Sync usage with man page.
[netbsd-mini2440.git] / external / bsd / ntp / dist / ntpd / refclock_wwv.c
blob1963cdea78f86a53647c3f2dd16553bb625353ee
1 /* $NetBSD$ */
3 /*
4 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
5 */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
10 #if defined(REFCLOCK) && defined(CLOCK_WWV)
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
17 #include "audio.h"
19 #include <stdio.h>
20 #include <ctype.h>
21 #include <math.h>
22 #ifdef HAVE_SYS_IOCTL_H
23 # include <sys/ioctl.h>
24 #endif /* HAVE_SYS_IOCTL_H */
26 #define ICOM 1
28 #ifdef ICOM
29 #include "icom.h"
30 #endif /* ICOM */
33 * Audio WWV/H demodulator/decoder
35 * This driver synchronizes the computer time using data encoded in
36 * radio transmissions from NIST time/frequency stations WWV in Boulder,
37 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
38 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
39 * ordinary AM shortwave receiver can be tuned manually to one of these
40 * frequencies or, in the case of ICOM receivers, the receiver can be
41 * tuned automatically using this program as propagation conditions
42 * change throughout the weasons, both day and night.
44 * The driver requires an audio codec or sound card with sampling rate 8
45 * kHz and mu-law companding. This is the same standard as used by the
46 * telephone industry and is supported by most hardware and operating
47 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
48 * implementation, only one audio driver and codec can be supported on a
49 * single machine.
51 * The demodulation and decoding algorithms used in this driver are
52 * based on those developed for the TAPR DSP93 development board and the
53 * TI 320C25 digital signal processor described in: Mills, D.L. A
54 * precision radio clock for WWV transmissions. Electrical Engineering
55 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
56 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
57 * in this report have been modified somewhat to improve performance
58 * under weak signal conditions and to provide an automatic station
59 * identification feature.
61 * The ICOM code is normally compiled in the driver. It isn't used,
62 * unless the mode keyword on the server configuration command specifies
63 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
64 * debug level is greater than one.
66 * Fudge factors
68 * Fudge flag4 causes the dubugging output described above to be
69 * recorded in the clockstats file. Fudge flag2 selects the audio input
70 * port, where 0 is the mike port (default) and 1 is the line-in port.
71 * It does not seem useful to select the compact disc player port. Fudge
72 * flag3 enables audio monitoring of the input signal. For this purpose,
73 * the monitor gain is set to a default value.
75 * CEVNT_BADTIME invalid date or time
76 * CEVNT_PROP propagation failure - no stations heard
77 * CEVNT_TIMEOUT timeout (see newgame() below)
80 * General definitions. These ordinarily do not need to be changed.
82 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
83 #define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
84 #define PRECISION (-10) /* precision assumed (about 1 ms) */
85 #define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
86 #define SECOND 8000 /* second epoch (sample rate) (Hz) */
87 #define MINUTE (SECOND * 60) /* minute epoch */
88 #define OFFSET 128 /* companded sample offset */
89 #define SIZE 256 /* decompanding table size */
90 #define MAXAMP 6000. /* max signal level reference */
91 #define MAXCLP 100 /* max clips above reference per s */
92 #define MAXSNR 40. /* max SNR reference */
93 #define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */
94 #define DATCYC 170 /* data filter cycles */
95 #define DATSIZ (DATCYC * MS) /* data filter size */
96 #define SYNCYC 800 /* minute filter cycles */
97 #define SYNSIZ (SYNCYC * MS) /* minute filter size */
98 #define TCKCYC 5 /* tick filter cycles */
99 #define TCKSIZ (TCKCYC * MS) /* tick filter size */
100 #define NCHAN 5 /* number of radio channels */
101 #define AUDIO_PHI 5e-6 /* dispersion growth factor */
102 #define TBUF 128 /* max monitor line length */
105 * Tunable parameters. The DGAIN parameter can be changed to fit the
106 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
107 * is transmitted at about 20 percent percent modulation; the matched
108 * filter boosts it by a factor of 17 and the receiver response does
109 * what it does. The compromise value works for ICOM radios. If the
110 * radio is not tunable, the DCHAN parameter can be changed to fit the
111 * expected best propagation frequency: higher if further from the
112 * transmitter, lower if nearer. The compromise value works for the US
113 * right coast.
115 #define DCHAN 3 /* default radio channel (15 Mhz) */
116 #define DGAIN 5. /* subcarrier gain */
119 * General purpose status bits (status)
121 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
122 * on signal loss. SSYNC is set when the second sync pulse has been
123 * acquired and cleared by signal loss. MSYNC is set when the minute
124 * sync pulse has been acquired. DSYNC is set when the units digit has
125 * has reached the threshold and INSYNC is set when all nine digits have
126 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
127 * only by timeout, upon which the driver starts over from scratch.
129 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
130 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
131 * LEPSEC is set during the last minute of the leap day. At the end of
132 * this minute the driver inserts second 60 in the seconds state machine
133 * and the minute sync slips a second.
