1 .\" $NetBSD: libcrypto.pl,v 1.3 2007/11/27 22:16:03 christos Exp $
3 .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05)
6 .\" ========================================================================
7 .de Sh \" Subsection heading
15 .de Sp \" Vertical space (when we can't use .PP)
19 .de Vb \" Begin verbatim text
24 .de Ve \" End verbatim text
28 .\" Set up some character translations and predefined strings. \*(-- will
29 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
30 .\" double quote, and \*(R" will give a right double quote. \*(C+ will
31 .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
32 .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
33 .\" nothing in troff, for use with C<>.
35 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
39 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
40 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
53 .\" Escape single quotes in literal strings from groff's Unicode transform.
57 .\" If the F register is turned on, we'll generate index entries on stderr for
58 .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
59 .\" entries marked with X<> in POD. Of course, you'll have to process the
60 .\" output yourself in some meaningful fashion.
63 . tm Index:\\$1\t\\n%\t"\\$2"
73 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
74 .\" Fear. Run. Save yourself. No user-serviceable parts.
75 . \" fudge factors for nroff and troff
84 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
90 . \" simple accents for nroff and troff
100 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
101 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
102 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
103 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
104 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
105 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
107 . \" troff and (daisy-wheel) nroff accents
108 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
109 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
110 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
111 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
112 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
113 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
114 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
115 .ds ae a\h'-(\w'a'u*4/10)'e
116 .ds Ae A\h'-(\w'A'u*4/10)'E
117 . \" corrections for vroff
118 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
119 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
120 . \" for low resolution devices (crt and lpr)
121 .if \n(.H>23 .if \n(.V>19 \
134 .\" ========================================================================
136 .IX Title "BIO_s_mem 3"
137 .TH BIO_s_mem 3 "2009-04-20" "1.1.0-dev" "OpenSSL"
138 .\" For nroff, turn off justification. Always turn off hyphenation; it makes
139 .\" way too many mistakes in technical documents.
143 BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,
144 BIO_get_mem_ptr, BIO_new_mem_buf \- memory BIO
148 .IX Header "SYNOPSIS"
150 \& #include <openssl/bio.h>
152 \& BIO_METHOD * BIO_s_mem(void);
154 \& BIO_set_mem_eof_return(BIO *b,int v)
155 \& long BIO_get_mem_data(BIO *b, char **pp)
156 \& BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
157 \& BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)
159 \& BIO *BIO_new_mem_buf(void *buf, int len);
162 .IX Header "DESCRIPTION"
163 \&\fIBIO_s_mem()\fR return the memory \s-1BIO\s0 method function.
165 A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
166 written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
167 as appropriate to accommodate the stored data.
169 Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
170 Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
173 Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
175 If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
176 \&\s-1BUF_MEM\s0 structure is also freed.
178 Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it. On a
179 read only \s-1BIO\s0 it restores the \s-1BIO\s0 to its original state and the read only
180 data can be read again.
182 \&\fIBIO_eof()\fR is true if no data is in the \s-1BIO\s0.
184 \&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
186 \&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO\s0 \fBb\fR when it is
187 empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF\s0 (that is
188 it will return zero and BIO_should_retry(b) will be false. If \fBv\fR is non
189 zero then it will return \fBv\fR when it is empty and it will set the read retry
190 flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal
191 positive return value \fBv\fR should be set to a negative value, typically \-1.
193 \&\fIBIO_get_mem_data()\fR sets \fBpp\fR to a pointer to the start of the memory BIOs data
194 and returns the total amount of data available. It is implemented as a macro.
196 \&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
197 close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE\s0.
200 \&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in \fBpp\fR. It is
203 \&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
204 if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be null terminated and its
205 length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
206 as a result cannot be written to. This is useful when some data needs to be
207 made available from a static area of memory in the form of a \s-1BIO\s0. The
208 supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
209 first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
212 Writes to memory BIOs will always succeed if memory is available: that is
213 their size can grow indefinitely.
215 Every read from a read write memory \s-1BIO\s0 will remove the data just read with
216 an internal copy operation, if a \s-1BIO\s0 contains a lot of data and it is
217 read in small chunks the operation can be very slow. The use of a read only
218 memory \s-1BIO\s0 avoids this problem. If the \s-1BIO\s0 must be read write then adding
219 a buffering \s-1BIO\s0 to the chain will speed up the process.
222 There should be an option to set the maximum size of a memory \s-1BIO\s0.
224 There should be a way to \*(L"rewind\*(R" a read write \s-1BIO\s0 without destroying
227 The copying operation should not occur after every small read of a large \s-1BIO\s0
228 to improve efficiency.
231 Create a memory \s-1BIO\s0 and write some data to it:
234 \& BIO *mem = BIO_new(BIO_s_mem());
235 \& BIO_puts(mem, "Hello World\en");
238 Create a read only memory \s-1BIO:\s0
241 \& char data[] = "Hello World";
243 \& mem = BIO_new_mem_buf(data, \-1);
246 Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
250 \& BIO_get_mem_ptr(mem, &bptr);
251 \& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
255 .IX Header "SEE ALSO"