Sync usage with man page.
[netbsd-mini2440.git] / crypto / external / bsd / openssh / dist / umac.c
blob0f754a6238d42b70af2cb0410534068d687c368c
1 /* $NetBSD$ */
2 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
3 /* -----------------------------------------------------------------------
4 *
5 * umac.c -- C Implementation UMAC Message Authentication
7 * Version 0.93b of rfc4418.txt -- 2006 July 18
9 * For a full description of UMAC message authentication see the UMAC
10 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11 * Please report bugs and suggestions to the UMAC webpage.
13 * Copyright (c) 1999-2006 Ted Krovetz
15 * Permission to use, copy, modify, and distribute this software and
16 * its documentation for any purpose and with or without fee, is hereby
17 * granted provided that the above copyright notice appears in all copies
18 * and in supporting documentation, and that the name of the copyright
19 * holder not be used in advertising or publicity pertaining to
20 * distribution of the software without specific, written prior permission.
22 * Comments should be directed to Ted Krovetz (tdk@acm.org)
24 * ---------------------------------------------------------------------- */
26 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
28 * 1) This version does not work properly on messages larger than 16MB
30 * 2) If you set the switch to use SSE2, then all data must be 16-byte
31 * aligned
33 * 3) When calling the function umac(), it is assumed that msg is in
34 * a writable buffer of length divisible by 32 bytes. The message itself
35 * does not have to fill the entire buffer, but bytes beyond msg may be
36 * zeroed.
38 * 4) Three free AES implementations are supported by this implementation of
39 * UMAC. Paulo Barreto's version is in the public domain and can be found
40 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
44 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45 * the third.
47 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48 * produced under gcc with optimizations set -O3 or higher. Dunno why.
50 /////////////////////////////////////////////////////////////////////// */
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
58 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
59 /* #define SSE2 0 Is SSE2 is available? */
60 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
61 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
63 /* ---------------------------------------------------------------------- */
64 /* -- Global Includes --------------------------------------------------- */
65 /* ---------------------------------------------------------------------- */
67 #include "includes.h"
68 __RCSID("$NetBSD: umac.c,v 1.6 2009/02/16 20:53:55 christos Exp $");
69 #include <sys/types.h>
70 #include <sys/endian.h>
72 #include "xmalloc.h"
73 #include "umac.h"
74 #include <string.h>
75 #include <stdlib.h>
76 #include <stddef.h>
78 /* ---------------------------------------------------------------------- */
79 /* --- Primitive Data Types --- */
80 /* ---------------------------------------------------------------------- */
82 /* The following assumptions may need change on your system */
83 typedef u_int8_t UINT8; /* 1 byte */
84 typedef u_int16_t UINT16; /* 2 byte */
85 typedef u_int32_t UINT32; /* 4 byte */
86 typedef u_int64_t UINT64; /* 8 bytes */
87 typedef unsigned int UWORD; /* Register */
89 /* ---------------------------------------------------------------------- */
90 /* --- Constants -------------------------------------------------------- */
91 /* ---------------------------------------------------------------------- */
93 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
95 /* Message "words" are read from memory in an endian-specific manner. */
96 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
97 /* be set true if the host computer is little-endian. */
99 #if BYTE_ORDER == LITTLE_ENDIAN
100 #define __LITTLE_ENDIAN__ 1
101 #else
102 #define __LITTLE_ENDIAN__ 0
103 #endif
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
107 /* ----- Architecture Specific ------------------------------------------ */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Primitive Routines --------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
121 /* ---------------------------------------------------------------------- */
123 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
125 #if defined(__NetBSD__)
126 #include <sys/endian.h>
127 #define LOAD_UINT32_LITTLE(ptr) le32toh(*ptr)
128 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = htobe32(x))
129 #define LOAD_UINT32_REVERSED(p) (bswap32(*(UINT32 *)(p)))
130 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = bswap32(v))
131 #else /* !NetBSD */
133 /* ---------------------------------------------------------------------- */
134 /* --- Endian Conversion --- Forcing assembly on some platforms */
136 /* ---------------------------------------------------------------------- */
137 /* --- Endian Conversion --- Forcing assembly on some platforms */
138 /* ---------------------------------------------------------------------- */
140 #if !defined(__OpenBSD__)
141 static UINT32 LOAD_UINT32_REVERSED(void *ptr)
143 UINT32 temp = *(UINT32 *)ptr;
144 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
145 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
146 return (UINT32)temp;
149 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
151 UINT32 i = (UINT32)x;
152 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
153 | ((i & 0x0000FF00) << 8 ) | (i << 24);
155 #endif
157 #else
158 /* The following definitions use the above reversal-primitives to do the right
159 * thing on endian specific load and stores.
