4 * Copyright (C) 2005-2007, 2009 Internet Systems Consortium, Inc. ("ISC")
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
11 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
12 * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
13 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
14 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
15 * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16 * PERFORMANCE OF THIS SOFTWARE.
19 /* Id: sha2.c,v 1.18 2009/10/22 02:21:31 each Exp */
21 /* $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $ */
22 /* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */
29 * Written by Aaron D. Gifford <me@aarongifford.com>
31 * Copyright 2000 Aaron D. Gifford. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the copyright holder nor the names of contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 #include <isc/assertions.h>
63 #include <isc/platform.h>
65 #include <isc/string.h>
68 #ifdef ISC_PLATFORM_OPENSSLHASH
71 isc_sha224_init(isc_sha224_t
*context
) {
72 if (context
== (isc_sha224_t
*)0) {
75 EVP_DigestInit(context
, EVP_sha224());
79 isc_sha224_invalidate(isc_sha224_t
*context
) {
80 EVP_MD_CTX_cleanup(context
);
84 isc_sha224_update(isc_sha224_t
*context
, const isc_uint8_t
* data
, size_t len
) {
86 /* Calling with no data is valid - we do nothing */
91 REQUIRE(context
!= (isc_sha224_t
*)0 && data
!= (isc_uint8_t
*)0);
93 EVP_DigestUpdate(context
, (const void *) data
, len
);
97 isc_sha224_final(isc_uint8_t digest
[], isc_sha224_t
*context
) {
99 REQUIRE(context
!= (isc_sha224_t
*)0);
101 /* If no digest buffer is passed, we don't bother doing this: */
102 if (digest
!= (isc_uint8_t
*)0) {
103 EVP_DigestFinal(context
, digest
, NULL
);
105 EVP_MD_CTX_cleanup(context
);
110 isc_sha256_init(isc_sha256_t
*context
) {
111 if (context
== (isc_sha256_t
*)0) {
114 EVP_DigestInit(context
, EVP_sha256());
118 isc_sha256_invalidate(isc_sha256_t
*context
) {
119 EVP_MD_CTX_cleanup(context
);
123 isc_sha256_update(isc_sha256_t
*context
, const isc_uint8_t
*data
, size_t len
) {
125 /* Calling with no data is valid - we do nothing */
130 REQUIRE(context
!= (isc_sha256_t
*)0 && data
!= (isc_uint8_t
*)0);
132 EVP_DigestUpdate(context
, (const void *) data
, len
);
136 isc_sha256_final(isc_uint8_t digest
[], isc_sha256_t
*context
) {
138 REQUIRE(context
!= (isc_sha256_t
*)0);
140 /* If no digest buffer is passed, we don't bother doing this: */
141 if (digest
!= (isc_uint8_t
*)0) {
142 EVP_DigestFinal(context
, digest
, NULL
);
144 EVP_MD_CTX_cleanup(context
);
149 isc_sha512_init(isc_sha512_t
*context
) {
150 if (context
== (isc_sha512_t
*)0) {
153 EVP_DigestInit(context
, EVP_sha512());
157 isc_sha512_invalidate(isc_sha512_t
*context
) {
158 EVP_MD_CTX_cleanup(context
);
161 void isc_sha512_update(isc_sha512_t
*context
, const isc_uint8_t
*data
, size_t len
) {
163 /* Calling with no data is valid - we do nothing */
168 REQUIRE(context
!= (isc_sha512_t
*)0 && data
!= (isc_uint8_t
*)0);
170 EVP_DigestUpdate(context
, (const void *) data
, len
);
173 void isc_sha512_final(isc_uint8_t digest
[], isc_sha512_t
*context
) {
175 REQUIRE(context
!= (isc_sha512_t
*)0);
177 /* If no digest buffer is passed, we don't bother doing this: */
178 if (digest
!= (isc_uint8_t
*)0) {
179 EVP_DigestFinal(context
, digest
, NULL
);
181 EVP_MD_CTX_cleanup(context
);
186 isc_sha384_init(isc_sha384_t
*context
) {
187 if (context
== (isc_sha384_t
*)0) {
190 EVP_DigestInit(context
, EVP_sha384());
194 isc_sha384_invalidate(isc_sha384_t
*context
) {
195 EVP_MD_CTX_cleanup(context
);
199 isc_sha384_update(isc_sha384_t
*context
, const isc_uint8_t
* data
, size_t len
) {
201 /* Calling with no data is valid - we do nothing */
206 REQUIRE(context
!= (isc_sha512_t
*)0 && data
!= (isc_uint8_t
*)0);
208 EVP_DigestUpdate(context
, (const void *) data
, len
);
212 isc_sha384_final(isc_uint8_t digest
[], isc_sha384_t
*context
) {
214 REQUIRE(context
!= (isc_sha384_t
*)0);
216 /* If no digest buffer is passed, we don't bother doing this: */
217 if (digest
!= (isc_uint8_t
*)0) {
218 EVP_DigestFinal(context
, digest
, NULL
);
220 EVP_MD_CTX_cleanup(context
);
227 * UNROLLED TRANSFORM LOOP NOTE:
228 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
229 * loop version for the hash transform rounds (defined using macros
230 * later in this file). Either define on the command line, for example:
232 * cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
236 * \#define ISC_SHA2_UNROLL_TRANSFORM
240 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
244 * Please make sure that your system defines BYTE_ORDER. If your
245 * architecture is little-endian, make sure it also defines
246 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
249 * If your system does not define the above, then you can do so by
252 * \#define LITTLE_ENDIAN 1234
253 * \#define BIG_ENDIAN 4321
255 * And for little-endian machines, add:
