Sync usage with man page.
[netbsd-mini2440.git] / dist / wpa / src / eap_peer / eap.c
blob71bb07fe6dfc61bfa77b6f89fed3189e333b634d
1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
14 * This file implements the Peer State Machine as defined in RFC 4137. The used
15 * states and state transitions match mostly with the RFC. However, there are
16 * couple of additional transitions for working around small issues noticed
17 * during testing. These exceptions are explained in comments within the
18 * functions in this file. The method functions, m.func(), are similar to the
19 * ones used in RFC 4137, but some small changes have used here to optimize
20 * operations and to add functionality needed for fast re-authentication
21 * (session resumption).
24 #include "includes.h"
26 #include "common.h"
27 #include "eap_i.h"
28 #include "eap_config.h"
29 #include "tls.h"
30 #include "crypto.h"
31 #include "pcsc_funcs.h"
32 #include "wpa_ctrl.h"
33 #include "state_machine.h"
35 #define STATE_MACHINE_DATA struct eap_sm
36 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
38 #define EAP_MAX_AUTH_ROUNDS 50
41 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
42 EapType method);
43 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
44 static void eap_sm_processIdentity(struct eap_sm *sm,
45 const struct wpabuf *req);
46 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
47 static struct wpabuf * eap_sm_buildNotify(int id);
48 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
49 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
50 static const char * eap_sm_method_state_txt(EapMethodState state);
51 static const char * eap_sm_decision_txt(EapDecision decision);
52 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
58 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
63 Boolean value)
65 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
71 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
76 unsigned int value)
78 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
84 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
88 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
90 if (sm->m == NULL || sm->eap_method_priv == NULL)
91 return;
93 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
94 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
95 sm->m->deinit(sm, sm->eap_method_priv);
96 sm->eap_method_priv = NULL;
97 sm->m = NULL;
102 * eap_allowed_method - Check whether EAP method is allowed
103 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
104 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
105 * @method: EAP type
106 * Returns: 1 = allowed EAP method, 0 = not allowed
108 static int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
110 struct eap_peer_config *config = eap_get_config(sm);
111 int i;
112 struct eap_method_type *m;
114 if (config == NULL || config->eap_methods == NULL)
115 return 1;
117 m = config->eap_methods;
118 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
119 m[i].method != EAP_TYPE_NONE; i++) {
120 if (m[i].vendor == vendor && m[i].method == method)
121 return 1;
123 return 0;
128 * This state initializes state machine variables when the machine is
129 * activated (portEnabled = TRUE). This is also used when re-starting
130 * authentication (eapRestart == TRUE).
132 SM_STATE(EAP, INITIALIZE)
134 SM_ENTRY(EAP, INITIALIZE);
135 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
136 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
137 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
138 "fast reauthentication");
139 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
140 } else {
141 eap_deinit_prev_method(sm, "INITIALIZE");
143 sm->selectedMethod = EAP_TYPE_NONE;
144 sm->methodState = METHOD_NONE;
145 sm->allowNotifications = TRUE;
146 sm->decision = DECISION_FAIL;
147 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
148 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
149 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
150 os_free(sm->eapKeyData);
151 sm->eapKeyData = NULL;
152 sm->eapKeyAvailable = FALSE;
153 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
154 sm->lastId = -1; /* new session - make sure this does not match with
155 * the first EAP-Packet */
157 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
158 * seemed to be able to trigger cases where both were set and if EAPOL
159 * state machine uses eapNoResp first, it may end up not sending a real
160 * reply correctly. This occurred when the workaround in FAIL state set
161 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
162 * something else(?)
164 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
165 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
166 sm->num_rounds = 0;
171 * This state is reached whenever service from the lower layer is interrupted
172 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
173 * occurs when the port becomes enabled.
175 SM_STATE(EAP, DISABLED)
177 SM_ENTRY(EAP, DISABLED);
178 sm->num_rounds = 0;
183 * The state machine spends most of its time here, waiting for something to
184 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
185 * SEND_RESPONSE states.
187 SM_STATE(EAP, IDLE)
189 SM_ENTRY(EAP, IDLE);
194 * This state is entered when an EAP packet is received (eapReq == TRUE) to
195 * parse the packet header.
197 SM_STATE(EAP, RECEIVED)
199 const struct wpabuf *eapReqData;
201 SM_ENTRY(EAP, RECEIVED);
202 eapReqData = eapol_get_eapReqData(sm);
203 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
204 eap_sm_parseEapReq(sm, eapReqData);
205 sm->num_rounds++;
210 * This state is entered when a request for a new type comes in. Either the
211 * correct method is started, or a Nak response is built.
213 SM_STATE(EAP, GET_METHOD)
215 int reinit;
216 EapType method;
218 SM_ENTRY(EAP, GET_METHOD);
220 if (sm->reqMethod == EAP_TYPE_EXPANDED)
221 method = sm->reqVendorMethod;
222 else
223 method = sm->reqMethod;
225 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
226 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
227 sm->reqVendor, method);
228 goto nak;
232 * RFC 4137 does not define specific operation for fast
233 * re-authentication (session resumption). The design here is to allow
234 * the previously used method data to be maintained for
235 * re-authentication if the method support session resumption.
236 * Otherwise, the previously used method data is freed and a new method
237 * is allocated here.
239 if (sm->fast_reauth &&
240 sm->m && sm->m->vendor == sm->reqVendor &&
241 sm->m->method == method &&
242 sm->m->has_reauth_data &&
243 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
244 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
245 " for fast re-authentication");
246 reinit = 1;
247 } else {
248 eap_deinit_prev_method(sm, "GET_METHOD");
249 reinit = 0;
252 sm->selectedMethod = sm->reqMethod;
253 if (sm->m == NULL)
254 sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
255 if (!sm->m) {
256 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
257 "vendor %d method %d",
258 sm->reqVendor, method);
259 goto nak;
262 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
263 "vendor %u method %u (%s)",
264 sm->reqVendor, method, sm->m->name);
265 if (reinit)
266 sm->eap_method_priv = sm->m->init_for_reauth(
267 sm, sm->eap_method_priv);
268 else
269 sm->eap_method_priv = sm->m->init(sm);
271 if (sm->eap_method_priv == NULL) {
272 struct eap_peer_config *config = eap_get_config(sm);
273 wpa_msg(sm->msg_ctx, MSG_INFO,
274 "EAP: Failed to initialize EAP method: vendor %u "
275 "method %u (%s)",
276 sm->reqVendor, method, sm->m->name);
277 sm->m = NULL;
278 sm->methodState = METHOD_NONE;
279 sm->selectedMethod = EAP_TYPE_NONE;
280 if (sm->reqMethod == EAP_TYPE_TLS && config &&
281 (config->pending_req_pin ||
282 config->pending_req_passphrase)) {
284 * Return without generating Nak in order to allow
285 * entering of PIN code or passphrase to retry the
286 * current EAP packet.