162 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
163 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
164 #endif
166 #if (__LITTLE_ENDIAN__)
167 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
168 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
169 #else
170 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
171 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
172 #endif
173 #endif /*!NetBSD*/
177 /* ---------------------------------------------------------------------- */
178 /* ---------------------------------------------------------------------- */
179 /* ----- Begin KDF & PDF Section ---------------------------------------- */
180 /* ---------------------------------------------------------------------- */
181 /* ---------------------------------------------------------------------- */
183 /* UMAC uses AES with 16 byte block and key lengths */
184 #define AES_BLOCK_LEN 16
186 /* OpenSSL's AES */
187 #include <openssl/aes.h>
188 typedef AES_KEY aes_int_key[1];
189 #define aes_encryption(in,out,int_key) \
190 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
191 #define aes_key_setup(key,int_key) \
192 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
194 /* The user-supplied UMAC key is stretched using AES in a counter
195 * mode to supply all random bits needed by UMAC. The kdf function takes
196 * an AES internal key representation 'key' and writes a stream of
197 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
198 * 'ndx' causes a distinct byte stream.
200 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
202 UINT8 in_buf[AES_BLOCK_LEN] = {0};
203 UINT8 out_buf[AES_BLOCK_LEN];
204 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
205 int i;
207 /* Setup the initial value */
208 in_buf[AES_BLOCK_LEN-9] = ndx;
209 in_buf[AES_BLOCK_LEN-1] = i = 1;
211 while (nbytes >= AES_BLOCK_LEN) {
212 aes_encryption(in_buf, out_buf, key);
213 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
214 in_buf[AES_BLOCK_LEN-1] = ++i;
215 nbytes -= AES_BLOCK_LEN;
216 dst_buf += AES_BLOCK_LEN;
218 if (nbytes) {
219 aes_encryption(in_buf, out_buf, key);
220 memcpy(dst_buf,out_buf,nbytes);
224 /* The final UHASH result is XOR'd with the output of a pseudorandom
225 * function. Here, we use AES to generate random output and
226 * xor the appropriate bytes depending on the last bits of nonce.
227 * This scheme is optimized for sequential, increasing big-endian nonces.
230 typedef struct {
231 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
232 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
233 aes_int_key prf_key; /* Expanded AES key for PDF */
234 } pdf_ctx;
236 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
238 UINT8 buf[UMAC_KEY_LEN];
240 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
241 aes_key_setup(buf, pc->prf_key);
243 /* Initialize pdf and cache */
244 memset(pc->nonce, 0, sizeof(pc->nonce));
245 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
248 static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
250 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
251 * of the AES output. If last time around we returned the ndx-1st
252 * element, then we may have the result in the cache already.
255 #if (UMAC_OUTPUT_LEN == 4)
256 #define LOW_BIT_MASK 3
257 #elif (UMAC_OUTPUT_LEN == 8)
258 #define LOW_BIT_MASK 1
259 #elif (UMAC_OUTPUT_LEN > 8)
260 #define LOW_BIT_MASK 0
261 #endif
263 UINT8 tmp_nonce_lo[4];
264 #if LOW_BIT_MASK != 0
265 int ndx = nonce[7] & LOW_BIT_MASK;
266 #endif
267 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
268 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
270 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
271 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
273 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
274 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
275 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
278 #if (UMAC_OUTPUT_LEN == 4)
279 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
280 #elif (UMAC_OUTPUT_LEN == 8)
281 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
282 #elif (UMAC_OUTPUT_LEN == 12)
283 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
284 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
285 #elif (UMAC_OUTPUT_LEN == 16)
286 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
287 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
288 #endif
291 /* ---------------------------------------------------------------------- */
292 /* ---------------------------------------------------------------------- */
293 /* ----- Begin NH Hash Section ------------------------------------------ */
294 /* ---------------------------------------------------------------------- */
295 /* ---------------------------------------------------------------------- */
297 /* The NH-based hash functions used in UMAC are described in the UMAC paper
298 * and specification, both of which can be found at the UMAC website.
299 * The interface to this implementation has two
300 * versions, one expects the entire message being hashed to be passed
301 * in a single buffer and returns the hash result immediately. The second
302 * allows the message to be passed in a sequence of buffers. In the
303 * muliple-buffer interface, the client calls the routine nh_update() as
304 * many times as necessary. When there is no more data to be fed to the
305 * hash, the client calls nh_final() which calculates the hash output.
306 * Before beginning another hash calculation the nh_reset() routine
307 * must be called. The single-buffer routine, nh(), is equivalent to
308 * the sequence of calls nh_update() and nh_final(); however it is
309 * optimized and should be prefered whenever the multiple-buffer interface
310 * is not necessary. When using either interface, it is the client's
311 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
313 * The routine nh_init() initializes the nh_ctx data structure and
314 * must be called once, before any other PDF routine.
