1 /* $NetBSD: prop_rb.c,v 1.8 2008/04/28 20:22:53 martin Exp $ */
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <prop/proplib.h>
34 #include "prop_object_impl.h"
35 #include "prop_rb_impl.h"
39 #define KASSERT(x) _PROP_ASSERT(x)
41 #define KASSERT(x) /* nothing */
44 #ifndef __predict_false
45 #define __predict_false(x) (x)
48 static void rb_tree_reparent_nodes(struct rb_tree
*, struct rb_node
*,
50 static void rb_tree_insert_rebalance(struct rb_tree
*, struct rb_node
*);
51 static void rb_tree_removal_rebalance(struct rb_tree
*, struct rb_node
*,
54 static const struct rb_node
*rb_tree_iterate_const(const struct rb_tree
*,
55 const struct rb_node
*, unsigned int);
56 static bool rb_tree_check_node(const struct rb_tree
*, const struct rb_node
*,
57 const struct rb_node
*, bool);
61 #define RBT_COUNT_INCR(rbt) (rbt)->rbt_count++
62 #define RBT_COUNT_DECR(rbt) (rbt)->rbt_count--
64 #define RBT_COUNT_INCR(rbt) /* nothing */
65 #define RBT_COUNT_DECR(rbt) /* nothing */
68 #define RBUNCONST(a) ((void *)(unsigned long)(const void *)(a))
71 * Rather than testing for the NULL everywhere, all terminal leaves are
72 * pointed to this node (and that includes itself). Note that by setting
73 * it to be const, that on some architectures trying to write to it will
76 static const struct rb_node sentinel_node
= {
77 .rb_nodes
= { RBUNCONST(&sentinel_node
),
78 RBUNCONST(&sentinel_node
),
80 .rb_u
= { .u_s
= { .s_sentinel
= 1 } },
84 _prop_rb_tree_init(struct rb_tree
*rbt
, const struct rb_tree_ops
*ops
)
86 RB_TAILQ_INIT(&rbt
->rbt_nodes
);
91 *((const struct rb_node
**)&rbt
->rbt_root
) = &sentinel_node
;
95 * Swap the location and colors of 'self' and its child @ which. The child
96 * can not be a sentinel node.
100 rb_tree_reparent_nodes(struct rb_tree
*rbt _PROP_ARG_UNUSED
,
101 struct rb_node
*old_father
, unsigned int which
)
103 const unsigned int other
= which
^ RB_NODE_OTHER
;
104 struct rb_node
* const grandpa
= old_father
->rb_parent
;
105 struct rb_node
* const old_child
= old_father
->rb_nodes
[which
];
106 struct rb_node
* const new_father
= old_child
;
107 struct rb_node
* const new_child
= old_father
;
108 unsigned int properties
;
110 KASSERT(which
== RB_NODE_LEFT
|| which
== RB_NODE_RIGHT
);
112 KASSERT(!RB_SENTINEL_P(old_child
));
113 KASSERT(old_child
->rb_parent
== old_father
);
115 KASSERT(rb_tree_check_node(rbt
, old_father
, NULL
, false));
116 KASSERT(rb_tree_check_node(rbt
, old_child
, NULL
, false));
117 KASSERT(RB_ROOT_P(old_father
) || rb_tree_check_node(rbt
, grandpa
, NULL
, false));
120 * Exchange descendant linkages.
122 grandpa
->rb_nodes
[old_father
->rb_position
] = new_father
;
123 new_child
->rb_nodes
[which
] = old_child
->rb_nodes
[other
];
124 new_father
->rb_nodes
[other
] = new_child
;
127 * Update ancestor linkages
129 new_father
->rb_parent
= grandpa
;
130 new_child
->rb_parent
= new_father
;
133 * Exchange properties between new_father and new_child. The only
134 * change is that new_child's position is now on the other side.
136 properties
= old_child
->rb_properties
;
137 new_father
->rb_properties
= old_father
->rb_properties
;
138 new_child
->rb_properties
= properties
;
139 new_child
->rb_position
= other
;
142 * Make sure to reparent the new child to ourself.
