1 .\" Automatically generated by Pod::Man version 1.02
2 .\" Wed Jul 23 14:41:57 2003
5 .\" ======================================================================
6 .de Sh \" Subsection heading
14 .de Sp \" Vertical space (when we can't use .PP)
20 .ie \\n(.$>=3 .ne \\$3
24 .de Vb \" Begin verbatim text
29 .de Ve \" End verbatim text
34 .\" Set up some character translations and predefined strings. \*(-- will
35 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
36 .\" double quote, and \*(R" will give a right double quote. | will give a
37 .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
38 .\" to do unbreakable dashes and therefore won't be available. \*(C` and
39 .\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
41 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
45 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
46 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
59 .\" If the F register is turned on, we'll generate index entries on stderr
60 .\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
61 .\" index entries marked with X<> in POD. Of course, you'll have to process
62 .\" the output yourself in some meaningful fashion.
65 . tm Index:\\$1\t\\n%\t"\\$2"
71 .\" For nroff, turn off justification. Always turn off hyphenation; it
72 .\" makes way too many mistakes in technical documents.
76 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
77 .\" Fear. Run. Save yourself. No user-serviceable parts.
79 . \" fudge factors for nroff and troff
88 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
94 . \" simple accents for nroff and troff
104 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
105 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
106 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
107 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
108 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
109 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
111 . \" troff and (daisy-wheel) nroff accents
112 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
113 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
114 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
115 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
116 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
117 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
118 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
119 .ds ae a\h'-(\w'a'u*4/10)'e
120 .ds Ae A\h'-(\w'A'u*4/10)'E
121 . \" corrections for vroff
122 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
123 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
124 . \" for low resolution devices (crt and lpr)
125 .if \n(.H>23 .if \n(.V>19 \
138 .\" ======================================================================
141 .TH des 3 "0.9.6j" "2003-07-23" "libdes"
144 des_random_key, des_set_key, des_key_sched, des_set_key_checked,
145 des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
146 des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ncbc_encrypt,
147 des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
148 des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt,
149 des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
150 des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
151 des_read_password, des_read_2passwords, des_read_pw_string,
152 des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
153 des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
155 .IX Header "SYNOPSIS"
157 \& #include <openssl/des.h>
160 \& void des_random_key(des_cblock *ret);
163 \& int des_set_key(const_des_cblock *key, des_key_schedule schedule);
164 \& int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
165 \& int des_set_key_checked(const_des_cblock *key,
166 \& des_key_schedule schedule);
167 \& void des_set_key_unchecked(const_des_cblock *key,
168 \& des_key_schedule schedule);
171 \& void des_set_odd_parity(des_cblock *key);
172 \& int des_is_weak_key(const_des_cblock *key);
175 \& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
176 \& des_key_schedule ks, int enc);
177 \& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
178 \& des_key_schedule ks1, des_key_schedule ks2, int enc);
179 \& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
180 \& des_key_schedule ks1, des_key_schedule ks2,
181 \& des_key_schedule ks3, int enc);
184 \& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
185 \& long length, des_key_schedule schedule, des_cblock *ivec,
187 \& void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
188 \& int numbits, long length, des_key_schedule schedule,
189 \& des_cblock *ivec, int enc);
190 \& void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
191 \& int numbits, long length, des_key_schedule schedule,
192 \& des_cblock *ivec);
193 \& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
194 \& long length, des_key_schedule schedule, des_cblock *ivec,