317 /* The "nh_aux" routines do the actual NH hashing work. They
318 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
319 * produce output for all STREAMS NH iterations in one call,
320 * allowing the parallel implementation of the streams.
323 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
324 #define L1_KEY_LEN 1024 /* Internal key bytes */
325 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
326 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
327 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
328 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
330 typedef struct {
331 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
332 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
333 int next_data_empty; /* Bookeeping variable for data buffer. */
334 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
335 UINT64 state[STREAMS]; /* on-line state */
336 } nh_ctx;
339 #if (UMAC_OUTPUT_LEN == 4)
341 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
342 /* NH hashing primitive. Previous (partial) hash result is loaded and
343 * then stored via hp pointer. The length of the data pointed at by "dp",
344 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
345 * is expected to be endian compensated in memory at key setup.
348 UINT64 h;
349 UWORD c = dlen / 32;
350 UINT32 *k = (UINT32 *)kp;
351 UINT32 *d = (UINT32 *)dp;
352 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
353 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
355 h = *((UINT64 *)hp);
356 do {
357 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
358 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
359 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
360 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
361 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
362 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
363 h += MUL64((k0 + d0), (k4 + d4));
364 h += MUL64((k1 + d1), (k5 + d5));
365 h += MUL64((k2 + d2), (k6 + d6));
366 h += MUL64((k3 + d3), (k7 + d7));
368 d += 8;
369 k += 8;
370 } while (--c);
371 *((UINT64 *)hp) = h;
374 #elif (UMAC_OUTPUT_LEN == 8)
376 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
377 /* Same as previous nh_aux, but two streams are handled in one pass,
378 * reading and writing 16 bytes of hash-state per call.
381 UINT64 h1,h2;
382 UWORD c = dlen / 32;
383 UINT32 *k = (UINT32 *)kp;
384 UINT32 *d = (UINT32 *)dp;
385 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
386 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
387 k8,k9,k10,k11;
389 h1 = *((UINT64 *)hp);
390 h2 = *((UINT64 *)hp + 1);
391 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
392 do {
393 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
394 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
395 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
396 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
397 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
398 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
400 h1 += MUL64((k0 + d0), (k4 + d4));
401 h2 += MUL64((k4 + d0), (k8 + d4));
403 h1 += MUL64((k1 + d1), (k5 + d5));
404 h2 += MUL64((k5 + d1), (k9 + d5));
406 h1 += MUL64((k2 + d2), (k6 + d6));
407 h2 += MUL64((k6 + d2), (k10 + d6));
409 h1 += MUL64((k3 + d3), (k7 + d7));
410 h2 += MUL64((k7 + d3), (k11 + d7));
412 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
414 d += 8;
415 k += 8;
416 } while (--c);
417 ((UINT64 *)hp)[0] = h1;
418 ((UINT64 *)hp)[1] = h2;
421 #elif (UMAC_OUTPUT_LEN == 12)
423 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
424 /* Same as previous nh_aux, but two streams are handled in one pass,
425 * reading and writing 24 bytes of hash-state per call.
428 UINT64 h1,h2,h3;
429 UWORD c = dlen / 32;
430 UINT32 *k = (UINT32 *)kp;
431 UINT32 *d = (UINT32 *)dp;
432 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
433 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
434 k8,k9,k10,k11,k12,k13,k14,k15;
436 h1 = *((UINT64 *)hp);
437 h2 = *((UINT64 *)hp + 1);
438 h3 = *((UINT64 *)hp + 2);
439 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
440 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
441 do {
442 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
443 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
444 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
445 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
446 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
447 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
449 h1 += MUL64((k0 + d0), (k4 + d4));
450 h2 += MUL64((k4 + d0), (k8 + d4));
451 h3 += MUL64((k8 + d0), (k12 + d4));
453 h1 += MUL64((k1 + d1), (k5 + d5));
454 h2 += MUL64((k5 + d1), (k9 + d5));
455 h3 += MUL64((k9 + d1), (k13 + d5));
457 h1 += MUL64((k2 + d2), (k6 + d6));
458 h2 += MUL64((k6 + d2), (k10 + d6));
459 h3 += MUL64((k10 + d2), (k14 + d6));
461 h1 += MUL64((k3 + d3), (k7 + d7));
462 h2 += MUL64((k7 + d3), (k11 + d7));
463 h3 += MUL64((k11 + d3), (k15 + d7));
465 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
466 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
468 d += 8;
469 k += 8;
470 } while (--c);
471 ((UINT64 *)hp)[0] = h1;
472 ((UINT64 *)hp)[1] = h2;
473 ((UINT64 *)hp)[2] = h3;
476 #elif (UMAC_OUTPUT_LEN == 16)
478 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
479 /* Same as previous nh_aux, but two streams are handled in one pass,
480 * reading and writing 24 bytes of hash-state per call.