135 #define MSYNC 0x0001 /* minute epoch sync */
136 #define SSYNC 0x0002 /* second epoch sync */
137 #define DSYNC 0x0004 /* minute units sync */
138 #define INSYNC 0x0008 /* clock synchronized */
139 #define FGATE 0x0010 /* frequency gate */
140 #define DGATE 0x0020 /* data pulse amplitude error */
141 #define BGATE 0x0040 /* data pulse width error */
142 #define METRIC 0x0080 /* one or more stations heard */
143 #define LEPSEC 0x1000 /* leap minute */
146 * Station scoreboard bits
148 * These are used to establish the signal quality for each of the five
149 * frequencies and two stations.
151 #define SELV 0x0100 /* WWV station select */
152 #define SELH 0x0200 /* WWVH station select */
155 * Alarm status bits (alarm)
157 * These bits indicate various alarm conditions, which are decoded to
158 * form the quality character included in the timecode.
160 #define CMPERR 0x1 /* digit or misc bit compare error */
161 #define LOWERR 0x2 /* low bit or digit amplitude or SNR */
162 #define NINERR 0x4 /* less than nine digits in minute */
163 #define SYNERR 0x8 /* not tracking second sync */
166 * Watchcat timeouts (watch)
168 * If these timeouts expire, the status bits are mashed to zero and the
169 * driver starts from scratch. Suitably more refined procedures may be
170 * developed in future. All these are in minutes.
172 #define ACQSN 6 /* station acquisition timeout */
173 #define DATA 15 /* unit minutes timeout */
174 #define SYNCH 40 /* station sync timeout */
175 #define PANIC (2 * 1440) /* panic timeout */
178 * Thresholds. These establish the minimum signal level, minimum SNR and
179 * maximum jitter thresholds which establish the error and false alarm
180 * rates of the driver. The values defined here may be on the
181 * adventurous side in the interest of the highest sensitivity.
183 #define MTHR 13. /* minute sync gate (percent) */
184 #define TTHR 50. /* minute sync threshold (percent) */
185 #define AWND 20 /* minute sync jitter threshold (ms) */
186 #define ATHR 2500. /* QRZ minute sync threshold */
187 #define ASNR 20. /* QRZ minute sync SNR threshold (dB) */
188 #define QTHR 2500. /* QSY minute sync threshold */
189 #define QSNR 20. /* QSY minute sync SNR threshold (dB) */
190 #define STHR 2500. /* second sync threshold */
191 #define SSNR 15. /* second sync SNR threshold (dB) */
192 #define SCMP 10 /* second sync compare threshold */
193 #define DTHR 1000. /* bit threshold */
194 #define DSNR 10. /* bit SNR threshold (dB) */
195 #define AMIN 3 /* min bit count */
196 #define AMAX 6 /* max bit count */
197 #define BTHR 1000. /* digit threshold */
198 #define BSNR 3. /* digit likelihood threshold (dB) */
199 #define BCMP 3 /* digit compare threshold */
200 #define MAXERR 40 /* maximum error alarm */
203 * Tone frequency definitions. The increments are for 4.5-deg sine
204 * table.
206 #define MS (SECOND / 1000) /* samples per millisecond */
207 #define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
208 #define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
209 #define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
212 * Acquisition and tracking time constants
214 #define MINAVG 8 /* min averaging time */
215 #define MAXAVG 1024 /* max averaging time */
216 #define FCONST 3 /* frequency time constant */
217 #define TCONST 16 /* data bit/digit time constant */
220 * Miscellaneous status bits (misc)
222 * These bits correspond to designated bits in the WWV/H timecode. The
223 * bit probabilities are exponentially averaged over several minutes and
224 * processed by a integrator and threshold.
226 #define DUT1 0x01 /* 56 DUT .1 */
227 #define DUT2 0x02 /* 57 DUT .2 */
228 #define DUT4 0x04 /* 58 DUT .4 */
229 #define DUTS 0x08 /* 50 DUT sign */
230 #define DST1 0x10 /* 55 DST1 leap warning */
231 #define DST2 0x20 /* 2 DST2 DST1 delayed one day */
232 #define SECWAR 0x40 /* 3 leap second warning */
235 * The on-time synchronization point is the positive-going zero crossing
236 * of the first cycle of the 5-ms second pulse. The IIR baseband filter
237 * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
238 * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
239 * causes was determined by calibrating to a PPS signal from a GPS
240 * receiver. The additional propagation delay specific to each receiver
241 * location can be programmed in the fudge time1 and time2 values for
242 * WWV and WWVH, respectively.
244 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
245 * generally within .02 ms short-term with .02 ms jitter. The long-term
246 * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
247 * The processor load due to the driver is 5.8 percent.
249 #define PDELAY ((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
252 * Table of sine values at 4.5-degree increments. This is used by the
253 * synchronous matched filter demodulators.
