Sync usage with man page.
[netbsd-mini2440.git] / external / bsd / ntp / dist / include / ntp_fp.h
blob63d727ce7c5e41b9c414198f07fff96b98c17f9e
1 /* $NetBSD$ */
3 /*
4 * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic
5 */
7 #ifndef NTP_FP_H
8 #define NTP_FP_H
10 #include "ntp_types.h"
13 * NTP uses two fixed point formats. The first (l_fp) is the "long"
14 * format and is 64 bits long with the decimal between bits 31 and 32.
15 * This is used for time stamps in the NTP packet header (in network
16 * byte order) and for internal computations of offsets (in local host
17 * byte order). We use the same structure for both signed and unsigned
18 * values, which is a big hack but saves rewriting all the operators
19 * twice. Just to confuse this, we also sometimes just carry the
20 * fractional part in calculations, in both signed and unsigned forms.
21 * Anyway, an l_fp looks like:
23 * 0 1 2 3
24 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
25 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
26 * | Integral Part |
27 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 * | Fractional Part |
29 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 typedef struct {
33 union {
34 u_int32 Xl_ui;
35 int32 Xl_i;
36 } Ul_i;
37 union {
38 u_int32 Xl_uf;
39 int32 Xl_f;
40 } Ul_f;
41 } l_fp;
43 #define l_ui Ul_i.Xl_ui /* unsigned integral part */
44 #define l_i Ul_i.Xl_i /* signed integral part */
45 #define l_uf Ul_f.Xl_uf /* unsigned fractional part */
46 #define l_f Ul_f.Xl_f /* signed fractional part */
49 * Fractional precision (of an l_fp) is actually the number of
50 * bits in a long.
52 #define FRACTION_PREC (32)
56 * The second fixed point format is 32 bits, with the decimal between
57 * bits 15 and 16. There is a signed version (s_fp) and an unsigned
58 * version (u_fp). This is used to represent synchronizing distance
59 * and synchronizing dispersion in the NTP packet header (again, in
60 * network byte order) and internally to hold both distance and
61 * dispersion values (in local byte order). In network byte order
62 * it looks like:
64 * 0 1 2 3
65 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
66 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
67 * | Integer Part | Fraction Part |
68 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
71 typedef int32 s_fp;
72 typedef u_int32 u_fp;
75 * A unit second in fp format. Actually 2**(half_the_bits_in_a_long)
77 #define FP_SECOND (0x10000)
80 * Byte order conversions
82 #define HTONS_FP(x) (htonl(x))
83 #define HTONL_FP(h, n) do { (n)->l_ui = htonl((h)->l_ui); \
84 (n)->l_uf = htonl((h)->l_uf); } while (0)
85 #define NTOHS_FP(x) (ntohl(x))
86 #define NTOHL_FP(n, h) do { (h)->l_ui = ntohl((n)->l_ui); \
87 (h)->l_uf = ntohl((n)->l_uf); } while (0)
88 #define NTOHL_MFP(ni, nf, hi, hf) \
89 do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0)
90 #define HTONL_MFP(hi, hf, ni, nf) \
91 do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0)
93 /* funny ones. Converts ts fractions to net order ts */
94 #define HTONL_UF(uf, nts) \
95 do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0)
96 #define HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \
97 if ((f) & 0x80000000) \
98 (nts)->l_i = -1; \
99 else \
100 (nts)->l_i = 0; \
101 } while (0)
104 * Conversions between the two fixed point types
106 #define MFPTOFP(x_i, x_f) (((x_i) >= 0x00010000) ? 0x7fffffff : \
107 (((x_i) <= -0x00010000) ? 0x80000000 : \
108 (((x_i)<<16) | (((x_f)>>16)&0xffff))))
109 #define LFPTOFP(v) MFPTOFP((v)->l_i, (v)->l_f)
111 #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
112 #define FPTOLFP(x, v) (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
114 #define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff)
115 #define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0)
118 * Primitive operations on long fixed point values. If these are
119 * reminiscent of assembler op codes it's only because some may
120 * be replaced by inline assembler for particular machines someday.
121 * These are the (kind of inefficient) run-anywhere versions.
