon);
380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 * page into the uvm_swap_get function with
382 * all data structures unlocked. note that
383 * it is ok to read an_swslot here because
384 * we hold PG_BUSY on the page.
386 uvmexp.pageins++;
387 error = uvm_swap_get(pg, anon->an_swslot,
388 PGO_SYNCIO);
391 * we clean up after the i/o below in the
392 * "we_own" case
395 #else /* defined(VMSWAP) */
396 panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
401 * now relock and try again
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
408 if (locked || we_own)
409 mutex_enter(&anon->an_lock);
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
422 if (we_own) {
423 #if defined(VMSWAP)
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
427 if (error) {
430 * remove the swap slot from the anon
431 * and mark the anon as having no real slot.
432 * don't free the swap slot, thus preventing
433 * it from being used again.
436 if (anon->an_swslot > 0)
437 uvm_swap_markbad(anon->an_swslot, 1);
438 anon->an_swslot = SWSLOT_BAD;
440 if ((pg->flags & PG_RELEASED) != 0)
441 goto released;
444 * note: page was never !PG_BUSY, so it
445 * can't be mapped and thus no need to
446 * pmap_page_protect it...
449 mutex_enter(&uvm_pageqlock);
450 uvm_pagefree(pg);
451 mutex_exit(&uvm_pageqlock);
453 if (locked)
454 uvmfault_unlockall(ufi, amap, NULL,
455 anon);
456 else
457 mutex_exit(&anon->an_lock);
458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 return error;
462 if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 KASSERT(anon->an_ref == 0);
467 * released while we unlocked amap.
470 if (locked)
471 uvmfault_unlockall(ufi, amap, NULL,
472 NULL);
474 uvm_anon_release(anon);
476 if (error) {
477 UVMHIST_LOG(maphist,
478 "<- ERROR/RELEASED", 0,0,0,0);
479 return error;
482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 return ERESTART;
487 * we've successfully read the page, activate it.
490 mutex_enter(&uvm_pageqlock);
491 uvm_pageactivate(pg);
492 mutex_exit(&uvm_pageqlock);
493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 UVM_PAGE_OWN(pg, NULL);
495 if (!locked)
496 mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
503 * we were not able to relock. restart fault.
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
512 * verify no one has touched the amap and moved the anon on us.
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
525 * try it again!
528 uvmexp.fltanretry++;
529 continue;
531 /*NOTREACHED*/
535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B.
537 * 1. allocate an anon and a page.
538 * 2. fill its contents.
539 * 3. put it into amap.
541 * => if we fail (result != 0) we unlock everything.
542 * => on success, return a new locked anon via 'nanon'.
543 * (*nanon)->an_page will be a resident, locked, dirty page.
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548 struct vm_anon *oanon,
549 struct vm_page *uobjpage,
550 struct vm_anon **nanon, /* OUT: allocated anon */
551 struct vm_anon **spare)
553 struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 struct uvm_object *uobj;
555 struct vm_anon *anon;
556 struct vm_page *pg;
557 struct vm_page *opg;
558 int error;
559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
561 if (oanon) {
562 /* anon COW */
563 opg = oanon->an_page;
564 KASSERT(opg != NULL);
565 KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 } else if (uobjpage != PGO_DONTCARE) {
567 /* object-backed COW */
568 opg = uobjpage;
569 } else {
570 /* ZFOD */
571 opg = NULL;
573 if (opg != NULL) {
574 uobj = opg->uobject;
575 } else {
576 uobj = NULL;
579 KASSERT(amap != NULL);
580 KASSERT(uobjpage != NULL);
581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 KASSERT(mutex_owned(&amap->am_l));
583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
589 if (*spare != NULL) {
590 anon = *spare;
591 *spare = NULL;
592 mutex_enter(&anon->an_lock);
593 } else if (ufi->map != kernel_map) {
594 anon = uvm_analloc();
595 } else {
596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
599 * we can't allocate anons with kernel_map locked.
602 uvm_page_unbusy(&uobjpage, 1);
603 uvmfault_unlockall(ufi, amap, uobj, oanon);
605 *spare = uvm_analloc();
606 if (*spare == NULL) {
607 goto nomem;
609 mutex_exit(&(*spare)->an_lock);
610 error = ERESTART;
611 goto done;
613 if (anon) {
616 * The new anon is locked.
618 * if opg == NULL, we want a zero'd, dirty page,
619 * so have uvm_pagealloc() do that for us.
622 pg = uvm_pagealloc(NULL, 0, anon,
623 (opg == NULL) ? UVM_PGA_ZERO : 0);
624 } else {
625 pg = NULL;
629 * out of memory resources?