255 double sintab[] = {
256 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */
257 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */
258 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */
259 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */
260 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */
261 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */
262 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */
263 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */
264 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */
265 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */
266 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
267 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
268 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
269 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
270 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
271 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
272 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
273 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
274 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
275 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
276 0.000000e+00}; /* 80 */
279 * Decoder operations at the end of each second are driven by a state
280 * machine. The transition matrix consists of a dispatch table indexed
281 * by second number. Each entry in the table contains a case switch
282 * number and argument.
284 struct progx {
285 int sw; /* case switch number */
286 int arg; /* argument */
290 * Case switch numbers
292 #define IDLE 0 /* no operation */
293 #define COEF 1 /* BCD bit */
294 #define COEF1 2 /* BCD bit for minute unit */
295 #define COEF2 3 /* BCD bit not used */
296 #define DECIM9 4 /* BCD digit 0-9 */
297 #define DECIM6 5 /* BCD digit 0-6 */
298 #define DECIM3 6 /* BCD digit 0-3 */
299 #define DECIM2 7 /* BCD digit 0-2 */
300 #define MSCBIT 8 /* miscellaneous bit */
301 #define MSC20 9 /* miscellaneous bit */
302 #define MSC21 10 /* QSY probe channel */
303 #define MIN1 11 /* latch time */
304 #define MIN2 12 /* leap second */
305 #define SYNC2 13 /* latch minute sync pulse */
306 #define SYNC3 14 /* latch data pulse */
309 * Offsets in decoding matrix
311 #define MN 0 /* minute digits (2) */
312 #define HR 2 /* hour digits (2) */
313 #define DA 4 /* day digits (3) */
314 #define YR 7 /* year digits (2) */
316 struct progx progx[] = {
317 {SYNC2, 0}, /* 0 latch minute sync pulse */
318 {SYNC3, 0}, /* 1 latch data pulse */
319 {MSCBIT, DST2}, /* 2 dst2 */
320 {MSCBIT, SECWAR}, /* 3 lw */
321 {COEF, 0}, /* 4 1 year units */
322 {COEF, 1}, /* 5 2 */
323 {COEF, 2}, /* 6 4 */
324 {COEF, 3}, /* 7 8 */
325 {DECIM9, YR}, /* 8 */
326 {IDLE, 0}, /* 9 p1 */
327 {COEF1, 0}, /* 10 1 minute units */
328 {COEF1, 1}, /* 11 2 */
329 {COEF1, 2}, /* 12 4 */
330 {COEF1, 3}, /* 13 8 */
331 {DECIM9, MN}, /* 14 */
332 {COEF, 0}, /* 15 10 minute tens */
333 {COEF, 1}, /* 16 20 */
334 {COEF, 2}, /* 17 40 */
335 {COEF2, 3}, /* 18 80 (not used) */
336 {DECIM6, MN + 1}, /* 19 p2 */
337 {COEF, 0}, /* 20 1 hour units */
338 {COEF, 1}, /* 21 2 */
339 {COEF, 2}, /* 22 4 */
340 {COEF, 3}, /* 23 8 */
341 {DECIM9, HR}, /* 24 */
342 {COEF, 0}, /* 25 10 hour tens */
343 {COEF, 1}, /* 26 20 */
344 {COEF2, 2}, /* 27 40 (not used) */
345 {COEF2, 3}, /* 28 80 (not used) */
346 {DECIM2, HR + 1}, /* 29 p3 */
347 {COEF, 0}, /* 30 1 day units */
348 {COEF, 1}, /* 31 2 */
349 {COEF, 2}, /* 32 4 */
350 {COEF, 3}, /* 33 8 */
351 {DECIM9, DA}, /* 34 */
352 {COEF, 0}, /* 35 10 day tens */
353 {COEF, 1}, /* 36 20 */
354 {COEF, 2}, /* 37 40 */
355 {COEF, 3}, /* 38 80 */
356 {DECIM9, DA + 1}, /* 39 p4 */
357 {COEF, 0}, /* 40 100 day hundreds */
358 {COEF, 1}, /* 41 200 */
359 {COEF2, 2}, /* 42 400 (not used) */
360 {COEF2, 3}, /* 43 800 (not used) */
361 {DECIM3, DA + 2}, /* 44 */