257 * \#define BYTE_ORDER LITTLE_ENDIAN
259 * Or for big-endian machines:
261 * \#define BYTE_ORDER BIG_ENDIAN
263 * The FreeBSD machine this was written on defines BYTE_ORDER
264 * appropriately by including <sys/types.h> (which in turn includes
265 * <machine/endian.h> where the appropriate definitions are actually
268 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
271 #define BIG_ENDIAN 4321
273 #ifndef LITTLE_ENDIAN
274 #define LITTLE_ENDIAN 1234
276 #ifdef WORDS_BIGENDIAN
277 #define BYTE_ORDER BIG_ENDIAN
279 #define BYTE_ORDER LITTLE_ENDIAN
282 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
286 /*** SHA-256/384/512 Various Length Definitions ***********************/
287 /* NOTE: Most of these are in sha2.h */
288 #define ISC_SHA256_SHORT_BLOCK_LENGTH (ISC_SHA256_BLOCK_LENGTH - 8)
289 #define ISC_SHA384_SHORT_BLOCK_LENGTH (ISC_SHA384_BLOCK_LENGTH - 16)
290 #define ISC_SHA512_SHORT_BLOCK_LENGTH (ISC_SHA512_BLOCK_LENGTH - 16)
293 /*** ENDIAN REVERSAL MACROS *******************************************/
294 #if BYTE_ORDER == LITTLE_ENDIAN
295 #define REVERSE32(w,x) { \
296 isc_uint32_t tmp = (w); \
297 tmp = (tmp >> 16) | (tmp << 16); \
298 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
301 #define REVERSE64(w,x) { \
302 isc_uint64_t tmp = (w); \
303 tmp = (tmp >> 32) | (tmp << 32); \
304 tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \
305 ((tmp & 0x00ff00ff00ff00ffUL) << 8); \
306 (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \
307 ((tmp & 0x0000ffff0000ffffUL) << 16); \
310 #define REVERSE64(w,x) { \
311 isc_uint64_t tmp = (w); \
312 tmp = (tmp >> 32) | (tmp << 32); \
313 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
314 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
315 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
316 ((tmp & 0x0000ffff0000ffffULL) << 16); \
319 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
322 * Macro for incrementally adding the unsigned 64-bit integer n to the
323 * unsigned 128-bit integer (represented using a two-element array of
326 #define ADDINC128(w,n) { \
327 (w)[0] += (isc_uint64_t)(n); \
328 if ((w)[0] < (n)) { \
333 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
335 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
337 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
338 * S is a ROTATION) because the SHA-256/384/512 description document
339 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
340 * same "backwards" definition.
342 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
343 #define R(b,x) ((x) >> (b))
344 /* 32-bit Rotate-right (used in SHA-256): */
345 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
346 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
347 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
349 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
350 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
351 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
353 /* Four of six logical functions used in SHA-256: */
354 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
355 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
356 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
357 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
359 /* Four of six logical functions used in SHA-384 and SHA-512: */
360 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
361 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
362 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
363 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
365 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
366 /* NOTE: These should not be accessed directly from outside this
367 * library -- they are intended for private internal visibility/use
370 void isc_sha512_last(isc_sha512_t
*);
371 void isc_sha256_transform(isc_sha256_t
*, const isc_uint32_t
*);
372 void isc_sha512_transform(isc_sha512_t
*, const isc_uint64_t
*);
375 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
376 /* Hash constant words K for SHA-224 and SHA-256: */
377 static const isc_uint32_t K256
[64] = {
378 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
379 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
380 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
381 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
382 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
383 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
384 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
385 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
386 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
387 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
388 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
389 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
390 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
391 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
