1 /* $NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 #include <sys/cdefs.h>
37 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid
[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93";
41 __RCSID("$NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $");
43 #endif /* LIBC_SCCS and not lint */
46 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
47 * section 4.3.1, pp. 257--259.
52 #define B ((int)1 << HALF_BITS) /* digit base */
54 /* Combine two `digits' to make a single two-digit number. */
55 #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
57 /* select a type for digits in base B: use unsigned short if they fit */
58 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
59 typedef unsigned short digit
;
64 static void shl
__P((digit
*p
, int len
, int sh
));
67 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
69 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
70 * fit within u_int. As a consequence, the maximum length dividend and
71 * divisor are 4 `digits' in this base (they are shorter if they have
75 __qdivrem(u_quad_t uq
, u_quad_t vq
, u_quad_t
*arq
)
82 digit uspace
[5], vspace
[5], qspace
[5];
85 * Take care of special cases: divide by zero, and u < v.
89 static volatile const unsigned int zero
= 0;
91 tmp
.ul
[H
] = tmp
.ul
[L
] = 1 / zero
;
106 * Break dividend and divisor into digits in base B, then
107 * count leading zeros to determine m and n. When done, we
109 * u = (u[1]u[2]...u[m+n]) sub B
110 * v = (v[1]v[2]...v[n]) sub B
112 * 1 < n <= 4 (if n = 1, we use a different division algorithm)
113 * m >= 0 (otherwise u < v, which we already checked)
120 u
[1] = (digit
)HHALF(tmp
.ul
[H
]);
121 u
[2] = (digit
)LHALF(tmp
.ul
[H
]);
122 u
[3] = (digit
)HHALF(tmp
.ul
[L
]);
123 u
[4] = (digit
)LHALF(tmp
.ul
[L
]);
125 v
[1] = (digit
)HHALF(tmp
.ul
[H
]);
126 v
[2] = (digit
)LHALF(tmp
.ul
[H
]);
127 v
[3] = (digit
)HHALF(tmp
.ul
[L
]);
128 v
[4] = (digit
)LHALF(tmp
.ul
[L
]);
129 for (n
= 4; v
[1] == 0; v
++) {
131 u_int rbj
; /* r*B+u[j] (not root boy jim) */
132 digit q1
, q2
, q3
, q4
;
135 * Change of plan, per exercise 16.
138 * q[j] = floor((r*B + u[j]) / v),
139 * r = (r*B + u[j]) % v;
140 * We unroll this completely here.
142 t
= v
[2]; /* nonzero, by definition */
143 q1
= (digit
)(u
[1] / t
);
144 rbj
= COMBINE(u
[1] % t
, u
[2]);
145 q2
= (digit
)(rbj
/ t
);
146 rbj
= COMBINE(rbj
% t
, u
[3]);
147 q3
= (digit
)(rbj
/ t
);
148 rbj
= COMBINE(rbj
% t
, u
[4]);
149 q4
= (digit
)(rbj
/ t
);
152 tmp
.ul
[H
] = COMBINE(q1
, q2
);
153 tmp
.ul
[L
] = COMBINE(q3
, q4
);
159 * By adjusting q once we determine m, we can guarantee that
160 * there is a complete four-digit quotient at &qspace[1] when
163 for (m
= 4 - n
; u
[1] == 0; u
++)
165 for (i
= 4 - m
; --i
>= 0;)
170 * Here we run Program D, translated from MIX to C and acquiring
171 * a few minor changes.
173 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
176 for (t
= v
[1]; t
< B
/ 2; t
<<= 1)
179 shl(&u
[0], m
+ n
, d
); /* u <<= d */
180 shl(&v
[1], n
- 1, d
); /* v <<= d */
186 v1
= v
[1]; /* for D3 -- note that v[1..n] are constant */
187 v2
= v
[2]; /* for D3 */
192 * D3: Calculate qhat (\^q, in TeX notation).
193 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
194 * let rhat = (u[j]*B + u[j+1]) mod v[1].
195 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
196 * decrement qhat and increase rhat correspondingly.
197 * Note that if rhat >= B, v[2]*qhat < rhat*B.
199 uj0
= u
[j
+ 0]; /* for D3 only -- note that u[j+...] change */
200 uj1
= u
[j
+ 1]; /* for D3 only */
201 uj2
= u
[j
+ 2]; /* for D3 only */
207 u_int nn
= COMBINE(uj0
, uj1
);
211 while (v2
* qhat
> COMBINE(rhat
, uj2
)) {
214 if ((rhat
+= v1
) >= B
)
218 * D4: Multiply and subtract.
219 * The variable `t' holds any borrows across the loop.
220 * We split this up so that we do not require v[0] = 0,
221 * and to eliminate a final special case.
223 for (t
= 0, i
= n
; i
> 0; i
--) {
224 t
= u
[i
+ j
] - v
[i
] * qhat
- t
;
225 u
[i
+ j
] = (digit
)LHALF(t
);
226 t
= (B
- HHALF(t
)) & (B
- 1);
229 u
[j
] = (digit
)LHALF(t
);
231 * D5: test remainder.
232 * There is a borrow if and only if HHALF(t) is nonzero;
233 * in that (rare) case, qhat was too large (by exactly 1).
234 * Fix it by adding v[1..n] to u[j..j+n].
238 for (t
= 0, i
= n
; i
> 0; i
--) { /* D6: add back. */
239 t
+= u
[i
+ j
] + v
[i
];
240 u
[i
+ j
] = (digit
)LHALF(t
);
243 u
[j
] = (digit
)LHALF(u
[j
] + t
);
246 } while (++j
<= m
); /* D7: loop on j. */
249 * If caller wants the remainder, we have to calculate it as
250 * u[m..m+n] >> d (this is at most n digits and thus fits in
251 * u[m+1..m+n], but we may need more source digits).
255 for (i
= m
+ n
; i
> m
; --i
)
256 u
[i
] = (digit
)(((u_int
)u
[i
] >> d
) |
257 LHALF((u_int
)u
[i
- 1] << (HALF_BITS
- d
)));
260 tmp
.ul
[H
] = COMBINE(uspace
[1], uspace
[2]);
261 tmp
.ul
[L
] = COMBINE(uspace
[3], uspace
[4]);
265 tmp
.ul
[H
] = COMBINE(qspace
[1], qspace
[2]);
266 tmp
.ul
[L
] = COMBINE(qspace
[3], qspace
[4]);
271 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
272 * `fall out' the left (there never will be any such anyway).
273 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
276 shl(digit
*p
, int len
, int sh
)
280 for (i
= 0; i
< len
; i
++)
281 p
[i
] = (digit
)(LHALF((u_int
)p
[i
] << sh
) |
282 ((u_int
)p
[i
+ 1] >> (HALF_BITS
- sh
)));
283 p
[i
] = (digit
)(LHALF((u_int
)p
[i
] << sh
));