362 {IDLE, 0}, /* 45 */
363 {IDLE, 0}, /* 46 */
364 {IDLE, 0}, /* 47 */
365 {IDLE, 0}, /* 48 */
366 {IDLE, 0}, /* 49 p5 */
367 {MSCBIT, DUTS}, /* 50 dut+- */
368 {COEF, 0}, /* 51 10 year tens */
369 {COEF, 1}, /* 52 20 */
370 {COEF, 2}, /* 53 40 */
371 {COEF, 3}, /* 54 80 */
372 {MSC20, DST1}, /* 55 dst1 */
373 {MSCBIT, DUT1}, /* 56 0.1 dut */
374 {MSCBIT, DUT2}, /* 57 0.2 */
375 {MSC21, DUT4}, /* 58 0.4 QSY probe channel */
376 {MIN1, 0}, /* 59 p6 latch time */
377 {MIN2, 0} /* 60 leap second */
381 * BCD coefficients for maximum-likelihood digit decode
383 #define P15 1. /* max positive number */
384 #define N15 -1. /* max negative number */
387 * Digits 0-9
389 #define P9 (P15 / 4) /* mark (+1) */
390 #define N9 (N15 / 4) /* space (-1) */
392 double bcd9[][4] = {
393 {N9, N9, N9, N9}, /* 0 */
394 {P9, N9, N9, N9}, /* 1 */
395 {N9, P9, N9, N9}, /* 2 */
396 {P9, P9, N9, N9}, /* 3 */
397 {N9, N9, P9, N9}, /* 4 */
398 {P9, N9, P9, N9}, /* 5 */
399 {N9, P9, P9, N9}, /* 6 */
400 {P9, P9, P9, N9}, /* 7 */
401 {N9, N9, N9, P9}, /* 8 */
402 {P9, N9, N9, P9}, /* 9 */
403 {0, 0, 0, 0} /* backstop */
407 * Digits 0-6 (minute tens)
409 #define P6 (P15 / 3) /* mark (+1) */
410 #define N6 (N15 / 3) /* space (-1) */
412 double bcd6[][4] = {
413 {N6, N6, N6, 0}, /* 0 */
414 {P6, N6, N6, 0}, /* 1 */
415 {N6, P6, N6, 0}, /* 2 */
416 {P6, P6, N6, 0}, /* 3 */
417 {N6, N6, P6, 0}, /* 4 */
418 {P6, N6, P6, 0}, /* 5 */
419 {N6, P6, P6, 0}, /* 6 */
420 {0, 0, 0, 0} /* backstop */
424 * Digits 0-3 (day hundreds)
426 #define P3 (P15 / 2) /* mark (+1) */
427 #define N3 (N15 / 2) /* space (-1) */
429 double bcd3[][4] = {
430 {N3, N3, 0, 0}, /* 0 */
431 {P3, N3, 0, 0}, /* 1 */
432 {N3, P3, 0, 0}, /* 2 */
433 {P3, P3, 0, 0}, /* 3 */
434 {0, 0, 0, 0} /* backstop */
438 * Digits 0-2 (hour tens)
440 #define P2 (P15 / 2) /* mark (+1) */
441 #define N2 (N15 / 2) /* space (-1) */
443 double bcd2[][4] = {
444 {N2, N2, 0, 0}, /* 0 */
445 {P2, N2, 0, 0}, /* 1 */
446 {N2, P2, 0, 0}, /* 2 */
447 {0, 0, 0, 0} /* backstop */
451 * DST decode (DST2 DST1) for prettyprint
453 char dstcod[] = {
454 'S', /* 00 standard time */
455 'I', /* 01 set clock ahead at 0200 local */
456 'O', /* 10 set clock back at 0200 local */
457 'D' /* 11 daylight time */
461 * The decoding matrix consists of nine row vectors, one for each digit
462 * of the timecode. The digits are stored from least to most significant
463 * order. The maximum-likelihood timecode is formed from the digits
464 * corresponding to the maximum-likelihood values reading in the
465 * opposite order: yy ddd hh:mm.
467 struct decvec {
468 int radix; /* radix (3, 4, 6, 10) */
469 int digit; /* current clock digit */
470 int count; /* match count */
471 double digprb; /* max digit probability */
472 double digsnr; /* likelihood function (dB) */
473 double like[10]; /* likelihood integrator 0-9 */
477 * The station structure (sp) is used to acquire the minute pulse from
478 * WWV and/or WWVH. These stations are distinguished by the frequency
479 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
480 * Hz for WWVH. Other than frequency, the format is the same.
482 struct sync {
483 double epoch; /* accumulated epoch differences */
484 double maxeng; /* sync max energy */
485 double noieng; /* sync noise energy */
486 long pos; /* max amplitude position */
487 long lastpos; /* last max position */
488 long mepoch; /* minute synch epoch */
490 double amp; /* sync signal */
491 double syneng; /* sync signal max */
492 double synmax; /* sync signal max latched at 0 s */
493 double synsnr; /* sync signal SNR */
494 double metric; /* signal quality metric */
495 int reach; /* reachability register */
496 int count; /* bit counter */
497 int select; /* select bits */
498 char refid[5]; /* reference identifier */
502 * The channel structure (cp) is used to mitigate between channels.