392 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
393 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
396 /* Initial hash value H for SHA-224: */
397 static const isc_uint32_t sha224_initial_hash_value
[8] = {
408 /* Initial hash value H for SHA-256: */
409 static const isc_uint32_t sha256_initial_hash_value
[8] = {
421 /* Hash constant words K for SHA-384 and SHA-512: */
422 static const isc_uint64_t K512
[80] = {
423 0x428a2f98d728ae22UL
, 0x7137449123ef65cdUL
,
424 0xb5c0fbcfec4d3b2fUL
, 0xe9b5dba58189dbbcUL
,
425 0x3956c25bf348b538UL
, 0x59f111f1b605d019UL
,
426 0x923f82a4af194f9bUL
, 0xab1c5ed5da6d8118UL
,
427 0xd807aa98a3030242UL
, 0x12835b0145706fbeUL
,
428 0x243185be4ee4b28cUL
, 0x550c7dc3d5ffb4e2UL
,
429 0x72be5d74f27b896fUL
, 0x80deb1fe3b1696b1UL
,
430 0x9bdc06a725c71235UL
, 0xc19bf174cf692694UL
,
431 0xe49b69c19ef14ad2UL
, 0xefbe4786384f25e3UL
,
432 0x0fc19dc68b8cd5b5UL
, 0x240ca1cc77ac9c65UL
,
433 0x2de92c6f592b0275UL
, 0x4a7484aa6ea6e483UL
,
434 0x5cb0a9dcbd41fbd4UL
, 0x76f988da831153b5UL
,
435 0x983e5152ee66dfabUL
, 0xa831c66d2db43210UL
,
436 0xb00327c898fb213fUL
, 0xbf597fc7beef0ee4UL
,
437 0xc6e00bf33da88fc2UL
, 0xd5a79147930aa725UL
,
438 0x06ca6351e003826fUL
, 0x142929670a0e6e70UL
,
439 0x27b70a8546d22ffcUL
, 0x2e1b21385c26c926UL
,
440 0x4d2c6dfc5ac42aedUL
, 0x53380d139d95b3dfUL
,
441 0x650a73548baf63deUL
, 0x766a0abb3c77b2a8UL
,
442 0x81c2c92e47edaee6UL
, 0x92722c851482353bUL
,
443 0xa2bfe8a14cf10364UL
, 0xa81a664bbc423001UL
,
444 0xc24b8b70d0f89791UL
, 0xc76c51a30654be30UL
,
445 0xd192e819d6ef5218UL
, 0xd69906245565a910UL
,
446 0xf40e35855771202aUL
, 0x106aa07032bbd1b8UL
,
447 0x19a4c116b8d2d0c8UL
, 0x1e376c085141ab53UL
,
448 0x2748774cdf8eeb99UL
, 0x34b0bcb5e19b48a8UL
,
449 0x391c0cb3c5c95a63UL
, 0x4ed8aa4ae3418acbUL
,
450 0x5b9cca4f7763e373UL
, 0x682e6ff3d6b2b8a3UL
,
451 0x748f82ee5defb2fcUL
, 0x78a5636f43172f60UL
,
452 0x84c87814a1f0ab72UL
, 0x8cc702081a6439ecUL
,
453 0x90befffa23631e28UL
, 0xa4506cebde82bde9UL
,
454 0xbef9a3f7b2c67915UL
, 0xc67178f2e372532bUL
,
455 0xca273eceea26619cUL
, 0xd186b8c721c0c207UL
,
456 0xeada7dd6cde0eb1eUL
, 0xf57d4f7fee6ed178UL
,
457 0x06f067aa72176fbaUL
, 0x0a637dc5a2c898a6UL
,
458 0x113f9804bef90daeUL
, 0x1b710b35131c471bUL
,
459 0x28db77f523047d84UL
, 0x32caab7b40c72493UL
,
460 0x3c9ebe0a15c9bebcUL
, 0x431d67c49c100d4cUL
,
461 0x4cc5d4becb3e42b6UL
, 0x597f299cfc657e2aUL
,
462 0x5fcb6fab3ad6faecUL
, 0x6c44198c4a475817UL
465 /* Initial hash value H for SHA-384: */
466 static const isc_uint64_t sha384_initial_hash_value
[8] = {
467 0xcbbb9d5dc1059ed8UL
,
468 0x629a292a367cd507UL
,
469 0x9159015a3070dd17UL
,
470 0x152fecd8f70e5939UL
,
471 0x67332667ffc00b31UL
,
472 0x8eb44a8768581511UL
,
473 0xdb0c2e0d64f98fa7UL
,
477 /* Initial hash value H for SHA-512: */
478 static const isc_uint64_t sha512_initial_hash_value
[8] = {
480 0xbb67ae8584caa73bUL
,
481 0x3c6ef372fe94f82bUL
,
482 0xa54ff53a5f1d36f1UL
,
483 0x510e527fade682d1UL
,
484 0x9b05688c2b3e6c1fUL
,
485 0x1f83d9abfb41bd6bUL
,
489 /* Hash constant words K for SHA-384 and SHA-512: */
490 static const isc_uint64_t K512
[80] = {
491 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
492 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
493 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
494 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
495 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
496 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
497 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
498 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
499 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
500 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
501 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
502 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
503 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
504 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
505 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
506 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
507 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
508 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
509 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
510 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
511 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
512 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
513 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
514 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
515 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
516 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
517 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
518 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
519 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
520 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
521 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
