Sync usage with man page.
[netbsd-mini2440.git] / dist / ntp / ntpd / refclock_arc.c
blobe31967e14fba411b9267736fcf394dc014f8ed67
1 /* $NetBSD: refclock_arc.c,v 1.3 2006/03/18 14:18:59 kardel Exp $ */
3 /*
4 * refclock_arc - clock driver for ARCRON MSF/DCF/WWVB receivers
5 */
7 #ifdef HAVE_CONFIG_H
8 #include <config.h>
9 #endif
11 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF)
13 static const char arc_version[] = { "V1.3 2003/02/21" };
15 /* define PRE_NTP420 for compatibility to previous versions of NTP (at least
16 to 4.1.0 */
17 #undef PRE_NTP420
19 #ifndef ARCRON_NOT_KEEN
20 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */
21 #endif
23 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES
24 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */
25 #endif
27 #ifndef ARCRON_NOT_LEAPSECOND_KEEN
28 #ifndef ARCRON_LEAPSECOND_KEEN
29 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */
30 #endif
31 #endif
34 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997.
35 Modifications by Damon Hart-Davis, <d@hd.org>, 1997.
36 Modifications by Paul Alfille, <palfille@partners.org>, 2003.
37 Modifications by Christopher Price, <cprice@cs-home.com>, 2003.
38 Modifications by Nigel Roles <nigel@9fs.org>, 2003.
41 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND. USE AT
42 YOUR OWN RISK.
44 Orginally developed and used with ntp3-5.85 by Derek Mulcahy.
46 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2.
48 This code may be freely copied and used and incorporated in other
49 systems providing the disclaimer and notice of authorship are
50 reproduced.
52 -------------------------------------------------------------------------------
54 Nigel's notes:
56 1) Called tcgetattr() before modifying, so that fields correctly initialised
57 for all operating systems
59 2) Altered parsing of timestamp line so that it copes with fields which are
60 not always ASCII digits (e.g. status field when battery low)
62 -------------------------------------------------------------------------------
64 Christopher's notes:
66 MAJOR CHANGES SINCE V1.2
67 ========================
68 1) Applied patch by Andrey Bray <abuse@madhouse.demon.co.uk>
69 2001-02-17 comp.protocols.time.ntp
71 2) Added WWVB support via clock mode command, localtime/UTC time configured
72 via flag1=(0=UTC, 1=localtime)
74 3) Added ignore resync request via flag2=(0=resync, 1=ignore resync)
76 4) Added simplified conversion from localtime to UTC with dst/bst translation
78 5) Added average signal quality poll
80 6) Fixed a badformat error when no code is available due to stripping
81 \n & \r's
83 7) Fixed a badformat error when clearing lencode & memset a_lastcode in poll
84 routine
86 8) Lots of code cleanup, including standardized DEBUG macros and removal
87 of unused code
89 -------------------------------------------------------------------------------
91 Author's original note:
93 I enclose my ntp driver for the Galleon Systems Arc MSF receiver.
95 It works (after a fashion) on both Solaris-1 and Solaris-2.
97 I am currently using ntp3-5.85. I have been running the code for
98 about 7 months without any problems. Even coped with the change to BST!
100 I had to do some funky things to read from the clock because it uses the
101 power from the receive lines to drive the transmit lines. This makes the
102 code look a bit stupid but it works. I also had to put in some delays to
103 allow for the turnaround time from receive to transmit. These delays
104 are between characters when requesting a time stamp so that shouldn't affect
105 the results too drastically.
109 The bottom line is that it works but could easily be improved. You are
110 free to do what you will with the code. I haven't been able to determine
111 how good the clock is. I think that this requires a known good clock
112 to compare it against.
114 -------------------------------------------------------------------------------
116 Damon's notes for adjustments:
118 MAJOR CHANGES SINCE V1.0
119 ========================
120 1) Removal of pollcnt variable that made the clock go permanently
121 off-line once two time polls failed to gain responses.
123 2) Avoiding (at least on Solaris-2) terminal becoming the controlling
124 terminal of the process when we do a low-level open().
126 3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being
127 defined) to try to resync quickly after a potential leap-second
128 insertion or deletion.
130 4) Code significantly slimmer at run-time than V1.0.
133 GENERAL
134 =======
136 1) The C preprocessor symbol to have the clock built has been changed
137 from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the
138 possiblity of clashes with other symbols in the future.
140 2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons:
142 a) The ARC documentation claims the internal clock is (only)
143 accurate to about 20ms relative to Rugby (plus there must be
144 noticable drift and delay in the ms range due to transmission
145 delays and changing atmospheric effects). This clock is not
146 designed for ms accuracy as NTP has spoilt us all to expect.
148 b) The clock oscillator looks like a simple uncompensated quartz
149 crystal of the sort used in digital watches (ie 32768Hz) which
150 can have large temperature coefficients and drifts; it is not
151 clear if this oscillator is properly disciplined to the MSF
152 transmission, but as the default is to resync only once per
153 *day*, we can imagine that it is not, and is free-running. We
154 can minimise drift by resyncing more often (at the cost of
155 reduced battery life), but drift/wander may still be
156 significant.
158 c) Note that the bit time of 3.3ms adds to the potential error in
159 the the clock timestamp, since the bit clock of the serial link
160 may effectively be free-running with respect to the host clock
161 and the MSF clock. Actually, the error is probably 1/16th of
162 the above, since the input data is probably sampled at at least
163 16x the bit rate.
165 By keeping the clock marked as not very precise, it will have a
166 fairly large dispersion, and thus will tend to be used as a
167 `backup' time source and sanity checker, which this clock is
168 probably ideal for. For an isolated network without other time
169 sources, this clock can probably be expected to provide *much*
170 better than 1s accuracy, which will be fine.
172 By default, PRECISION is set to -4, but experience, especially at a
173 particular geographic location with a particular clock, may allow
174 this to be altered to -5. (Note that skews of +/- 10ms are to be
175 expected from the clock from time-to-time.) This improvement of
176 reported precision can be instigated by setting flag3 to 1, though
177 the PRECISION will revert to the normal value while the clock
178 signal quality is unknown whatever the flag3 setting.
180 IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE
181 ANY RESIDUAL SKEW, eg:
183 server 127.127.27.0 # ARCRON MSF radio clock unit 0.
184 # Fudge timestamps by about 20ms.
185 fudge 127.127.27.0 time1 0.020
187 You will need to observe your system's behaviour, assuming you have
188 some other NTP source to compare it with, to work out what the
189 fudge factor should be. For my Sun SS1 running SunOS 4.1.3_U1 with
190 my MSF clock with my distance from the MSF transmitter, +20ms
191 seemed about right, after some observation.
193 3) REFID has been made "MSFa" to reflect the MSF time source and the
194 ARCRON receiver.
196 4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before
197 forcing a resync since the last attempt. This is picked to give a
198 little less than an hour between resyncs and to try to avoid
199 clashing with any regular event at a regular time-past-the-hour
200 which might cause systematic errors.