504 struct chan {
505 int gain; /* audio gain */
506 struct sync wwv; /* wwv station */
507 struct sync wwvh; /* wwvh station */
511 * WWV unit control structure (up)
513 struct wwvunit {
514 l_fp timestamp; /* audio sample timestamp */
515 l_fp tick; /* audio sample increment */
516 double phase, freq; /* logical clock phase and frequency */
517 double monitor; /* audio monitor point */
518 double pdelay; /* propagation delay (s) */
519 #ifdef ICOM
520 int fd_icom; /* ICOM file descriptor */
521 #endif /* ICOM */
522 int errflg; /* error flags */
523 int watch; /* watchcat */
526 * Audio codec variables
528 double comp[SIZE]; /* decompanding table */
529 int port; /* codec port */
530 int gain; /* codec gain */
531 int mongain; /* codec monitor gain */
532 int clipcnt; /* sample clipped count */
535 * Variables used to establish basic system timing
537 int avgint; /* master time constant */
538 int yepoch; /* sync epoch */
539 int repoch; /* buffered sync epoch */
540 double epomax; /* second sync amplitude */
541 double eposnr; /* second sync SNR */
542 double irig; /* data I channel amplitude */
543 double qrig; /* data Q channel amplitude */
544 int datapt; /* 100 Hz ramp */
545 double datpha; /* 100 Hz VFO control */
546 int rphase; /* second sample counter */
547 long mphase; /* minute sample counter */
550 * Variables used to mitigate which channel to use
552 struct chan mitig[NCHAN]; /* channel data */
553 struct sync *sptr; /* station pointer */
554 int dchan; /* data channel */
555 int schan; /* probe channel */
556 int achan; /* active channel */
559 * Variables used by the clock state machine
561 struct decvec decvec[9]; /* decoding matrix */
562 int rsec; /* seconds counter */
563 int digcnt; /* count of digits synchronized */
566 * Variables used to estimate signal levels and bit/digit
567 * probabilities
569 double datsig; /* data signal max */
570 double datsnr; /* data signal SNR (dB) */
573 * Variables used to establish status and alarm conditions
575 int status; /* status bits */
576 int alarm; /* alarm flashers */
577 int misc; /* miscellaneous timecode bits */
578 int errcnt; /* data bit error counter */
582 * Function prototypes
584 static int wwv_start (int, struct peer *);
585 static void wwv_shutdown (int, struct peer *);
586 static void wwv_receive (struct recvbuf *);
587 static void wwv_poll (int, struct peer *);
590 * More function prototypes
592 static void wwv_epoch (struct peer *);
593 static void wwv_rf (struct peer *, double);
594 static void wwv_endpoc (struct peer *, int);
595 static void wwv_rsec (struct peer *, double);
596 static void wwv_qrz (struct peer *, struct sync *, int);
597 static void wwv_corr4 (struct peer *, struct decvec *,
598 double [], double [][4]);
599 static void wwv_gain (struct peer *);
600 static void wwv_tsec (struct peer *);
601 static int timecode (struct wwvunit *, char *);
602 static double wwv_snr (double, double);
603 static int carry (struct decvec *);
604 static int wwv_newchan (struct peer *);
605 static void wwv_newgame (struct peer *);
606 static double wwv_metric (struct sync *);
607 static void wwv_clock (struct peer *);
608 #ifdef ICOM
609 static int wwv_qsy (struct peer *, int);
610 #endif /* ICOM */
612 static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
615 * Transfer vector
617 struct refclock refclock_wwv = {
618 wwv_start, /* start up driver */
619 wwv_shutdown, /* shut down driver */
620 wwv_poll, /* transmit poll message */
621 noentry, /* not used (old wwv_control) */
622 noentry, /* initialize driver (not used) */
623 noentry, /* not used (old wwv_buginfo) */
624 NOFLAGS /* not used */
629 * wwv_start - open the devices and initialize data for processing
631 static int
632 wwv_start(
633 int unit, /* instance number (used by PCM) */
634 struct peer *peer /* peer structure pointer */
637 struct refclockproc *pp;
638 struct wwvunit *up;
639 #ifdef ICOM
640 int temp;
641 #endif /* ICOM */
644 * Local variables
646 int fd; /* file descriptor */
647 int i; /* index */
648 double step; /* codec adjustment */
651 * Open audio device
653 fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
654 if (fd < 0)
655 return (0);
656 #ifdef DEBUG
657 if (debug)
658 audio_show();
659 #endif /* DEBUG */
662 * Allocate and initialize unit structure
664 if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
665 close(fd);
666 return (0);
668 memset(up, 0, sizeof(struct wwvunit));
669 pp = peer->procptr;
670 pp->unitptr = (caddr_t)up;
671 pp->io.clock_recv = wwv_receive;
672 pp->io.srcclock = (caddr_t)peer;
673 pp->io.datalen = 0;
674 pp->io.fd = fd;
675 if (!io_addclock(&pp->io)) {
676 close(fd);
677 free(up);
678 return (0);
682 * Initialize miscellaneous variables
684 peer->precision = PRECISION;
685 pp->clockdesc = DESCRIPTION;
688 * The companded samples are encoded sign-magnitude. The table
689 * contains all the 256 values in the interest of speed.
691 up->comp[0] = up->comp[OFFSET] = 0.;
692 up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
693 up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
694 step = 2.;
695 for (i = 3; i < OFFSET; i++) {
696 up->comp[i] = up->comp[i - 1] + step;
697 up->comp[OFFSET + i] = -up->comp[i];
698 if (i % 16 == 0)
699 step *= 2.;
701 DTOLFP(1. / SECOND, &up->tick);
704 * Initialize the decoding matrix with the radix for each digit
705 * position.