144 if (!RB_SENTINEL_P(new_child
->rb_nodes
[which
])) {
145 new_child
->rb_nodes
[which
]->rb_parent
= new_child
;
146 new_child
->rb_nodes
[which
]->rb_position
= which
;
149 KASSERT(rb_tree_check_node(rbt
, new_father
, NULL
, false));
150 KASSERT(rb_tree_check_node(rbt
, new_child
, NULL
, false));
151 KASSERT(RB_ROOT_P(new_father
) || rb_tree_check_node(rbt
, grandpa
, NULL
, false));
155 _prop_rb_tree_insert_node(struct rb_tree
*rbt
, struct rb_node
*self
)
157 struct rb_node
*parent
, *tmp
;
158 rb_compare_nodes_fn compare_nodes
= rbt
->rbt_ops
->rbto_compare_nodes
;
159 unsigned int position
;
161 self
->rb_properties
= 0;
164 * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
165 * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
166 * avoid a lot of tests for root and know that even at root,
167 * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
170 /* LINTED: see above */
171 parent
= (struct rb_node
*)&rbt
->rbt_root
;
172 position
= RB_NODE_LEFT
;
175 * Find out where to place this new leaf.
177 while (!RB_SENTINEL_P(tmp
)) {
178 const int diff
= (*compare_nodes
)(tmp
, self
);
179 if (__predict_false(diff
== 0)) {
181 * Node already exists; don't insert.
188 position
= RB_NODE_LEFT
;
190 position
= RB_NODE_RIGHT
;
192 tmp
= parent
->rb_nodes
[position
];
197 struct rb_node
*prev
= NULL
, *next
= NULL
;
199 if (position
== RB_NODE_RIGHT
)
201 else if (tmp
!= rbt
->rbt_root
)
205 * Verify our sequential position
207 KASSERT(prev
== NULL
|| !RB_SENTINEL_P(prev
));
208 KASSERT(next
== NULL
|| !RB_SENTINEL_P(next
));
209 if (prev
!= NULL
&& next
== NULL
)
210 next
= TAILQ_NEXT(prev
, rb_link
);
211 if (prev
== NULL
&& next
!= NULL
)
212 prev
= TAILQ_PREV(next
, rb_node_qh
, rb_link
);
213 KASSERT(prev
== NULL
|| !RB_SENTINEL_P(prev
));
214 KASSERT(next
== NULL
|| !RB_SENTINEL_P(next
));
216 || (*compare_nodes
)(prev
, self
) > 0);
218 || (*compare_nodes
)(self
, next
) > 0);
223 * Initialize the node and insert as a leaf into the tree.
225 self
->rb_parent
= parent
;
226 self
->rb_position
= position
;
227 /* LINTED: rbt_root hack */
228 if (__predict_false(parent
== (struct rb_node
*) &rbt
->rbt_root
)) {
231 KASSERT(position
== RB_NODE_LEFT
|| position
== RB_NODE_RIGHT
);
232 KASSERT(!RB_ROOT_P(self
)); /* Already done */
234 KASSERT(RB_SENTINEL_P(parent
->rb_nodes
[position
]));
235 self
->rb_left
= parent
->rb_nodes
[position
];
236 self
->rb_right
= parent
->rb_nodes
[position
];
237 parent
->rb_nodes
[position
] = self
;
238 KASSERT(self
->rb_left
== &sentinel_node
&&
239 self
->rb_right
== &sentinel_node
);
242 * Insert the new node into a sorted list for easy sequential access
246 if (RB_ROOT_P(self
)) {
247 RB_TAILQ_INSERT_HEAD(&rbt
->rbt_nodes
, self
, rb_link
);
248 } else if (position
== RB_NODE_LEFT
) {
249 KASSERT((*compare_nodes
)(self
, self
->rb_parent
) > 0);
250 RB_TAILQ_INSERT_BEFORE(self
->rb_parent
, self
, rb_link
);
252 KASSERT((*compare_nodes
)(self
->rb_parent
, self
) > 0);
253 RB_TAILQ_INSERT_AFTER(&rbt
->rbt_nodes
, self
->rb_parent
,
260 * Validate the tree before we rebalance
262 _prop_rb_tree_check(rbt
, false);
266 * Rebalance tree after insertion
268 rb_tree_insert_rebalance(rbt
, self
);
272 * Validate the tree after we rebalanced
274 _prop_rb_tree_check(rbt
, true);
281 rb_tree_insert_rebalance(struct rb_tree
*rbt
, struct rb_node
*self
)
285 while (!RB_ROOT_P(self
) && RB_RED_P(self
->rb_parent
)) {
286 const unsigned int which
=
287 (self
->rb_parent
== self
->rb_parent
->rb_parent
->rb_left
290 const unsigned int other
= which
^ RB_NODE_OTHER
;
291 struct rb_node
* father
= self
->rb_parent
;
292 struct rb_node
* grandpa
= father
->rb_parent
;
293 struct rb_node
* const uncle
= grandpa
->rb_nodes
[other
];
295 KASSERT(!RB_SENTINEL_P(self
));
297 * We are red and our parent is red, therefore we must have a
298 * grandfather and he must be black.