202 The INITIAL_RESYNC_DELAY is to avoid bothering the clock and
203 running down its batteries unnecesarily if ntpd is going to crash
204 or be killed or reconfigured quickly. If ARCRON_KEEN is defined
205 then this period is long enough for (with normal polling rates)
206 enough time samples to have been taken to allow ntpd to sync to
207 the clock before the interruption for the clock to resync to MSF.
208 This avoids ntpd syncing to another peer first and then
209 almost immediately hopping to the MSF clock.
211 The RETRY_RESYNC_TIME is used before rescheduling a resync after a
212 resync failed to reveal a statisfatory signal quality (too low or
213 unknown).
215 5) The clock seems quite jittery, so I have increased the
216 median-filter size from the typical (previous) value of 3. I
217 discard up to half the results in the filter. It looks like maybe
218 1 sample in 10 or so (maybe less) is a spike, so allow the median
219 filter to discard at least 10% of its entries or 1 entry, whichever
220 is greater.
222 6) Sleeping *before* each character sent to the unit to allow required
223 inter-character time but without introducting jitter and delay in
224 handling the response if possible.
226 7) If the flag ARCRON_KEEN is defined, take time samples whenever
227 possible, even while resyncing, etc. We rely, in this case, on the
228 clock always giving us a reasonable time or else telling us in the
229 status byte at the end of the timestamp that it failed to sync to
230 MSF---thus we should never end up syncing to completely the wrong
231 time.
233 8) If the flag ARCRON_OWN_FILTER is defined, use own versions of
234 refclock median-filter routines to get round small bug in 3-5.90
235 code which does not return the median offset. XXX Removed this
236 bit due NTP Version 4 upgrade - dlm.
238 9) We would appear to have a year-2000 problem with this clock since
239 it returns only the two least-significant digits of the year. But
240 ntpd ignores the year and uses the local-system year instead, so
241 this is in fact not a problem. Nevertheless, we attempt to do a
242 sensible thing with the dates, wrapping them into a 100-year
243 window.
245 10)Logs stats information that can be used by Derek's Tcl/Tk utility
246 to show the status of the clock.
248 11)The clock documentation insists that the number of bits per
249 character to be sent to the clock, and sent by it, is 11, including
250 one start bit and two stop bits. The data format is either 7+even
251 or 8+none.
254 TO-DO LIST
255 ==========
257 * Eliminate use of scanf(), and maybe sprintf().
259 * Allow user setting of resync interval to trade battery life for
260 accuracy; maybe could be done via fudge factor or unit number.
262 * Possibly note the time since the last resync of the MSF clock to
263 MSF as the age of the last reference timestamp, ie trust the
264 clock's oscillator not very much...
266 * Add very slow auto-adjustment up to a value of +/- time2 to correct
267 for long-term errors in the clock value (time2 defaults to 0 so the
268 correction would be disabled by default).
270 * Consider trying to use the tty_clk/ppsclock support.
272 * Possibly use average or maximum signal quality reported during
273 resync, rather than just the last one, which may be atypical.
278 /* Notes for HKW Elektronik GmBH Radio clock driver */
279 /* Author Lyndon David, Sentinet Ltd, Feb 1997 */
280 /* These notes seem also to apply usefully to the ARCRON clock. */
282 /* The HKW clock module is a radio receiver tuned into the Rugby */
283 /* MSF time signal tranmitted on 60 kHz. The clock module connects */
284 /* to the computer via a serial line and transmits the time encoded */
285 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */
287 /* Clock communications, from the datasheet */
288 /* All characters sent to the clock are echoed back to the controlling */
289 /* device. */
290 /* Transmit time/date information */
291 /* syntax ASCII o<cr> */
292 /* Character o may be replaced if neccesary by a character whose code */
293 /* contains the lowest four bits f(hex) eg */
294 /* syntax binary: xxxx1111 00001101 */
296 /* DHD note:
297 You have to wait for character echo + 10ms before sending next character.
300 /* The clock replies to this command with a sequence of 15 characters */
301 /* which contain the complete time and a final <cr> making 16 characters */
302 /* in total. */
303 /* The RC computer clock will not reply immediately to this command because */
304 /* the start bit edge of the first reply character marks the beginning of */
305 /* the second. So the RC Computer Clock will reply to this command at the */
306 /* start of the next second */
307 /* The characters have the following meaning */
308 /* 1. hours tens */
309 /* 2. hours units */
310 /* 3. minutes tens */
311 /* 4. minutes units */
312 /* 5. seconds tens */
313 /* 6. seconds units */
314 /* 7. day of week 1-monday 7-sunday */
315 /* 8. day of month tens */
316 /* 9. day of month units */
317 /* 10. month tens */
318 /* 11. month units */
319 /* 12. year tens */
320 /* 13. year units */
321 /* 14. BST/UTC status */
322 /* bit 7 parity */
323 /* bit 6 always 0 */
324 /* bit 5 always 1 */
325 /* bit 4 always 1 */
326 /* bit 3 always 0 */
327 /* bit 2 =1 if UTC is in effect, complementary to the BST bit */
328 /* bit 1 =1 if BST is in effect, according to the BST bit */
329 /* bit 0 BST/UTC change impending bit=1 in case of change impending */
330 /* 15. status */
331 /* bit 7 parity */
332 /* bit 6 always 0 */
333 /* bit 5 always 1 */
334 /* bit 4 always 1 */
335 /* bit 3 =1 if low battery is detected */
336 /* bit 2 =1 if the very last reception attempt failed and a valid */
337 /* time information already exists (bit0=1) */
338 /* =0 if the last reception attempt was successful */
339 /* bit 1 =1 if at least one reception since 2:30 am was successful */
340 /* =0 if no reception attempt since 2:30 am was successful */
341 /* bit 0 =1 if the RC Computer Clock contains valid time information */
342 /* This bit is zero after reset and one after the first */
343 /* successful reception attempt */
345 /* DHD note:
346 Also note g<cr> command which confirms that a resync is in progress, and
347 if so what signal quality (0--5) is available.