707 up->decvec[MN].radix = 10; /* minutes */
708 up->decvec[MN + 1].radix = 6;
709 up->decvec[HR].radix = 10; /* hours */
710 up->decvec[HR + 1].radix = 3;
711 up->decvec[DA].radix = 10; /* days */
712 up->decvec[DA + 1].radix = 10;
713 up->decvec[DA + 2].radix = 4;
714 up->decvec[YR].radix = 10; /* years */
715 up->decvec[YR + 1].radix = 10;
717 #ifdef ICOM
719 * Initialize autotune if available. Note that the ICOM select
720 * code must be less than 128, so the high order bit can be used
721 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
722 * we don't complain if the ICOM device is not there; but, if it
723 * is, the radio better be working.
725 temp = 0;
726 #ifdef DEBUG
727 if (debug > 1)
728 temp = P_TRACE;
729 #endif /* DEBUG */
730 if (peer->ttl != 0) {
731 if (peer->ttl & 0x80)
732 up->fd_icom = icom_init("/dev/icom", B1200,
733 temp);
734 else
735 up->fd_icom = icom_init("/dev/icom", B9600,
736 temp);
738 if (up->fd_icom > 0) {
739 if (wwv_qsy(peer, DCHAN) != 0) {
740 msyslog(LOG_NOTICE, "icom: radio not found");
741 close(up->fd_icom);
742 up->fd_icom = 0;
743 } else {
744 msyslog(LOG_NOTICE, "icom: autotune enabled");
747 #endif /* ICOM */
750 * Let the games begin.
752 wwv_newgame(peer);
753 return (1);
758 * wwv_shutdown - shut down the clock
760 static void
761 wwv_shutdown(
762 int unit, /* instance number (not used) */
763 struct peer *peer /* peer structure pointer */
766 struct refclockproc *pp;
767 struct wwvunit *up;
769 pp = peer->procptr;
770 up = (struct wwvunit *)pp->unitptr;
771 if (up == NULL)
772 return;
774 io_closeclock(&pp->io);
775 #ifdef ICOM
776 if (up->fd_icom > 0)
777 close(up->fd_icom);
778 #endif /* ICOM */
779 free(up);
784 * wwv_receive - receive data from the audio device
786 * This routine reads input samples and adjusts the logical clock to
787 * track the A/D sample clock by dropping or duplicating codec samples.
788 * It also controls the A/D signal level with an AGC loop to mimimize
789 * quantization noise and avoid overload.
791 static void
792 wwv_receive(
793 struct recvbuf *rbufp /* receive buffer structure pointer */
796 struct peer *peer;
797 struct refclockproc *pp;
798 struct wwvunit *up;
801 * Local variables
803 double sample; /* codec sample */
804 u_char *dpt; /* buffer pointer */
805 int bufcnt; /* buffer counter */
806 l_fp ltemp;
808 peer = (struct peer *)rbufp->recv_srcclock;
809 pp = peer->procptr;
810 up = (struct wwvunit *)pp->unitptr;
813 * Main loop - read until there ain't no more. Note codec
814 * samples are bit-inverted.
816 DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
817 L_SUB(&rbufp->recv_time, &ltemp);
818 up->timestamp = rbufp->recv_time;
819 dpt = rbufp->recv_buffer;
820 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
821 sample = up->comp[~*dpt++ & 0xff];
824 * Clip noise spikes greater than MAXAMP (6000) and
825 * record the number of clips to be used later by the
826 * AGC.
828 if (sample > MAXAMP) {
829 sample = MAXAMP;
830 up->clipcnt++;
831 } else if (sample < -MAXAMP) {
832 sample = -MAXAMP;
833 up->clipcnt++;
837 * Variable frequency oscillator. The codec oscillator
838 * runs at the nominal rate of 8000 samples per second,
839 * or 125 us per sample. A frequency change of one unit
840 * results in either duplicating or deleting one sample
841 * per second, which results in a frequency change of
842 * 125 PPM.
844 up->phase += (up->freq + clock_codec) / SECOND;
845 if (up->phase >= .5) {
846 up->phase -= 1.;
847 } else if (up->phase < -.5) {
848 up->phase += 1.;
849 wwv_rf(peer, sample);
850 wwv_rf(peer, sample);
851 } else {
852 wwv_rf(peer, sample);
854 L_ADD(&up->timestamp, &up->tick);
858 * Set the input port and monitor gain for the next buffer.
860 if (pp->sloppyclockflag & CLK_FLAG2)
861 up->port = 2;
862 else
863 up->port = 1;
864 if (pp->sloppyclockflag & CLK_FLAG3)
865 up->mongain = MONGAIN;
866 else
867 up->mongain = 0;
872 * wwv_poll - called by the transmit procedure
874 * This routine keeps track of status. If no offset samples have been
875 * processed during a poll interval, a timeout event is declared. If
876 * errors have have occurred during the interval, they are reported as
877 * well.