300 KASSERT(RB_RED_P(self
)
302 && RB_BLACK_P(grandpa
));
304 if (RB_RED_P(uncle
)) {
306 * Case 1: our uncle is red
307 * Simply invert the colors of our parent and
308 * uncle and make our grandparent red. And
309 * then solve the problem up at his level.
311 RB_MARK_BLACK(uncle
);
312 RB_MARK_BLACK(father
);
313 RB_MARK_RED(grandpa
);
318 * Case 2&3: our uncle is black.
320 if (self
== father
->rb_nodes
[other
]) {
322 * Case 2: we are on the same side as our uncle
323 * Swap ourselves with our parent so this case
324 * becomes case 3. Basically our parent becomes our
327 rb_tree_reparent_nodes(rbt
, father
, other
);
328 KASSERT(father
->rb_parent
== self
);
329 KASSERT(self
->rb_nodes
[which
] == father
);
330 KASSERT(self
->rb_parent
== grandpa
);
332 father
= self
->rb_parent
;
334 KASSERT(RB_RED_P(self
) && RB_RED_P(father
));
335 KASSERT(grandpa
->rb_nodes
[which
] == father
);
337 * Case 3: we are opposite a child of a black uncle.
338 * Swap our parent and grandparent. Since our grandfather
339 * is black, our father will become black and our new sibling
340 * (former grandparent) will become red.
342 rb_tree_reparent_nodes(rbt
, grandpa
, which
);
343 KASSERT(self
->rb_parent
== father
);
344 KASSERT(self
->rb_parent
->rb_nodes
[self
->rb_position
^ RB_NODE_OTHER
] == grandpa
);
345 KASSERT(RB_RED_P(self
));
346 KASSERT(RB_BLACK_P(father
));
347 KASSERT(RB_RED_P(grandpa
));
352 * Final step: Set the root to black.
354 RB_MARK_BLACK(rbt
->rbt_root
);
358 _prop_rb_tree_find(struct rb_tree
*rbt
, const void *key
)
360 struct rb_node
*parent
= rbt
->rbt_root
;
361 rb_compare_key_fn compare_key
= rbt
->rbt_ops
->rbto_compare_key
;
363 while (!RB_SENTINEL_P(parent
)) {
364 const int diff
= (*compare_key
)(parent
, key
);
367 parent
= parent
->rb_nodes
[diff
> 0];
374 rb_tree_prune_node(struct rb_tree
*rbt
, struct rb_node
*self
, int rebalance
)
376 const unsigned int which
= self
->rb_position
;
377 struct rb_node
*father
= self
->rb_parent
;
379 KASSERT(rebalance
|| (RB_ROOT_P(self
) || RB_RED_P(self
)));
380 KASSERT(!rebalance
|| RB_BLACK_P(self
));
381 KASSERT(RB_CHILDLESS_P(self
));
382 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
384 father
->rb_nodes
[which
] = self
->rb_left
;
387 * Remove ourselves from the node list and decrement the count.
389 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
393 rb_tree_removal_rebalance(rbt
, father
, which
);
394 KASSERT(RB_ROOT_P(self
) || rb_tree_check_node(rbt
, father
, NULL
, true));
398 rb_tree_swap_prune_and_rebalance(struct rb_tree
*rbt
, struct rb_node
*self
,
399 struct rb_node
*standin
)
401 unsigned int standin_which
= standin
->rb_position
;
402 unsigned int standin_other
= standin_which
^ RB_NODE_OTHER
;
403 struct rb_node
*standin_child
;
404 struct rb_node
*standin_father
;
405 bool rebalance
= RB_BLACK_P(standin
);
407 if (standin
->rb_parent
== self
) {
409 * As a child of self, any childen would be opposite of
412 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_other
]));
413 standin_child
= standin
->rb_nodes
[standin_which
];
416 * Since we aren't a child of self, any childen would be
417 * on the same side as our parent (self).
419 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_which
]));
420 standin_child
= standin
->rb_nodes
[standin_other
];
424 * the node we are removing must have two children.
426 KASSERT(RB_TWOCHILDREN_P(self
));
428 * If standin has a child, it must be red.
430 KASSERT(RB_SENTINEL_P(standin_child
) || RB_RED_P(standin_child
));
433 * Verify things are sane.