348 Also note h<cr> command which starts a resync to MSF signal.
352 #include "ntpd.h"
353 #include "ntp_io.h"
354 #include "ntp_refclock.h"
355 #include "ntp_calendar.h"
356 #include "ntp_stdlib.h"
358 #include <stdio.h>
359 #include <ctype.h>
361 #if defined(HAVE_BSD_TTYS)
362 #include <sgtty.h>
363 #endif /* HAVE_BSD_TTYS */
365 #if defined(HAVE_SYSV_TTYS)
366 #include <termio.h>
367 #endif /* HAVE_SYSV_TTYS */
369 #if defined(HAVE_TERMIOS)
370 #include <termios.h>
371 #endif
374 * This driver supports the ARCRON MSF/DCF/WWVB Radio Controlled Clock
378 * Interface definitions
380 #define DEVICE "/dev/arc%d" /* Device name and unit. */
381 #define SPEED B300 /* UART speed (300 baud) */
382 #define PRECISION (-4) /* Precision (~63 ms). */
383 #define HIGHPRECISION (-5) /* If things are going well... */
384 #define REFID "MSFa" /* Reference ID. */
385 #define REFID_MSF "MSF" /* Reference ID. */
386 #define REFID_DCF77 "DCF" /* Reference ID. */
387 #define REFID_WWVB "WWVB" /* Reference ID. */
388 #define DESCRIPTION "ARCRON MSF/DCF/WWVB Receiver"
390 #ifdef PRE_NTP420
391 #define MODE ttlmax
392 #else
393 #define MODE ttl
394 #endif
396 #define LENARC 16 /* Format `o' timecode length. */
398 #define BITSPERCHAR 11 /* Bits per character. */
399 #define BITTIME 0x0DA740E /* Time for 1 bit at 300bps. */
400 #define CHARTIME10 0x8888888 /* Time for 10-bit char at 300bps. */
401 #define CHARTIME11 0x962FC96 /* Time for 11-bit char at 300bps. */
402 #define CHARTIME /* Time for char at 300bps. */ \
403 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \
404 (BITSPERCHAR * BITTIME) ) )
406 /* Allow for UART to accept char half-way through final stop bit. */
407 #define INITIALOFFSET (u_int32)(-BITTIME/2)
410 charoffsets[x] is the time after the start of the second that byte
411 x (with the first byte being byte 1) is received by the UART,
412 assuming that the initial edge of the start bit of the first byte
413 is on-time. The values are represented as the fractional part of
414 an l_fp.
416 We store enough values to have the offset of each byte including
417 the trailing \r, on the assumption that the bytes follow one
418 another without gaps.
420 static const u_int32 charoffsets[LENARC+1] = {
421 #if BITSPERCHAR == 11 /* Usual case. */
422 /* Offsets computed as accurately as possible... */
424 INITIALOFFSET + 0x0962fc96, /* 1 chars, 11 bits */
425 INITIALOFFSET + 0x12c5f92c, /* 2 chars, 22 bits */
426 INITIALOFFSET + 0x1c28f5c3, /* 3 chars, 33 bits */
427 INITIALOFFSET + 0x258bf259, /* 4 chars, 44 bits */
428 INITIALOFFSET + 0x2eeeeeef, /* 5 chars, 55 bits */
429 INITIALOFFSET + 0x3851eb85, /* 6 chars, 66 bits */
430 INITIALOFFSET + 0x41b4e81b, /* 7 chars, 77 bits */
431 INITIALOFFSET + 0x4b17e4b1, /* 8 chars, 88 bits */
432 INITIALOFFSET + 0x547ae148, /* 9 chars, 99 bits */
433 INITIALOFFSET + 0x5dddddde, /* 10 chars, 110 bits */
434 INITIALOFFSET + 0x6740da74, /* 11 chars, 121 bits */
435 INITIALOFFSET + 0x70a3d70a, /* 12 chars, 132 bits */
436 INITIALOFFSET + 0x7a06d3a0, /* 13 chars, 143 bits */
437 INITIALOFFSET + 0x8369d037, /* 14 chars, 154 bits */
438 INITIALOFFSET + 0x8ccccccd, /* 15 chars, 165 bits */
439 INITIALOFFSET + 0x962fc963 /* 16 chars, 176 bits */
440 #else
441 /* Offsets computed with a small rounding error... */
443 INITIALOFFSET + 1 * CHARTIME,
444 INITIALOFFSET + 2 * CHARTIME,
445 INITIALOFFSET + 3 * CHARTIME,
446 INITIALOFFSET + 4 * CHARTIME,
447 INITIALOFFSET + 5 * CHARTIME,
448 INITIALOFFSET + 6 * CHARTIME,
449 INITIALOFFSET + 7 * CHARTIME,
450 INITIALOFFSET + 8 * CHARTIME,
451 INITIALOFFSET + 9 * CHARTIME,
452 INITIALOFFSET + 10 * CHARTIME,
453 INITIALOFFSET + 11 * CHARTIME,
454 INITIALOFFSET + 12 * CHARTIME,
455 INITIALOFFSET + 13 * CHARTIME,
456 INITIALOFFSET + 14 * CHARTIME,
457 INITIALOFFSET + 15 * CHARTIME,
458 INITIALOFFSET + 16 * CHARTIME
459 #endif
462 #define DEFAULT_RESYNC_TIME (57*60) /* Gap between resync attempts (s). */
463 #define RETRY_RESYNC_TIME (27*60) /* Gap to emergency resync attempt. */
464 #ifdef ARCRON_KEEN
465 #define INITIAL_RESYNC_DELAY 500 /* Delay before first resync. */
466 #else
467 #define INITIAL_RESYNC_DELAY 50 /* Delay before first resync. */
468 #endif
470 static const int moff[12] =
471 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
472 /* Flags for a raw open() of the clock serial device. */
473 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */
474 #define OPEN_FLAGS (O_RDWR | O_NOCTTY)
475 #else /* Oh well, it may not matter... */
476 #define OPEN_FLAGS (O_RDWR)
477 #endif
480 /* Length of queue of command bytes to be sent. */
481 #define CMDQUEUELEN 4 /* Enough for two cmds + each \r. */
482 /* Queue tick time; interval in seconds between chars taken off queue. */
483 /* Must be >= 2 to allow o\r response to come back uninterrupted. */
484 #define QUEUETICK 2 /* Allow o\r reply to finish. */
487 * ARC unit control structure
489 struct arcunit {
490 l_fp lastrec; /* Time tag for the receive time (system). */
491 int status; /* Clock status. */
493 int quality; /* Quality of reception 0--5 for unit. */
494 /* We may also use the values -1 or 6 internally. */
495 u_long quality_stamp; /* Next time to reset quality average. */
497 u_long next_resync; /* Next resync time (s) compared to current_time. */
498 int resyncing; /* Resync in progress if true. */
500 /* In the outgoing queue, cmdqueue[0] is next to be sent. */
501 char cmdqueue[CMDQUEUELEN+1]; /* Queue of outgoing commands + \0. */
503 u_long saved_flags; /* Saved fudge flags. */
506 #ifdef ARCRON_LEAPSECOND_KEEN
507 /* The flag `possible_leap' is set non-zero when any MSF unit
508 thinks a leap-second may have happened.
510 Set whenever we receive a valid time sample in the first hour of
511 the first day of the first/seventh months.
513 Outside the special hour this value is unconditionally set
514 to zero by the receive routine.
516 On finding itself in this timeslot, as long as the value is
517 non-negative, the receive routine sets it to a positive value to
518 indicate a resync to MSF should be performed.
520 In the poll routine, if this value is positive and we are not
521 already resyncing (eg from a sync that started just before
522 midnight), start resyncing and set this value negative to
523 indicate that a leap-triggered resync has been started. Having
524 set this negative prevents the receive routine setting it
525 positive and thus prevents multiple resyncs during the witching
526 hour.
