3 /* zran.c -- example of zlib/gzip stream indexing and random access
4 * Copyright (C) 2005 Mark Adler
5 * For conditions of distribution and use, see copyright notice in zlib.h
6 Version 1.0 29 May 2005 Mark Adler */
8 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
9 for random access of a compressed file. A file containing a zlib or gzip
10 stream is provided on the command line. The compressed stream is decoded in
11 its entirety, and an index built with access points about every SPAN bytes
12 in the uncompressed output. The compressed file is left open, and can then
13 be read randomly, having to decompress on the average SPAN/2 uncompressed
14 bytes before getting to the desired block of data.
16 An access point can be created at the start of any deflate block, by saving
17 the starting file offset and bit of that block, and the 32K bytes of
18 uncompressed data that precede that block. Also the uncompressed offset of
19 that block is saved to provide a referece for locating a desired starting
20 point in the uncompressed stream. build_index() works by decompressing the
21 input zlib or gzip stream a block at a time, and at the end of each block
22 deciding if enough uncompressed data has gone by to justify the creation of
23 a new access point. If so, that point is saved in a data structure that
24 grows as needed to accommodate the points.
26 To use the index, an offset in the uncompressed data is provided, for which
27 the latest accees point at or preceding that offset is located in the index.
28 The input file is positioned to the specified location in the index, and if
29 necessary the first few bits of the compressed data is read from the file.
30 inflate is initialized with those bits and the 32K of uncompressed data, and
31 the decompression then proceeds until the desired offset in the file is
32 reached. Then the decompression continues to read the desired uncompressed
35 Another approach would be to generate the index on demand. In that case,
36 requests for random access reads from the compressed data would try to use
37 the index, but if a read far enough past the end of the index is required,
38 then further index entries would be generated and added.
40 There is some fair bit of overhead to starting inflation for the random
41 access, mainly copying the 32K byte dictionary. So if small pieces of the
42 file are being accessed, it would make sense to implement a cache to hold
43 some lookahead and avoid many calls to extract() for small lengths.
45 Another way to build an index would be to use inflateCopy(). That would
46 not be constrained to have access points at block boundaries, but requires
47 more memory per access point, and also cannot be saved to file due to the
48 use of pointers in the state. The approach here allows for storage of the
59 #define SPAN 1048576L /* desired distance between access points */
60 #define WINSIZE 32768U /* sliding window size */
61 #define CHUNK 16384 /* file input buffer size */
63 /* access point entry */
65 off_t out
; /* corresponding offset in uncompressed data */
66 off_t in
; /* offset in input file of first full byte */
67 int bits
; /* number of bits (1-7) from byte at in - 1, or 0 */
68 unsigned char window
[WINSIZE
]; /* preceding 32K of uncompressed data */
71 /* access point list */
73 int have
; /* number of list entries filled in */
74 int size
; /* number of list entries allocated */
75 struct point
*list
; /* allocated list */
78 /* Deallocate an index built by build_index() */
79 local
void free_index(struct access
*index
)
87 /* Add an entry to the access point list. If out of memory, deallocate the
88 existing list and return NULL. */
89 local
struct access
*addpoint(struct access
*index
, int bits
,
90 off_t in
, off_t out
, unsigned left
, unsigned char *window
)
94 /* if list is empty, create it (start with eight points) */
96 index