435 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
436 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, false));
438 if (!RB_SENTINEL_P(standin_child
)) {
440 * We know we have a red child so if we swap them we can
441 * void flipping standin's child to black afterwards.
443 KASSERT(rb_tree_check_node(rbt
, standin_child
, NULL
, true));
444 rb_tree_reparent_nodes(rbt
, standin
,
445 standin_child
->rb_position
);
446 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, true));
447 KASSERT(rb_tree_check_node(rbt
, standin_child
, NULL
, true));
449 * Since we are removing a red leaf, no need to rebalance.
453 * We know that standin can not be a child of self, so
454 * update before of that.
456 KASSERT(standin
->rb_parent
!= self
);
457 standin_which
= standin
->rb_position
;
458 standin_other
= standin_which
^ RB_NODE_OTHER
;
460 KASSERT(RB_CHILDLESS_P(standin
));
463 * If we are about to delete the standin's father, then when we call
464 * rebalance, we need to use ourselves as our father. Otherwise
465 * remember our original father. Also, if we are our standin's father
466 * we only need to reparent the standin's brother.
468 if (standin
->rb_parent
== self
) {
474 standin_father
= standin
;
475 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_other
]));
476 KASSERT(!RB_SENTINEL_P(self
->rb_nodes
[standin_other
]));
477 KASSERT(self
->rb_nodes
[standin_which
] == standin
);
479 * Make our brother our son.
481 standin
->rb_nodes
[standin_other
] = self
->rb_nodes
[standin_other
];
482 standin
->rb_nodes
[standin_other
]->rb_parent
= standin
;
483 KASSERT(standin
->rb_nodes
[standin_other
]->rb_position
== standin_other
);
490 standin_father
= standin
->rb_parent
;
491 standin_father
->rb_nodes
[standin_which
] =
492 standin
->rb_nodes
[standin_which
];
493 standin
->rb_left
= self
->rb_left
;
494 standin
->rb_right
= self
->rb_right
;
495 standin
->rb_left
->rb_parent
= standin
;
496 standin
->rb_right
->rb_parent
= standin
;
500 * Now copy the result of self to standin and then replace
501 * self with standin in the tree.
503 standin
->rb_parent
= self
->rb_parent
;
504 standin
->rb_properties
= self
->rb_properties
;
505 standin
->rb_parent
->rb_nodes
[standin
->rb_position
] = standin
;
508 * Remove ourselves from the node list and decrement the count.
510 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
513 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, false));
514 KASSERT(rb_tree_check_node(rbt
, standin_father
, NULL
, false));
519 rb_tree_removal_rebalance(rbt
, standin_father
, standin_which
);
520 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, true));
524 * We could do this by doing
525 * rb_tree_node_swap(rbt, self, which);
526 * rb_tree_prune_node(rbt, self, false);
528 * But it's more efficient to just evalate and recolor the child.
532 rb_tree_prune_blackred_branch(struct rb_tree
*rbt _PROP_ARG_UNUSED
,
533 struct rb_node
*self
, unsigned int which
)
535 struct rb_node
*parent
= self
->rb_parent
;
536 struct rb_node
*child
= self
->rb_nodes
[which
];
538 KASSERT(which
== RB_NODE_LEFT
|| which
== RB_NODE_RIGHT
);
539 KASSERT(RB_BLACK_P(self
) && RB_RED_P(child
));
540 KASSERT(!RB_TWOCHILDREN_P(child
));
541 KASSERT(RB_CHILDLESS_P(child
));
542 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
543 KASSERT(rb_tree_check_node(rbt
, child
, NULL
, false));
546 * Remove ourselves from the tree and give our former child our
547 * properties (position, color, root).
549 parent
->rb_nodes
[self
->rb_position
] = child
;
550 child
->rb_parent
= parent
;
551 child
->rb_properties
= self
->rb_properties
;
554 * Remove ourselves from the node list and decrement the count.
556 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
559 KASSERT(RB_ROOT_P(self
) || rb_tree_check_node(rbt
, parent
, NULL
, true));
560 KASSERT(rb_tree_check_node(rbt
, child
, NULL
, true));
566 _prop_rb_tree_remove_node(struct rb_tree
*rbt
, struct rb_node
*self
)
568 struct rb_node
*standin
;
571 * In the following diagrams, we (the node to be removed) are S. Red
572 * nodes are lowercase. T could be either red or black.