528 static int possible_leap = 0; /* No resync required by default. */
529 #endif
531 #if 0
532 static void dummy_event_handler P((struct peer *));
533 static void arc_event_handler P((struct peer *));
534 #endif /* 0 */
536 #define QUALITY_UNKNOWN -1 /* Indicates unknown clock quality. */
537 #define MIN_CLOCK_QUALITY 0 /* Min quality clock will return. */
538 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */
539 #define MAX_CLOCK_QUALITY 5 /* Max quality clock will return. */
542 * Function prototypes
544 static int arc_start P((int, struct peer *));
545 static void arc_shutdown P((int, struct peer *));
546 static void arc_receive P((struct recvbuf *));
547 static void arc_poll P((int, struct peer *));
550 * Transfer vector
552 struct refclock refclock_arc = {
553 arc_start, /* start up driver */
554 arc_shutdown, /* shut down driver */
555 arc_poll, /* transmit poll message */
556 noentry, /* not used (old arc_control) */
557 noentry, /* initialize driver (not used) */
558 noentry, /* not used (old arc_buginfo) */
559 NOFLAGS /* not used */
562 /* Queue us up for the next tick. */
563 #define ENQUEUE(up) \
564 do { \
565 peer->nextaction = current_time + QUEUETICK; \
566 } while(0)
568 /* Placeholder event handler---does nothing safely---soaks up loose tick. */
569 static void
570 dummy_event_handler(
571 struct peer *peer
574 #ifdef DEBUG
575 if(debug) { printf("arc: dummy_event_handler() called.\n"); }
576 #endif
580 Normal event handler.
582 Take first character off queue and send to clock if not a null.
584 Shift characters down and put a null on the end.
586 We assume that there is no parallelism so no race condition, but even
587 if there is nothing bad will happen except that we might send some bad
588 data to the clock once in a while.
590 static void
591 arc_event_handler(
592 struct peer *peer
595 struct refclockproc *pp = peer->procptr;
596 register struct arcunit *up = (struct arcunit *)pp->unitptr;
597 int i;
598 char c;
599 #ifdef DEBUG
600 if(debug > 2) { printf("arc: arc_event_handler() called.\n"); }
601 #endif
603 c = up->cmdqueue[0]; /* Next char to be sent. */
604 /* Shift down characters, shifting trailing \0 in at end. */
605 for(i = 0; i < CMDQUEUELEN; ++i)
606 { up->cmdqueue[i] = up->cmdqueue[i+1]; }
608 /* Don't send '\0' characters. */
609 if(c != '\0') {
610 if(write(pp->io.fd, &c, 1) != 1) {
611 msyslog(LOG_NOTICE, "ARCRON: write to fd %d failed", pp->io.fd);
613 #ifdef DEBUG
614 else if(debug) { printf("arc: sent `%2.2x', fd %d.\n", c, pp->io.fd); }
615 #endif
618 ENQUEUE(up);
622 * arc_start - open the devices and initialize data for processing
624 static int
625 arc_start(
626 int unit,
627 struct peer *peer
630 register struct arcunit *up;
631 struct refclockproc *pp;
632 int fd;
633 char device[20];
634 #ifdef HAVE_TERMIOS
635 struct termios arg;
636 #endif
638 msyslog(LOG_NOTICE, "ARCRON: %s: opening unit %d", arc_version, unit);
639 #ifdef DEBUG
640 if(debug) {
641 printf("arc: %s: attempt to open unit %d.\n", arc_version, unit);
643 #endif
645 /* Prevent a ridiculous device number causing overflow of device[]. */
646 if((unit < 0) || (unit > 255)) { return(0); }
649 * Open serial port. Use CLK line discipline, if available.
651 (void)sprintf(device, DEVICE, unit);
652 if (!(fd = refclock_open(device, SPEED, LDISC_CLK)))
653 return(0);
654 #ifdef DEBUG
655 if(debug) { printf("arc: unit %d using open().\n", unit); }
656 #endif
657 fd = open(device, OPEN_FLAGS);
658 if(fd < 0) {
659 #ifdef DEBUG
660 if(debug) { printf("arc: failed [open()] to open %s.\n", device); }
661 #endif
662 return(0);
665 fcntl(fd, F_SETFL, 0); /* clear the descriptor flags */
666 #ifdef DEBUG
667 if(debug)
668 { printf("arc: opened RS232 port with file descriptor %d.\n", fd); }
669 #endif
671 #ifdef HAVE_TERMIOS
673 tcgetattr(fd, &arg);
675 arg.c_iflag = IGNBRK | ISTRIP;
676 arg.c_oflag = 0;
677 arg.c_cflag = B300 | CS8 | CREAD | CLOCAL | CSTOPB;
678 arg.c_lflag = 0;
679 arg.c_cc[VMIN] = 1;
680 arg.c_cc[VTIME] = 0;
682 tcsetattr(fd, TCSANOW, &arg);
684 #else
686 msyslog(LOG_ERR, "ARCRON: termios not supported in this driver");
687 (void)close(fd);
689 return 0;
691 #endif
693 up = (struct arcunit *) emalloc(sizeof(struct arcunit));
694 if(!up) { (void) close(fd); return(0); }
695 /* Set structure to all zeros... */
696 memset((char *)up, 0, sizeof(struct arcunit));
697 pp = peer->procptr;
698 pp->io.clock_recv = arc_receive;
699 pp->io.srcclock = (caddr_t)peer;
700 pp->io.datalen = 0;
701 pp->io.fd = fd;
702 if(!io_addclock(&pp->io)) { (void) close(fd); free(up); return(0); }
703 pp->unitptr = (caddr_t)up;
706 * Initialize miscellaneous variables
708 peer->precision = PRECISION;
709 peer->stratum = 2; /* Default to stratum 2 not 0. */
710 pp->clockdesc = DESCRIPTION;
711 if (peer->MODE > 3) {
712 msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d", peer->MODE);
713 return 0;
715 #ifdef DEBUG
716 if(debug) { printf("arc: mode = %d.\n", peer->MODE); }
717 #endif
718 switch (peer->MODE) {
719 case 1:
720 memcpy((char *)&pp->refid, REFID_MSF, 4);
721 break;
722 case 2:
723 memcpy((char *)&pp->refid, REFID_DCF77, 4);
724 break;
725 case 3:
726 memcpy((char *)&pp->refid, REFID_WWVB, 4);
727 break;
728 default:
729 memcpy((char *)&pp->refid, REFID, 4);
730 break;
732 /* Spread out resyncs so that they should remain separated. */
733 up->next_resync = current_time + INITIAL_RESYNC_DELAY + (67*unit)%1009;
735 #if 0 /* Not needed because of zeroing of arcunit structure... */
736 up->resyncing = 0; /* Not resyncing yet. */
737 up->saved_flags = 0; /* Default is all flags off. */
738 /* Clear send buffer out... */
740 int i;
741 for(i = CMDQUEUELEN; i >= 0; --i) { up->cmdqueue[i] = '\0'; }
743 #endif
745 #ifdef ARCRON_KEEN
746 up->quality = QUALITY_UNKNOWN; /* Trust the clock immediately. */
747 #else
748 up->quality = MIN_CLOCK_QUALITY;/* Don't trust the clock yet. */
749 #endif
751 peer->action = arc_event_handler;
753 ENQUEUE(up);
755 return(1);
760 * arc_shutdown - shut down the clock
762 static void
763 arc_shutdown(
764 int unit,
765 struct peer *peer
768 register struct arcunit *up;
769 struct refclockproc *pp;
771 peer->action = dummy_event_handler;
773 pp = peer->procptr;
774 up = (struct arcunit *)pp->unitptr;
775 io_closeclock(&pp->io);
776 free(up);