= malloc(sizeof(struct access
));
97 if (index
== NULL
) return NULL
;
98 index
->list
= malloc(sizeof(struct point
) << 3);
99 if (index
->list
== NULL
) {
107 /* if list is full, make it bigger */
108 else if (index
->have
== index
->size
) {
110 next
= realloc(index
->list
, sizeof(struct point
) * index
->size
);
118 /* fill in entry and increment how many we have */
119 next
= index
->list
+ index
->have
;
124 memcpy(next
->window
, window
+ WINSIZE
- left
, left
);
126 memcpy(next
->window
+ left
, window
, WINSIZE
- left
);
129 /* return list, possibly reallocated */
133 /* Make one entire pass through the compressed stream and build an index, with
134 access points about every span bytes of uncompressed output -- span is
135 chosen to balance the speed of random access against the memory requirements
136 of the list, about 32K bytes per access point. Note that data after the end
137 of the first zlib or gzip stream in the file is ignored. build_index()
138 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
139 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
140 file read error. On success, *built points to the resulting index. */
141 local
int build_index(FILE *in
, off_t span
, struct access
**built
)
144 off_t totin
, totout
; /* our own total counters to avoid 4GB limit */
145 off_t last
; /* totout value of last access point */
146 struct access
*index
; /* access points being generated */
148 unsigned char input
[CHUNK
];
149 unsigned char window
[WINSIZE
];
151 /* initialize inflate */
152 strm
.zalloc
= Z_NULL
;
154 strm
.opaque
= Z_NULL
;
156 strm
.next_in
= Z_NULL
;
157 ret
= inflateInit2(&strm
, 47); /* automatic zlib or gzip decoding */
161 /* inflate the input, maintain a sliding window, and build an index -- this
162 also validates the integrity of the compressed data using the check
163 information at the end of the gzip or zlib stream */
164 totin
= totout
= last
= 0;
165 index
= NULL
; /* will be allocated by first addpoint() */
168 /* get some compressed data from input file */
169 strm
.avail_in
= fread(input
, 1, CHUNK
, in
);
172 goto build_index_error
;
174 if (strm
.avail_in
== 0) {
176 goto build_index_error
;
178 strm
.next_in
= input
;
180 /* process all of that, or until end of stream */
182 /* reset sliding window if necessary */
183 if (strm
.avail_out
== 0) {
184 strm
.avail_out
= WINSIZE
;
185 strm
.next_out
= window
;
188 /* inflate until out of input, output, or at end of block --
189 update the total input and output counters */
190 totin
+= strm
.avail_in
;
191 totout
+= strm
.avail_out
;
192 ret
= inflate(&strm
, Z_BLOCK
); /* return at end of block */
193 totin
-= strm
.avail_in
;
194 totout
-= strm
.avail_out
;
195 if (ret
== Z_NEED_DICT
)
197 if (ret
== Z_MEM_ERROR
|| ret
== Z_DATA_ERROR
)
198 goto build_index_error
;
199 if (ret
== Z_STREAM_END
)
202 /* if at end of block, consider adding an index entry (note that if
203 data_type indicates an end-of-block, then all of the
204 uncompressed data from that block has been delivered, and none
205 of the compressed data after that block has been consumed,
206 except for up to seven bits) -- the totout == 0 provides an
207 entry point after the zlib or gzip header, and assures that the
208 index always has at least one access point; we avoid creating an
209 access point after the last block by checking bit 6 of data_type
211 if ((strm
.data_type
& 128) && !(strm
.data_type
& 64) &&
212 (totout
== 0 || totout
- last
> span
)) {
213 index
= addpoint(index
, strm
.data_type
& 7, totin
,
214 totout
, strm
.avail_out
, window
);
217 goto build_index_error
;
221 } while (strm
.avail_in
!= 0);
222 } while (ret
!= Z_STREAM_END
);
224 /* clean up and return index (release unused entries in list) */
225 (void)inflateEnd(&strm
);
226 index
= realloc(index
, sizeof(struct point
) * index
->have
);
227 index
->size
= index
->have
;
233 (void)inflateEnd(&strm