574 * Remember the major axiom of the red-black tree: the number of
575 * black nodes from the root to each leaf is constant across all
576 * leaves, only the number of red nodes varies.
578 * Thus removing a red leaf doesn't require any other changes to a
579 * red-black tree. So if we must remove a node, attempt to rearrange
580 * the tree so we can remove a red node.
582 * The simpliest case is a childless red node or a childless root node:
584 * | T --> T | or | R --> * |
587 if (RB_CHILDLESS_P(self
)) {
588 if (RB_RED_P(self
) || RB_ROOT_P(self
)) {
589 rb_tree_prune_node(rbt
, self
, false);
592 rb_tree_prune_node(rbt
, self
, true);
595 KASSERT(!RB_CHILDLESS_P(self
));
596 if (!RB_TWOCHILDREN_P(self
)) {
598 * The next simpliest case is the node we are deleting is
599 * black and has one red child.
605 which
= RB_LEFT_SENTINEL_P(self
) ? RB_NODE_RIGHT
: RB_NODE_LEFT
;
606 KASSERT(RB_BLACK_P(self
));
607 KASSERT(RB_RED_P(self
->rb_nodes
[which
]));
608 KASSERT(RB_CHILDLESS_P(self
->rb_nodes
[which
]));
609 rb_tree_prune_blackred_branch(rbt
, self
, which
);
612 KASSERT(RB_TWOCHILDREN_P(self
));
615 * We invert these because we prefer to remove from the inside of
618 which
= self
->rb_position
^ RB_NODE_OTHER
;
621 * Let's find the node closes to us opposite of our parent
622 * Now swap it with ourself, "prune" it, and rebalance, if needed.
624 standin
= _prop_rb_tree_iterate(rbt
, self
, which
);
625 rb_tree_swap_prune_and_rebalance(rbt
, self
, standin
);
629 rb_tree_removal_rebalance(struct rb_tree
*rbt
, struct rb_node
*parent
,
632 KASSERT(!RB_SENTINEL_P(parent
));
633 KASSERT(RB_SENTINEL_P(parent
->rb_nodes
[which
]));
634 KASSERT(which
== RB_NODE_LEFT
|| which
== RB_NODE_RIGHT
);
636 while (RB_BLACK_P(parent
->rb_nodes
[which
])) {
637 unsigned int other
= which
^ RB_NODE_OTHER
;
638 struct rb_node
*brother
= parent
->rb_nodes
[other
];
640 KASSERT(!RB_SENTINEL_P(brother
));
642 * For cases 1, 2a, and 2b, our brother's children must
643 * be black and our father must be black
645 if (RB_BLACK_P(parent
)
646 && RB_BLACK_P(brother
->rb_left
)
647 && RB_BLACK_P(brother
->rb_right
)) {
649 * Case 1: Our brother is red, swap its position
650 * (and colors) with our parent. This is now case 2b.
656 if (RB_RED_P(brother
)) {
657 KASSERT(RB_BLACK_P(parent
));
658 rb_tree_reparent_nodes(rbt
, parent
, other
);
659 brother
= parent
->rb_nodes
[other
];
660 KASSERT(!RB_SENTINEL_P(brother
));
661 KASSERT(RB_BLACK_P(brother
));
662 KASSERT(RB_RED_P(parent
));
663 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, false));
664 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, false));
667 * Both our parent and brother are black.
668 * Change our brother to red, advance up rank
669 * and go through the loop again.
675 RB_MARK_RED(brother
);
676 KASSERT(RB_BLACK_P(brother
->rb_left
));
677 KASSERT(RB_BLACK_P(brother
->rb_right
));
678 if (RB_ROOT_P(parent
))
680 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, false));
681 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, false));
682 which
= parent
->rb_position
;
683 parent
= parent
->rb_parent
;
685 } else if (RB_RED_P(parent
)
686 && RB_BLACK_P(brother
)
687 && RB_BLACK_P(brother
->rb_left
)
688 && RB_BLACK_P(brother
->rb_right
)) {
689 KASSERT(RB_BLACK_P(brother
));
690 KASSERT(RB_BLACK_P(brother
->rb_left
));
691 KASSERT(RB_BLACK_P(brother
->rb_right
));
692 RB_MARK_BLACK(parent
);
693 RB_MARK_RED(brother
);
694 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, true));
695 break; /* We're done! */
697 KASSERT(RB_BLACK_P(brother
));
698 KASSERT(!RB_CHILDLESS_P(brother
));
700 * Case 3: our brother is black, our left nephew is
701 * red, and our right nephew is black. Swap our
702 * brother with our left nephew. This result in a
703 * tree that matches case 4.