522 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
523 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
524 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
525 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
526 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
527 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
528 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
529 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
530 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
533 /* Initial hash value H for SHA-384: */
534 static const isc_uint64_t sha384_initial_hash_value
[8] = {
535 0xcbbb9d5dc1059ed8ULL
,
536 0x629a292a367cd507ULL
,
537 0x9159015a3070dd17ULL
,
538 0x152fecd8f70e5939ULL
,
539 0x67332667ffc00b31ULL
,
540 0x8eb44a8768581511ULL
,
541 0xdb0c2e0d64f98fa7ULL
,
542 0x47b5481dbefa4fa4ULL
545 /* Initial hash value H for SHA-512: */
546 static const isc_uint64_t sha512_initial_hash_value
[8] = {
547 0x6a09e667f3bcc908ULL
,
548 0xbb67ae8584caa73bULL
,
549 0x3c6ef372fe94f82bULL
,
550 0xa54ff53a5f1d36f1ULL
,
551 0x510e527fade682d1ULL
,
552 0x9b05688c2b3e6c1fULL
,
553 0x1f83d9abfb41bd6bULL
,
554 0x5be0cd19137e2179ULL
559 /*** SHA-224: *********************************************************/
561 isc_sha224_init(isc_sha224_t
*context
) {
562 if (context
== (isc_sha256_t
*)0) {
565 memcpy(context
->state
, sha224_initial_hash_value
,
566 ISC_SHA256_DIGESTLENGTH
);
567 memset(context
->buffer
, 0, ISC_SHA256_BLOCK_LENGTH
);
568 context
->bitcount
= 0;
572 isc_sha224_invalidate(isc_sha224_t
*context
) {
573 memset(context
, 0, sizeof(isc_sha224_t
));
577 isc_sha224_update(isc_sha224_t
*context
, const isc_uint8_t
* data
, size_t len
) {
578 isc_sha256_update((isc_sha256_t
*)context
, data
, len
);
582 isc_sha224_final(isc_uint8_t digest
[], isc_sha224_t
*context
) {
583 isc_uint8_t sha256_digest
[ISC_SHA256_DIGESTLENGTH
];
584 isc_sha256_final(sha256_digest
, (isc_sha256_t
*)context
);
585 memcpy(digest
, sha256_digest
, ISC_SHA224_DIGESTLENGTH
);
586 memset(sha256_digest
, 0, ISC_SHA256_DIGESTLENGTH
);
589 /*** SHA-256: *********************************************************/
591 isc_sha256_init(isc_sha256_t
*context
) {
592 if (context
== (isc_sha256_t
*)0) {
595 memcpy(context
->state
, sha256_initial_hash_value
,
596 ISC_SHA256_DIGESTLENGTH
);
597 memset(context
->buffer
, 0, ISC_SHA256_BLOCK_LENGTH
);
598 context
->bitcount
= 0;
602 isc_sha256_invalidate(isc_sha256_t
*context
) {
603 memset(context
, 0, sizeof(isc_sha256_t
));
606 #ifdef ISC_SHA2_UNROLL_TRANSFORM
608 /* Unrolled SHA-256 round macros: */
610 #if BYTE_ORDER == LITTLE_ENDIAN
612 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
613 REVERSE32(*data++, W256[j]); \
614 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
617 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
621 #else /* BYTE_ORDER == LITTLE_ENDIAN */
623 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
624 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
625 K256[j] + (W256[j] = *data++); \
627 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
630 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
632 #define ROUND256(a,b,c,d,e,f,g,h) \
633 s0 = W256[(j+1)&0x0f]; \
634 s0 = sigma0_256(s0); \
635 s1 = W256[(j+14)&0x0f]; \
636 s1 = sigma1_256(s1); \
637 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
638 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
640 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
643 void isc_sha256_transform(isc_sha256_t
*context
, const isc_uint32_t
* data
) {
644 isc_uint32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
645 isc_uint32_t T1
, *W256
;
648 W256
= (isc_uint32_t
*)context
->buffer
;
650 /* Initialize registers with the prev. intermediate value */
651 a
= context
->state
[0];
652 b
= context
->state
[1];
653 c
= context
->state
[2];
654 d
= context
->state
[3];
655 e
= context
->state
[4];
656 f
= context
->state
[5];
657 g
= context
->state
[6];
658 h
= context
->state
[7];
662 /* Rounds 0 to 15 (unrolled): */
663 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
664 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
665 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
666 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
667 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
668 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
669 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
670 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
673 /* Now for the remaining rounds to 64: */
675 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
676 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
677 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
678 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
679 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
680 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