483 UINT64 h1,h2,h3,h4;
484 UWORD c = dlen / 32;
485 UINT32 *k = (UINT32 *)kp;
486 UINT32 *d = (UINT32 *)dp;
487 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
488 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
489 k8,k9,k10,k11,k12,k13,k14,k15,
490 k16,k17,k18,k19;
492 h1 = *((UINT64 *)hp);
493 h2 = *((UINT64 *)hp + 1);
494 h3 = *((UINT64 *)hp + 2);
495 h4 = *((UINT64 *)hp + 3);
496 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
497 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
498 do {
499 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
500 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
501 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
502 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
503 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
504 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
505 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
507 h1 += MUL64((k0 + d0), (k4 + d4));
508 h2 += MUL64((k4 + d0), (k8 + d4));
509 h3 += MUL64((k8 + d0), (k12 + d4));
510 h4 += MUL64((k12 + d0), (k16 + d4));
512 h1 += MUL64((k1 + d1), (k5 + d5));
513 h2 += MUL64((k5 + d1), (k9 + d5));
514 h3 += MUL64((k9 + d1), (k13 + d5));
515 h4 += MUL64((k13 + d1), (k17 + d5));
517 h1 += MUL64((k2 + d2), (k6 + d6));
518 h2 += MUL64((k6 + d2), (k10 + d6));
519 h3 += MUL64((k10 + d2), (k14 + d6));
520 h4 += MUL64((k14 + d2), (k18 + d6));
522 h1 += MUL64((k3 + d3), (k7 + d7));
523 h2 += MUL64((k7 + d3), (k11 + d7));
524 h3 += MUL64((k11 + d3), (k15 + d7));
525 h4 += MUL64((k15 + d3), (k19 + d7));
527 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
528 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
529 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
531 d += 8;
532 k += 8;
533 } while (--c);
534 ((UINT64 *)hp)[0] = h1;
535 ((UINT64 *)hp)[1] = h2;
536 ((UINT64 *)hp)[2] = h3;
537 ((UINT64 *)hp)[3] = h4;
540 /* ---------------------------------------------------------------------- */
541 #endif /* UMAC_OUTPUT_LENGTH */
542 /* ---------------------------------------------------------------------- */
545 /* ---------------------------------------------------------------------- */
547 static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
548 /* This function is a wrapper for the primitive NH hash functions. It takes
549 * as argument "hc" the current hash context and a buffer which must be a
550 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
551 * appropriately according to how much message has been hashed already.
554 UINT8 *key;
556 key = hc->nh_key + hc->bytes_hashed;
557 nh_aux(key, buf, hc->state, nbytes);
560 /* ---------------------------------------------------------------------- */
562 #if (__LITTLE_ENDIAN__)
563 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
564 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
565 /* We endian convert the keys on little-endian computers to */
566 /* compensate for the lack of big-endian memory reads during hashing. */
568 UWORD iters = num_bytes / bpw;
569 if (bpw == 4) {
570 UINT32 *p = (UINT32 *)buf;
571 do {
572 *p = LOAD_UINT32_REVERSED(p);
573 p++;
574 } while (--iters);
575 } else if (bpw == 8) {
576 UINT32 *p = (UINT32 *)buf;
577 UINT32 t;
578 do {
579 t = LOAD_UINT32_REVERSED(p+1);
580 p[1] = LOAD_UINT32_REVERSED(p);
581 p[0] = t;
582 p += 2;
583 } while (--iters);
586 #if (__LITTLE_ENDIAN__)
587 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
588 #else
589 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
590 #endif
592 /* ---------------------------------------------------------------------- */
594 static void nh_reset(nh_ctx *hc)
595 /* Reset nh_ctx to ready for hashing of new data */
597 hc->bytes_hashed = 0;
598 hc->next_data_empty = 0;
599 hc->state[0] = 0;
600 #if (UMAC_OUTPUT_LEN >= 8)
601 hc->state[1] = 0;
602 #endif
603 #if (UMAC_OUTPUT_LEN >= 12)
604 hc->state[2] = 0;
605 #endif
606 #if (UMAC_OUTPUT_LEN == 16)
607 hc->state[3] = 0;
608 #endif
612 /* ---------------------------------------------------------------------- */
614 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
615 /* Generate nh_key, endian convert and reset to be ready for hashing. */
617 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
618 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
619 nh_reset(hc);
622 /* ---------------------------------------------------------------------- */
624 static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
625 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
626 /* even multiple of HASH_BUF_BYTES. */
628 UINT32 i,j;
630 j = hc->next_data_empty;