288 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
289 "request - skip Nak");
290 return;
293 goto nak;
296 sm->methodState = METHOD_INIT;
297 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
298 "EAP vendor %u method %u (%s) selected",
299 sm->reqVendor, method, sm->m->name);
300 return;
302 nak:
303 wpabuf_free(sm->eapRespData);
304 sm->eapRespData = NULL;
305 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
310 * The method processing happens here. The request from the authenticator is
311 * processed, and an appropriate response packet is built.
313 SM_STATE(EAP, METHOD)
315 struct wpabuf *eapReqData;
316 struct eap_method_ret ret;
318 SM_ENTRY(EAP, METHOD);
319 if (sm->m == NULL) {
320 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
321 return;
324 eapReqData = eapol_get_eapReqData(sm);
327 * Get ignore, methodState, decision, allowNotifications, and
328 * eapRespData. RFC 4137 uses three separate method procedure (check,
329 * process, and buildResp) in this state. These have been combined into
330 * a single function call to m->process() in order to optimize EAP
331 * method implementation interface a bit. These procedures are only
332 * used from within this METHOD state, so there is no need to keep
333 * these as separate C functions.
335 * The RFC 4137 procedures return values as follows:
336 * ignore = m.check(eapReqData)
337 * (methodState, decision, allowNotifications) = m.process(eapReqData)
338 * eapRespData = m.buildResp(reqId)
340 os_memset(&ret, 0, sizeof(ret));
341 ret.ignore = sm->ignore;
342 ret.methodState = sm->methodState;
343 ret.decision = sm->decision;
344 ret.allowNotifications = sm->allowNotifications;
345 wpabuf_free(sm->eapRespData);
346 sm->eapRespData = NULL;
347 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
348 eapReqData);
349 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
350 "methodState=%s decision=%s",
351 ret.ignore ? "TRUE" : "FALSE",
352 eap_sm_method_state_txt(ret.methodState),
353 eap_sm_decision_txt(ret.decision));
355 sm->ignore = ret.ignore;
356 if (sm->ignore)
357 return;
358 sm->methodState = ret.methodState;
359 sm->decision = ret.decision;
360 sm->allowNotifications = ret.allowNotifications;
362 if (sm->m->isKeyAvailable && sm->m->getKey &&
363 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
364 os_free(sm->eapKeyData);
365 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
366 &sm->eapKeyDataLen);
372 * This state signals the lower layer that a response packet is ready to be
373 * sent.
375 SM_STATE(EAP, SEND_RESPONSE)
377 SM_ENTRY(EAP, SEND_RESPONSE);
378 wpabuf_free(sm->lastRespData);
379 if (sm->eapRespData) {
380 if (sm->workaround)
381 os_memcpy(sm->last_md5, sm->req_md5, 16);
382 sm->lastId = sm->reqId;
383 sm->lastRespData = wpabuf_dup(sm->eapRespData);
384 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
385 } else
386 sm->lastRespData = NULL;
387 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
388 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
393 * This state signals the lower layer that the request was discarded, and no
394 * response packet will be sent at this time.
396 SM_STATE(EAP, DISCARD)
398 SM_ENTRY(EAP, DISCARD);
399 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
400 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
405 * Handles requests for Identity method and builds a response.
407 SM_STATE(EAP, IDENTITY)
409 const struct wpabuf *eapReqData;
411 SM_ENTRY(EAP, IDENTITY);
412 eapReqData = eapol_get_eapReqData(sm);
413 eap_sm_processIdentity(sm, eapReqData);
414 wpabuf_free(sm->eapRespData);
415 sm->eapRespData = NULL;
416 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
421 * Handles requests for Notification method and builds a response.
423 SM_STATE(EAP, NOTIFICATION)
425 const struct wpabuf *eapReqData;
427 SM_ENTRY(EAP, NOTIFICATION);
428 eapReqData = eapol_get_eapReqData(sm);
429 eap_sm_processNotify(sm, eapReqData);
430 wpabuf_free(sm->eapRespData);
431 sm->eapRespData = NULL;
432 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
437 * This state retransmits the previous response packet.
439 SM_STATE(EAP, RETRANSMIT)
441 SM_ENTRY(EAP, RETRANSMIT);
442 wpabuf_free(sm->eapRespData);
443 if (sm->lastRespData)
444 sm->eapRespData = wpabuf_dup(sm->lastRespData);
445 else
446 sm->eapRespData = NULL;
451 * This state is entered in case of a successful completion of authentication
452 * and state machine waits here until port is disabled or EAP authentication is
453 * restarted.
455 SM_STATE(EAP, SUCCESS)
457 SM_ENTRY(EAP, SUCCESS);
458 if (sm->eapKeyData != NULL)
459 sm->eapKeyAvailable = TRUE;
460 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
463 * RFC 4137 does not clear eapReq here, but this seems to be required
464 * to avoid processing the same request twice when state machine is
465 * initialized.
467 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
470 * RFC 4137 does not set eapNoResp here, but this seems to be required
471 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
472 * addition, either eapResp or eapNoResp is required to be set after
473 * processing the received EAP frame.
475 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
477 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
478 "EAP authentication completed successfully");
483 * This state is entered in case of a failure and state machine waits here
484 * until port is disabled or EAP authentication is restarted.
486 SM_STATE(EAP, FAILURE)
488 SM_ENTRY(EAP, FAILURE);
489 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
492 * RFC 4137 does not clear eapReq here, but this seems to be required
493 * to avoid processing the same request twice when state machine is
494 * initialized.
496 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
499 * RFC 4137 does not set eapNoResp here. However, either eapResp or
500 * eapNoResp is required to be set after processing the received EAP
501 * frame.
503 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
505 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
506 "EAP authentication failed");
510 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
513 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
514 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
515 * RFC 4137 require that reqId == lastId. In addition, it looks like
516 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
518 * Accept this kind of Id if EAP workarounds are enabled. These are
519 * unauthenticated plaintext messages, so this should have minimal
520 * security implications (bit easier to fake EAP-Success/Failure).
522 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
523 reqId == ((lastId + 2) & 0xff))) {
524 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
525 "identifier field in EAP Success: "
526 "reqId=%d lastId=%d (these are supposed to be "
527 "same)", reqId, lastId);
528 return 1;
530 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
531 "lastId=%d", reqId, lastId);
532 return 0;
537 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
540 static void eap_peer_sm_step_idle(struct eap_sm *sm)
543 * The first three transitions are from RFC 4137. The last two are
544 * local additions to handle special cases with LEAP and PEAP server
545 * not sending EAP-Success in some cases.