681 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
682 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
685 /* Compute the current intermediate hash value */
686 context
->state
[0] += a
;
687 context
->state
[1] += b
;
688 context
->state
[2] += c
;
689 context
->state
[3] += d
;
690 context
->state
[4] += e
;
691 context
->state
[5] += f
;
692 context
->state
[6] += g
;
693 context
->state
[7] += h
;
696 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
699 #else /* ISC_SHA2_UNROLL_TRANSFORM */
702 isc_sha256_transform(isc_sha256_t
*context
, const isc_uint32_t
* data
) {
703 isc_uint32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
704 isc_uint32_t T1
, T2
, *W256
;
707 W256
= (isc_uint32_t
*)context
->buffer
;
709 /* Initialize registers with the prev. intermediate value */
710 a
= context
->state
[0];
711 b
= context
->state
[1];
712 c
= context
->state
[2];
713 d
= context
->state
[3];
714 e
= context
->state
[4];
715 f
= context
->state
[5];
716 g
= context
->state
[6];
717 h
= context
->state
[7];
721 #if BYTE_ORDER == LITTLE_ENDIAN
722 /* Copy data while converting to host byte order */
723 REVERSE32(*data
++,W256
[j
]);
724 /* Apply the SHA-256 compression function to update a..h */
725 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
726 #else /* BYTE_ORDER == LITTLE_ENDIAN */
727 /* Apply the SHA-256 compression function to update a..h with copy */
728 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
729 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
730 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
744 /* Part of the message block expansion: */
745 s0
= W256
[(j
+1)&0x0f];
747 s1
= W256
[(j
+14)&0x0f];
750 /* Apply the SHA-256 compression function to update a..h */
751 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
752 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
753 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
766 /* Compute the current intermediate hash value */
767 context
->state
[0] += a
;
768 context
->state
[1] += b
;
769 context
->state
[2] += c
;
770 context
->state
[3] += d
;
771 context
->state
[4] += e
;
772 context
->state
[5] += f
;
773 context
->state
[6] += g
;
774 context
->state
[7] += h
;
777 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
780 #endif /* ISC_SHA2_UNROLL_TRANSFORM */
783 isc_sha256_update(isc_sha256_t
*context
, const isc_uint8_t
*data
, size_t len
) {
784 unsigned int freespace
, usedspace
;
787 /* Calling with no data is valid - we do nothing */
792 REQUIRE(context
!= (isc_sha256_t
*)0 && data
!= (isc_uint8_t
*)0);
794 usedspace
= (unsigned int)((context
->bitcount
>> 3) %
795 ISC_SHA256_BLOCK_LENGTH
);
797 /* Calculate how much free space is available in the buffer */
798 freespace
= ISC_SHA256_BLOCK_LENGTH
- usedspace
;
800 if (len
>= freespace
) {
801 /* Fill the buffer completely and process it */
802 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
803 context
->bitcount
+= freespace
<< 3;
806 isc_sha256_transform(context
,
807 (isc_uint32_t
*)context
->buffer
);
809 /* The buffer is not yet full */
810 memcpy(&context
->buffer
[usedspace
], data
, len
);
811 context
->bitcount
+= len
<< 3;
813 usedspace
= freespace
= 0;
817 while (len
>= ISC_SHA256_BLOCK_LENGTH
) {
818 /* Process as many complete blocks as we can */
819 memcpy(context
->buffer
, data
, ISC_SHA256_BLOCK_LENGTH
);
820 isc_sha256_transform(context
, (isc_uint32_t
*)context
->buffer
);
821 context
->bitcount
+= ISC_SHA256_BLOCK_LENGTH
<< 3;
822 len
-= ISC_SHA256_BLOCK_LENGTH
;
823 data
+= ISC_SHA256_BLOCK_LENGTH
;
826 /* There's left-overs, so save 'em */
827 memcpy(context
->buffer
, data
, len
);
828 context
->bitcount
+= len
<< 3;
831 usedspace
= freespace
= 0;
835 isc_sha256_final(isc_uint8_t digest
[], isc_sha256_t
*context
) {
836 isc_uint32_t
*d
= (isc_uint32_t
*)digest
;
837 unsigned int usedspace
;
840 REQUIRE(context
!= (isc_sha256_t
*)0);
842 /* If no digest buffer is passed, we don't bother doing this: */
843 if (digest
!= (isc_uint8_t
*)0) {
844 usedspace
= (unsigned int)((context
->bitcount
>> 3) %
845 ISC_SHA256_BLOCK_LENGTH
);
846 #if BYTE_ORDER == LITTLE_ENDIAN
847 /* Convert FROM host byte order */
848 REVERSE64(context
->bitcount
,context
->bitcount
);
851 /* Begin padding with a 1 bit: */
852 context
->buffer
[usedspace
++] = 0x80;
854 if (usedspace
<= ISC_SHA256_SHORT_BLOCK_LENGTH
) {
855 /* Set-up for the last transform: */
856 memset(&context
->buffer
[usedspace
], 0,
857 ISC_SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
859 if (usedspace
< ISC_SHA256_BLOCK_LENGTH
) {
860 memset(&context
->buffer
[usedspace
], 0,
861 ISC_SHA256_BLOCK_LENGTH
-
864 /* Do second-to-last transform: */
865 isc_sha256_transform(context
,
866 (isc_uint32_t
*)context
->buffer
);
868 /* And set-up for the last transform: */
869 memset(context
->buffer
, 0,
870 ISC_SHA256_SHORT_BLOCK_LENGTH
);