631 if ((j + nbytes) >= HASH_BUF_BYTES) {
632 if (j) {
633 i = HASH_BUF_BYTES - j;
634 memcpy(hc->data+j, buf, i);
635 nh_transform(hc,hc->data,HASH_BUF_BYTES);
636 nbytes -= i;
637 buf += i;
638 hc->bytes_hashed += HASH_BUF_BYTES;
640 if (nbytes >= HASH_BUF_BYTES) {
641 i = nbytes & ~(HASH_BUF_BYTES - 1);
642 nh_transform(hc, buf, i);
643 nbytes -= i;
644 buf += i;
645 hc->bytes_hashed += i;
647 j = 0;
649 memcpy(hc->data + j, buf, nbytes);
650 hc->next_data_empty = j + nbytes;
653 /* ---------------------------------------------------------------------- */
655 static void zero_pad(UINT8 *p, int nbytes)
657 /* Write "nbytes" of zeroes, beginning at "p" */
658 if (nbytes >= (int)sizeof(UWORD)) {
659 while ((ptrdiff_t)p % sizeof(UWORD)) {
660 *p = 0;
661 nbytes--;
662 p++;
664 while (nbytes >= (int)sizeof(UWORD)) {
665 *(UWORD *)p = 0;
666 nbytes -= sizeof(UWORD);
667 p += sizeof(UWORD);
670 while (nbytes) {
671 *p = 0;
672 nbytes--;
673 p++;
677 /* ---------------------------------------------------------------------- */
679 static void nh_final(nh_ctx *hc, UINT8 *result)
680 /* After passing some number of data buffers to nh_update() for integration
681 * into an NH context, nh_final is called to produce a hash result. If any
682 * bytes are in the buffer hc->data, incorporate them into the
683 * NH context. Finally, add into the NH accumulation "state" the total number
684 * of bits hashed. The resulting numbers are written to the buffer "result".
685 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
688 int nh_len, nbits;
690 if (hc->next_data_empty != 0) {
691 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
692 ~(L1_PAD_BOUNDARY - 1));
693 zero_pad(hc->data + hc->next_data_empty,
694 nh_len - hc->next_data_empty);
695 nh_transform(hc, hc->data, nh_len);
696 hc->bytes_hashed += hc->next_data_empty;
697 } else if (hc->bytes_hashed == 0) {
698 nh_len = L1_PAD_BOUNDARY;
699 zero_pad(hc->data, L1_PAD_BOUNDARY);
700 nh_transform(hc, hc->data, nh_len);
703 nbits = (hc->bytes_hashed << 3);
704 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
705 #if (UMAC_OUTPUT_LEN >= 8)
706 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
707 #endif
708 #if (UMAC_OUTPUT_LEN >= 12)
709 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
710 #endif
711 #if (UMAC_OUTPUT_LEN == 16)
712 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
713 #endif
714 nh_reset(hc);
717 /* ---------------------------------------------------------------------- */
719 static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
720 UINT32 unpadded_len, UINT8 *result)
721 /* All-in-one nh_update() and nh_final() equivalent.
722 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
723 * well aligned
726 UINT32 nbits;
728 /* Initialize the hash state */
729 nbits = (unpadded_len << 3);
731 ((UINT64 *)result)[0] = nbits;
732 #if (UMAC_OUTPUT_LEN >= 8)
733 ((UINT64 *)result)[1] = nbits;
734 #endif
735 #if (UMAC_OUTPUT_LEN >= 12)
736 ((UINT64 *)result)[2] = nbits;
737 #endif
738 #if (UMAC_OUTPUT_LEN == 16)
739 ((UINT64 *)result)[3] = nbits;
740 #endif
742 nh_aux(hc->nh_key, buf, result, padded_len);
745 /* ---------------------------------------------------------------------- */
746 /* ---------------------------------------------------------------------- */
747 /* ----- Begin UHASH Section -------------------------------------------- */
748 /* ---------------------------------------------------------------------- */
749 /* ---------------------------------------------------------------------- */
751 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
752 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
753 * unless the initial data to be hashed is short. After the polynomial-
754 * layer, an inner-product hash is used to produce the final UHASH output.
756 * UHASH provides two interfaces, one all-at-once and another where data
757 * buffers are presented sequentially. In the sequential interface, the
758 * UHASH client calls the routine uhash_update() as many times as necessary.
759 * When there is no more data to be fed to UHASH, the client calls
760 * uhash_final() which
761 * calculates the UHASH output. Before beginning another UHASH calculation
762 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
763 * uhash(), is equivalent to the sequence of calls uhash_update() and
764 * uhash_final(); however it is optimized and should be
765 * used whenever the sequential interface is not necessary.
767 * The routine uhash_init() initializes the uhash_ctx data structure and
768 * must be called once, before any other UHASH routine.