196 \& void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
197 \& long length, des_key_schedule schedule, des_cblock *ivec,
198 \& int *num, int enc);
199 \& void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
200 \& long length, des_key_schedule schedule, des_cblock *ivec,
204 \& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
205 \& long length, des_key_schedule schedule, des_cblock *ivec,
206 \& const_des_cblock *inw, const_des_cblock *outw, int enc);
209 \& void des_ede2_cbc_encrypt(const unsigned char *input,
210 \& unsigned char *output, long length, des_key_schedule ks1,
211 \& des_key_schedule ks2, des_cblock *ivec, int enc);
212 \& void des_ede2_cfb64_encrypt(const unsigned char *in,
213 \& unsigned char *out, long length, des_key_schedule ks1,
214 \& des_key_schedule ks2, des_cblock *ivec, int *num, int enc);
215 \& void des_ede2_ofb64_encrypt(const unsigned char *in,
216 \& unsigned char *out, long length, des_key_schedule ks1,
217 \& des_key_schedule ks2, des_cblock *ivec, int *num);
220 \& void des_ede3_cbc_encrypt(const unsigned char *input,
221 \& unsigned char *output, long length, des_key_schedule ks1,
222 \& des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
224 \& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
225 \& long length, des_key_schedule ks1, des_key_schedule ks2,
226 \& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
228 \& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
229 \& long length, des_key_schedule ks1, des_key_schedule ks2,
230 \& des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
231 \& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
232 \& long length, des_key_schedule ks1,
233 \& des_key_schedule ks2, des_key_schedule ks3,
234 \& des_cblock *ivec, int *num);
237 \& int des_read_password(des_cblock *key, const char *prompt, int verify);
238 \& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
239 \& const char *prompt, int verify);
240 \& int des_read_pw_string(char *buf, int length, const char *prompt,
244 \& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
245 \& long length, des_key_schedule schedule,
246 \& const_des_cblock *ivec);
247 \& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
248 \& long length, int out_count, des_cblock *seed);
249 \& void des_string_to_key(const char *str, des_cblock *key);
250 \& void des_string_to_2keys(const char *str, des_cblock *key1,
251 \& des_cblock *key2);
254 \& char *des_fcrypt(const char *buf, const char *salt, char *ret);
255 \& char *des_crypt(const char *buf, const char *salt);
256 \& char *crypt(const char *buf, const char *salt);
259 \& int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
261 \& int des_enc_write(int fd, const void *buf, int len,
262 \& des_key_schedule sched, des_cblock *iv);
265 .IX Header "DESCRIPTION"
266 This library contains a fast implementation of the \s-1DES\s0 encryption
269 There are two phases to the use of \s-1DES\s0 encryption. The first is the
270 generation of a \fIdes_key_schedule\fR from a key, the second is the
271 actual encryption. A \s-1DES\s0 key is of type \fIdes_cblock\fR. This type is
272 consists of 8 bytes with odd parity. The least significant bit in
273 each byte is the parity bit. The key schedule is an expanded form of
274 the key; it is used to speed the encryption process.
276 \&\fIdes_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
277 prior to using this function (see rand(3); for backward
278 compatibility the function \fIdes_random_seed()\fR is available as well).
279 If the \s-1PRNG\s0 could not generate a secure key, 0 is returned. In
280 earlier versions of the library, \fIdes_random_key()\fR did not generate
283 Before a \s-1DES\s0 key can be used, it must be converted into the
284 architecture dependent \fIdes_key_schedule\fR via the
285 \&\fIdes_set_key_checked()\fR or \fIdes_set_key_unchecked()\fR function.
287 \&\fIdes_set_key_checked()\fR will check that the key passed is of odd parity
288 and is not a week or semi-weak key. If the parity is wrong, then \-1
289 is returned. If the key is a weak key, then \-2 is returned. If an
290 error is returned, the key schedule is not generated.
292 \&\fIdes_set_key()\fR (called \fIdes_key_sched()\fR in the \s-1MIT\s0 library) works like
293 \&\fIdes_set_key_checked()\fR if the \fIdes_check_key\fR flag is non-zero,
294 otherwise like \fIdes_set_key_unchecked()\fR. These functions are available
295 for compatibility; it is recommended to use a function that does not
296 depend on a global variable.
298 \&\fIdes_set_odd_parity()\fR (called \fIdes_fixup_key_parity()\fR in the \s-1MIT\s0
299 library) sets the parity of the passed \fIkey\fR to odd.
301 \&\fIdes_is_weak_key()\fR returns 1 is the passed key is a weak key, 0 if it
302 is ok. The probability that a randomly generated key is weak is
303 1/2^52, so it is not really worth checking for them.