879 static void
880 wwv_poll(
881 int unit, /* instance number (not used) */
882 struct peer *peer /* peer structure pointer */
885 struct refclockproc *pp;
886 struct wwvunit *up;
888 pp = peer->procptr;
889 up = (struct wwvunit *)pp->unitptr;
890 if (up->errflg)
891 refclock_report(peer, up->errflg);
892 up->errflg = 0;
893 pp->polls++;
898 * wwv_rf - process signals and demodulate to baseband
900 * This routine grooms and filters decompanded raw audio samples. The
901 * output signal is the 100-Hz filtered baseband data signal in
902 * quadrature phase. The routine also determines the minute synch epoch,
903 * as well as certain signal maxima, minima and related values.
905 * There are two 1-s ramps used by this program. Both count the 8000
906 * logical clock samples spanning exactly one second. The epoch ramp
907 * counts the samples starting at an arbitrary time. The rphase ramp
908 * counts the samples starting at the 5-ms second sync pulse found
909 * during the epoch ramp.
911 * There are two 1-m ramps used by this program. The mphase ramp counts
912 * the 480,000 logical clock samples spanning exactly one minute and
913 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
914 * the minute starting at the 800-ms minute sync pulse found during the
915 * mphase ramp. The rsec ramp drives the seconds state machine to
916 * determine the bits and digits of the timecode.
918 * Demodulation operations are based on three synthesized quadrature
919 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
920 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
921 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
922 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
923 * at 1200 Hz). Two additional matched filters are switched in
924 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
925 * WWVH second sync signal (6 cycles at 1200 Hz).
927 static void
928 wwv_rf(
929 struct peer *peer, /* peerstructure pointer */
930 double isig /* input signal */
933 struct refclockproc *pp;
934 struct wwvunit *up;
935 struct sync *sp, *rp;
937 static double lpf[5]; /* 150-Hz lpf delay line */
938 double data; /* lpf output */
939 static double bpf[9]; /* 1000/1200-Hz bpf delay line */
940 double syncx; /* bpf output */
941 static double mf[41]; /* 1000/1200-Hz mf delay line */
942 double mfsync; /* mf output */
944 static int iptr; /* data channel pointer */
945 static double ibuf[DATSIZ]; /* data I channel delay line */
946 static double qbuf[DATSIZ]; /* data Q channel delay line */
948 static int jptr; /* sync channel pointer */
949 static int kptr; /* tick channel pointer */
951 static int csinptr; /* wwv channel phase */
952 static double cibuf[SYNSIZ]; /* wwv I channel delay line */
953 static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
954 static double ciamp; /* wwv I channel amplitude */
955 static double cqamp; /* wwv Q channel amplitude */
957 static double csibuf[TCKSIZ]; /* wwv I tick delay line */
958 static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
959 static double csiamp; /* wwv I tick amplitude */
960 static double csqamp; /* wwv Q tick amplitude */
962 static int hsinptr; /* wwvh channel phase */
963 static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
964 static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
965 static double hiamp; /* wwvh I channel amplitude */
966 static double hqamp; /* wwvh Q channel amplitude */
968 static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
969 static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
970 static double hsiamp; /* wwvh I tick amplitude */
971 static double hsqamp; /* wwvh Q tick amplitude */
973 static double epobuf[SECOND]; /* second sync comb filter */
974 static double epomax, nxtmax; /* second sync amplitude buffer */
975 static int epopos; /* epoch second sync position buffer */
977 static int iniflg; /* initialization flag */
978 int epoch; /* comb filter index */
979 double dtemp;
980 int i;
982 pp = peer->procptr;
983 up = (struct wwvunit *)pp->unitptr;
985 if (!iniflg) {
986 iniflg = 1;
987 memset((char *)lpf, 0, sizeof(lpf));
988 memset((char *)bpf, 0, sizeof(bpf));
989 memset((char *)mf, 0, sizeof(mf));
990 memset((char *)ibuf, 0, sizeof(ibuf));
991 memset((char *)qbuf, 0, sizeof(qbuf));
992 memset((char *)cibuf, 0, sizeof(cibuf));
993 memset((char *)cqbuf, 0, sizeof(cqbuf));
994 memset((char *)csibuf, 0, sizeof(csibuf));
995 memset((char *)csqbuf, 0, sizeof(csqbuf));
996 memset((char *)hibuf, 0, sizeof(hibuf));
997 memset((char *)hqbuf, 0, sizeof(hqbuf));
998 memset((char *)hsibuf, 0, sizeof(hsibuf));
999 memset((char *)hsqbuf, 0, sizeof(hsqbuf));
1000 memset((char *)epobuf, 0, sizeof(epobuf));
1004 * Baseband data demodulation. The 100-Hz subcarrier is
1005 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1006 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1007 * 600-Hz tones and most of the noise and voice modulation
1008 * components.
1010 * The subcarrier is transmitted 10 dB down from the carrier.
1011 * The DGAIN parameter can be adjusted for this and to
1012 * compensate for the radio audio response at 100 Hz.