771 /* ---------------------------------------------------------------------- */
772 /* ----- Constants and uhash_ctx ---------------------------------------- */
773 /* ---------------------------------------------------------------------- */
775 /* ---------------------------------------------------------------------- */
776 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
777 /* ---------------------------------------------------------------------- */
779 /* Primes and masks */
780 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
781 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
782 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
785 /* ---------------------------------------------------------------------- */
787 typedef struct uhash_ctx {
788 nh_ctx hash; /* Hash context for L1 NH hash */
789 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
790 UINT64 poly_accum[STREAMS]; /* poly hash result */
791 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
792 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
793 UINT32 msg_len; /* Total length of data passed */
794 /* to uhash */
795 } uhash_ctx;
796 typedef struct uhash_ctx *uhash_ctx_t;
798 /* ---------------------------------------------------------------------- */
801 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
802 * word at a time. As described in the specification, poly32 and poly64
803 * require keys from special domains. The following implementations exploit
804 * the special domains to avoid overflow. The results are not guaranteed to
805 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
806 * patches any errant values.
809 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
811 UINT32 key_hi = (UINT32)(key >> 32),
812 key_lo = (UINT32)key,
813 cur_hi = (UINT32)(cur >> 32),
814 cur_lo = (UINT32)cur,
815 x_lo,
816 x_hi;
817 UINT64 X,T,res;
819 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
820 x_lo = (UINT32)X;
821 x_hi = (UINT32)(X >> 32);
823 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
825 T = ((UINT64)x_lo << 32);
826 res += T;
827 if (res < T)
828 res += 59;
830 res += data;
831 if (res < data)
832 res += 59;
834 return res;
838 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
839 * implementation does not handle all ramp levels. Because we don't handle
840 * the ramp up to p128 modulus in this implementation, we are limited to
841 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
842 * bytes input to UMAC per tag, ie. 16MB).
844 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
846 int i;
847 UINT64 *data=(UINT64*)data_in;
849 for (i = 0; i < STREAMS; i++) {
850 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
851 hc->poly_accum[i] = poly64(hc->poly_accum[i],
852 hc->poly_key_8[i], p64 - 1);
853 hc->poly_accum[i] = poly64(hc->poly_accum[i],
854 hc->poly_key_8[i], (data[i] - 59));
855 } else {
856 hc->poly_accum[i] = poly64(hc->poly_accum[i],
857 hc->poly_key_8[i], data[i]);
863 /* ---------------------------------------------------------------------- */
866 /* The final step in UHASH is an inner-product hash. The poly hash
867 * produces a result not neccesarily WORD_LEN bytes long. The inner-
868 * product hash breaks the polyhash output into 16-bit chunks and
869 * multiplies each with a 36 bit key.
872 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
874 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
875 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
876 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
877 t = t + ipkp[3] * (UINT64)(UINT16)(data);
879 return t;
882 static UINT32 ip_reduce_p36(UINT64 t)
884 /* Divisionless modular reduction */
885 UINT64 ret;
887 ret = (t & m36) + 5 * (t >> 36);
888 if (ret >= p36)
889 ret -= p36;
891 /* return least significant 32 bits */
892 return (UINT32)(ret);
896 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
897 * the polyhash stage is skipped and ip_short is applied directly to the
898 * NH output.
900 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
902 UINT64 t;
903 UINT64 *nhp = (UINT64 *)nh_res;
905 t = ip_aux(0,ahc->ip_keys, nhp[0]);
906 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
907 #if (UMAC_OUTPUT_LEN >= 8)
908 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
909 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
910 #endif
911 #if (UMAC_OUTPUT_LEN >= 12)
912 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
913 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
914 #endif
915 #if (UMAC_OUTPUT_LEN == 16)
916 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
917 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
918 #endif
921 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
922 * the polyhash stage is not skipped and ip_long is applied to the
923 * polyhash output.
925 static void ip_long(uhash_ctx_t ahc, u_char *res)
927 int i;
928 UINT64 t;
930 for (i = 0; i < STREAMS; i++) {
931 /* fix polyhash output not in Z_p64 */
932 if (ahc->poly_accum[i] >= p64)
933 ahc->poly_accum[i] -= p64;
934 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
935 STORE_UINT32_BIG((UINT32 *)res+i,
936 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
941 /* ---------------------------------------------------------------------- */
943 /* ---------------------------------------------------------------------- */
945 /* Reset uhash context for next hash session */
946 static int uhash_reset(uhash_ctx_t pc)
948 nh_reset(&pc->hash);
949 pc->msg_len = 0;
950 pc->poly_accum[0] = 1;
951 #if (UMAC_OUTPUT_LEN >= 8)
952 pc->poly_accum[1] = 1;
953 #endif
954 #if (UMAC_OUTPUT_LEN >= 12)
955 pc->poly_accum[2] = 1;
956 #endif
957 #if (UMAC_OUTPUT_LEN == 16)
958 pc->poly_accum[3] = 1;
959 #endif
960 return 1;
963 /* ---------------------------------------------------------------------- */
965 /* Given a pointer to the internal key needed by kdf() and a uhash context,
966 * initialize the NH context and generate keys needed for poly and inner-
967 * product hashing. All keys are endian adjusted in memory so that native
968 * loads cause correct keys to be in registers during calculation.