547 if (eapol_get_bool(sm, EAPOL_eapReq))
548 SM_ENTER(EAP, RECEIVED);
549 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
550 sm->decision != DECISION_FAIL) ||
551 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
552 sm->decision == DECISION_UNCOND_SUCC))
553 SM_ENTER(EAP, SUCCESS);
554 else if (eapol_get_bool(sm, EAPOL_altReject) ||
555 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
556 sm->decision != DECISION_UNCOND_SUCC) ||
557 (eapol_get_bool(sm, EAPOL_altAccept) &&
558 sm->methodState != METHOD_CONT &&
559 sm->decision == DECISION_FAIL))
560 SM_ENTER(EAP, FAILURE);
561 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
562 sm->leap_done && sm->decision != DECISION_FAIL &&
563 sm->methodState == METHOD_DONE)
564 SM_ENTER(EAP, SUCCESS);
565 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
566 sm->peap_done && sm->decision != DECISION_FAIL &&
567 sm->methodState == METHOD_DONE)
568 SM_ENTER(EAP, SUCCESS);
572 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
574 int duplicate;
576 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
577 if (sm->workaround && duplicate &&
578 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
580 * RFC 4137 uses (reqId == lastId) as the only verification for
581 * duplicate EAP requests. However, this misses cases where the
582 * AS is incorrectly using the same id again; and
583 * unfortunately, such implementations exist. Use MD5 hash as
584 * an extra verification for the packets being duplicate to
585 * workaround these issues.
587 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
588 "EAP packets were not identical");
589 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
590 "duplicate packet");
591 duplicate = 0;
594 return duplicate;
598 static void eap_peer_sm_step_received(struct eap_sm *sm)
600 int duplicate = eap_peer_req_is_duplicate(sm);
603 * Two special cases below for LEAP are local additions to work around
604 * odd LEAP behavior (EAP-Success in the middle of authentication and
605 * then swapped roles). Other transitions are based on RFC 4137.
607 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
608 (sm->reqId == sm->lastId ||
609 eap_success_workaround(sm, sm->reqId, sm->lastId)))
610 SM_ENTER(EAP, SUCCESS);
611 else if (sm->methodState != METHOD_CONT &&
612 ((sm->rxFailure &&
613 sm->decision != DECISION_UNCOND_SUCC) ||
614 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
615 (sm->selectedMethod != EAP_TYPE_LEAP ||
616 sm->methodState != METHOD_MAY_CONT))) &&
617 (sm->reqId == sm->lastId ||
618 eap_success_workaround(sm, sm->reqId, sm->lastId)))
619 SM_ENTER(EAP, FAILURE);
620 else if (sm->rxReq && duplicate)
621 SM_ENTER(EAP, RETRANSMIT);
622 else if (sm->rxReq && !duplicate &&
623 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
624 sm->allowNotifications)
625 SM_ENTER(EAP, NOTIFICATION);
626 else if (sm->rxReq && !duplicate &&
627 sm->selectedMethod == EAP_TYPE_NONE &&
628 sm->reqMethod == EAP_TYPE_IDENTITY)
629 SM_ENTER(EAP, IDENTITY);
630 else if (sm->rxReq && !duplicate &&
631 sm->selectedMethod == EAP_TYPE_NONE &&
632 sm->reqMethod != EAP_TYPE_IDENTITY &&
633 sm->reqMethod != EAP_TYPE_NOTIFICATION)
634 SM_ENTER(EAP, GET_METHOD);
635 else if (sm->rxReq && !duplicate &&
636 sm->reqMethod == sm->selectedMethod &&
637 sm->methodState != METHOD_DONE)
638 SM_ENTER(EAP, METHOD);
639 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
640 (sm->rxSuccess || sm->rxResp))
641 SM_ENTER(EAP, METHOD);
642 else
643 SM_ENTER(EAP, DISCARD);
647 static void eap_peer_sm_step_local(struct eap_sm *sm)
649 switch (sm->EAP_state) {
650 case EAP_INITIALIZE:
651 SM_ENTER(EAP, IDLE);
652 break;
653 case EAP_DISABLED:
654 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
655 !sm->force_disabled)
656 SM_ENTER(EAP, INITIALIZE);
657 break;
658 case EAP_IDLE:
659 eap_peer_sm_step_idle(sm);
660 break;
661 case EAP_RECEIVED:
662 eap_peer_sm_step_received(sm);
663 break;
664 case EAP_GET_METHOD:
665 if (sm->selectedMethod == sm->reqMethod)
666 SM_ENTER(EAP, METHOD);
667 else
668 SM_ENTER(EAP, SEND_RESPONSE);
669 break;
670 case EAP_METHOD:
671 if (sm->ignore)
672 SM_ENTER(EAP, DISCARD);
673 else
674 SM_ENTER(EAP, SEND_RESPONSE);
675 break;
676 case EAP_SEND_RESPONSE:
677 SM_ENTER(EAP, IDLE);
678 break;
679 case EAP_DISCARD:
680 SM_ENTER(EAP, IDLE);
681 break;
682 case EAP_IDENTITY:
683 SM_ENTER(EAP, SEND_RESPONSE);
684 break;
685 case EAP_NOTIFICATION:
686 SM_ENTER(EAP, SEND_RESPONSE);
687 break;
688 case EAP_RETRANSMIT:
689 SM_ENTER(EAP, SEND_RESPONSE);
690 break;
691 case EAP_SUCCESS:
692 break;
693 case EAP_FAILURE:
694 break;
699 SM_STEP(EAP)
701 /* Global transitions */
702 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
703 eapol_get_bool(sm, EAPOL_portEnabled))
704 SM_ENTER_GLOBAL(EAP, INITIALIZE);
705 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
706 SM_ENTER_GLOBAL(EAP, DISABLED);
707 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
708 /* RFC 4137 does not place any limit on number of EAP messages
709 * in an authentication session. However, some error cases have
710 * ended up in a state were EAP messages were sent between the
711 * peer and server in a loop (e.g., TLS ACK frame in both
712 * direction). Since this is quite undesired outcome, limit the
713 * total number of EAP round-trips and abort authentication if
714 * this limit is exceeded.