632 if (pg == NULL) {
633 /* save anon for the next try. */
634 if (anon != NULL) {
635 mutex_exit(&anon->an_lock);
636 *spare = anon;
639 /* unlock and fail ... */
640 uvm_page_unbusy(&uobjpage, 1);
641 uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 if (!uvm_reclaimable()) {
644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 uvmexp.fltnoanon++;
646 error = ENOMEM;
647 goto done;
650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 uvmexp.fltnoram++;
652 uvm_wait("flt_noram5");
653 error = ERESTART;
654 goto done;
657 /* copy page [pg now dirty] */
658 if (opg) {
659 uvm_pagecopy(opg, pg);
662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 oanon != NULL);
665 *nanon = anon;
666 error = 0;
667 done:
668 return error;
673 * F A U L T - m a i n e n t r y p o i n t
677 * uvm_fault: page fault handler
679 * => called from MD code to resolve a page fault
680 * => VM data structures usually should be unlocked. however, it is
681 * possible to call here with the main map locked if the caller
682 * gets a write lock, sets it recusive, and then calls us (c.f.
683 * uvm_map_pageable). this should be avoided because it keeps
684 * the map locked off during I/O.
685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
689 ~VM_PROT_WRITE : VM_PROT_ALL)
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE 1
693 #define UVM_FAULT_WIREMAX 2
696 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
697 vm_prot_t access_type, int fault_flag)
699 struct uvm_faultinfo ufi;
700 vm_prot_t enter_prot, check_prot;
701 bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
702 int npages, nback, nforw, centeridx, error, lcv, gotpages;
703 vaddr_t startva, currva;
704 voff_t uoff;
705 struct vm_amap *amap;
706 struct uvm_object *uobj;
707 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
708 struct vm_anon *anon_spare;
709 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
710 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
712 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
713 orig_map, vaddr, access_type, fault_flag);
715 anon = anon_spare = NULL;
716 pg = NULL;
718 uvmexp.faults++; /* XXX: locking? */
721 * init the IN parameters in the ufi
724 ufi.orig_map = orig_map;
725 ufi.orig_rvaddr = trunc_page(vaddr);
726 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
727 wire_fault = (fault_flag > 0);
728 if (wire_fault)
729 narrow = true; /* don't look for neighborhood
730 * pages on wire */
731 else
732 narrow = false; /* normal fault */
735 * "goto ReFault" means restart the page fault from ground zero.
737 ReFault:
740 * lookup and lock the maps
743 if (uvmfault_lookup(&ufi, false) == false) {
744 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
745 error = EFAULT;
746 goto done;
748 /* locked: maps(read) */
750 #ifdef DIAGNOSTIC
751 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
752 printf("Page fault on non-pageable map:\n");
753 printf("ufi.map = %p\n", ufi.map);
754 printf("ufi.orig_map = %p\n", ufi.orig_map);
755 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
756 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
758 #endif
761 * check protection
764 check_prot = fault_flag == UVM_FAULT_WIREMAX ?
765 ufi.entry->max_protection : ufi.entry->protection;
766 if ((check_prot & access_type) != access_type) {
767 UVMHIST_LOG(maphist,
768 "<- protection failure (prot=0x%x, access=0x%x)",
769 ufi.entry->protection, access_type, 0, 0);
770 uvmfault_unlockmaps(&ufi, false);
771 error = EACCES;
772 goto done;
776 * "enter_prot" is the protection we want to enter the page in at.
777 * for certain pages (e.g. copy-on-write pages) this protection can
778 * be more strict than ufi.entry->protection. "wired" means either
779 * the entry is wired or we are fault-wiring the pg.
782 enter_prot = ufi.entry->protection;
783 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
784 if (wired) {
785 access_type = enter_prot; /* full access for wired */
786 cow_now = (check_prot & VM_PROT_WRITE) != 0;
787 } else {
788 cow_now = (access_type & VM_PROT_WRITE) != 0;
792 * handle "needs_copy" case. if we need to copy the amap we will
793 * have to drop our readlock and relock it with a write lock. (we
794 * need a write lock to change anything in a map entry [e.g.
795 * needs_copy]).
798 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
799 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
800 KASSERT(fault_flag != UVM_FAULT_WIREMAX);
801 /* need to clear */
802 UVMHIST_LOG(maphist,
803 " need to clear needs_copy and refault",0,0,0,0);
804 uvmfault_unlockmaps(&ufi, false);
805 uvmfault_amapcopy(&ufi);
806 uvmexp.fltamcopy++;
807 goto ReFault;
809 } else {
812 * ensure that we pmap_enter page R/O since
813 * needs_copy is still true
816 enter_prot &= ~VM_PROT_WRITE;
821 * identify the players
824 amap = ufi.entry->aref.ar_amap; /* upper layer */
825 uobj = ufi.entry->object.uvm_obj; /* lower layer */
828 * check for a case 0 fault. if nothing backing the entry then
829 * error now.