873 /* Set-up for the last transform: */
874 memset(context
->buffer
, 0, ISC_SHA256_SHORT_BLOCK_LENGTH
);
876 /* Begin padding with a 1 bit: */
877 *context
->buffer
= 0x80;
879 /* Set the bit count: */
880 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA256_SHORT_BLOCK_LENGTH
] = context
->bitcount
;
882 /* Final transform: */
883 isc_sha256_transform(context
, (isc_uint32_t
*)context
->buffer
);
885 #if BYTE_ORDER == LITTLE_ENDIAN
887 /* Convert TO host byte order */
889 for (j
= 0; j
< 8; j
++) {
890 REVERSE32(context
->state
[j
],context
->state
[j
]);
891 *d
++ = context
->state
[j
];
895 memcpy(d
, context
->state
, ISC_SHA256_DIGESTLENGTH
);
899 /* Clean up state data: */
900 memset(context
, 0, sizeof(context
));
904 /*** SHA-512: *********************************************************/
906 isc_sha512_init(isc_sha512_t
*context
) {
907 if (context
== (isc_sha512_t
*)0) {
910 memcpy(context
->state
, sha512_initial_hash_value
,
911 ISC_SHA512_DIGESTLENGTH
);
912 memset(context
->buffer
, 0, ISC_SHA512_BLOCK_LENGTH
);
913 context
->bitcount
[0] = context
->bitcount
[1] = 0;
917 isc_sha512_invalidate(isc_sha512_t
*context
) {
918 memset(context
, 0, sizeof(isc_sha512_t
));
921 #ifdef ISC_SHA2_UNROLL_TRANSFORM
923 /* Unrolled SHA-512 round macros: */
924 #if BYTE_ORDER == LITTLE_ENDIAN
926 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
927 REVERSE64(*data++, W512[j]); \
928 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
931 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
935 #else /* BYTE_ORDER == LITTLE_ENDIAN */
937 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
938 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
939 K512[j] + (W512[j] = *data++); \
941 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
944 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
946 #define ROUND512(a,b,c,d,e,f,g,h) \
947 s0 = W512[(j+1)&0x0f]; \
948 s0 = sigma0_512(s0); \
949 s1 = W512[(j+14)&0x0f]; \
950 s1 = sigma1_512(s1); \
951 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
952 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
954 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
957 void isc_sha512_transform(isc_sha512_t
*context
, const isc_uint64_t
* data
) {
958 isc_uint64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
959 isc_uint64_t T1
, *W512
= (isc_uint64_t
*)context
->buffer
;
962 /* Initialize registers with the prev. intermediate value */
963 a
= context
->state
[0];
964 b
= context
->state
[1];
965 c
= context
->state
[2];
966 d
= context
->state
[3];
967 e
= context
->state
[4];
968 f
= context
->state
[5];
969 g
= context
->state
[6];
970 h
= context
->state
[7];
974 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
975 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
976 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
977 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
978 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
979 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
980 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
981 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
984 /* Now for the remaining rounds up to 79: */
986 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
987 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
988 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
989 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
990 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
991 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
992 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
993 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
996 /* Compute the current intermediate hash value */
997 context
->state
[0] += a
;
998 context
->state
[1] += b
;
999 context
->state
[2] += c
;
1000 context
->state
[3] += d
;
1001 context
->state
[4] += e
;
1002 context
->state
[5] += f
;
1003 context
->state
[6] += g
;
1004 context
->state
[7] += h
;
1007 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
1010 #else /* ISC_SHA2_UNROLL_TRANSFORM */
1013 isc_sha512_transform(isc_sha512_t
*context
, const isc_uint64_t
* data
) {
1014 isc_uint64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
1015 isc_uint64_t T1
, T2
, *W512
= (isc_uint64_t
*)context
->buffer
;
1018 /* Initialize registers with the prev. intermediate value */
1019 a
= context
->state
[0];
1020 b
= context
->state
[1];
1021 c
= context
->state
[2];
1022 d
= context
->state
[3];
1023 e
= context
->state
[4];
1024 f
= context
->state
[5];
1025 g
= context
->state
[6];
1026 h
= context
->state
[7];
1030 #if BYTE_ORDER == LITTLE_ENDIAN
1031 /* Convert TO host byte order */
1032 REVERSE64(*data
++, W512
[j
]);
1033 /* Apply the SHA-512 compression function to update a..h */
1034 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
1035 #else /* BYTE_ORDER == LITTLE_ENDIAN */