716 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
717 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
718 "authentication rounds - abort",
719 EAP_MAX_AUTH_ROUNDS);
720 sm->num_rounds++;
721 SM_ENTER_GLOBAL(EAP, FAILURE);
723 } else {
724 /* Local transitions */
725 eap_peer_sm_step_local(sm);
730 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
731 EapType method)
733 if (!eap_allowed_method(sm, vendor, method)) {
734 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
735 "vendor %u method %u", vendor, method);
736 return FALSE;
738 if (eap_peer_get_eap_method(vendor, method))
739 return TRUE;
740 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
741 "vendor %u method %u", vendor, method);
742 return FALSE;
746 static struct wpabuf * eap_sm_build_expanded_nak(
747 struct eap_sm *sm, int id, const struct eap_method *methods,
748 size_t count)
750 struct wpabuf *resp;
751 int found = 0;
752 const struct eap_method *m;
754 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
756 /* RFC 3748 - 5.3.2: Expanded Nak */
757 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
758 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
759 if (resp == NULL)
760 return NULL;
762 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
763 wpabuf_put_be32(resp, EAP_TYPE_NAK);
765 for (m = methods; m; m = m->next) {
766 if (sm->reqVendor == m->vendor &&
767 sm->reqVendorMethod == m->method)
768 continue; /* do not allow the current method again */
769 if (eap_allowed_method(sm, m->vendor, m->method)) {
770 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
771 "vendor=%u method=%u",
772 m->vendor, m->method);
773 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
774 wpabuf_put_be24(resp, m->vendor);
775 wpabuf_put_be32(resp, m->method);
777 found++;
780 if (!found) {
781 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
782 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
783 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
784 wpabuf_put_be32(resp, EAP_TYPE_NONE);
787 eap_update_len(resp);
789 return resp;
793 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
795 struct wpabuf *resp;
796 u8 *start;
797 int found = 0, expanded_found = 0;
798 size_t count;
799 const struct eap_method *methods, *m;
801 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
802 "vendor=%u method=%u not allowed)", sm->reqMethod,
803 sm->reqVendor, sm->reqVendorMethod);
804 methods = eap_peer_get_methods(&count);
805 if (methods == NULL)
806 return NULL;
807 if (sm->reqMethod == EAP_TYPE_EXPANDED)
808 return eap_sm_build_expanded_nak(sm, id, methods, count);
810 /* RFC 3748 - 5.3.1: Legacy Nak */
811 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
812 sizeof(struct eap_hdr) + 1 + count + 1,
813 EAP_CODE_RESPONSE, id);
814 if (resp == NULL)
815 return NULL;
817 start = wpabuf_put(resp, 0);
818 for (m = methods; m; m = m->next) {
819 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
820 continue; /* do not allow the current method again */
821 if (eap_allowed_method(sm, m->vendor, m->method)) {
822 if (m->vendor != EAP_VENDOR_IETF) {
823 if (expanded_found)
824 continue;
825 expanded_found = 1;
826 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
827 } else
828 wpabuf_put_u8(resp, m->method);
829 found++;
832 if (!found)
833 wpabuf_put_u8(resp, EAP_TYPE_NONE);
834 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
836 eap_update_len(resp);
838 return resp;
842 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
844 const struct eap_hdr *hdr = wpabuf_head(req);
845 const u8 *pos = (const u8 *) (hdr + 1);
846 pos++;
848 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
849 "EAP authentication started");
852 * RFC 3748 - 5.1: Identity
853 * Data field may contain a displayable message in UTF-8. If this
854 * includes NUL-character, only the data before that should be
855 * displayed. Some EAP implementasitons may piggy-back additional
856 * options after the NUL.
858 /* TODO: could save displayable message so that it can be shown to the
859 * user in case of interaction is required */
860 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
861 pos, be_to_host16(hdr->length) - 5);
865 #ifdef PCSC_FUNCS
866 static int eap_sm_imsi_identity(struct eap_sm *sm,
867 struct eap_peer_config *conf)
869 int aka = 0;
870 char imsi[100];
871 size_t imsi_len;
872 struct eap_method_type *m = conf->eap_methods;
873 int i;
875 imsi_len = sizeof(imsi);
876 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
877 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
878 return -1;
881 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
883 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
884 m[i].method != EAP_TYPE_NONE); i++) {
885 if (m[i].vendor == EAP_VENDOR_IETF &&
886 m[i].method == EAP_TYPE_AKA) {
887 aka = 1;
888 break;
892 os_free(conf->identity);
893 conf->identity = os_malloc(1 + imsi_len);
894 if (conf->identity == NULL) {
895 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
896 "IMSI-based identity");
897 return -1;
900 conf->identity[0] = aka ? '0' : '1';
901 os_memcpy(conf->identity + 1, imsi, imsi_len);
902 conf->identity_len = 1 + imsi_len;
904 return 0;
906 #endif /* PCSC_FUNCS */
909 static int eap_sm_get_scard_identity(struct eap_sm *sm,
910 struct eap_peer_config *conf)
912 #ifdef PCSC_FUNCS
913 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
915 * Make sure the same PIN is not tried again in order to avoid
916 * blocking SIM.
918 os_free(conf->pin);
919 conf->pin = NULL;
921 wpa_printf(MSG_WARNING, "PIN validation failed");
922 eap_sm_request_pin(sm);
923 return -1;
926 return eap_sm_imsi_identity(sm, conf);
927 #else /* PCSC_FUNCS */
928 return -1;
929 #endif /* PCSC_FUNCS */
934 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
935 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
936 * @id: EAP identifier for the packet
937 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
938 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
939 * failure
941 * This function allocates and builds an EAP-Identity/Response packet for the
942 * current network. The caller is responsible for freeing the returned data.