832 if (amap == NULL && uobj == NULL) {
833 uvmfault_unlockmaps(&ufi, false);
834 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
835 error = EFAULT;
836 goto done;
840 * establish range of interest based on advice from mapper
841 * and then clip to fit map entry. note that we only want
842 * to do this the first time through the fault. if we
843 * ReFault we will disable this by setting "narrow" to true.
846 if (narrow == false) {
848 /* wide fault (!narrow) */
849 KASSERT(uvmadvice[ufi.entry->advice].advice ==
850 ufi.entry->advice);
851 nback = MIN(uvmadvice[ufi.entry->advice].nback,
852 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
853 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
854 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
855 ((ufi.entry->end - ufi.orig_rvaddr) >>
856 PAGE_SHIFT) - 1);
858 * note: "-1" because we don't want to count the
859 * faulting page as forw
861 npages = nback + nforw + 1;
862 centeridx = nback;
864 narrow = true; /* ensure only once per-fault */
866 } else {
868 /* narrow fault! */
869 nback = nforw = 0;
870 startva = ufi.orig_rvaddr;
871 npages = 1;
872 centeridx = 0;
876 /* locked: maps(read) */
877 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
878 narrow, nback, nforw, startva);
879 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
880 amap, uobj, 0);
883 * if we've got an amap, lock it and extract current anons.
886 if (amap) {
887 amap_lock(amap);
888 anons = anons_store;
889 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
890 anons, npages);
891 } else {
892 anons = NULL; /* to be safe */
895 /* locked: maps(read), amap(if there) */
896 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
899 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
900 * now and then forget about them (for the rest of the fault).
903 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
905 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
906 0,0,0,0);
907 /* flush back-page anons? */
908 if (amap)
909 uvmfault_anonflush(anons, nback);
911 /* flush object? */
912 if (uobj) {
913 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
914 mutex_enter(&uobj->vmobjlock);
915 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
916 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
919 /* now forget about the backpages */
920 if (amap)
921 anons += nback;
922 startva += (nback << PAGE_SHIFT);
923 npages -= nback;
924 nback = centeridx = 0;
927 /* locked: maps(read), amap(if there) */
928 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
931 * map in the backpages and frontpages we found in the amap in hopes
932 * of preventing future faults. we also init the pages[] array as
933 * we go.
936 currva = startva;
937 shadowed = false;
938 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
941 * dont play with VAs that are already mapped
942 * except for center)
944 if (lcv != centeridx &&
945 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
946 pages[lcv] = PGO_DONTCARE;
947 continue;
951 * unmapped or center page. check if any anon at this level.
953 if (amap == NULL || anons[lcv] == NULL) {
954 pages[lcv] = NULL;
955 continue;
959 * check for present page and map if possible. re-activate it.
962 pages[lcv] = PGO_DONTCARE;
963 if (lcv == centeridx) { /* save center for later! */
964 shadowed = true;
965 continue;
967 anon = anons[lcv];
968 mutex_enter(&anon->an_lock);
969 /* ignore loaned pages */
970 if (anon->an_page && anon->an_page->loan_count == 0 &&
971 (anon->an_page->flags & PG_BUSY) == 0) {
972 mutex_enter(&uvm_pageqlock);
973 uvm_pageenqueue(anon->an_page);
974 mutex_exit(&uvm_pageqlock);
975 UVMHIST_LOG(maphist,
976 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
977 ufi.orig_map->pmap, currva, anon->an_page, 0);
978 uvmexp.fltnamap++;
981 * Since this isn't the page that's actually faulting,
982 * ignore pmap_enter() failures; it's not critical
983 * that we enter these right now.
986 (void) pmap_enter(ufi.orig_map->pmap, currva,
987 VM_PAGE_TO_PHYS(anon->an_page),
988 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
989 enter_prot,
990 PMAP_CANFAIL |
991 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
993 pmap_update(ufi.orig_map->pmap);
994 mutex_exit(&anon->an_lock);
997 /* locked: maps(read), amap(if there) */
998 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
999 /* (shadowed == true) if there is an anon at the faulting address */
1000 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
1001 (uobj && shadowed == false),0,0);
1004 * note that if we are really short of RAM we could sleep in the above
1005 * call to pmap_enter with everything locked. bad?
1007 * XXX Actually, that is bad; pmap_enter() should just fail in that
1008 * XXX case. --thorpej
1012 * if the desired page is not shadowed by the amap and we have a
1013 * backing object, then we check to see if the backing object would
1014 * prefer to handle the fault itself (rather than letting us do it
1015 * with the usual pgo_get hook). the backing object signals this by
1016 * providing a pgo_fault routine.
1019 if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1020 mutex_enter(&uobj->vmobjlock);
1021 /* locked: maps(read), amap (if there), uobj */
1022 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1023 centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1025 /* locked: nothing, pgo_fault has unlocked everything */
1027 if (error == ERESTART)
1028 goto ReFault; /* try again! */
1030 * object fault routine responsible for pmap_update().