709 if (RB_BLACK_P(brother
->rb_nodes
[other
])) {
710 KASSERT(RB_RED_P(brother
->rb_nodes
[which
]));
711 rb_tree_reparent_nodes(rbt
, brother
, which
);
712 KASSERT(brother
->rb_parent
== parent
->rb_nodes
[other
]);
713 brother
= parent
->rb_nodes
[other
];
714 KASSERT(RB_RED_P(brother
->rb_nodes
[other
]));
717 * Case 4: our brother is black and our right nephew
718 * is red. Swap our parent and brother locations and
719 * change our right nephew to black. (these can be
720 * done in either order so we change the color first).
721 * The result is a valid red-black tree and is a
728 RB_MARK_BLACK(brother
->rb_nodes
[other
]);
729 rb_tree_reparent_nodes(rbt
, parent
, other
);
730 break; /* We're done! */
733 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, true));
737 _prop_rb_tree_iterate(struct rb_tree
*rbt
, struct rb_node
*self
,
738 unsigned int direction
)
740 const unsigned int other
= direction
^ RB_NODE_OTHER
;
741 KASSERT(direction
== RB_NODE_LEFT
|| direction
== RB_NODE_RIGHT
);
744 self
= rbt
->rbt_root
;
745 if (RB_SENTINEL_P(self
))
747 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
748 self
= self
->rb_nodes
[other
];
751 KASSERT(!RB_SENTINEL_P(self
));
753 * We can't go any further in this direction. We proceed up in the
754 * opposite direction until our parent is in direction we want to go.
756 if (RB_SENTINEL_P(self
->rb_nodes
[direction
])) {
757 while (!RB_ROOT_P(self
)) {
758 if (other
== self
->rb_position
)
759 return self
->rb_parent
;
760 self
= self
->rb_parent
;
766 * Advance down one in current direction and go down as far as possible
767 * in the opposite direction.
769 self
= self
->rb_nodes
[direction
];
770 KASSERT(!RB_SENTINEL_P(self
));
771 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
772 self
= self
->rb_nodes
[other
];
777 static const struct rb_node
*
778 rb_tree_iterate_const(const struct rb_tree
*rbt
, const struct rb_node
*self
,
779 unsigned int direction
)
781 const unsigned int other
= direction
^ RB_NODE_OTHER
;
782 KASSERT(direction
== RB_NODE_LEFT
|| direction
== RB_NODE_RIGHT
);
785 self
= rbt
->rbt_root
;
786 if (RB_SENTINEL_P(self
))
788 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
789 self
= self
->rb_nodes
[other
];
792 KASSERT(!RB_SENTINEL_P(self
));
794 * We can't go any further in this direction. We proceed up in the
795 * opposite direction until our parent is in direction we want to go.
797 if (RB_SENTINEL_P(self
->rb_nodes
[direction
])) {
798 while (!RB_ROOT_P(self
)) {
799 if (other
== self
->rb_position
)
800 return self
->rb_parent
;
801 self
= self
->rb_parent
;
807 * Advance down one in current direction and go down as far as possible
808 * in the opposite direction.
810 self
= self
->rb_nodes
[direction
];
811 KASSERT(!RB_SENTINEL_P(self
));
812 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
813 self
= self
->rb_nodes
[other
];
818 rb_tree_check_node(const struct rb_tree
*rbt
, const struct rb_node
*self
,
819 const struct rb_node
*prev
, bool red_check
)
821 KASSERT(!self
->rb_sentinel
);
822 KASSERT(self
->rb_left
);
823 KASSERT(self
->rb_right
);
824 KASSERT(prev
== NULL
||
825 (*rbt
->rbt_ops
->rbto_compare_nodes
)(prev
, self
) > 0);
828 * Verify our relationship to our parent.
830 if (RB_ROOT_P(self
)) {
831 KASSERT(self
== rbt
->rbt_root
);
832 KASSERT(self
->rb_position
== RB_NODE_LEFT
);
833 KASSERT(self
->rb_parent
->rb_nodes
[RB_NODE_LEFT
] == self
);
834 KASSERT(self
->rb_parent
== (const struct rb_node
*) &rbt
->rbt_root
);
836 KASSERT(self
!= rbt
->rbt_root
);
837 KASSERT(!RB_PARENT_SENTINEL_P(self
));
838 if (self
->rb_position
== RB_NODE_LEFT
) {
839 KASSERT((*rbt
->rbt_ops
->rbto_compare_nodes
)(self
, self
->rb_parent
) > 0);
840 KASSERT(self
->rb_parent
->rb_nodes
[RB_NODE_LEFT
] == self
);
842 KASSERT((*rbt
->rbt_ops
->rbto_compare_nodes
)(self
, self
->rb_parent
) < 0);
843 KASSERT(self
->rb_parent
->rb_nodes
[RB_NODE_RIGHT
] == self
);
848 * Verify our position in the linked list against the tree itself.