780 Compute space left in output buffer.
782 static int
783 space_left(
784 register struct arcunit *up
787 int spaceleft;
789 /* Compute space left in buffer after any pending output. */
790 for(spaceleft = 0; spaceleft < CMDQUEUELEN; ++spaceleft)
791 { if(up->cmdqueue[CMDQUEUELEN - 1 - spaceleft] != '\0') { break; } }
792 return(spaceleft);
796 Send command by copying into command buffer as far forward as possible,
797 after any pending output.
799 Indicate an error by returning 0 if there is not space for the command.
801 static int
802 send_slow(
803 register struct arcunit *up,
804 int fd,
805 const char *s
808 int sl = strlen(s);
809 int spaceleft = space_left(up);
811 #ifdef DEBUG
812 if(debug > 1) { printf("arc: spaceleft = %d.\n", spaceleft); }
813 #endif
814 if(spaceleft < sl) { /* Should not normally happen... */
815 #ifdef DEBUG
816 msyslog(LOG_NOTICE, "ARCRON: send-buffer overrun (%d/%d)",
817 sl, spaceleft);
818 #endif
819 return(0); /* FAILED! */
822 /* Copy in the command to be sent. */
823 while(*s && spaceleft > 0) { up->cmdqueue[CMDQUEUELEN - spaceleft--] = *s++; }
825 return(1);
829 static int
830 get2(char *p, int *val)
832 if (!isdigit((int)p[0]) || !isdigit((int)p[1])) return 0;
833 *val = (p[0] - '0') * 10 + p[1] - '0';
834 return 1;
837 static int
838 get1(char *p, int *val)
840 if (!isdigit((int)p[0])) return 0;
841 *val = p[0] - '0';
842 return 1;
845 /* Macro indicating action we will take for different quality values. */
846 #define quality_action(q) \
847 (((q) == QUALITY_UNKNOWN) ? "UNKNOWN, will use clock anyway" : \
848 (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \
849 "OK, will use clock"))
852 * arc_receive - receive data from the serial interface
854 static void
855 arc_receive(
856 struct recvbuf *rbufp
859 register struct arcunit *up;
860 struct refclockproc *pp;
861 struct peer *peer;
862 char c;
863 int i, n, wday, month, flags, status;
864 int arc_last_offset;
865 static int quality_average = 0;
866 static int quality_sum = 0;
867 static int quality_polls = 0;
870 * Initialize pointers and read the timecode and timestamp
872 peer = (struct peer *)rbufp->recv_srcclock;
873 pp = peer->procptr;
874 up = (struct arcunit *)pp->unitptr;
878 If the command buffer is empty, and we are resyncing, insert a
879 g\r quality request into it to poll for signal quality again.
881 if((up->resyncing) && (space_left(up) == CMDQUEUELEN)) {
882 #ifdef DEBUG
883 if(debug > 1) { printf("arc: inserting signal-quality poll.\n"); }
884 #endif
885 send_slow(up, pp->io.fd, "g\r");
889 The `arc_last_offset' is the offset in lastcode[] of the last byte
890 received, and which we assume actually received the input
891 timestamp.
893 (When we get round to using tty_clk and it is available, we
894 assume that we will receive the whole timecode with the
895 trailing \r, and that that \r will be timestamped. But this
896 assumption also works if receive the characters one-by-one.)
898 arc_last_offset = pp->lencode+rbufp->recv_length - 1;
901 We catch a timestamp iff:
903 * The command code is `o' for a timestamp.
905 * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have
906 exactly char in the buffer (the command code) so that we
907 only sample the first character of the timecode as our
908 `on-time' character.
910 * The first character in the buffer is not the echoed `\r'
911 from the `o` command (so if we are to timestamp an `\r' it
912 must not be first in the receive buffer with lencode==1.
913 (Even if we had other characters following it, we probably
914 would have a premature timestamp on the '\r'.)
916 * We have received at least one character (I cannot imagine
917 how it could be otherwise, but anyway...).
919 c = rbufp->recv_buffer[0];
920 if((pp->a_lastcode[0] == 'o') &&
921 #ifndef ARCRON_MULTIPLE_SAMPLES
922 (pp->lencode == 1) &&
923 #endif
924 ((pp->lencode != 1) || (c != '\r')) &&
925 (arc_last_offset >= 1)) {
926 /* Note that the timestamp should be corrected if >1 char rcvd. */
927 l_fp timestamp;
928 timestamp = rbufp->recv_time;
929 #ifdef DEBUG
930 if(debug) { /* Show \r as `R', other non-printing char as `?'. */
931 printf("arc: stamp -->%c<-- (%d chars rcvd)\n",
932 ((c == '\r') ? 'R' : (isgraph((int)c) ? c : '?')),
933 rbufp->recv_length);
935 #endif
938 Now correct timestamp by offset of last byte received---we
939 subtract from the receive time the delay implied by the
940 extra characters received.
942 Reject the input if the resulting code is too long, but
943 allow for the trailing \r, normally not used but a good
944 handle for tty_clk or somesuch kernel timestamper.
946 if(arc_last_offset > LENARC) {
947 #ifdef DEBUG
948 if(debug) {
949 printf("arc: input code too long (%d cf %d); rejected.\n",
950 arc_last_offset, LENARC);
952 #endif
953 pp->lencode = 0;
954 refclock_report(peer, CEVNT_BADREPLY);
955 return;
958 L_SUBUF(&timestamp, charoffsets[arc_last_offset]);
959 #ifdef DEBUG
960 if(debug > 1) {
961 printf(
962 "arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n",
963 ((rbufp->recv_length > 1) ? "*** " : ""),
964 rbufp->recv_length,
965 arc_last_offset,
966 mfptoms((unsigned long)0,
967 charoffsets[arc_last_offset],
968 1));
970 #endif
972 #ifdef ARCRON_MULTIPLE_SAMPLES
974 If taking multiple samples, capture the current adjusted
975 sample iff:
977 * No timestamp has yet been captured (it is zero), OR
979 * This adjusted timestamp is earlier than the one already
980 captured, on the grounds that this one suffered less
981 delay in being delivered to us and is more accurate.