1032 goto done;
1036 * now, if the desired page is not shadowed by the amap and we have
1037 * a backing object that does not have a special fault routine, then
1038 * we ask (with pgo_get) the object for resident pages that we care
1039 * about and attempt to map them in. we do not let pgo_get block
1040 * (PGO_LOCKED).
1043 if (uobj && shadowed == false) {
1044 mutex_enter(&uobj->vmobjlock);
1045 /* locked (!shadowed): maps(read), amap (if there), uobj */
1047 * the following call to pgo_get does _not_ change locking state
1050 uvmexp.fltlget++;
1051 gotpages = npages;
1052 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1053 (startva - ufi.entry->start),
1054 pages, &gotpages, centeridx,
1055 access_type & MASK(ufi.entry),
1056 ufi.entry->advice, PGO_LOCKED);
1059 * check for pages to map, if we got any
1062 uobjpage = NULL;
1064 if (gotpages) {
1065 currva = startva;
1066 for (lcv = 0; lcv < npages;
1067 lcv++, currva += PAGE_SIZE) {
1068 struct vm_page *curpg;
1069 bool readonly;
1071 curpg = pages[lcv];
1072 if (curpg == NULL || curpg == PGO_DONTCARE) {
1073 continue;
1075 KASSERT(curpg->uobject == uobj);
1078 * if center page is resident and not
1079 * PG_BUSY|PG_RELEASED then pgo_get
1080 * made it PG_BUSY for us and gave
1081 * us a handle to it. remember this
1082 * page as "uobjpage." (for later use).
1085 if (lcv == centeridx) {
1086 uobjpage = curpg;
1087 UVMHIST_LOG(maphist, " got uobjpage "
1088 "(0x%x) with locked get",
1089 uobjpage, 0,0,0);
1090 continue;
1094 * calling pgo_get with PGO_LOCKED returns us
1095 * pages which are neither busy nor released,
1096 * so we don't need to check for this.
1097 * we can just directly enter the pages.
1100 mutex_enter(&uvm_pageqlock);
1101 uvm_pageenqueue(curpg);
1102 mutex_exit(&uvm_pageqlock);
1103 UVMHIST_LOG(maphist,
1104 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1105 ufi.orig_map->pmap, currva, curpg, 0);
1106 uvmexp.fltnomap++;
1109 * Since this page isn't the page that's
1110 * actually faulting, ignore pmap_enter()
1111 * failures; it's not critical that we
1112 * enter these right now.
1114 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1115 KASSERT((curpg->flags & PG_RELEASED) == 0);
1116 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1117 (curpg->flags & PG_CLEAN) != 0);
1118 readonly = (curpg->flags & PG_RDONLY)
1119 || (curpg->loan_count > 0)
1120 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1122 (void) pmap_enter(ufi.orig_map->pmap, currva,
1123 VM_PAGE_TO_PHYS(curpg),
1124 readonly ?
1125 enter_prot & ~VM_PROT_WRITE :
1126 enter_prot & MASK(ufi.entry),
1127 PMAP_CANFAIL |
1128 (wired ? PMAP_WIRED : 0));
1131 * NOTE: page can't be PG_WANTED or PG_RELEASED
1132 * because we've held the lock the whole time
1133 * we've had the handle.
1135 KASSERT((curpg->flags & PG_WANTED) == 0);
1136 KASSERT((curpg->flags & PG_RELEASED) == 0);
1138 curpg->flags &= ~(PG_BUSY);
1139 UVM_PAGE_OWN(curpg, NULL);
1141 pmap_update(ufi.orig_map->pmap);
1143 } else {
1144 uobjpage = NULL;
1147 /* locked (shadowed): maps(read), amap */
1148 /* locked (!shadowed): maps(read), amap(if there),
1149 uobj(if !null), uobjpage(if !null) */
1150 if (shadowed) {
1151 KASSERT(mutex_owned(&amap->am_l));
1152 } else {
1153 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1154 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1155 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1159 * note that at this point we are done with any front or back pages.
1160 * we are now going to focus on the center page (i.e. the one we've
1161 * faulted on). if we have faulted on the upper (anon) layer
1162 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1163 * not touched it yet). if we have faulted on the bottom (uobj)
1164 * layer [i.e. case 2] and the page was both present and available,
1165 * then we've got a pointer to it as "uobjpage" and we've already
1166 * made it BUSY.
1170 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1174 * redirect case 2: if we are not shadowed, go to case 2.
1177 if (shadowed == false)
1178 goto Case2;
1180 /* locked: maps(read), amap */
1183 * handle case 1: fault on an anon in our amap
1186 anon = anons[centeridx];
1187 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1188 mutex_enter(&anon->an_lock);
1190 /* locked: maps(read), amap, anon */
1191 KASSERT(mutex_owned(&amap->am_l));
1192 KASSERT(mutex_owned(&anon->an_lock));
1195 * no matter if we have case 1A or case 1B we are going to need to
1196 * have the anon's memory resident. ensure that now.
