1 hostapd - user space IEEE 802.11 AP and IEEE 802.1X/WPA/WPA2/EAP
2 Authenticator and RADIUS authentication server
3 ================================================================
5 Copyright (c) 2002-2008, Jouni Malinen <j@w1.fi> and contributors
8 This program is dual-licensed under both the GPL version 2 and BSD
9 license. Either license may be used at your option.
18 This program is free software; you can redistribute it and/or modify
19 it under the terms of the GNU General Public License version 2 as
20 published by the Free Software Foundation.
22 This program is distributed in the hope that it will be useful,
23 but WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 GNU General Public License for more details.
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
31 (this copy of the license is in COPYING file)
34 Alternatively, this software may be distributed, used, and modified
35 under the terms of BSD license:
37 Redistribution and use in source and binary forms, with or without
38 modification, are permitted provided that the following conditions are
41 1. Redistributions of source code must retain the above copyright
42 notice, this list of conditions and the following disclaimer.
44 2. Redistributions in binary form must reproduce the above copyright
45 notice, this list of conditions and the following disclaimer in the
46 documentation and/or other materials provided with the distribution.
48 3. Neither the name(s) of the above-listed copyright holder(s) nor the
49 names of its contributors may be used to endorse or promote products
50 derived from this software without specific prior written permission.
52 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 Originally, hostapd was an optional user space component for Host AP
70 driver. It adds more features to the basic IEEE 802.11 management
71 included in the kernel driver: using external RADIUS authentication
72 server for MAC address based access control, IEEE 802.1X Authenticator
73 and dynamic WEP keying, RADIUS accounting, WPA/WPA2 (IEEE 802.11i/RSN)
74 Authenticator and dynamic TKIP/CCMP keying.
76 The current version includes support for other drivers, an integrated
77 EAP server (i.e., allow full authentication without requiring
78 an external RADIUS authentication server), and RADIUS authentication
79 server for EAP authentication.
85 Current hardware/software requirements:
87 Host AP driver for Prism2/2.5/3.
88 (http://hostap.epitest.fi/)
89 Please note that station firmware version needs to be 1.7.0 or newer
92 madwifi driver for cards based on Atheros chip set (ar521x)
93 (http://sourceforge.net/projects/madwifi/)
94 Please note that you will need to add the correct path for
95 madwifi driver root directory in .config (see defconfig file for
96 an example: CFLAGS += -I<path>)
98 Prism54 driver for Intersil/Conexant Prism GT/Duette/Indigo
99 (http://www.prism54.org/)
101 Any wired Ethernet driver for wired IEEE 802.1X authentication
104 FreeBSD -current (with some kernel mods that have not yet been
105 committed when hostapd v0.3.0 was released)
106 BSD net80211 layer (e.g., Atheros driver)
112 In order to be able to build hostapd, you will need to create a build
113 time configuration file, .config that selects which optional
114 components are included. See defconfig file for example configuration
115 and list of available options.
122 IEEE Std 802.1X-2001 is a standard for port-based network access
123 control. In case of IEEE 802.11 networks, a "virtual port" is used
124 between each associated station and the AP. IEEE 802.11 specifies
125 minimal authentication mechanism for stations, whereas IEEE 802.1X
126 introduces a extensible mechanism for authenticating and authorizing
129 IEEE 802.1X uses elements called Supplicant, Authenticator, Port
130 Access Entity, and Authentication Server. Supplicant is a component in
131 a station and it performs the authentication with the Authentication
132 Server. An access point includes an Authenticator that relays the packets
133 between a Supplicant and an Authentication Server. In addition, it has a
134 Port Access Entity (PAE) with Authenticator functionality for
135 controlling the virtual port authorization, i.e., whether to accept
136 packets from or to the station.
138 IEEE 802.1X uses Extensible Authentication Protocol (EAP). The frames
139 between a Supplicant and an Authenticator are sent using EAP over LAN
140 (EAPOL) and the Authenticator relays these frames to the Authentication
141 Server (and similarly, relays the messages from the Authentication
142 Server to the Supplicant). The Authentication Server can be colocated with the
143 Authenticator, in which case there is no need for additional protocol
144 for EAP frame transmission. However, a more common configuration is to
145 use an external Authentication Server and encapsulate EAP frame in the
146 frames used by that server. RADIUS is suitable for this, but IEEE
147 802.1X would also allow other mechanisms.
149 Host AP driver includes PAE functionality in the kernel driver. It
150 is a relatively simple mechanism for denying normal frames going to
151 or coming from an unauthorized port. PAE allows IEEE 802.1X related
152 frames to be passed between the Supplicant and the Authenticator even
153 on an unauthorized port.
155 User space daemon, hostapd, includes Authenticator functionality. It
156 receives 802.1X (EAPOL) frames from the Supplicant using the wlan#ap
157 device that is also used with IEEE 802.11 management frames. The
158 frames to the Supplicant are sent using the same device.