970 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
972 int i;
973 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
975 /* Zero the entire uhash context */
976 memset(ahc, 0, sizeof(uhash_ctx));
978 /* Initialize the L1 hash */
979 nh_init(&ahc->hash, prf_key);
981 /* Setup L2 hash variables */
982 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
983 for (i = 0; i < STREAMS; i++) {
984 /* Fill keys from the buffer, skipping bytes in the buffer not
985 * used by this implementation. Endian reverse the keys if on a
986 * little-endian computer.
988 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
989 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
990 /* Mask the 64-bit keys to their special domain */
991 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
992 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
995 /* Setup L3-1 hash variables */
996 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
997 for (i = 0; i < STREAMS; i++)
998 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
999 4*sizeof(UINT64));
1000 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1001 sizeof(ahc->ip_keys));
1002 for (i = 0; i < STREAMS*4; i++)
1003 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
1005 /* Setup L3-2 hash variables */
1006 /* Fill buffer with index 4 key */
1007 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1008 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1009 STREAMS * sizeof(UINT32));
1012 /* ---------------------------------------------------------------------- */
1014 #if 0
1015 static uhash_ctx_t uhash_alloc(u_char key[])
1017 /* Allocate memory and force to a 16-byte boundary. */
1018 uhash_ctx_t ctx;
1019 u_char bytes_to_add;
1020 aes_int_key prf_key;
1022 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1023 if (ctx) {
1024 if (ALLOC_BOUNDARY) {
1025 bytes_to_add = ALLOC_BOUNDARY -
1026 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1027 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1028 *((u_char *)ctx - 1) = bytes_to_add;
1030 aes_key_setup(key,prf_key);
1031 uhash_init(ctx, prf_key);
1033 return (ctx);
1035 #endif
1037 /* ---------------------------------------------------------------------- */
1039 #if 0
1040 static int uhash_free(uhash_ctx_t ctx)
1042 /* Free memory allocated by uhash_alloc */
1043 u_char bytes_to_sub;
1045 if (ctx) {
1046 if (ALLOC_BOUNDARY) {
1047 bytes_to_sub = *((u_char *)ctx - 1);
1048 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1050 free(ctx);
1052 return (1);
1054 #endif
1055 /* ---------------------------------------------------------------------- */
1057 static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1058 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1059 * hash each one with NH, calling the polyhash on each NH output.
1062 UWORD bytes_hashed, bytes_remaining;
1063 UINT64 result_buf[STREAMS];
1064 UINT8 *nh_result = (UINT8 *)&result_buf;
1066 if (ctx->msg_len + len <= L1_KEY_LEN) {
1067 nh_update(&ctx->hash, (UINT8 *)input, len);
1068 ctx->msg_len += len;
1069 } else {
1071 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1072 if (ctx->msg_len == L1_KEY_LEN)
1073 bytes_hashed = L1_KEY_LEN;
1075 if (bytes_hashed + len >= L1_KEY_LEN) {
1077 /* If some bytes have been passed to the hash function */
1078 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1079 /* bytes to complete the current nh_block. */
1080 if (bytes_hashed) {
1081 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1082 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1083 nh_final(&ctx->hash, nh_result);
1084 ctx->msg_len += bytes_remaining;
1085 poly_hash(ctx,(UINT32 *)nh_result);
1086 len -= bytes_remaining;
1087 input += bytes_remaining;
1090 /* Hash directly from input stream if enough bytes */
1091 while (len >= L1_KEY_LEN) {
1092 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1093 L1_KEY_LEN, nh_result);
1094 ctx->msg_len += L1_KEY_LEN;
1095 len -= L1_KEY_LEN;
1096 input += L1_KEY_LEN;
1097 poly_hash(ctx,(UINT32 *)nh_result);
1101 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1102 if (len) {
1103 nh_update(&ctx->hash, (UINT8 *)input, len);
1104 ctx->msg_len += len;
1108 return (1);
1111 /* ---------------------------------------------------------------------- */
1113 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1114 /* Incorporate any pending data, pad, and generate tag */
1116 UINT64 result_buf[STREAMS];
1117 UINT8 *nh_result = (UINT8 *)&result_buf;
1119 if (ctx->msg_len > L1_KEY_LEN) {
1120 if (ctx->msg_len % L1_KEY_LEN) {
1121 nh_final(&ctx->hash, nh_result);
1122 poly_hash(ctx,(UINT32 *)nh_result);
1124 ip_long(ctx, res);
1125 } else {
1126 nh_final(&ctx->hash, nh_result);
1127 ip_short(ctx,nh_result, res);
1129 uhash_reset(ctx);
1130 return (1);
1133 /* ---------------------------------------------------------------------- */
1135 #if 0
1136 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1137 /* assumes that msg is in a writable buffer of length divisible by */
1138 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1140 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1141 UINT32 nh_len;
1142 int extra_zeroes_needed;
1144 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1145 * the polyhash.