305 The following routines mostly operate on an input and output stream of
308 \&\fIdes_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
309 decrypts a single 8\-byte \fIdes_cblock\fR in \fIelectronic code book\fR
310 (\s-1ECB\s0) mode. It always transforms the input data, pointed to by
311 \&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
312 If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
313 (cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
314 key_schedule specified by the \fIschedule\fR argument, previously set via
315 \&\fIdes_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
316 ciphertext) is decrypted into the \fIoutput\fR (now cleartext). Input
317 and output may overlap. \fIdes_ecb_encrypt()\fR does not return a value.
319 \&\fIdes_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
320 three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting
321 the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
322 then encrypting with \fIks3\fR. This routine greatly reduces the chances
323 of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
324 \&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
325 using \s-1ECB\s0 mode and \fIks1\fR as the key.
327 The macro \fIdes_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
328 encryption by using \fIks1\fR for the final encryption.
330 \&\fIdes_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
331 (\s-1CBC\s0) mode of \s-1DES\s0. If the \fIencrypt\fR argument is non-zero, the
332 routine cipher-block-chain encrypts the cleartext data pointed to by
333 the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
334 argument, using the key schedule provided by the \fIschedule\fR argument,
335 and initialization vector provided by the \fIivec\fR argument. If the
336 \&\fIlength\fR argument is not an integral multiple of eight bytes, the
337 last block is copied to a temporary area and zero filled. The output
338 is always an integral multiple of eight bytes.
340 \&\fIdes_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES\s0. It uses \fIinw\fR and
341 \&\fIoutw\fR to 'whiten' the encryption. \fIinw\fR and \fIoutw\fR are secret
342 (unlike the iv) and are as such, part of the key. So the key is sort
343 of 24 bytes. This is much better than \s-1CBC\s0 \s-1DES\s0.
345 \&\fIdes_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC\s0 \s-1DES\s0 encryption with
346 three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
347 really an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR. This mode is used by \s-1SSL\s0.
349 The \fIdes_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
350 reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
351 This form of Triple-DES is used by the \s-1RSAREF\s0 library.
354 \&\fIdes_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
355 method takes an array of characters as input and outputs and array of
356 characters. It does not require any padding to 8 character groups.
357 Note: the \fIivec\fR variable is changed and the new changed value needs to
358 be passed to the next call to this function. Since this function runs
359 a complete \s-1DES\s0 \s-1ECB\s0 encryption per \fInumbits\fR, this function is only
360 suggested for use when sending small numbers of characters.
362 \&\fIdes_cfb64_encrypt()\fR
363 implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this
364 useful you ask? Because this routine will allow you to encrypt an
365 arbitrary number of bytes, no 8 byte padding. Each call to this
366 routine will encrypt the input bytes to output and then update ivec
367 and num. num contains 'how far' we are though ivec. If this does
368 not make much sense, read more about cfb mode of \s-1DES\s0 :\-).
370 \&\fIdes_ede3_cfb64_encrypt()\fR and \fIdes_ede2_cfb64_encrypt()\fR is the same as
371 \&\fIdes_cfb64_encrypt()\fR except that Triple-DES is used.
373 \&\fIdes_ofb_encrypt()\fR encrypts using output feedback mode. This method
374 takes an array of characters as input and outputs and array of
375 characters. It does not require any padding to 8 character groups.
376 Note: the \fIivec\fR variable is changed and the new changed value needs to
377 be passed to the next call to this function. Since this function runs
378 a complete \s-1DES\s0 \s-1ECB\s0 encryption per numbits, this function is only
379 suggested for use when sending small numbers of characters.
381 \&\fIdes_ofb64_encrypt()\fR is the same as \fIdes_cfb64_encrypt()\fR using Output
384 \&\fIdes_ede3_ofb64_encrypt()\fR and \fIdes_ede2_ofb64_encrypt()\fR is the same as
385 \&\fIdes_ofb64_encrypt()\fR, using Triple-DES.
387 \&\fIdes_read_pw_string()\fR writes the string specified by \fIprompt\fR to
388 standard output, turns echo off and reads in input string from the
389 terminal. The string is returned in \fIbuf\fR, which must have space for
390 at least \fIlength\fR bytes. If \fIverify\fR is set, the user is asked for
391 the password twice and unless the two copies match, an error is
392 returned. A return code of \-1 indicates a system error, 1 failure due
393 to use interaction, and 0 is success.