851 const struct rb_node
*prev0
= rb_tree_iterate_const(rbt
, self
, RB_NODE_LEFT
);
852 const struct rb_node
*next0
= rb_tree_iterate_const(rbt
, self
, RB_NODE_RIGHT
);
853 KASSERT(prev0
== TAILQ_PREV(self
, rb_node_qh
, rb_link
));
854 if (next0
!= TAILQ_NEXT(self
, rb_link
))
855 next0
= rb_tree_iterate_const(rbt
, self
, RB_NODE_RIGHT
);
856 KASSERT(next0
== TAILQ_NEXT(self
, rb_link
));
860 * The root must be black.
861 * There can never be two adjacent red nodes.
864 KASSERT(!RB_ROOT_P(self
) || RB_BLACK_P(self
));
865 if (RB_RED_P(self
)) {
866 const struct rb_node
*brother
;
867 KASSERT(!RB_ROOT_P(self
));
868 brother
= self
->rb_parent
->rb_nodes
[self
->rb_position
^ RB_NODE_OTHER
];
869 KASSERT(RB_BLACK_P(self
->rb_parent
));
871 * I'm red and have no children, then I must either
872 * have no brother or my brother also be red and
873 * also have no children. (black count == 0)
875 KASSERT(!RB_CHILDLESS_P(self
)
876 || RB_SENTINEL_P(brother
)
878 || RB_CHILDLESS_P(brother
));
880 * If I'm not childless, I must have two children
881 * and they must be both be black.
883 KASSERT(RB_CHILDLESS_P(self
)
884 || (RB_TWOCHILDREN_P(self
)
885 && RB_BLACK_P(self
->rb_left
)
886 && RB_BLACK_P(self
->rb_right
)));
888 * If I'm not childless, thus I have black children,
889 * then my brother must either be black or have two
892 KASSERT(RB_CHILDLESS_P(self
)
893 || RB_BLACK_P(brother
)
894 || (RB_TWOCHILDREN_P(brother
)
895 && RB_BLACK_P(brother
->rb_left
)
896 && RB_BLACK_P(brother
->rb_right
)));
899 * If I'm black and have one child, that child must
900 * be red and childless.
902 KASSERT(RB_CHILDLESS_P(self
)
903 || RB_TWOCHILDREN_P(self
)
904 || (!RB_LEFT_SENTINEL_P(self
)
905 && RB_RIGHT_SENTINEL_P(self
)
906 && RB_RED_P(self
->rb_left
)
907 && RB_CHILDLESS_P(self
->rb_left
))
908 || (!RB_RIGHT_SENTINEL_P(self
)
909 && RB_LEFT_SENTINEL_P(self
)
910 && RB_RED_P(self
->rb_right
)
911 && RB_CHILDLESS_P(self
->rb_right
)));
914 * If I'm a childless black node and my parent is
915 * black, my 2nd closet relative away from my parent
916 * is either red or has a red parent or red children.
919 && RB_CHILDLESS_P(self
)
920 && RB_BLACK_P(self
->rb_parent
)) {
921 const unsigned int which
= self
->rb_position
;
922 const unsigned int other
= which
^ RB_NODE_OTHER
;
923 const struct rb_node
*relative0
, *relative
;
925 relative0
= rb_tree_iterate_const(rbt
,
927 KASSERT(relative0
!= NULL
);
928 relative
= rb_tree_iterate_const(rbt
,
930 KASSERT(relative
!= NULL
);
931 KASSERT(RB_SENTINEL_P(relative
->rb_nodes
[which
]));
933 KASSERT(RB_RED_P(relative
)
934 || RB_RED_P(relative
->rb_left
)
935 || RB_RED_P(relative
->rb_right
)
936 || RB_RED_P(relative
->rb_parent
));
941 * A grandparent's children must be real nodes and not
942 * sentinels. First check out grandparent.