1200 * let uvmfault_anonget do the dirty work.
1201 * if it fails (!OK) it will unlock everything for us.
1202 * if it succeeds, locks are still valid and locked.
1203 * also, if it is OK, then the anon's page is on the queues.
1204 * if the page is on loan from a uvm_object, then anonget will
1205 * lock that object for us if it does not fail.
1208 error = uvmfault_anonget(&ufi, amap, anon);
1209 switch (error) {
1210 case 0:
1211 break;
1213 case ERESTART:
1214 goto ReFault;
1216 case EAGAIN:
1217 kpause("fltagain1", false, hz/2, NULL);
1218 goto ReFault;
1220 default:
1221 goto done;
1225 * uobj is non null if the page is on loan from an object (i.e. uobj)
1228 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1230 /* locked: maps(read), amap, anon, uobj(if one) */
1231 KASSERT(mutex_owned(&amap->am_l));
1232 KASSERT(mutex_owned(&anon->an_lock));
1233 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1236 * special handling for loaned pages
1239 if (anon->an_page->loan_count) {
1241 if (!cow_now) {
1244 * for read faults on loaned pages we just cap the
1245 * protection at read-only.
1248 enter_prot = enter_prot & ~VM_PROT_WRITE;
1250 } else {
1252 * note that we can't allow writes into a loaned page!
1254 * if we have a write fault on a loaned page in an
1255 * anon then we need to look at the anon's ref count.
1256 * if it is greater than one then we are going to do
1257 * a normal copy-on-write fault into a new anon (this
1258 * is not a problem). however, if the reference count
1259 * is one (a case where we would normally allow a
1260 * write directly to the page) then we need to kill
1261 * the loan before we continue.
1264 /* >1 case is already ok */
1265 if (anon->an_ref == 1) {
1267 /* get new un-owned replacement page */
1268 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1269 if (pg == NULL) {
1270 uvmfault_unlockall(&ufi, amap, uobj,
1271 anon);
1272 uvm_wait("flt_noram2");
1273 goto ReFault;
1277 * copy data, kill loan, and drop uobj lock
1278 * (if any)
1280 /* copy old -> new */
1281 uvm_pagecopy(anon->an_page, pg);
1283 /* force reload */
1284 pmap_page_protect(anon->an_page, VM_PROT_NONE);
1285 mutex_enter(&uvm_pageqlock); /* KILL loan */
1287 anon->an_page->uanon = NULL;
1288 /* in case we owned */
1289 anon->an_page->pqflags &= ~PQ_ANON;
1291 if (uobj) {
1292 /* if we were receiver of loan */
1293 anon->an_page->loan_count--;
1294 } else {
1296 * we were the lender (A->K); need
1297 * to remove the page from pageq's.
1299 uvm_pagedequeue(anon->an_page);
1302 if (uobj) {
1303 mutex_exit(&uobj->vmobjlock);
1304 uobj = NULL;
1307 /* install new page in anon */
1308 anon->an_page = pg;
1309 pg->uanon = anon;
1310 pg->pqflags |= PQ_ANON;
1312 uvm_pageactivate(pg);
1313 mutex_exit(&uvm_pageqlock);
1315 pg->flags &= ~(PG_BUSY|PG_FAKE);
1316 UVM_PAGE_OWN(pg, NULL);
1318 /* done! */
1319 } /* ref == 1 */
1320 } /* write fault */
1321 } /* loan count */
1324 * if we are case 1B then we will need to allocate a new blank
1325 * anon to transfer the data into. note that we have a lock
1326 * on anon, so no one can busy or release the page until we are done.
1327 * also note that the ref count can't drop to zero here because
1328 * it is > 1 and we are only dropping one ref.
1330 * in the (hopefully very rare) case that we are out of RAM we
1331 * will unlock, wait for more RAM, and refault.
1333 * if we are out of anon VM we kill the process (XXX: could wait?).
1336 if (cow_now && anon->an_ref > 1) {
1338 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1339 uvmexp.flt_acow++;
1340 oanon = anon; /* oanon = old, locked anon */
1342 error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1343 &anon, &anon_spare);
1344 switch (error) {
1345 case 0:
1346 break;
1347 case ERESTART:
1348 goto ReFault;
1349 default:
1350 goto done;
1353 pg = anon->an_page;
1354 mutex_enter(&uvm_pageqlock);
1355 uvm_pageactivate(pg);
1356 mutex_exit(&uvm_pageqlock);
1357 pg->flags &= ~(PG_BUSY|PG_FAKE);
1358 UVM_PAGE_OWN(pg, NULL);
1360 /* deref: can not drop to zero here by defn! */
1361 oanon->an_ref--;
1364 * note: oanon is still locked, as is the new anon. we
1365 * need to check for this later when we unlock oanon; if
1366 * oanon != anon, we'll have to unlock anon, too.