984 if(L_ISZERO(&(up->lastrec)) ||
985 L_ISGEQ(&(up->lastrec), &timestamp))
986 #endif
988 #ifdef DEBUG
989 if(debug > 1) {
990 printf("arc: system timestamp captured.\n");
991 #ifdef ARCRON_MULTIPLE_SAMPLES
992 if(!L_ISZERO(&(up->lastrec))) {
993 l_fp diff;
994 diff = up->lastrec;
995 L_SUB(&diff, &timestamp);
996 printf("arc: adjusted timestamp by -%sms.\n",
997 mfptoms(diff.l_i, diff.l_f, 3));
999 #endif
1001 #endif
1002 up->lastrec = timestamp;
1007 /* Just in case we still have lots of rubbish in the buffer... */
1008 /* ...and to avoid the same timestamp being reused by mistake, */
1009 /* eg on receipt of the \r coming in on its own after the */
1010 /* timecode. */
1011 if(pp->lencode >= LENARC) {
1012 #ifdef DEBUG
1013 if(debug && (rbufp->recv_buffer[0] != '\r'))
1014 { printf("arc: rubbish in pp->a_lastcode[].\n"); }
1015 #endif
1016 pp->lencode = 0;
1017 return;
1020 /* Append input to code buffer, avoiding overflow. */
1021 for(i = 0; i < rbufp->recv_length; i++) {
1022 if(pp->lencode >= LENARC) { break; } /* Avoid overflow... */
1023 c = rbufp->recv_buffer[i];
1025 /* Drop trailing '\r's and drop `h' command echo totally. */
1026 if(c != '\r' && c != 'h') { pp->a_lastcode[pp->lencode++] = c; }
1029 If we've just put an `o' in the lastcode[0], clear the
1030 timestamp in anticipation of a timecode arriving soon.
1032 We would expect to get to process this before any of the
1033 timecode arrives.
1035 if((c == 'o') && (pp->lencode == 1)) {
1036 L_CLR(&(up->lastrec));
1037 #ifdef DEBUG
1038 if(debug > 1) { printf("arc: clearing timestamp.\n"); }
1039 #endif
1042 if (pp->lencode == 0) return;
1044 /* Handle a quality message. */
1045 if(pp->a_lastcode[0] == 'g') {
1046 int r, q;
1048 if(pp->lencode < 3) { return; } /* Need more data... */
1049 r = (pp->a_lastcode[1] & 0x7f); /* Strip parity. */
1050 q = (pp->a_lastcode[2] & 0x7f); /* Strip parity. */
1051 if(((q & 0x70) != 0x30) || ((q & 0xf) > MAX_CLOCK_QUALITY) ||
1052 ((r & 0x70) != 0x30)) {
1053 /* Badly formatted response. */
1054 #ifdef DEBUG
1055 if(debug) { printf("arc: bad `g' response %2x %2x.\n", r, q); }
1056 #endif
1057 return;
1059 if(r == '3') { /* Only use quality value whilst sync in progress. */
1060 if (up->quality_stamp < current_time) {
1061 struct calendar cal;
1062 l_fp new_stamp;
1064 get_systime (&new_stamp);
1065 caljulian (new_stamp.l_ui, &cal);
1066 up->quality_stamp =
1067 current_time + 60 - cal.second + 5;
1068 quality_sum = 0;
1069 quality_polls = 0;
1071 quality_sum += (q & 0xf);
1072 quality_polls++;
1073 quality_average = (quality_sum / quality_polls);
1074 #ifdef DEBUG
1075 if(debug) { printf("arc: signal quality %d (%d).\n", quality_average, (q & 0xf)); }
1076 #endif
1077 } else if( /* (r == '2') && */ up->resyncing) {
1078 up->quality = quality_average;
1079 #ifdef DEBUG
1080 if(debug)
1082 printf("arc: sync finished, signal quality %d: %s\n",
1083 up->quality,
1084 quality_action(up->quality));
1086 #endif
1087 msyslog(LOG_NOTICE,
1088 "ARCRON: sync finished, signal quality %d: %s",
1089 up->quality,
1090 quality_action(up->quality));
1091 up->resyncing = 0; /* Resync is over. */
1092 quality_average = 0;
1093 quality_sum = 0;
1094 quality_polls = 0;
1096 #ifdef ARCRON_KEEN
1097 /* Clock quality dubious; resync earlier than usual. */
1098 if((up->quality == QUALITY_UNKNOWN) ||
1099 (up->quality < MIN_CLOCK_QUALITY_OK))
1100 { up->next_resync = current_time + RETRY_RESYNC_TIME; }
1101 #endif
1103 pp->lencode = 0;
1104 return;
1107 /* Stop now if this is not a timecode message. */
1108 if(pp->a_lastcode[0] != 'o') {
1109 pp->lencode = 0;
1110 refclock_report(peer, CEVNT_BADREPLY);
1111 return;
1114 /* If we don't have enough data, wait for more... */
1115 if(pp->lencode < LENARC) { return; }
1118 /* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */
1119 #ifdef DEBUG
1120 if(debug > 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); }
1121 #endif
1123 /* But check that we actually captured a system timestamp on it. */
1124 if(L_ISZERO(&(up->lastrec))) {
1125 #ifdef DEBUG
1126 if(debug) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); }
1127 #endif
1128 pp->lencode = 0;
1129 refclock_report(peer, CEVNT_BADREPLY);
1130 return;
1133 Append a mark of the clock's received signal quality for the
1134 benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown'
1135 quality value to `6' for his s/w) and terminate the string for
1136 sure. This should not go off the buffer end.
1138 pp->a_lastcode[pp->lencode] = ((up->quality == QUALITY_UNKNOWN) ?
1139 '6' : ('0' + up->quality));
1140 pp->a_lastcode[pp->lencode + 1] = '\0'; /* Terminate for printf(). */
1142 #ifdef PRE_NTP420
1143 /* We don't use the micro-/milli- second part... */
1144 pp->usec = 0;
1145 pp->msec = 0;
1146 #else
1147 /* We don't use the nano-second part... */
1148 pp->nsec = 0;
1149 #endif
1150 /* Validate format and numbers. */
1151 if (pp->a_lastcode[0] != 'o'
1152 || !get2(pp->a_lastcode + 1, &pp->hour)
1153 || !get2(pp->a_lastcode + 3, &pp->minute)
1154 || !get2(pp->a_lastcode + 5, &pp->second)
1155 || !get1(pp->a_lastcode + 7, &wday)
1156 || !get2(pp->a_lastcode + 8, &pp->day)
1157 || !get2(pp->a_lastcode + 10, &month)
1158 || !get2(pp->a_lastcode + 12, &pp->year)) {
1159 #ifdef DEBUG
1160 /* Would expect to have caught major problems already... */
1161 if(debug) { printf("arc: badly formatted data.\n"); }
1162 #endif
1163 pp->lencode = 0;
1164 refclock_report(peer, CEVNT_BADREPLY);
1165 return;
1167 flags = pp->a_lastcode[14];
1168 status = pp->a_lastcode[15];
1169 #ifdef DEBUG
1170 if(debug) { printf("arc: status 0x%.2x flags 0x%.2x\n", flags, status); }
1171 #endif
1172 n = 9;
1175 Validate received values at least enough to prevent internal
1176 array-bounds problems, etc.