1147 if (len <= L1_KEY_LEN) {
1148 if (len == 0) /* If zero length messages will not */
1149 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1150 else
1151 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152 extra_zeroes_needed = nh_len - len;
1153 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155 ip_short(ahc,nh_result, res);
1156 } else {
1157 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1158 * output to poly_hash().
1160 do {
1161 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1162 poly_hash(ahc,(UINT32 *)nh_result);
1163 len -= L1_KEY_LEN;
1164 msg += L1_KEY_LEN;
1165 } while (len >= L1_KEY_LEN);
1166 if (len) {
1167 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1168 extra_zeroes_needed = nh_len - len;
1169 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1170 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1171 poly_hash(ahc,(UINT32 *)nh_result);
1174 ip_long(ahc, res);
1177 uhash_reset(ahc);
1178 return 1;
1180 #endif
1182 /* ---------------------------------------------------------------------- */
1183 /* ---------------------------------------------------------------------- */
1184 /* ----- Begin UMAC Section --------------------------------------------- */
1185 /* ---------------------------------------------------------------------- */
1186 /* ---------------------------------------------------------------------- */
1188 /* The UMAC interface has two interfaces, an all-at-once interface where
1189 * the entire message to be authenticated is passed to UMAC in one buffer,
1190 * and a sequential interface where the message is presented a little at a
1191 * time. The all-at-once is more optimaized than the sequential version and
1192 * should be preferred when the sequential interface is not required.
1194 struct umac_ctx {
1195 uhash_ctx hash; /* Hash function for message compression */
1196 pdf_ctx pdf; /* PDF for hashed output */
1197 void *free_ptr; /* Address to free this struct via */
1198 } umac_ctx;
1200 /* ---------------------------------------------------------------------- */
1202 #if 0
1203 int umac_reset(struct umac_ctx *ctx)
1204 /* Reset the hash function to begin a new authentication. */
1206 uhash_reset(&ctx->hash);
1207 return (1);
1209 #endif
1211 /* ---------------------------------------------------------------------- */
1213 int umac_delete(struct umac_ctx *ctx)
1214 /* Deallocate the ctx structure */
1216 if (ctx) {
1217 if (ALLOC_BOUNDARY)
1218 ctx = (struct umac_ctx *)ctx->free_ptr;
1219 xfree(ctx);
1221 return (1);
1224 /* ---------------------------------------------------------------------- */
1226 struct umac_ctx *umac_new(u_char key[])
1227 /* Dynamically allocate a umac_ctx struct, initialize variables,
1228 * generate subkeys from key. Align to 16-byte boundary.
1231 struct umac_ctx *ctx, *octx;
1232 size_t bytes_to_add;
1233 aes_int_key prf_key;
1235 octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1236 if (ctx) {
1237 if (ALLOC_BOUNDARY) {
1238 bytes_to_add = ALLOC_BOUNDARY -
1239 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1240 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1242 ctx->free_ptr = octx;
1243 aes_key_setup(key,prf_key);
1244 pdf_init(&ctx->pdf, prf_key);
1245 uhash_init(&ctx->hash, prf_key);
1248 return (ctx);
1251 /* ---------------------------------------------------------------------- */
1253 int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1254 /* Incorporate any pending data, pad, and generate tag */
1256 uhash_final(&ctx->hash, (u_char *)tag);
1257 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1259 return (1);
1262 /* ---------------------------------------------------------------------- */
1264 int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1265 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1266 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1267 /* output buffer is full. */
1269 uhash_update(&ctx->hash, input, len);
1270 return (1);
1273 /* ---------------------------------------------------------------------- */
1275 #if 0
1276 int umac(struct umac_ctx *ctx, u_char *input,
1277 long len, u_char tag[],
1278 u_char nonce[8])
1279 /* All-in-one version simply calls umac_update() and umac_final(). */
1281 uhash(&ctx->hash, input, len, (u_char *)tag);
1282 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1284 return (1);
1286 #endif
1288 /* ---------------------------------------------------------------------- */
1289 /* ---------------------------------------------------------------------- */
1290 /* ----- End UMAC Section ----------------------------------------------- */
1291 /* ---------------------------------------------------------------------- */
1292 /* ---------------------------------------------------------------------- */