944 KASSERT(RB_ROOT_P(self
)
945 || RB_ROOT_P(self
->rb_parent
)
946 || RB_TWOCHILDREN_P(self
->rb_parent
->rb_parent
));
948 * If we are have grandchildren on our left, then
949 * we must have a child on our right.
951 KASSERT(RB_LEFT_SENTINEL_P(self
)
952 || RB_CHILDLESS_P(self
->rb_left
)
953 || !RB_RIGHT_SENTINEL_P(self
));
955 * If we are have grandchildren on our right, then
956 * we must have a child on our left.
958 KASSERT(RB_RIGHT_SENTINEL_P(self
)
959 || RB_CHILDLESS_P(self
->rb_right
)
960 || !RB_LEFT_SENTINEL_P(self
));
963 * If we have a child on the left and it doesn't have two
964 * children make sure we don't have great-great-grandchildren on
967 KASSERT(RB_TWOCHILDREN_P(self
->rb_left
)
968 || RB_CHILDLESS_P(self
->rb_right
)
969 || RB_CHILDLESS_P(self
->rb_right
->rb_left
)
970 || RB_CHILDLESS_P(self
->rb_right
->rb_left
->rb_left
)
971 || RB_CHILDLESS_P(self
->rb_right
->rb_left
->rb_right
)
972 || RB_CHILDLESS_P(self
->rb_right
->rb_right
)
973 || RB_CHILDLESS_P(self
->rb_right
->rb_right
->rb_left
)
974 || RB_CHILDLESS_P(self
->rb_right
->rb_right
->rb_right
));
977 * If we have a child on the right and it doesn't have two
978 * children make sure we don't have great-great-grandchildren on
981 KASSERT(RB_TWOCHILDREN_P(self
->rb_right
)
982 || RB_CHILDLESS_P(self
->rb_left
)
983 || RB_CHILDLESS_P(self
->rb_left
->rb_left
)
984 || RB_CHILDLESS_P(self
->rb_left
->rb_left
->rb_left
)
985 || RB_CHILDLESS_P(self
->rb_left
->rb_left
->rb_right
)
986 || RB_CHILDLESS_P(self
->rb_left
->rb_right
)
987 || RB_CHILDLESS_P(self
->rb_left
->rb_right
->rb_left
)
988 || RB_CHILDLESS_P(self
->rb_left
->rb_right
->rb_right
));
991 * If we are fully interior node, then our predecessors and
992 * successors must have no children in our direction.
994 if (RB_TWOCHILDREN_P(self
)) {
995 const struct rb_node
*prev0
;
996 const struct rb_node
*next0
;
998 prev0
= rb_tree_iterate_const(rbt
, self
, RB_NODE_LEFT
);
999 KASSERT(prev0
!= NULL
);
1000 KASSERT(RB_RIGHT_SENTINEL_P(prev0
));
1002 next0
= rb_tree_iterate_const(rbt
, self
, RB_NODE_RIGHT
);
1003 KASSERT(next0
!= NULL
);
1004 KASSERT(RB_LEFT_SENTINEL_P(next0
));
1012 rb_tree_count_black(const struct rb_node
*self
)
1014 unsigned int left
, right
;
1016 if (RB_SENTINEL_P(self
))
1019 left
= rb_tree_count_black(self
->rb_left
);
1020 right
= rb_tree_count_black(self
->rb_right
);
1022 KASSERT(left
== right
);
1024 return left
+ RB_BLACK_P(self
);
1028 _prop_rb_tree_check(const struct rb_tree
*rbt
, bool red_check
)
1030 const struct rb_node
*self
;
1031 const struct rb_node
*prev
;
1034 KASSERT(rbt
->rbt_root
== NULL
|| rbt
->rbt_root
->rb_position
== RB_NODE_LEFT
);
1038 TAILQ_FOREACH(self
, &rbt
->rbt_nodes
, rb_link
) {
1039 rb_tree_check_node(rbt
, self
, prev
, false);
1042 KASSERT(rbt
->rbt_count
== count
);
1043 KASSERT(RB_SENTINEL_P(rbt
->rbt_root
)
1044 || rb_tree_count_black(rbt
->rbt_root
));
1047 * The root must be black.
1048 * There can never be two adjacent red nodes.
1051 KASSERT(rbt
->rbt_root
== NULL
|| RB_BLACK_P(rbt
->rbt_root
));
1052 TAILQ_FOREACH(self
, &rbt
->rbt_nodes
, rb_link
) {
1053 rb_tree_check_node(rbt
, self
, NULL
, true);
1057 #endif /* RBDEBUG */