1178 if((pp->hour < 0) || (pp->hour > 23) ||
1179 (pp->minute < 0) || (pp->minute > 59) ||
1180 (pp->second < 0) || (pp->second > 60) /*Allow for leap seconds.*/ ||
1181 (wday < 1) || (wday > 7) ||
1182 (pp->day < 1) || (pp->day > 31) ||
1183 (month < 1) || (month > 12) ||
1184 (pp->year < 0) || (pp->year > 99)) {
1185 /* Data out of range. */
1186 pp->lencode = 0;
1187 refclock_report(peer, CEVNT_BADREPLY);
1188 return;
1192 if(peer->MODE == 0) { /* compatiblity to original version */
1193 int bst = flags;
1194 /* Check that BST/UTC bits are the complement of one another. */
1195 if(!(bst & 2) == !(bst & 4)) {
1196 pp->lencode = 0;
1197 refclock_report(peer, CEVNT_BADREPLY);
1198 return;
1201 if(status & 0x8) { msyslog(LOG_NOTICE, "ARCRON: battery low"); }
1203 /* Year-2000 alert! */
1204 /* Attempt to wrap 2-digit date into sensible window. */
1205 if(pp->year < YEAR_PIVOT) { pp->year += 100; } /* Y2KFixes */
1206 pp->year += 1900; /* use full four-digit year */ /* Y2KFixes */
1208 Attempt to do the right thing by screaming that the code will
1209 soon break when we get to the end of its useful life. What a
1210 hero I am... PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X!
1212 if(pp->year >= YEAR_PIVOT+2000-2 ) { /* Y2KFixes */
1213 /*This should get attention B^> */
1214 msyslog(LOG_NOTICE,
1215 "ARCRON: fix me! EITHER YOUR DATE IS BADLY WRONG or else I will break soon!");
1217 #ifdef DEBUG
1218 if(debug) {
1219 printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n",
1221 pp->hour, pp->minute, pp->second,
1222 pp->day, month, pp->year, flags, status);
1224 #endif
1227 The status value tested for is not strictly supported by the
1228 clock spec since the value of bit 2 (0x4) is claimed to be
1229 undefined for MSF, yet does seem to indicate if the last resync
1230 was successful or not.
1232 pp->leap = LEAP_NOWARNING;
1233 status &= 0x7;
1234 if(status == 0x3) {
1235 if(status != up->status)
1236 { msyslog(LOG_NOTICE, "ARCRON: signal acquired"); }
1237 } else {
1238 if(status != up->status) {
1239 msyslog(LOG_NOTICE, "ARCRON: signal lost");
1240 pp->leap = LEAP_NOTINSYNC; /* MSF clock is free-running. */
1241 up->status = status;
1242 pp->lencode = 0;
1243 refclock_report(peer, CEVNT_FAULT);
1244 return;
1247 up->status = status;
1249 if (peer->MODE == 0) { /* compatiblity to original version */
1250 int bst = flags;
1252 pp->day += moff[month - 1];
1254 if(isleap_4(pp->year) && month > 2) { pp->day++; }/* Y2KFixes */
1256 /* Convert to UTC if required */
1257 if(bst & 2) {
1258 pp->hour--;
1259 if (pp->hour < 0) {
1260 pp->hour = 23;
1261 pp->day--;
1262 /* If we try to wrap round the year
1263 * (BST on 1st Jan), reject.*/
1264 if(pp->day < 0) {
1265 pp->lencode = 0;
1266 refclock_report(peer, CEVNT_BADTIME);
1267 return;
1273 if(peer->MODE > 0) {
1274 if(pp->sloppyclockflag & CLK_FLAG1) {
1275 struct tm local;
1276 struct tm *gmtp;
1277 time_t unixtime;
1280 * Convert to GMT for sites that distribute localtime.
1281 * This means we have to do Y2K conversion on the
1282 * 2-digit year; otherwise, we get the time wrong.
1285 local.tm_year = pp->year-1900;
1286 local.tm_mon = month-1;
1287 local.tm_mday = pp->day;
1288 local.tm_hour = pp->hour;
1289 local.tm_min = pp->minute;
1290 local.tm_sec = pp->second;
1291 switch (peer->MODE) {
1292 case 1:
1293 local.tm_isdst = (flags & 2);
1294 break;
1295 case 2:
1296 local.tm_isdst = (flags & 2);
1297 break;
1298 case 3:
1299 switch (flags & 3) {
1300 case 0: /* It is unclear exactly when the
1301 Arcron changes from DST->ST and
1302 ST->DST. Testing has shown this
1303 to be irregular. For the time
1304 being, let the OS decide. */
1305 local.tm_isdst = 0;
1306 #ifdef DEBUG
1307 if (debug)
1308 printf ("arc: DST = 00 (0)\n");
1309 #endif
1310 break;
1311 case 1: /* dst->st time */
1312 local.tm_isdst = -1;
1313 #ifdef DEBUG
1314 if (debug)
1315 printf ("arc: DST = 01 (1)\n");
1316 #endif
1317 break;
1318 case 2: /* st->dst time */
1319 local.tm_isdst = -1;
1320 #ifdef DEBUG
1321 if (debug)
1322 printf ("arc: DST = 10 (2)\n");
1323 #endif
1324 break;
1325 case 3: /* dst time */
1326 local.tm_isdst = 1;
1327 #ifdef DEBUG
1328 if (debug)
1329 printf ("arc: DST = 11 (3)\n");
1330 #endif
1331 break;
1333 break;
1334 default:
1335 msyslog(LOG_NOTICE, "ARCRON: Invalid mode %d",
1336 peer->MODE);
1337 return;
1338 break;
1340 unixtime = mktime (&local);
1341 if ((gmtp = gmtime (&unixtime)) == NULL)
1343 pp->lencode = 0;
1344 refclock_report (peer, CEVNT_FAULT);
1345 return;
1347 pp->year = gmtp->tm_year+1900;
1348 month = gmtp->tm_mon+1;
1349 pp->day = ymd2yd(pp->year,month,gmtp->tm_mday);
1350 /* pp->day = gmtp->tm_yday; */
1351 pp->hour = gmtp->tm_hour;
1352 pp->minute = gmtp->tm_min;
1353 pp->second = gmtp->tm_sec;
1354 #ifdef DEBUG
1355 if (debug)
1357 printf ("arc: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n",
1358 pp->year,month,gmtp->tm_mday,pp->hour,pp->minute,
1359 pp->second);
1361 #endif
1362 } else
1365 * For more rational sites distributing UTC
1367 pp->day = ymd2yd(pp->year,month,pp->day);
1371 if (peer->MODE == 0) { /* compatiblity to original version */
1372 /* If clock signal quality is
1373 * unknown, revert to default PRECISION...*/
1374 if(up->quality == QUALITY_UNKNOWN) {
1375 peer->precision = PRECISION;
1376 } else { /* ...else improve precision if flag3 is set... */
1377 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1378 HIGHPRECISION : PRECISION);
1380 } else {
1381 if ((status == 0x3) && (pp->sloppyclockflag & CLK_FLAG2)) {
1382 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1383 HIGHPRECISION : PRECISION);
1384 } else if (up->quality == QUALITY_UNKNOWN) {
1385 peer->precision = PRECISION;
1386 } else {
1387 peer->precision = ((pp->sloppyclockflag & CLK_FLAG3) ?