160 The normal configuration of the Authenticator would use an external
161 Authentication Server. hostapd supports RADIUS encapsulation of EAP
162 packets, so the Authentication Server should be a RADIUS server, like
163 FreeRADIUS (http://www.freeradius.org/). The Authenticator in hostapd
164 relays the frames between the Supplicant and the Authentication
165 Server. It also controls the PAE functionality in the kernel driver by
166 controlling virtual port authorization, i.e., station-AP
167 connection, based on the IEEE 802.1X state.
169 When a station would like to use the services of an access point, it
170 will first perform IEEE 802.11 authentication. This is normally done
171 with open systems authentication, so there is no security. After
172 this, IEEE 802.11 association is performed. If IEEE 802.1X is
173 configured to be used, the virtual port for the station is set in
174 Unauthorized state and only IEEE 802.1X frames are accepted at this
175 point. The Authenticator will then ask the Supplicant to authenticate
176 with the Authentication Server. After this is completed successfully,
177 the virtual port is set to Authorized state and frames from and to the
178 station are accepted.
180 Host AP configuration for IEEE 802.1X
181 -------------------------------------
183 The user space daemon has its own configuration file that can be used to
184 define AP options. Distribution package contains an example
185 configuration file (hostapd/hostapd.conf) that can be used as a basis
186 for configuration. It includes examples of all supported configuration
187 options and short description of each option. hostapd should be started
188 with full path to the configuration file as the command line argument,
189 e.g., './hostapd /etc/hostapd.conf'. If you have more that one wireless
190 LAN card, you can use one hostapd process for multiple interfaces by
191 giving a list of configuration files (one per interface) in the command
194 hostapd includes a minimal co-located IEEE 802.1X server which can be
195 used to test IEEE 802.1X authentication. However, it should not be
196 used in normal use since it does not provide any security. This can be
197 configured by setting ieee8021x and minimal_eap options in the
200 An external Authentication Server (RADIUS) is configured with
201 auth_server_{addr,port,shared_secret} options. In addition,
202 ieee8021x and own_ip_addr must be set for this mode. With such
203 configuration, the co-located Authentication Server is not used and EAP
204 frames will be relayed using EAPOL between the Supplicant and the
205 Authenticator and RADIUS encapsulation between the Authenticator and
206 the Authentication Server. Other than this, the functionality is similar
207 to the case with the co-located Authentication Server.
209 Authentication Server and Supplicant
210 ------------------------------------
212 Any RADIUS server supporting EAP should be usable as an IEEE 802.1X
213 Authentication Server with hostapd Authenticator. FreeRADIUS
214 (http://www.freeradius.org/) has been successfully tested with hostapd
215 Authenticator and both Xsupplicant (http://www.open1x.org) and Windows
216 XP Supplicants. EAP/TLS was used with Xsupplicant and
217 EAP/MD5-Challenge with Windows XP.
219 http://www.missl.cs.umd.edu/wireless/eaptls/ has useful information
220 about using EAP/TLS with FreeRADIUS and Xsupplicant (just replace
221 Cisco access point with Host AP driver, hostapd daemon, and a Prism2
222 card ;-). http://www.freeradius.org/doc/EAP-MD5.html has information
223 about using EAP/MD5 with FreeRADIUS, including instructions for WinXP
224 configuration. http://www.denobula.com/EAPTLS.pdf has a HOWTO on
225 EAP/TLS use with WinXP Supplicant.
227 Automatic WEP key configuration
228 -------------------------------
230 EAP/TLS generates a session key that can be used to send WEP keys from
231 an AP to authenticated stations. The Authenticator in hostapd can be
232 configured to automatically select a random default/broadcast key
233 (shared by all authenticated stations) with wep_key_len_broadcast
234 option (5 for 40-bit WEP or 13 for 104-bit WEP). In addition,
235 wep_key_len_unicast option can be used to configure individual unicast
236 keys for stations. This requires support for individual keys in the
239 WEP keys can be automatically updated by configuring rekeying. This
240 will improve security of the network since same WEP key will only be
241 used for a limited period of time. wep_rekey_period option sets the
242 interval for rekeying in seconds.
251 Supported WPA/IEEE 802.11i features:
252 - WPA-PSK ("WPA-Personal")
253 - WPA with EAP (e.g., with RADIUS authentication server) ("WPA-Enterprise")
254 - key management for CCMP, TKIP, WEP104, WEP40
255 - RSN/WPA2 (IEEE 802.11i), including PMKSA caching and pre-authentication
260 The original security mechanism of IEEE 802.11 standard was not
261 designed to be strong and has proved to be insufficient for most
262 networks that require some kind of security. Task group I (Security)
263 of IEEE 802.11 working group (http://www.ieee802.org/11/) has worked
264 to address the flaws of the base standard and has in practice
265 completed its work in May 2004. The IEEE 802.11i amendment to the IEEE
266 802.11 standard was approved in June 2004 and this amendment is likely
267 to be published in July 2004.