944 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
946 struct eap_peer_config *config = eap_get_config(sm);
947 struct wpabuf *resp;
948 const u8 *identity;
949 size_t identity_len;
951 if (config == NULL) {
952 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
953 "was not available");
954 return NULL;
957 if (sm->m && sm->m->get_identity &&
958 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
959 &identity_len)) != NULL) {
960 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
961 "identity", identity, identity_len);
962 } else if (!encrypted && config->anonymous_identity) {
963 identity = config->anonymous_identity;
964 identity_len = config->anonymous_identity_len;
965 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
966 identity, identity_len);
967 } else {
968 identity = config->identity;
969 identity_len = config->identity_len;
970 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
971 identity, identity_len);
974 if (identity == NULL) {
975 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
976 "configuration was not available");
977 if (config->pcsc) {
978 if (eap_sm_get_scard_identity(sm, config) < 0)
979 return NULL;
980 identity = config->identity;
981 identity_len = config->identity_len;
982 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
983 "IMSI", identity, identity_len);
984 } else {
985 eap_sm_request_identity(sm);
986 return NULL;
990 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
991 EAP_CODE_RESPONSE, id);
992 if (resp == NULL)
993 return NULL;
995 wpabuf_put_data(resp, identity, identity_len);
997 return resp;
1001 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1003 const u8 *pos;
1004 char *msg;
1005 size_t i, msg_len;
1007 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1008 &msg_len);
1009 if (pos == NULL)
1010 return;
1011 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1012 pos, msg_len);
1014 msg = os_malloc(msg_len + 1);
1015 if (msg == NULL)
1016 return;
1017 for (i = 0; i < msg_len; i++)
1018 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1019 msg[msg_len] = '\0';
1020 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1021 WPA_EVENT_EAP_NOTIFICATION, msg);
1022 os_free(msg);
1026 static struct wpabuf * eap_sm_buildNotify(int id)
1028 struct wpabuf *resp;
1030 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1031 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1032 EAP_CODE_RESPONSE, id);
1033 if (resp == NULL)
1034 return NULL;
1036 return resp;
1040 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1042 const struct eap_hdr *hdr;
1043 size_t plen;
1044 const u8 *pos;
1046 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1047 sm->reqId = 0;
1048 sm->reqMethod = EAP_TYPE_NONE;
1049 sm->reqVendor = EAP_VENDOR_IETF;
1050 sm->reqVendorMethod = EAP_TYPE_NONE;
1052 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1053 return;
1055 hdr = wpabuf_head(req);
1056 plen = be_to_host16(hdr->length);
1057 if (plen > wpabuf_len(req)) {
1058 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1059 "(len=%lu plen=%lu)",
1060 (unsigned long) wpabuf_len(req),
1061 (unsigned long) plen);
1062 return;
1065 sm->reqId = hdr->identifier;
1067 if (sm->workaround) {
1068 const u8 *addr[1];
1069 addr[0] = wpabuf_head(req);
1070 md5_vector(1, addr, &plen, sm->req_md5);
1073 switch (hdr->code) {
1074 case EAP_CODE_REQUEST:
1075 if (plen < sizeof(*hdr) + 1) {
1076 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1077 "no Type field");
1078 return;
1080 sm->rxReq = TRUE;
1081 pos = (const u8 *) (hdr + 1);
1082 sm->reqMethod = *pos++;
1083 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1084 if (plen < sizeof(*hdr) + 8) {
1085 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1086 "expanded EAP-Packet (plen=%lu)",
1087 (unsigned long) plen);
1088 return;
1090 sm->reqVendor = WPA_GET_BE24(pos);
1091 pos += 3;
1092 sm->reqVendorMethod = WPA_GET_BE32(pos);
1094 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1095 "method=%u vendor=%u vendorMethod=%u",
1096 sm->reqId, sm->reqMethod, sm->reqVendor,
1097 sm->reqVendorMethod);
1098 break;
1099 case EAP_CODE_RESPONSE:
1100 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1102 * LEAP differs from RFC 4137 by using reversed roles
1103 * for mutual authentication and because of this, we
1104 * need to accept EAP-Response frames if LEAP is used.
1106 if (plen < sizeof(*hdr) + 1) {
1107 wpa_printf(MSG_DEBUG, "EAP: Too short "
1108 "EAP-Response - no Type field");
1109 return;
1111 sm->rxResp = TRUE;
1112 pos = (const u8 *) (hdr + 1);
1113 sm->reqMethod = *pos;
1114 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1115 "LEAP method=%d id=%d",
1116 sm->reqMethod, sm->reqId);
1117 break;
1119 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1120 break;
1121 case EAP_CODE_SUCCESS:
1122 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1123 sm->rxSuccess = TRUE;
1124 break;
1125 case EAP_CODE_FAILURE:
1126 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1127 sm->rxFailure = TRUE;
1128 break;
1129 default:
1130 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1131 "code %d", hdr->code);
1132 break;
1138 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1139 * @eapol_ctx: Context data to be used with eapol_cb calls
1140 * @eapol_cb: Pointer to EAPOL callback functions
1141 * @msg_ctx: Context data for wpa_msg() calls
1142 * @conf: EAP configuration
1143 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1145 * This function allocates and initializes an EAP state machine. In addition,
1146 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1147 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1148 * state machine. Consequently, the caller must make sure that this data
1149 * structure remains alive while the EAP state machine is active.
1151 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1152 struct eapol_callbacks *eapol_cb,
1153 void *msg_ctx, struct eap_config *conf)
1155 struct eap_sm *sm;
1156 struct tls_config tlsconf;
1158 sm = os_zalloc(sizeof(*sm));
1159 if (sm == NULL)
1160 return NULL;
1161 sm->eapol_ctx = eapol_ctx;
1162 sm->eapol_cb = eapol_cb;
1163 sm->msg_ctx = msg_ctx;
1164 sm->ClientTimeout = 60;
1165 if (conf->mac_addr)
1166 os_memcpy(sm->mac_addr, conf->mac_addr, ETH_ALEN);
1168 os_memset(&tlsconf, 0, sizeof(tlsconf));
1169 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1170 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1171 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1172 sm->ssl_ctx = tls_init(&tlsconf);
1173 if (sm->ssl_ctx == NULL) {
1174 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1175 "context.");
1176 os_free(sm);
1177 return NULL;
1180 return sm;
1185 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1186 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1188 * This function deinitializes EAP state machine and frees all allocated
1189 * resources.
1191 void eap_peer_sm_deinit(struct eap_sm *sm)
1193 if (sm == NULL)
1194 return;
1195 eap_deinit_prev_method(sm, "EAP deinit");
1196 eap_sm_abort(sm);
1197 tls_deinit(sm->ssl_ctx);
1198 os_free(sm);
1203 * eap_peer_sm_step - Step EAP peer state machine
1204 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1205 * Returns: 1 if EAP state was changed or 0 if not
1207 * This function advances EAP state machine to a new state to match with the
1208 * current variables. This should be called whenever variables used by the EAP
1209 * state machine have changed.
1211 int eap_peer_sm_step(struct eap_sm *sm)
1213 int res = 0;
1214 do {
1215 sm->changed = FALSE;
1216 SM_STEP_RUN(EAP);
1217 if (sm->changed)
1218 res = 1;
1219 } while (sm->changed);
1220 return res;
1225 * eap_sm_abort - Abort EAP authentication
1226 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1228 * Release system resources that have been allocated for the authentication
1229 * session without fully deinitializing the EAP state machine.