1369 } else {
1371 uvmexp.flt_anon++;
1372 oanon = anon; /* old, locked anon is same as anon */
1373 pg = anon->an_page;
1374 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1375 enter_prot = enter_prot & ~VM_PROT_WRITE;
1379 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1380 KASSERT(mutex_owned(&amap->am_l));
1381 KASSERT(mutex_owned(&anon->an_lock));
1382 KASSERT(mutex_owned(&oanon->an_lock));
1385 * now map the page in.
1388 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1389 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1390 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1391 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1392 != 0) {
1395 * No need to undo what we did; we can simply think of
1396 * this as the pmap throwing away the mapping information.
1398 * We do, however, have to go through the ReFault path,
1399 * as the map may change while we're asleep.
1402 if (anon != oanon)
1403 mutex_exit(&anon->an_lock);
1404 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1405 if (!uvm_reclaimable()) {
1406 UVMHIST_LOG(maphist,
1407 "<- failed. out of VM",0,0,0,0);
1408 /* XXX instrumentation */
1409 error = ENOMEM;
1410 goto done;
1412 /* XXX instrumentation */
1413 uvm_wait("flt_pmfail1");
1414 goto ReFault;
1418 * ... update the page queues.
1421 mutex_enter(&uvm_pageqlock);
1422 if (wire_fault) {
1423 uvm_pagewire(pg);
1426 * since the now-wired page cannot be paged out,
1427 * release its swap resources for others to use.
1428 * since an anon with no swap cannot be PG_CLEAN,
1429 * clear its clean flag now.
1432 pg->flags &= ~(PG_CLEAN);
1433 uvm_anon_dropswap(anon);
1434 } else {
1435 uvm_pageactivate(pg);
1437 mutex_exit(&uvm_pageqlock);
1440 * done case 1! finish up by unlocking everything and returning success
1443 if (anon != oanon)
1444 mutex_exit(&anon->an_lock);
1445 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1446 pmap_update(ufi.orig_map->pmap);
1447 error = 0;
1448 goto done;
1450 Case2:
1452 * handle case 2: faulting on backing object or zero fill
1456 * locked:
1457 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1459 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1460 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1461 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1464 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1465 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1466 * have a backing object, check and see if we are going to promote
1467 * the data up to an anon during the fault.
1470 if (uobj == NULL) {
1471 uobjpage = PGO_DONTCARE;
1472 promote = true; /* always need anon here */
1473 } else {
1474 KASSERT(uobjpage != PGO_DONTCARE);
1475 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1477 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1478 promote, (uobj == NULL), 0,0);
1481 * if uobjpage is not null then we do not need to do I/O to get the
1482 * uobjpage.
1484 * if uobjpage is null, then we need to unlock and ask the pager to
1485 * get the data for us. once we have the data, we need to reverify
1486 * the state the world. we are currently not holding any resources.
1489 if (uobjpage) {
1490 /* update rusage counters */
1491 curlwp->l_ru.ru_minflt++;
1492 } else {
1493 /* update rusage counters */
1494 curlwp->l_ru.ru_majflt++;
1496 /* locked: maps(read), amap(if there), uobj */
1497 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1498 /* locked: uobj */
1500 uvmexp.fltget++;
1501 gotpages = 1;
1502 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1503 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1504 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1505 PGO_SYNCIO);
1506 /* locked: uobjpage(if no error) */
1507 KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1510 * recover from I/O
1513 if (error) {
1514 if (error == EAGAIN) {
1515 UVMHIST_LOG(maphist,
1516 " pgo_get says TRY AGAIN!",0,0,0,0);
1517 kpause("fltagain2", false, hz/2, NULL);
1518 goto ReFault;
1521 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1522 error, 0,0,0);
1523 goto done;
1526 /* locked: uobjpage */
1528 mutex_enter(&uvm_pageqlock);
1529 uvm_pageactivate(uobjpage);
1530 mutex_exit(&uvm_pageqlock);
1533 * re-verify the state of the world by first trying to relock
1534 * the maps. always relock the object.
1537 locked = uvmfault_relock(&ufi);
1538 if (locked && amap)
1539 amap_lock(amap);
1540 uobj = uobjpage->uobject;
1541 mutex_enter(&uobj->vmobjlock);
1543 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1544 /* locked(!locked): uobj, uobjpage */
1547 * verify that the page has not be released and re-verify
1548 * that amap slot is still free. if there is a problem,
1549 * we unlock and clean up.
1552 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1553 (locked && amap &&
1554 amap_lookup(&ufi.entry->aref,
1555 ufi.orig_rvaddr - ufi.entry->start))) {
1556 if (locked)
1557 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1558 locked = false;
1562 * didn't get the lock? release the page and retry.