395 \&\fIdes_read_password()\fR does the same and converts the password to a \s-1DES\s0
396 key by calling \fIdes_string_to_key()\fR; \fIdes_read_2password()\fR operates in
397 the same way as \fIdes_read_password()\fR except that it generates two keys
398 by using the \fIdes_string_to_2key()\fR function. \fIdes_string_to_key()\fR is
399 available for backward compatibility with the \s-1MIT\s0 library. New
400 applications should use a cryptographic hash function. The same
401 applies for \fIdes_string_to_2key()\fR.
403 The following are DES-based transformations:
405 \&\fIdes_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
406 version takes only a small amount of space relative to other fast
407 \&\fIcrypt()\fR implementations. This is different to the normal crypt in
408 that the third parameter is the buffer that the return value is
409 written into. It needs to be at least 14 bytes long. This function
410 is thread safe, unlike the normal crypt.
412 \&\fIdes_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
413 This function calls \fIdes_fcrypt()\fR with a static array passed as the
414 third parameter. This emulates the normal non-thread safe semantics
417 \&\fIdes_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
418 buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
419 using \fIsched\fR for the key and \fIiv\fR as a starting vector. The actual
420 data send down \fIfd\fR consists of 4 bytes (in network byte order)
421 containing the length of the following encrypted data. The encrypted
422 data then follows, padded with random data out to a multiple of 8
425 \&\fIdes_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
426 \&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
427 have come from \fIdes_enc_write()\fR and is decrypted using \fIsched\fR for
428 the key schedule and \fIiv\fR for the initial vector.
430 \&\fBWarning:\fR The data format used by \fIdes_enc_write()\fR and \fIdes_enc_read()\fR
431 has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
432 bytes, \fIdes_enc_write()\fR will split the data into several chunks that
433 are all encrypted using the same \s-1IV\s0. So don't use these functions
434 unless you are sure you know what you do (in which case you might not
435 want to use them anyway). They cannot handle non-blocking sockets.
436 \&\fIdes_enc_read()\fR uses an internal state and thus cannot be used on
439 \&\fIdes_rw_mode\fR is used to specify the encryption mode to use with
440 \&\fIdes_enc_read()\fR and \fIdes_end_write()\fR. If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
441 default), des_pcbc_encrypt is used. If set to \fI\s-1DES_CBC_MODE\s0\fR
442 des_cbc_encrypt is used.
445 Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
446 not suitable for most applications; see des_modes(7).
448 The evp(3) library provides higher-level encryption functions.
451 \&\fIdes_3cbc_encrypt()\fR is flawed and must not be used in applications.
453 \&\fIdes_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIdes_ncbc_encrypt()\fR
456 \&\fIdes_cfb_encrypt()\fR and \fIdes_ofb_encrypt()\fR operates on input of 8 bits.
457 What this means is that if you set numbits to 12, and length to 2, the
458 first 12 bits will come from the 1st input byte and the low half of
459 the second input byte. The second 12 bits will have the low 8 bits
460 taken from the 3rd input byte and the top 4 bits taken from the 4th
461 input byte. The same holds for output. This function has been
462 implemented this way because most people will be using a multiple of 8
463 and because once you get into pulling bytes input bytes apart things
466 \&\fIdes_read_pw_string()\fR is the most machine/OS dependent function and
467 normally generates the most problems when porting this code.
469 .IX Header "CONFORMING TO"
472 .IX Header "SEE ALSO"
473 \&\fIcrypt\fR\|(3), des_modes(7), evp(3), rand(3)
476 \&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
477 \&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
478 \&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR, \fIdes_read_password()\fR and
479 \&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
480 are available in newer versions of that library.
482 \&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
485 \&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
486 \&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
487 \&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
488 versions of Kerberos but are not implemented here.
490 \&\fIdes_random_key()\fR generated cryptographically weak random data in
491 SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
492 \&\s-1MIT\s0 library.
495 Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
496 (http://www.openssl.org).