1231 void eap_sm_abort(struct eap_sm *sm)
1233 wpabuf_free(sm->lastRespData);
1234 sm->lastRespData = NULL;
1235 wpabuf_free(sm->eapRespData);
1236 sm->eapRespData = NULL;
1237 os_free(sm->eapKeyData);
1238 sm->eapKeyData = NULL;
1240 /* This is not clearly specified in the EAP statemachines draft, but
1241 * it seems necessary to make sure that some of the EAPOL variables get
1242 * cleared for the next authentication. */
1243 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1247 #ifdef CONFIG_CTRL_IFACE
1248 static const char * eap_sm_state_txt(int state)
1250 switch (state) {
1251 case EAP_INITIALIZE:
1252 return "INITIALIZE";
1253 case EAP_DISABLED:
1254 return "DISABLED";
1255 case EAP_IDLE:
1256 return "IDLE";
1257 case EAP_RECEIVED:
1258 return "RECEIVED";
1259 case EAP_GET_METHOD:
1260 return "GET_METHOD";
1261 case EAP_METHOD:
1262 return "METHOD";
1263 case EAP_SEND_RESPONSE:
1264 return "SEND_RESPONSE";
1265 case EAP_DISCARD:
1266 return "DISCARD";
1267 case EAP_IDENTITY:
1268 return "IDENTITY";
1269 case EAP_NOTIFICATION:
1270 return "NOTIFICATION";
1271 case EAP_RETRANSMIT:
1272 return "RETRANSMIT";
1273 case EAP_SUCCESS:
1274 return "SUCCESS";
1275 case EAP_FAILURE:
1276 return "FAILURE";
1277 default:
1278 return "UNKNOWN";
1281 #endif /* CONFIG_CTRL_IFACE */
1284 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1285 static const char * eap_sm_method_state_txt(EapMethodState state)
1287 switch (state) {
1288 case METHOD_NONE:
1289 return "NONE";
1290 case METHOD_INIT:
1291 return "INIT";
1292 case METHOD_CONT:
1293 return "CONT";
1294 case METHOD_MAY_CONT:
1295 return "MAY_CONT";
1296 case METHOD_DONE:
1297 return "DONE";
1298 default:
1299 return "UNKNOWN";
1304 static const char * eap_sm_decision_txt(EapDecision decision)
1306 switch (decision) {
1307 case DECISION_FAIL:
1308 return "FAIL";
1309 case DECISION_COND_SUCC:
1310 return "COND_SUCC";
1311 case DECISION_UNCOND_SUCC:
1312 return "UNCOND_SUCC";
1313 default:
1314 return "UNKNOWN";
1317 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1320 #ifdef CONFIG_CTRL_IFACE
1323 * eap_sm_get_status - Get EAP state machine status
1324 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1325 * @buf: Buffer for status information
1326 * @buflen: Maximum buffer length
1327 * @verbose: Whether to include verbose status information
1328 * Returns: Number of bytes written to buf.
1330 * Query EAP state machine for status information. This function fills in a
1331 * text area with current status information from the EAPOL state machine. If
1332 * the buffer (buf) is not large enough, status information will be truncated
1333 * to fit the buffer.
1335 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1337 int len, ret;
1339 if (sm == NULL)
1340 return 0;
1342 len = os_snprintf(buf, buflen,
1343 "EAP state=%s\n",
1344 eap_sm_state_txt(sm->EAP_state));
1345 if (len < 0 || (size_t) len >= buflen)
1346 return 0;
1348 if (sm->selectedMethod != EAP_TYPE_NONE) {
1349 const char *name;
1350 if (sm->m) {
1351 name = sm->m->name;
1352 } else {
1353 const struct eap_method *m =
1354 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1355 sm->selectedMethod);
1356 if (m)
1357 name = m->name;
1358 else
1359 name = "?";
1361 ret = os_snprintf(buf + len, buflen - len,
1362 "selectedMethod=%d (EAP-%s)\n",
1363 sm->selectedMethod, name);
1364 if (ret < 0 || (size_t) ret >= buflen - len)
1365 return len;
1366 len += ret;
1368 if (sm->m && sm->m->get_status) {
1369 len += sm->m->get_status(sm, sm->eap_method_priv,
1370 buf + len, buflen - len,
1371 verbose);
1375 if (verbose) {
1376 ret = os_snprintf(buf + len, buflen - len,
1377 "reqMethod=%d\n"
1378 "methodState=%s\n"
1379 "decision=%s\n"
1380 "ClientTimeout=%d\n",
1381 sm->reqMethod,
1382 eap_sm_method_state_txt(sm->methodState),
1383 eap_sm_decision_txt(sm->decision),
1384 sm->ClientTimeout);
1385 if (ret < 0 || (size_t) ret >= buflen - len)
1386 return len;
1387 len += ret;
1390 return len;
1392 #endif /* CONFIG_CTRL_IFACE */
1395 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1396 typedef enum {
1397 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1398 TYPE_PASSPHRASE
1399 } eap_ctrl_req_type;
1401 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1402 const char *msg, size_t msglen)
1404 struct eap_peer_config *config;
1405 char *field, *txt, *tmp;
1407 if (sm == NULL)
1408 return;
1409 config = eap_get_config(sm);
1410 if (config == NULL)
1411 return;
1413 switch (type) {
1414 case TYPE_IDENTITY:
1415 field = "IDENTITY";
1416 txt = "Identity";
1417 config->pending_req_identity++;
1418 break;
1419 case TYPE_PASSWORD:
1420 field = "PASSWORD";
1421 txt = "Password";
1422 config->pending_req_password++;
1423 break;
1424 case TYPE_NEW_PASSWORD:
1425 field = "NEW_PASSWORD";
1426 txt = "New Password";
1427 config->pending_req_new_password++;
1428 break;
1429 case TYPE_PIN:
1430 field = "PIN";
1431 txt = "PIN";
1432 config->pending_req_pin++;
1433 break;
1434 case TYPE_OTP:
1435 field = "OTP";
1436 if (msg) {
1437 tmp = os_malloc(msglen + 3);
1438 if (tmp == NULL)
1439 return;
1440 tmp[0] = '[';
1441 os_memcpy(tmp + 1, msg, msglen);
1442 tmp[msglen + 1] = ']';
1443 tmp[msglen + 2] = '\0';
1444 txt = tmp;
1445 os_free(config->pending_req_otp);
1446 config->pending_req_otp = tmp;
1447 config->pending_req_otp_len = msglen + 3;
1448 } else {
1449 if (config->pending_req_otp == NULL)
1450 return;
1451 txt = config->pending_req_otp;
1453 break;
1454 case TYPE_PASSPHRASE:
1455 field = "PASSPHRASE";
1456 txt = "Private key passphrase";
1457 config->pending_req_passphrase++;
1458 break;
1459 default:
1460 return;
1463 if (sm->eapol_cb->eap_param_needed)
1464 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1466 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1467 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1468 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1472 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1473 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1475 * EAP methods can call this function to request identity information for the
1476 * current network. This is normally called when the identity is not included
1477 * in the network configuration. The request will be sent to monitor programs
1478 * through the control interface.