1565 if (locked == false) {
1566 UVMHIST_LOG(maphist,
1567 " wasn't able to relock after fault: retry",
1568 0,0,0,0);
1569 if (uobjpage->flags & PG_WANTED)
1570 wakeup(uobjpage);
1571 if (uobjpage->flags & PG_RELEASED) {
1572 uvmexp.fltpgrele++;
1573 uvm_pagefree(uobjpage);
1574 goto ReFault;
1576 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1577 UVM_PAGE_OWN(uobjpage, NULL);
1578 mutex_exit(&uobj->vmobjlock);
1579 goto ReFault;
1583 * we have the data in uobjpage which is busy and
1584 * not released. we are holding object lock (so the page
1585 * can't be released on us).
1588 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1592 * locked:
1593 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1595 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1596 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1597 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1600 * notes:
1601 * - at this point uobjpage can not be NULL
1602 * - at this point uobjpage can not be PG_RELEASED (since we checked
1603 * for it above)
1604 * - at this point uobjpage could be PG_WANTED (handle later)
1607 KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1608 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1609 (uobjpage->flags & PG_CLEAN) != 0);
1610 if (promote == false) {
1613 * we are not promoting. if the mapping is COW ensure that we
1614 * don't give more access than we should (e.g. when doing a read
1615 * fault on a COPYONWRITE mapping we want to map the COW page in
1616 * R/O even though the entry protection could be R/W).
1618 * set "pg" to the page we want to map in (uobjpage, usually)
1621 /* no anon in this case. */
1622 anon = NULL;
1624 uvmexp.flt_obj++;
1625 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1626 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1627 enter_prot &= ~VM_PROT_WRITE;
1628 pg = uobjpage; /* map in the actual object */
1630 KASSERT(uobjpage != PGO_DONTCARE);
1633 * we are faulting directly on the page. be careful
1634 * about writing to loaned pages...
1637 if (uobjpage->loan_count) {
1638 if (!cow_now) {
1639 /* read fault: cap the protection at readonly */
1640 /* cap! */
1641 enter_prot = enter_prot & ~VM_PROT_WRITE;
1642 } else {
1643 /* write fault: must break the loan here */
1645 pg = uvm_loanbreak(uobjpage);
1646 if (pg == NULL) {
1649 * drop ownership of page, it can't
1650 * be released
1653 if (uobjpage->flags & PG_WANTED)
1654 wakeup(uobjpage);
1655 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1656 UVM_PAGE_OWN(uobjpage, NULL);
1658 uvmfault_unlockall(&ufi, amap, uobj,
1659 NULL);
1660 UVMHIST_LOG(maphist,
1661 " out of RAM breaking loan, waiting",
1662 0,0,0,0);
1663 uvmexp.fltnoram++;
1664 uvm_wait("flt_noram4");
1665 goto ReFault;
1667 uobjpage = pg;
1670 } else {
1673 * if we are going to promote the data to an anon we
1674 * allocate a blank anon here and plug it into our amap.
1676 #if DIAGNOSTIC
1677 if (amap == NULL)
1678 panic("uvm_fault: want to promote data, but no anon");
1679 #endif
1680 error = uvmfault_promote(&ufi, NULL, uobjpage,
1681 &anon, &anon_spare);
1682 switch (error) {
1683 case 0:
1684 break;
1685 case ERESTART:
1686 goto ReFault;
1687 default:
1688 goto done;
1691 pg = anon->an_page;
1694 * fill in the data
1697 if (uobjpage != PGO_DONTCARE) {
1698 uvmexp.flt_prcopy++;
1701 * promote to shared amap? make sure all sharing
1702 * procs see it
1705 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1706 pmap_page_protect(uobjpage, VM_PROT_NONE);
1708 * XXX: PAGE MIGHT BE WIRED!
1713 * dispose of uobjpage. it can't be PG_RELEASED
1714 * since we still hold the object lock.
1715 * drop handle to uobj as well.
1718 if (uobjpage->flags & PG_WANTED)
1719 /* still have the obj lock */
1720 wakeup(uobjpage);
1721 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1722 UVM_PAGE_OWN(uobjpage, NULL);
1723 mutex_exit(&uobj->vmobjlock);
1724 uobj = NULL;
1726 UVMHIST_LOG(maphist,
1727 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1728 uobjpage, anon, pg, 0);
1730 } else {
1731 uvmexp.flt_przero++;
1734 * Page is zero'd and marked dirty by
1735 * uvmfault_promote().
1738 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1739 anon, pg, 0, 0);
1744 * locked:
1745 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1746 * anon(if !null), pg(if anon)
1748 * note: pg is either the uobjpage or the new page in the new anon
1750 KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1751 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1752 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1753 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1754 KASSERT((pg->flags & PG_BUSY) != 0);
1757 * all resources are present. we can now map it in and free our
1758 * resources.
1761 UVMHIST_LOG(maphist,
1762 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1763 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1764 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1765 (pg->flags & PG_RDONLY) == 0);
1766 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1767 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1768 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1771 * No need to undo what we did; we can simply think of
1772 * this as the pmap throwing away the mapping information.