123 #define M_NEG(v_i, v_f) /* v = -v */ \
124 do { \
125 if ((v_f) == 0) \
126 (v_i) = -((s_fp)(v_i)); \
127 else { \
128 (v_f) = -((s_fp)(v_f)); \
129 (v_i) = ~(v_i); \
131 } while(0)
133 #define M_NEGM(r_i, r_f, a_i, a_f) /* r = -a */ \
134 do { \
135 if ((a_f) == 0) { \
136 (r_f) = 0; \
137 (r_i) = -(a_i); \
138 } else { \
139 (r_f) = -(a_f); \
140 (r_i) = ~(a_i); \
142 } while(0)
144 #define M_ADD(r_i, r_f, a_i, a_f) /* r += a */ \
145 do { \
146 register u_int32 lo_tmp; \
147 register u_int32 hi_tmp; \
149 lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
150 hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
151 if (lo_tmp & 0x10000) \
152 hi_tmp++; \
153 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
155 (r_i) += (a_i); \
156 if (hi_tmp & 0x10000) \
157 (r_i)++; \
158 } while (0)
160 #define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \
161 do { \
162 register u_int32 lo_tmp; \
163 register u_int32 hi_tmp; \
165 lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
166 hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
167 if (lo_tmp & 0x10000) \
168 hi_tmp++; \
169 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
171 lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \
172 if (hi_tmp & 0x10000) \
173 lo_tmp++; \
174 hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \
175 if (lo_tmp & 0x10000) \
176 hi_tmp++; \
177 (r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
179 (r_ovr) += (a_ovr); \
180 if (hi_tmp & 0x10000) \
181 (r_ovr)++; \
182 } while (0)
184 #define M_SUB(r_i, r_f, a_i, a_f) /* r -= a */ \
185 do { \
186 register u_int32 lo_tmp; \
187 register u_int32 hi_tmp; \
189 if ((a_f) == 0) { \
190 (r_i) -= (a_i); \
191 } else { \
192 lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \
193 hi_tmp = (((r_f) >> 16) & 0xffff) \
194 + (((-((s_fp)(a_f))) >> 16) & 0xffff); \
195 if (lo_tmp & 0x10000) \
196 hi_tmp++; \
197 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
199 (r_i) += ~(a_i); \
200 if (hi_tmp & 0x10000) \
201 (r_i)++; \
203 } while (0)
205 #define M_RSHIFTU(v_i, v_f) /* v >>= 1, v is unsigned */ \
206 do { \
207 (v_f) = (u_int32)(v_f) >> 1; \
208 if ((v_i) & 01) \
209 (v_f) |= 0x80000000; \
210 (v_i) = (u_int32)(v_i) >> 1; \
211 } while (0)
213 #define M_RSHIFT(v_i, v_f) /* v >>= 1, v is signed */ \
214 do { \
215 (v_f) = (u_int32)(v_f) >> 1; \
216 if ((v_i) & 01) \
217 (v_f) |= 0x80000000; \
218 if ((v_i) & 0x80000000) \
219 (v_i) = ((v_i) >> 1) | 0x80000000; \
220 else \
221 (v_i) = (v_i) >> 1; \
222 } while (0)
224 #define M_LSHIFT(v_i, v_f) /* v <<= 1 */ \
225 do { \
226 (v_i) <<= 1; \
227 if ((v_f) & 0x80000000) \
228 (v_i) |= 0x1; \
229 (v_f) <<= 1; \
230 } while (0)
232 #define M_LSHIFT3(v_ovr, v_i, v_f) /* v <<= 1, with overflow */ \
233 do { \
234 (v_ovr) <<= 1; \
235 if ((v_i) & 0x80000000) \
236 (v_ovr) |= 0x1; \
237 (v_i) <<= 1; \
238 if ((v_f) & 0x80000000) \
239 (v_i) |= 0x1; \
240 (v_f) <<= 1; \
241 } while (0)
243 #define M_ADDUF(r_i, r_f, uf) /* r += uf, uf is u_int32 fraction */ \
244 M_ADD((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
246 #define M_SUBUF(r_i, r_f, uf) /* r -= uf, uf is u_int32 fraction */ \
247 M_SUB((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
249 #define M_ADDF(r_i, r_f, f) /* r += f, f is a int32 fraction */ \
250 do { \
251 if ((f) > 0) \
252 M_ADD((r_i), (r_f), 0, (f)); \
253 else if ((f) < 0) \
254 M_ADD((r_i), (r_f), (-1), (f));\
255 } while(0)
257 #define M_ISNEG(v_i, v_f) /* v < 0 */ \
258 (((v_i) & 0x80000000) != 0)
260 #define M_ISHIS(a_i, a_f, b_i, b_f) /* a >= b unsigned */ \
261 (((u_int32)(a_i)) > ((u_int32)(b_i)) || \
262 ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
264 #define M_ISGEQ(a_i, a_f, b_i, b_f) /* a >= b signed */ \
265 (((int32)(a_i)) > ((int32)(b_i)) || \
266 ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
268 #define M_ISEQU(a_i, a_f, b_i, b_f) /* a == b unsigned */ \