1480 void eap_sm_request_identity(struct eap_sm *sm)
1482 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1487 * eap_sm_request_password - Request password from user (ctrl_iface)
1488 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1490 * EAP methods can call this function to request password information for the
1491 * current network. This is normally called when the password is not included
1492 * in the network configuration. The request will be sent to monitor programs
1493 * through the control interface.
1495 void eap_sm_request_password(struct eap_sm *sm)
1497 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1502 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1503 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1505 * EAP methods can call this function to request new password information for
1506 * the current network. This is normally called when the EAP method indicates
1507 * that the current password has expired and password change is required. The
1508 * request will be sent to monitor programs through the control interface.
1510 void eap_sm_request_new_password(struct eap_sm *sm)
1512 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1517 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1518 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1520 * EAP methods can call this function to request SIM or smart card PIN
1521 * information for the current network. This is normally called when the PIN is
1522 * not included in the network configuration. The request will be sent to
1523 * monitor programs through the control interface.
1525 void eap_sm_request_pin(struct eap_sm *sm)
1527 eap_sm_request(sm, TYPE_PIN, NULL, 0);
1532 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1533 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1534 * @msg: Message to be displayed to the user when asking for OTP
1535 * @msg_len: Length of the user displayable message
1537 * EAP methods can call this function to request open time password (OTP) for
1538 * the current network. The request will be sent to monitor programs through
1539 * the control interface.
1541 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1543 eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1548 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1549 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1551 * EAP methods can call this function to request passphrase for a private key
1552 * for the current network. This is normally called when the passphrase is not
1553 * included in the network configuration. The request will be sent to monitor
1554 * programs through the control interface.
1556 void eap_sm_request_passphrase(struct eap_sm *sm)
1558 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1563 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1564 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1566 * Notify EAP state machines that a monitor was attached to the control
1567 * interface to trigger re-sending of pending requests for user input.
1569 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1571 struct eap_peer_config *config = eap_get_config(sm);
1573 if (config == NULL)
1574 return;
1576 /* Re-send any pending requests for user data since a new control
1577 * interface was added. This handles cases where the EAP authentication
1578 * starts immediately after system startup when the user interface is
1579 * not yet running. */
1580 if (config->pending_req_identity)
1581 eap_sm_request_identity(sm);
1582 if (config->pending_req_password)
1583 eap_sm_request_password(sm);
1584 if (config->pending_req_new_password)
1585 eap_sm_request_new_password(sm);
1586 if (config->pending_req_otp)
1587 eap_sm_request_otp(sm, NULL, 0);
1588 if (config->pending_req_pin)
1589 eap_sm_request_pin(sm);
1590 if (config->pending_req_passphrase)
1591 eap_sm_request_passphrase(sm);
1595 static int eap_allowed_phase2_type(int vendor, int type)
1597 if (vendor != EAP_VENDOR_IETF)
1598 return 0;
1599 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1600 type != EAP_TYPE_FAST;
1605 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1606 * @name: EAP method name, e.g., MD5
1607 * @vendor: Buffer for returning EAP Vendor-Id
1608 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1610 * This function maps EAP type names into EAP type numbers that are allowed for
1611 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1612 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1614 u32 eap_get_phase2_type(const char *name, int *vendor)
1616 int v;
1617 u8 type = eap_peer_get_type(name, &v);
1618 if (eap_allowed_phase2_type(v, type)) {
1619 *vendor = v;
1620 return type;
1622 *vendor = EAP_VENDOR_IETF;
1623 return EAP_TYPE_NONE;
1628 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1629 * @config: Pointer to a network configuration
1630 * @count: Pointer to a variable to be filled with number of returned EAP types
1631 * Returns: Pointer to allocated type list or %NULL on failure
1633 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1634 * the given network configuration.
1636 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1637 size_t *count)
1639 struct eap_method_type *buf;
1640 u32 method;
1641 int vendor;
1642 size_t mcount;
1643 const struct eap_method *methods, *m;
1645 methods = eap_peer_get_methods(&mcount);
1646 if (methods == NULL)
1647 return NULL;
1648 *count = 0;
1649 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1650 if (buf == NULL)
1651 return NULL;
1653 for (m = methods; m; m = m->next) {
1654 vendor = m->vendor;
1655 method = m->method;
1656 if (eap_allowed_phase2_type(vendor, method)) {
1657 if (vendor == EAP_VENDOR_IETF &&
1658 method == EAP_TYPE_TLS && config &&
1659 config->private_key2 == NULL)
1660 continue;
1661 buf[*count].vendor = vendor;
1662 buf[*count].method = method;
1663 (*count)++;
1667 return buf;
1672 * eap_set_fast_reauth - Update fast_reauth setting
1673 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1674 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1676 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1678 sm->fast_reauth = enabled;
1683 * eap_set_workaround - Update EAP workarounds setting
1684 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1685 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1687 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1689 sm->workaround = workaround;
1694 * eap_get_config - Get current network configuration
1695 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1696 * Returns: Pointer to the current network configuration or %NULL if not found
1698 * EAP peer methods should avoid using this function if they can use other
1699 * access functions, like eap_get_config_identity() and
1700 * eap_get_config_password(), that do not require direct access to
1701 * struct eap_peer_config.
1703 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1705 return sm->eapol_cb->get_config(sm->eapol_ctx);
1710 * eap_get_config_identity - Get identity from the network configuration
1711 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1712 * @len: Buffer for the length of the identity
1713 * Returns: Pointer to the identity or %NULL if not found
1715 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1717 struct eap_peer_config *config = eap_get_config(sm);
1718 if (config == NULL)
1719 return NULL;
1720 *len = config->identity_len;
1721 return config->identity;
1726 * eap_get_config_password - Get password from the network configuration
1727 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1728 * @len: Buffer for the length of the password
1729 * Returns: Pointer to the password or %NULL if not found
1731 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1733 struct eap_peer_config *config = eap_get_config(sm);
1734 if (config == NULL)
1735 return NULL;
1736 *len = config->password_len;
1737 return config->password;
1742 * eap_get_config_password2 - Get password from the network configuration
1743 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1744 * @len: Buffer for the length of the password
1745 * @hash: Buffer for returning whether the password is stored as a
1746 * NtPasswordHash instead of plaintext password; can be %NULL if this
1747 * information is not needed
1748 * Returns: Pointer to the password or %NULL if not found
1750 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1752 struct eap_peer_config *config = eap_get_config(sm);
1753 if (config == NULL)
1754 return NULL;
1755 *len = config->password_len;
1756 if (hash)
1757 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1758 return config->password;
1763 * eap_get_config_new_password - Get new password from network configuration
1764 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1765 * @len: Buffer for the length of the new password
1766 * Returns: Pointer to the new password or %NULL if not found
1768 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1770 struct eap_peer_config *config = eap_get_config(sm);
1771 if (config == NULL)
1772 return NULL;
1773 *len = config->new_password_len;
1774 return config->new_password;
1779 * eap_get_config_otp - Get one-time password from the network configuration
1780 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1781 * @len: Buffer for the length of the one-time password
1782 * Returns: Pointer to the one-time password or %NULL if not found
1784 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1786 struct eap_peer_config *config = eap_get_config(sm);
1787 if (config == NULL)
1788 return NULL;
1789 *len = config->otp_len;
1790 return config->otp;
1795 * eap_clear_config_otp - Clear used one-time password
1796 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1798 * This function clears a used one-time password (OTP) from the current network
1799 * configuration. This should be called when the OTP has been used and is not
1800 * needed anymore.