);
239 /* Use the index to read len bytes from offset into buf, return bytes read or
240 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
241 the end of the uncompressed data, then extract() will return a value less
242 than len, indicating how much as actually read into buf. This function
243 should not return a data error unless the file was modified since the index
244 was generated. extract() may also return Z_ERRNO if there is an error on
245 reading or seeking the input file. */
246 local
int extract(FILE *in
, struct access
*index
, off_t offset
,
247 unsigned char *buf
, int len
)
252 unsigned char input
[CHUNK
];
253 unsigned char discard
[WINSIZE
];
255 /* proceed only if something reasonable to do */
259 /* find where in stream to start */
262 while (--ret
&& here
[1].out
<= offset
)
265 /* initialize file and inflate state to start there */
266 strm
.zalloc
= Z_NULL
;
268 strm
.opaque
= Z_NULL
;
270 strm
.next_in
= Z_NULL
;
271 ret
= inflateInit2(&strm
, -15); /* raw inflate */
274 ret
= fseeko(in
, here
->in
- (here
->bits
? 1 : 0), SEEK_SET
);
280 ret
= ferror(in
) ? Z_ERRNO
: Z_DATA_ERROR
;
283 (void)inflatePrime(&strm
, here
->bits
, ret
>> (8 - here
->bits
));
285 (void)inflateSetDictionary(&strm
, here
->window
, WINSIZE
);
287 /* skip uncompressed bytes until offset reached, then satisfy request */
290 skip
= 1; /* while skipping to offset */
292 /* define where to put uncompressed data, and how much */
293 if (offset
== 0 && skip
) { /* at offset now */
294 strm
.avail_out
= len
;
296 skip
= 0; /* only do this once */
298 if (offset
> WINSIZE
) { /* skip WINSIZE bytes */
299 strm
.avail_out
= WINSIZE
;
300 strm
.next_out
= discard
;
303 else if (offset
!= 0) { /* last skip */
304 strm
.avail_out
= (unsigned)offset
;
305 strm
.next_out
= discard
;
309 /* uncompress until avail_out filled, or end of stream */
311 if (strm
.avail_in
== 0) {
312 strm
.avail_in
= fread(input
, 1, CHUNK
, in
);
317 if (strm
.avail_in
== 0) {
321 strm
.next_in
= input
;
323 ret
= inflate(&strm
, Z_NO_FLUSH
); /* normal inflate */
324 if (ret
== Z_NEED_DICT
)
326 if (ret
== Z_MEM_ERROR
|| ret
== Z_DATA_ERROR
)
328 if (ret
== Z_STREAM_END
)
330 } while (strm
.avail_out
!= 0);
332 /* if reach end of stream, then don't keep trying to get more */
333 if (ret
== Z_STREAM_END
)
336 /* do until offset reached and requested data read, or stream ends */
339 /* compute number of uncompressed bytes read after offset */
340 ret
= skip
? 0 : len
- strm
.avail_out
;
342 /* clean up and return bytes read or error */
344 (void)inflateEnd(&strm
);
348 /* Demonstrate the use of build_index() and extract() by processing the file
349 provided on the command line, and the extracting 16K from about 2/3rds of
350 the way through the uncompressed output, and writing that to stdout. */
351 int main(int argc
, char **argv
)
356 struct access
*index
;
357 unsigned char buf
[CHUNK
];
359 /* open input file */
361 fprintf(stderr
, "usage: zran file.gz\n");
364 in
= fopen(argv
[1], "rb");
366 fprintf(stderr
, "zran: could not open %s for reading\n", argv
[1]);
371 len
= build_index(in
, SPAN
, &index
);
376 fprintf(stderr
, "zran: out of memory\n");
379 fprintf(stderr
, "zran: compressed data error in %s\n", argv
[1]);
382 fprintf(stderr
, "zran: read error on %s\n", argv
[1]);
385 fprintf(stderr
, "zran: error %d while building index\n", len
);
389 fprintf(stderr
, "zran: built index with %d access points\n", len
);
391 /* use index by reading some bytes from an arbitrary offset */
392 offset
= (index
->list
[index
->have
- 1].out
<< 1) / 3;
393 len
= extract(in
, index
, offset
, buf
, CHUNK
);
395 fprintf(stderr
, "zran: extraction failed: %s error\n",
396 len
== Z_MEM_ERROR
? "out of memory" : "input corrupted");
398 fwrite(buf
, 1, len
, stdout
);
399 fprintf(stderr
, "zran: extracted %d bytes at %llu\n", len
, offset
);
402 /* clean up and exit */