269 Wi-Fi Alliance (http://www.wi-fi.org/) used a draft version of the
270 IEEE 802.11i work (draft 3.0) to define a subset of the security
271 enhancements that can be implemented with existing wlan hardware. This
272 is called Wi-Fi Protected Access<TM> (WPA). This has now become a
273 mandatory component of interoperability testing and certification done
274 by Wi-Fi Alliance. Wi-Fi provides information about WPA at its web
275 site (http://www.wi-fi.org/OpenSection/protected_access.asp).
277 IEEE 802.11 standard defined wired equivalent privacy (WEP) algorithm
278 for protecting wireless networks. WEP uses RC4 with 40-bit keys,
279 24-bit initialization vector (IV), and CRC32 to protect against packet
280 forgery. All these choices have proven to be insufficient: key space is
281 too small against current attacks, RC4 key scheduling is insufficient
282 (beginning of the pseudorandom stream should be skipped), IV space is
283 too small and IV reuse makes attacks easier, there is no replay
284 protection, and non-keyed authentication does not protect against bit
285 flipping packet data.
287 WPA is an intermediate solution for the security issues. It uses
288 Temporal Key Integrity Protocol (TKIP) to replace WEP. TKIP is a
289 compromise on strong security and possibility to use existing
290 hardware. It still uses RC4 for the encryption like WEP, but with
291 per-packet RC4 keys. In addition, it implements replay protection,
292 keyed packet authentication mechanism (Michael MIC).
294 Keys can be managed using two different mechanisms. WPA can either use
295 an external authentication server (e.g., RADIUS) and EAP just like
296 IEEE 802.1X is using or pre-shared keys without need for additional
297 servers. Wi-Fi calls these "WPA-Enterprise" and "WPA-Personal",
298 respectively. Both mechanisms will generate a master session key for
299 the Authenticator (AP) and Supplicant (client station).
301 WPA implements a new key handshake (4-Way Handshake and Group Key
302 Handshake) for generating and exchanging data encryption keys between
303 the Authenticator and Supplicant. This handshake is also used to
304 verify that both Authenticator and Supplicant know the master session
305 key. These handshakes are identical regardless of the selected key
306 management mechanism (only the method for generating master session
313 The design for parts of IEEE 802.11i that were not included in WPA has
314 finished (May 2004) and this amendment to IEEE 802.11 was approved in
315 June 2004. Wi-Fi Alliance is using the final IEEE 802.11i as a new
316 version of WPA called WPA2. This includes, e.g., support for more
317 robust encryption algorithm (CCMP: AES in Counter mode with CBC-MAC)
318 to replace TKIP and optimizations for handoff (reduced number of
319 messages in initial key handshake, pre-authentication, and PMKSA caching).
321 Some wireless LAN vendors are already providing support for CCMP in
322 their WPA products. There is no "official" interoperability
323 certification for CCMP and/or mixed modes using both TKIP and CCMP, so
324 some interoperability issues can be expected even though many
325 combinations seem to be working with equipment from different vendors.
326 Testing for WPA2 is likely to start during the second half of 2004.
328 hostapd configuration for WPA/WPA2
329 ----------------------------------
333 # Enable WPA. Setting this variable configures the AP to require WPA (either
334 # WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
335 # wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
336 # For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
337 # RADIUS authentication server must be configured, and WPA-EAP must be included
339 # This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
340 # and/or WPA2 (full IEEE 802.11i/RSN):
342 # bit1 = IEEE 802.11i/RSN (WPA2)
345 # WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
346 # secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
347 # (8..63 characters) that will be converted to PSK. This conversion uses SSID
348 # so the PSK changes when ASCII passphrase is used and the SSID is changed.
349 #wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
350 #wpa_passphrase=secret passphrase
352 # Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
353 # entries are separated with a space.
354 #wpa_key_mgmt=WPA-PSK WPA-EAP
356 # Set of accepted cipher suites (encryption algorithms) for pairwise keys
357 # (unicast packets). This is a space separated list of algorithms:
358 # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i]
359 # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i]
360 # Group cipher suite (encryption algorithm for broadcast and multicast frames)
361 # is automatically selected based on this configuration. If only CCMP is
362 # allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
363 # TKIP will be used as the group cipher.
364 #wpa_pairwise=TKIP CCMP
366 # Time interval for rekeying GTK (broadcast/multicast encryption keys) in
370 # Time interval for rekeying GMK (master key used internally to generate GTKs
374 # Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up
375 # roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN
376 # authentication and key handshake before actually associating with a new AP.
379 # Space separated list of interfaces from which pre-authentication frames are
380 # accepted (e.g., 'eth0' or 'eth0 wlan0wds0'. This list should include all
381 # interface that are used for connections to other APs. This could include
382 # wired interfaces and WDS links. The normal wireless data interface towards
383 # associated stations (e.g., wlan0) should not be added, since
384 # pre-authentication is only used with APs other than the currently associated
386 #rsn_preauth_interfaces=eth0