1036 /* Apply the SHA-512 compression function to update a..h with copy */
1037 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
1038 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
1039 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
1053 /* Part of the message block expansion: */
1054 s0
= W512
[(j
+1)&0x0f];
1055 s0
= sigma0_512(s0
);
1056 s1
= W512
[(j
+14)&0x0f];
1057 s1
= sigma1_512(s1
);
1059 /* Apply the SHA-512 compression function to update a..h */
1060 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
1061 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
1062 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
1075 /* Compute the current intermediate hash value */
1076 context
->state
[0] += a
;
1077 context
->state
[1] += b
;
1078 context
->state
[2] += c
;
1079 context
->state
[3] += d
;
1080 context
->state
[4] += e
;
1081 context
->state
[5] += f
;
1082 context
->state
[6] += g
;
1083 context
->state
[7] += h
;
1086 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
1089 #endif /* ISC_SHA2_UNROLL_TRANSFORM */
1091 void isc_sha512_update(isc_sha512_t
*context
, const isc_uint8_t
*data
, size_t len
) {
1092 unsigned int freespace
, usedspace
;
1095 /* Calling with no data is valid - we do nothing */
1100 REQUIRE(context
!= (isc_sha512_t
*)0 && data
!= (isc_uint8_t
*)0);
1102 usedspace
= (unsigned int)((context
->bitcount
[0] >> 3) %
1103 ISC_SHA512_BLOCK_LENGTH
);
1104 if (usedspace
> 0) {
1105 /* Calculate how much free space is available in the buffer */
1106 freespace
= ISC_SHA512_BLOCK_LENGTH
- usedspace
;
1108 if (len
>= freespace
) {
1109 /* Fill the buffer completely and process it */
1110 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
1111 ADDINC128(context
->bitcount
, freespace
<< 3);
1114 isc_sha512_transform(context
,
1115 (isc_uint64_t
*)context
->buffer
);
1117 /* The buffer is not yet full */
1118 memcpy(&context
->buffer
[usedspace
], data
, len
);
1119 ADDINC128(context
->bitcount
, len
<< 3);
1121 usedspace
= freespace
= 0;
1125 while (len
>= ISC_SHA512_BLOCK_LENGTH
) {
1126 /* Process as many complete blocks as we can */
1127 memcpy(context
->buffer
, data
, ISC_SHA512_BLOCK_LENGTH
);
1128 isc_sha512_transform(context
, (isc_uint64_t
*)context
->buffer
);
1129 ADDINC128(context
->bitcount
, ISC_SHA512_BLOCK_LENGTH
<< 3);
1130 len
-= ISC_SHA512_BLOCK_LENGTH
;
1131 data
+= ISC_SHA512_BLOCK_LENGTH
;
1134 /* There's left-overs, so save 'em */
1135 memcpy(context
->buffer
, data
, len
);
1136 ADDINC128(context
->bitcount
, len
<< 3);
1139 usedspace
= freespace
= 0;
1142 void isc_sha512_last(isc_sha512_t
*context
) {
1143 unsigned int usedspace
;
1145 usedspace
= (unsigned int)((context
->bitcount
[0] >> 3) %
1146 ISC_SHA512_BLOCK_LENGTH
);
1147 #if BYTE_ORDER == LITTLE_ENDIAN
1148 /* Convert FROM host byte order */
1149 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
1150 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
1152 if (usedspace
> 0) {
1153 /* Begin padding with a 1 bit: */
1154 context
->buffer
[usedspace
++] = 0x80;
1156 if (usedspace
<= ISC_SHA512_SHORT_BLOCK_LENGTH
) {
1157 /* Set-up for the last transform: */
1158 memset(&context
->buffer
[usedspace
], 0,
1159 ISC_SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
1161 if (usedspace
< ISC_SHA512_BLOCK_LENGTH
) {
1162 memset(&context
->buffer
[usedspace
], 0,
1163 ISC_SHA512_BLOCK_LENGTH
- usedspace
);
1165 /* Do second-to-last transform: */
1166 isc_sha512_transform(context
,
1167 (isc_uint64_t
*)context
->buffer
);
1169 /* And set-up for the last transform: */
1170 memset(context
->buffer
, 0, ISC_SHA512_BLOCK_LENGTH
- 2);
1173 /* Prepare for final transform: */
1174 memset(context
->buffer
, 0, ISC_SHA512_SHORT_BLOCK_LENGTH
);
1176 /* Begin padding with a 1 bit: */
1177 *context
->buffer
= 0x80;
1179 /* Store the length of input data (in bits): */
1180 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA512_SHORT_BLOCK_LENGTH
] = context
->bitcount
[1];
1181 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA512_SHORT_BLOCK_LENGTH
+8] = context
->bitcount
[0];
1183 /* Final transform: */
1184 isc_sha512_transform(context
, (isc_uint64_t
*)context
->buffer
);
1187 void isc_sha512_final(isc_uint8_t digest
[], isc_sha512_t
*context
) {
1188 isc_uint64_t
*d
= (isc_uint64_t
*)digest
;
1191 REQUIRE(context
!= (isc_sha512_t
*)0);
1193 /* If no digest buffer is passed, we don't bother doing this: */
1194 if (digest
!= (isc_uint8_t
*)0) {
1195 isc_sha512_last(context
);
1197 /* Save the hash data for output: */
1198 #if BYTE_ORDER == LITTLE_ENDIAN
1200 /* Convert TO host byte order */
1202 for (j
= 0; j
< 8; j
++) {
1203 REVERSE64(context
->state
[j
],context
->state
[j
]);
1204 *d
++ = context
->state
[j
];
1208 memcpy(d
, context
->state
, ISC_SHA512_DIGESTLENGTH
);
1212 /* Zero out state data */
1213 memset(context
, 0, sizeof(context
));
1217 /*** SHA-384: *********************************************************/