1802 void eap_clear_config_otp(struct eap_sm *sm)
1804 struct eap_peer_config *config = eap_get_config(sm);
1805 if (config == NULL)
1806 return;
1807 os_memset(config->otp, 0, config->otp_len);
1808 os_free(config->otp);
1809 config->otp = NULL;
1810 config->otp_len = 0;
1815 * eap_get_config_phase1 - Get phase1 data from the network configuration
1816 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1817 * Returns: Pointer to the phase1 data or %NULL if not found
1819 const char * eap_get_config_phase1(struct eap_sm *sm)
1821 struct eap_peer_config *config = eap_get_config(sm);
1822 if (config == NULL)
1823 return NULL;
1824 return config->phase1;
1829 * eap_get_config_phase2 - Get phase2 data from the network configuration
1830 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1831 * Returns: Pointer to the phase1 data or %NULL if not found
1833 const char * eap_get_config_phase2(struct eap_sm *sm)
1835 struct eap_peer_config *config = eap_get_config(sm);
1836 if (config == NULL)
1837 return NULL;
1838 return config->phase2;
1843 * eap_key_available - Get key availability (eapKeyAvailable variable)
1844 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1845 * Returns: 1 if EAP keying material is available, 0 if not
1847 int eap_key_available(struct eap_sm *sm)
1849 return sm ? sm->eapKeyAvailable : 0;
1854 * eap_notify_success - Notify EAP state machine about external success trigger
1855 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1857 * This function is called when external event, e.g., successful completion of
1858 * WPA-PSK key handshake, is indicating that EAP state machine should move to
1859 * success state. This is mainly used with security modes that do not use EAP
1860 * state machine (e.g., WPA-PSK).
1862 void eap_notify_success(struct eap_sm *sm)
1864 if (sm) {
1865 sm->decision = DECISION_COND_SUCC;
1866 sm->EAP_state = EAP_SUCCESS;
1872 * eap_notify_lower_layer_success - Notification of lower layer success
1873 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1875 * Notify EAP state machines that a lower layer has detected a successful
1876 * authentication. This is used to recover from dropped EAP-Success messages.
1878 void eap_notify_lower_layer_success(struct eap_sm *sm)
1880 if (sm == NULL)
1881 return;
1883 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1884 sm->decision == DECISION_FAIL ||
1885 (sm->methodState != METHOD_MAY_CONT &&
1886 sm->methodState != METHOD_DONE))
1887 return;
1889 if (sm->eapKeyData != NULL)
1890 sm->eapKeyAvailable = TRUE;
1891 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1892 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1893 "EAP authentication completed successfully (based on lower "
1894 "layer success)");
1899 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1900 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1901 * @len: Pointer to variable that will be set to number of bytes in the key
1902 * Returns: Pointer to the EAP keying data or %NULL on failure
1904 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1905 * key is available only after a successful authentication. EAP state machine
1906 * continues to manage the key data and the caller must not change or free the
1907 * returned data.
1909 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
1911 if (sm == NULL || sm->eapKeyData == NULL) {
1912 *len = 0;
1913 return NULL;
1916 *len = sm->eapKeyDataLen;
1917 return sm->eapKeyData;
1922 * eap_get_eapKeyData - Get EAP response data
1923 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1924 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
1926 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
1927 * available when EAP state machine has processed an incoming EAP request. The
1928 * EAP state machine does not maintain a reference to the response after this
1929 * function is called and the caller is responsible for freeing the data.
1931 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
1933 struct wpabuf *resp;
1935 if (sm == NULL || sm->eapRespData == NULL)
1936 return NULL;
1938 resp = sm->eapRespData;
1939 sm->eapRespData = NULL;
1941 return resp;
1946 * eap_sm_register_scard_ctx - Notification of smart card context
1947 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1948 * @ctx: Context data for smart card operations
1950 * Notify EAP state machines of context data for smart card operations. This
1951 * context data will be used as a parameter for scard_*() functions.
1953 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
1955 if (sm)
1956 sm->scard_ctx = ctx;
1961 * eap_set_config_blob - Set or add a named configuration blob
1962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1963 * @blob: New value for the blob
1965 * Adds a new configuration blob or replaces the current value of an existing
1966 * blob.
1968 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
1970 #ifndef CONFIG_NO_CONFIG_BLOBS
1971 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
1972 #endif /* CONFIG_NO_CONFIG_BLOBS */
1977 * eap_get_config_blob - Get a named configuration blob
1978 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1979 * @name: Name of the blob
1980 * Returns: Pointer to blob data or %NULL if not found
1982 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
1983 const char *name)
1985 #ifndef CONFIG_NO_CONFIG_BLOBS
1986 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
1987 #else /* CONFIG_NO_CONFIG_BLOBS */
1988 return NULL;
1989 #endif /* CONFIG_NO_CONFIG_BLOBS */
1994 * eap_set_force_disabled - Set force_disabled flag
1995 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1996 * @disabled: 1 = EAP disabled, 0 = EAP enabled
1998 * This function is used to force EAP state machine to be disabled when it is
1999 * not in use (e.g., with WPA-PSK or plaintext connections).
2001 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2003 sm->force_disabled = disabled;
2008 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2009 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2011 * An EAP method can perform a pending operation (e.g., to get a response from
2012 * an external process). Once the response is available, this function can be
2013 * used to request EAPOL state machine to retry delivering the previously
2014 * received (and still unanswered) EAP request to EAP state machine.
2016 void eap_notify_pending(struct eap_sm *sm)
2018 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2023 * eap_invalidate_cached_session - Mark cached session data invalid
2024 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2026 void eap_invalidate_cached_session(struct eap_sm *sm)
2028 if (sm)
2029 eap_deinit_prev_method(sm, "invalidate");