1774 * We do, however, have to go through the ReFault path,
1775 * as the map may change while we're asleep.
1778 if (pg->flags & PG_WANTED)
1779 wakeup(pg);
1782 * note that pg can't be PG_RELEASED since we did not drop
1783 * the object lock since the last time we checked.
1785 KASSERT((pg->flags & PG_RELEASED) == 0);
1787 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1788 UVM_PAGE_OWN(pg, NULL);
1789 uvmfault_unlockall(&ufi, amap, uobj, anon);
1790 if (!uvm_reclaimable()) {
1791 UVMHIST_LOG(maphist,
1792 "<- failed. out of VM",0,0,0,0);
1793 /* XXX instrumentation */
1794 error = ENOMEM;
1795 goto done;
1797 /* XXX instrumentation */
1798 uvm_wait("flt_pmfail2");
1799 goto ReFault;
1802 mutex_enter(&uvm_pageqlock);
1803 if (wire_fault) {
1804 uvm_pagewire(pg);
1805 if (pg->pqflags & PQ_AOBJ) {
1808 * since the now-wired page cannot be paged out,
1809 * release its swap resources for others to use.
1810 * since an aobj page with no swap cannot be PG_CLEAN,
1811 * clear its clean flag now.
1814 KASSERT(uobj != NULL);
1815 pg->flags &= ~(PG_CLEAN);
1816 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1818 } else {
1819 uvm_pageactivate(pg);
1821 mutex_exit(&uvm_pageqlock);
1822 if (pg->flags & PG_WANTED)
1823 wakeup(pg);
1826 * note that pg can't be PG_RELEASED since we did not drop the object
1827 * lock since the last time we checked.
1829 KASSERT((pg->flags & PG_RELEASED) == 0);
1831 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1832 UVM_PAGE_OWN(pg, NULL);
1833 uvmfault_unlockall(&ufi, amap, uobj, anon);
1834 pmap_update(ufi.orig_map->pmap);
1835 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1836 error = 0;
1837 done:
1838 if (anon_spare != NULL) {
1839 anon_spare->an_ref--;
1840 uvm_anfree(anon_spare);
1842 return error;
1847 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1849 * => map may be read-locked by caller, but MUST NOT be write-locked.
1850 * => if map is read-locked, any operations which may cause map to
1851 * be write-locked in uvm_fault() must be taken care of by
1852 * the caller. See uvm_map_pageable().
1856 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1857 vm_prot_t access_type, int wiremax)
1859 vaddr_t va;
1860 int error;
1863 * now fault it in a page at a time. if the fault fails then we have
1864 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1865 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1869 * XXX work around overflowing a vaddr_t. this prevents us from
1870 * wiring the last page in the address space, though.
1872 if (start > end) {
1873 return EFAULT;
1876 for (va = start ; va < end ; va += PAGE_SIZE) {
1877 error = uvm_fault_internal(map, va, access_type,
1878 wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1879 if (error) {
1880 if (va != start) {
1881 uvm_fault_unwire(map, start, va);
1883 return error;
1886 return 0;
1890 * uvm_fault_unwire(): unwire range of virtual space.
1893 void
1894 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1896 vm_map_lock_read(map);
1897 uvm_fault_unwire_locked(map, start, end);
1898 vm_map_unlock_read(map);
1902 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1904 * => map must be at least read-locked.
1907 void
1908 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1910 struct vm_map_entry *entry;
1911 pmap_t pmap = vm_map_pmap(map);
1912 vaddr_t va;
1913 paddr_t pa;
1914 struct vm_page *pg;
1916 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1919 * we assume that the area we are unwiring has actually been wired
1920 * in the first place. this means that we should be able to extract
1921 * the PAs from the pmap. we also lock out the page daemon so that
1922 * we can call uvm_pageunwire.
1925 mutex_enter(&uvm_pageqlock);
1928 * find the beginning map entry for the region.
1931 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1932 if (uvm_map_lookup_entry(map, start, &entry) == false)
1933 panic("uvm_fault_unwire_locked: address not in map");
1935 for (va = start; va < end; va += PAGE_SIZE) {
1936 if (pmap_extract(pmap, va, &pa) == false)
1937 continue;
1940 * find the map entry for the current address.
1943 KASSERT(va >= entry->start);
1944 while (va >= entry->end) {
1945 KASSERT(entry->next != &map->header &&
1946 entry->next->start <= entry->end);
1947 entry = entry->next;
1951 * if the entry is no longer wired, tell the pmap.
1954 if (VM_MAPENT_ISWIRED(entry) == 0)
1955 pmap_unwire(pmap, va);
1957 pg = PHYS_TO_VM_PAGE(pa);
1958 if (pg)
1959 uvm_pageunwire(pg);
1962 mutex_exit(&uvm_pageqlock);