269 ((a_i) == (b_i) && (a_f) == (b_f))
272 * Operations on the long fp format
274 #define L_ADD(r, a) M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
275 #define L_SUB(r, a) M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
276 #define L_NEG(v) M_NEG((v)->l_ui, (v)->l_uf)
277 #define L_ADDUF(r, uf) M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
278 #define L_SUBUF(r, uf) M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
279 #define L_ADDF(r, f) M_ADDF((r)->l_ui, (r)->l_uf, (f))
280 #define L_RSHIFT(v) M_RSHIFT((v)->l_i, (v)->l_uf)
281 #define L_RSHIFTU(v) M_RSHIFTU((v)->l_ui, (v)->l_uf)
282 #define L_LSHIFT(v) M_LSHIFT((v)->l_ui, (v)->l_uf)
283 #define L_CLR(v) ((v)->l_ui = (v)->l_uf = 0)
285 #define L_ISNEG(v) (((v)->l_ui & 0x80000000) != 0)
286 #define L_ISZERO(v) ((v)->l_ui == 0 && (v)->l_uf == 0)
287 #define L_ISHIS(a, b) ((a)->l_ui > (b)->l_ui || \
288 ((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf))
289 #define L_ISGEQ(a, b) ((a)->l_i > (b)->l_i || \
290 ((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf))
291 #define L_ISEQU(a, b) M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
294 * s_fp/double and u_fp/double conversions
296 #define FRIC 65536. /* 2^16 as a double */
297 #define DTOFP(r) ((s_fp)((r) * FRIC))
298 #define DTOUFP(r) ((u_fp)((r) * FRIC))
299 #define FPTOD(r) ((double)(r) / FRIC)
302 * l_fp/double conversions
304 #define FRAC 4294967296. /* 2^32 as a double */
305 #define M_DTOLFP(d, r_i, r_uf) /* double to l_fp */ \
306 do { \
307 register double d_tmp; \
309 d_tmp = (d); \
310 if (d_tmp < 0) { \
311 d_tmp = -d_tmp; \
312 (r_i) = (int32)(d_tmp); \
313 (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
314 M_NEG((r_i), (r_uf)); \
315 } else { \
316 (r_i) = (int32)(d_tmp); \
317 (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
319 } while (0)
320 #define M_LFPTOD(r_i, r_uf, d) /* l_fp to double */ \
321 do { \
322 register l_fp l_tmp; \
324 l_tmp.l_i = (r_i); \
325 l_tmp.l_f = (r_uf); \
326 if (l_tmp.l_i < 0) { \
327 M_NEG(l_tmp.l_i, l_tmp.l_uf); \
328 (d) = -((double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC); \
329 } else { \
330 (d) = (double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC; \
332 } while (0)
333 #define DTOLFP(d, v) M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
334 #define LFPTOD(v, d) M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
337 * Prototypes
339 extern char * dofptoa (u_fp, int, short, int);
340 extern char * dolfptoa (u_long, u_long, int, short, int);
342 extern int atolfp (const char *, l_fp *);
343 extern int buftvtots (const char *, l_fp *);
344 extern char * fptoa (s_fp, short);
345 extern char * fptoms (s_fp, short);
346 extern int hextolfp (const char *, l_fp *);
347 extern void gpstolfp (int, int, unsigned long, l_fp *);
348 extern int mstolfp (const char *, l_fp *);
349 extern char * prettydate (l_fp *);
350 extern char * gmprettydate (l_fp *);
351 extern char * uglydate (l_fp *);
352 extern void mfp_mul (int32 *, u_int32 *, int32, u_int32, int32, u_int32);
354 extern void get_systime (l_fp *);
355 extern int step_systime (double);
356 extern int adj_systime (double);
358 extern struct tm * ntp2unix_tm (u_long ntp, int local);
360 #define lfptoa(fpv, ndec) mfptoa((fpv)->l_ui, (fpv)->l_uf, (ndec))
361 #define lfptoms(fpv, ndec) mfptoms((fpv)->l_ui, (fpv)->l_uf, (ndec))
363 #define stoa(addr) socktoa(addr)
364 #define ntoa(addr) stoa(addr)
365 #define stohost(addr) socktohost(addr)
367 #define ufptoa(fpv, ndec) dofptoa((fpv), 0, (ndec), 0)
368 #define ufptoms(fpv, ndec) dofptoa((fpv), 0, (ndec), 1)
369 #define ulfptoa(fpv, ndec) dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 0)
370 #define ulfptoms(fpv, ndec) dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 1)
371 #define umfptoa(fpi, fpf, ndec) dolfptoa((fpi), (fpf), 0, (ndec), 0)
373 #endif /* NTP_FP_H */