1388 HIGHPRECISION : PRECISION);
1392 /* Notice and log any change (eg from initial defaults) for flags. */
1393 if(up->saved_flags != pp->sloppyclockflag) {
1394 #ifdef DEBUG
1395 msyslog(LOG_NOTICE, "ARCRON: flags enabled: %s%s%s%s",
1396 ((pp->sloppyclockflag & CLK_FLAG1) ? "1" : "."),
1397 ((pp->sloppyclockflag & CLK_FLAG2) ? "2" : "."),
1398 ((pp->sloppyclockflag & CLK_FLAG3) ? "3" : "."),
1399 ((pp->sloppyclockflag & CLK_FLAG4) ? "4" : "."));
1400 /* Note effects of flags changing... */
1401 if(debug) {
1402 printf("arc: PRECISION = %d.\n", peer->precision);
1404 #endif
1405 up->saved_flags = pp->sloppyclockflag;
1408 /* Note time of last believable timestamp. */
1409 pp->lastrec = up->lastrec;
1411 #ifdef ARCRON_LEAPSECOND_KEEN
1412 /* Find out if a leap-second might just have happened...
1413 (ie is this the first hour of the first day of Jan or Jul?)
1415 if((pp->hour == 0) &&
1416 (pp->day == 1) &&
1417 ((month == 1) || (month == 7))) {
1418 if(possible_leap >= 0) {
1419 /* A leap may have happened, and no resync has started yet...*/
1420 possible_leap = 1;
1422 } else {
1423 /* Definitely not leap-second territory... */
1424 possible_leap = 0;
1426 #endif
1428 if (!refclock_process(pp)) {
1429 pp->lencode = 0;
1430 refclock_report(peer, CEVNT_BADTIME);
1431 return;
1433 record_clock_stats(&peer->srcadr, pp->a_lastcode);
1434 refclock_receive(peer);
1438 /* request_time() sends a time request to the clock with given peer. */
1439 /* This automatically reports a fault if necessary. */
1440 /* No data should be sent after this until arc_poll() returns. */
1441 static void request_time P((int, struct peer *));
1442 static void
1443 request_time(
1444 int unit,
1445 struct peer *peer
1448 struct refclockproc *pp = peer->procptr;
1449 register struct arcunit *up = (struct arcunit *)pp->unitptr;
1450 #ifdef DEBUG
1451 if(debug) { printf("arc: unit %d: requesting time.\n", unit); }
1452 #endif
1453 if (!send_slow(up, pp->io.fd, "o\r")) {
1454 #ifdef DEBUG
1455 if (debug) {
1456 printf("arc: unit %d: problem sending", unit);
1458 #endif
1459 pp->lencode = 0;
1460 refclock_report(peer, CEVNT_FAULT);
1461 return;
1463 pp->polls++;
1467 * arc_poll - called by the transmit procedure
1469 static void
1470 arc_poll(
1471 int unit,
1472 struct peer *peer
1475 register struct arcunit *up;
1476 struct refclockproc *pp;
1477 int resync_needed; /* Should we start a resync? */
1479 pp = peer->procptr;
1480 up = (struct arcunit *)pp->unitptr;
1481 #if 0
1482 pp->lencode = 0;
1483 memset(pp->a_lastcode, 0, sizeof(pp->a_lastcode));
1484 #endif
1486 #if 0
1487 /* Flush input. */
1488 tcflush(pp->io.fd, TCIFLUSH);
1489 #endif
1491 /* Resync if our next scheduled resync time is here or has passed. */
1492 resync_needed = ( !(pp->sloppyclockflag & CLK_FLAG2) &&
1493 (up->next_resync <= current_time) );
1495 #ifdef ARCRON_LEAPSECOND_KEEN
1497 Try to catch a potential leap-second insertion or deletion quickly.
1499 In addition to the normal NTP fun of clocks that don't report
1500 leap-seconds spooking their hosts, this clock does not even
1501 sample the radio sugnal the whole time, so may miss a
1502 leap-second insertion or deletion for up to a whole sample
1503 time.
1505 To try to minimise this effect, if in the first few minutes of
1506 the day immediately following a leap-second-insertion point
1507 (ie in the first hour of the first day of the first and sixth
1508 months), and if the last resync was in the previous day, and a
1509 resync is not already in progress, resync the clock
1510 immediately.
1513 if((possible_leap > 0) && /* Must be 00:XX 01/0{1,7}/XXXX. */
1514 (!up->resyncing)) { /* No resync in progress yet. */
1515 resync_needed = 1;
1516 possible_leap = -1; /* Prevent multiple resyncs. */
1517 msyslog(LOG_NOTICE,"ARCRON: unit %d: checking for leap second",unit);
1519 #endif
1521 /* Do a resync if required... */
1522 if(resync_needed) {
1523 /* First, reset quality value to `unknown' so we can detect */
1524 /* when a quality message has been responded to by this */
1525 /* being set to some other value. */
1526 up->quality = QUALITY_UNKNOWN;
1528 /* Note that we are resyncing... */
1529 up->resyncing = 1;
1531 /* Now actually send the resync command and an immediate poll. */
1532 #ifdef DEBUG
1533 if(debug) { printf("arc: sending resync command (h\\r).\n"); }
1534 #endif
1535 msyslog(LOG_NOTICE, "ARCRON: unit %d: sending resync command", unit);
1536 send_slow(up, pp->io.fd, "h\r");
1538 /* Schedule our next resync... */
1539 up->next_resync = current_time + DEFAULT_RESYNC_TIME;
1541 /* Drop through to request time if appropriate. */
1544 /* If clock quality is too poor to trust, indicate a fault. */
1545 /* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/
1546 /* we'll cross our fingers and just hope that the thing */
1547 /* synced so quickly we did not catch it---we'll */
1548 /* double-check the clock is OK elsewhere. */
1550 #ifdef ARCRON_KEEN
1551 (up->quality != QUALITY_UNKNOWN) &&
1552 #else
1553 (up->quality == QUALITY_UNKNOWN) ||
1554 #endif
1555 (up->quality < MIN_CLOCK_QUALITY_OK)) {
1556 #ifdef DEBUG
1557 if(debug) {
1558 printf("arc: clock quality %d too poor.\n", up->quality);
1560 #endif
1561 pp->lencode = 0;
1562 refclock_report(peer, CEVNT_FAULT);
1563 return;
1565 /* This is the normal case: request a timestamp. */
1566 request_time(unit, peer);
1569 #else
1570 int refclock_arc_bs;
1571 #endif