1219 isc_sha384_init(isc_sha384_t
*context
) {
1220 if (context
== (isc_sha384_t
*)0) {
1223 memcpy(context
->state
, sha384_initial_hash_value
,
1224 ISC_SHA512_DIGESTLENGTH
);
1225 memset(context
->buffer
, 0, ISC_SHA384_BLOCK_LENGTH
);
1226 context
->bitcount
[0] = context
->bitcount
[1] = 0;
1230 isc_sha384_invalidate(isc_sha384_t
*context
) {
1231 memset(context
, 0, sizeof(isc_sha384_t
));
1235 isc_sha384_update(isc_sha384_t
*context
, const isc_uint8_t
* data
, size_t len
) {
1236 isc_sha512_update((isc_sha512_t
*)context
, data
, len
);
1240 isc_sha384_final(isc_uint8_t digest
[], isc_sha384_t
*context
) {
1241 isc_uint64_t
*d
= (isc_uint64_t
*)digest
;
1244 REQUIRE(context
!= (isc_sha384_t
*)0);
1246 /* If no digest buffer is passed, we don't bother doing this: */
1247 if (digest
!= (isc_uint8_t
*)0) {
1248 isc_sha512_last((isc_sha512_t
*)context
);
1250 /* Save the hash data for output: */
1251 #if BYTE_ORDER == LITTLE_ENDIAN
1253 /* Convert TO host byte order */
1255 for (j
= 0; j
< 6; j
++) {
1256 REVERSE64(context
->state
[j
],context
->state
[j
]);
1257 *d
++ = context
->state
[j
];
1261 memcpy(d
, context
->state
, ISC_SHA384_DIGESTLENGTH
);
1265 /* Zero out state data */
1266 memset(context
, 0, sizeof(context
));
1268 #endif /* !ISC_PLATFORM_OPENSSLHASH */
1271 * Constant used by SHA256/384/512_End() functions for converting the
1272 * digest to a readable hexadecimal character string:
1274 static const char *sha2_hex_digits
= "0123456789abcdef";
1277 isc_sha224_end(isc_sha224_t
*context
, char buffer
[]) {
1278 isc_uint8_t digest
[ISC_SHA224_DIGESTLENGTH
], *d
= digest
;
1282 REQUIRE(context
!= (isc_sha224_t
*)0);
1284 if (buffer
!= (char*)0) {
1285 isc_sha224_final(digest
, context
);
1287 for (i
= 0; i
< ISC_SHA224_DIGESTLENGTH
; i
++) {
1288 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1289 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1294 #ifdef ISC_PLATFORM_OPENSSLHASH
1295 EVP_MD_CTX_cleanup(context
);
1297 memset(context
, 0, sizeof(context
));
1300 memset(digest
, 0, ISC_SHA224_DIGESTLENGTH
);
1305 isc_sha224_data(const isc_uint8_t
*data
, size_t len
,
1306 char digest
[ISC_SHA224_DIGESTSTRINGLENGTH
])
1308 isc_sha224_t context
;
1310 isc_sha224_init(&context
);
1311 isc_sha224_update(&context
, data
, len
);
1312 return (isc_sha224_end(&context
, digest
));
1316 isc_sha256_end(isc_sha256_t
*context
, char buffer
[]) {
1317 isc_uint8_t digest
[ISC_SHA256_DIGESTLENGTH
], *d
= digest
;
1321 REQUIRE(context
!= (isc_sha256_t
*)0);
1323 if (buffer
!= (char*)0) {
1324 isc_sha256_final(digest
, context
);
1326 for (i
= 0; i
< ISC_SHA256_DIGESTLENGTH
; i
++) {
1327 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1328 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1333 #ifdef ISC_PLATFORM_OPENSSLHASH
1334 EVP_MD_CTX_cleanup(context
);
1336 memset(context
, 0, sizeof(context
));
1339 memset(digest
, 0, ISC_SHA256_DIGESTLENGTH
);
1344 isc_sha256_data(const isc_uint8_t
* data
, size_t len
,
1345 char digest
[ISC_SHA256_DIGESTSTRINGLENGTH
])
1347 isc_sha256_t context
;
1349 isc_sha256_init(&context
);
1350 isc_sha256_update(&context
, data
, len
);
1351 return (isc_sha256_end(&context
, digest
));
1355 isc_sha512_end(isc_sha512_t
*context
, char buffer
[]) {
1356 isc_uint8_t digest
[ISC_SHA512_DIGESTLENGTH
], *d
= digest
;
1360 REQUIRE(context
!= (isc_sha512_t
*)0);
1362 if (buffer
!= (char*)0) {
1363 isc_sha512_final(digest
, context
);
1365 for (i
= 0; i
< ISC_SHA512_DIGESTLENGTH
; i
++) {
1366 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1367 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1372 #ifdef ISC_PLATFORM_OPENSSLHASH
1373 EVP_MD_CTX_cleanup(context
);
1375 memset(context
, 0, sizeof(context
));
1378 memset(digest
, 0, ISC_SHA512_DIGESTLENGTH
);
1383 isc_sha512_data(const isc_uint8_t
*data
, size_t len
,
1384 char digest
[ISC_SHA512_DIGESTSTRINGLENGTH
])
1386 isc_sha512_t context
;
1388 isc_sha512_init(&context
);
1389 isc_sha512_update(&context
, data
, len
);
1390 return (isc_sha512_end(&context
, digest
));
1394 isc_sha384_end(isc_sha384_t
*context
, char buffer
[]) {
1395 isc_uint8_t digest
[ISC_SHA384_DIGESTLENGTH
], *d
= digest
;
1399 REQUIRE(context
!= (isc_sha384_t
*)0);
1401 if (buffer
!= (char*)0) {
1402 isc_sha384_final(digest
, context
);
1404 for (i
= 0; i
< ISC_SHA384_DIGESTLENGTH
; i
++) {
1405 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1406 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1411 #ifdef ISC_PLATFORM_OPENSSLHASH
1412 EVP_MD_CTX_cleanup(context
);
1414 memset(context
, 0, sizeof(context
));
1417 memset(digest
, 0, ISC_SHA384_DIGESTLENGTH
);
1422 isc_sha384_data(const isc_uint8_t
*data
, size_t len
,
1423 char digest
[ISC_SHA384_DIGESTSTRINGLENGTH
])
1425 isc_sha384_t context
;
1427 isc_sha384_init(&context
);
1428 isc_sha384_update(&context
, data
, len
);
1429 return (isc_sha384_end(&context
, digest
));