1014 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1015 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1017 data = (lpf[4] = lpf[3]) * 8.360961e-01;
1018 data += (lpf[3] = lpf[2]) * -3.481740e+00;
1019 data += (lpf[2] = lpf[1]) * 5.452988e+00;
1020 data += (lpf[1] = lpf[0]) * -3.807229e+00;
1021 lpf[0] = isig * DGAIN - data;
1022 data = lpf[0] * 3.281435e-03
1023 + lpf[1] * -1.149947e-02
1024 + lpf[2] * 1.654858e-02
1025 + lpf[3] * -1.149947e-02
1026 + lpf[4] * 3.281435e-03;
1029 * The 100-Hz data signal is demodulated using a pair of
1030 * quadrature multipliers, matched filters and a phase lock
1031 * loop. The I and Q quadrature data signals are produced by
1032 * multiplying the filtered signal by 100-Hz sine and cosine
1033 * signals, respectively. The signals are processed by 170-ms
1034 * synchronous matched filters to produce the amplitude and
1035 * phase signals used by the demodulator. The signals are scaled
1036 * to produce unit energy at the maximum value.
1038 i = up->datapt;
1039 up->datapt = (up->datapt + IN100) % 80;
1040 dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041 up->irig -= ibuf[iptr];
1042 ibuf[iptr] = dtemp;
1043 up->irig += dtemp;
1045 i = (i + 20) % 80;
1046 dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1047 up->qrig -= qbuf[iptr];
1048 qbuf[iptr] = dtemp;
1049 up->qrig += dtemp;
1050 iptr = (iptr + 1) % DATSIZ;
1053 * Baseband sync demodulation. The 1000/1200 sync signals are
1054 * extracted using a 600-Hz IIR bandpass filter. This removes
1055 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1056 * tones and most of the noise and voice modulation components.
1058 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1059 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1061 syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1062 syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1063 syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1064 syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1065 syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1066 syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1067 syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1068 syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1069 bpf[0] = isig - syncx;
1070 syncx = bpf[0] * 8.203628e-03
1071 + bpf[1] * -2.375732e-02
1072 + bpf[2] * 3.353214e-02
1073 + bpf[3] * -4.080258e-02
1074 + bpf[4] * 4.605479e-02
1075 + bpf[5] * -4.080258e-02
1076 + bpf[6] * 3.353214e-02
1077 + bpf[7] * -2.375732e-02
1078 + bpf[8] * 8.203628e-03;
1081 * The 1000/1200 sync signals are demodulated using a pair of
1082 * quadrature multipliers and matched filters. However,
1083 * synchronous demodulation at these frequencies is impractical,
1084 * so only the signal amplitude is used. The I and Q quadrature
1085 * sync signals are produced by multiplying the filtered signal
1086 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1087 * respectively. The WWV and WWVH signals are processed by 800-
1088 * ms synchronous matched filters and combined to produce the
1089 * minute sync signal and detect which one (or both) the WWV or
1090 * WWVH signal is present. The WWV and WWVH signals are also
1091 * processed by 5-ms synchronous matched filters and combined to
1092 * produce the second sync signal. The signals are scaled to
1093 * produce unit energy at the maximum value.
1095 * Note the master timing ramps, which run continuously. The
1096 * minute counter (mphase) counts the samples in the minute,
1097 * while the second counter (epoch) counts the samples in the
1098 * second.
1100 up->mphase = (up->mphase + 1) % MINUTE;
1101 epoch = up->mphase % SECOND;
1104 * WWV
1106 i = csinptr;
1107 csinptr = (csinptr + IN1000) % 80;
1109 dtemp = sintab[i] * syncx / (MS / 2.);
1110 ciamp -= cibuf[jptr];
1111 cibuf[jptr] = dtemp;
1112 ciamp += dtemp;
1113 csiamp -= csibuf[kptr];
1114 csibuf[kptr] = dtemp;
1115 csiamp += dtemp;
1117 i = (i + 20) % 80;
1118 dtemp = sintab[i] * syncx / (MS / 2.);
1119 cqamp -= cqbuf[jptr];
1120 cqbuf[jptr] = dtemp;
1121 cqamp += dtemp;
1122 csqamp -= csqbuf[kptr];
1123 csqbuf[kptr] = dtemp;
1124 csqamp += dtemp;
1126 sp = &up->mitig[up->achan].wwv;
1127 sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1128 if (!(up->status & MSYNC))
1129 wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND));
1132 * WWVH
1134 i = hsinptr;
1135 hsinptr = (hsinptr + IN1200) % 80;
1137 dtemp = sintab[i] * syncx / (MS / 2.);
1138 hiamp -= hibuf[jptr];
1139 hibuf[jptr] = dtemp;
1140 hiamp += dtemp;
1141 hsiamp -= hsibuf[kptr];
1142 hsibuf[kptr] = dtemp;
1143 hsiamp += dtemp;
1145 i = (i + 20) % 80;
1146 dtemp = sintab[i] * syncx / (MS / 2.);
1147 hqamp -= hqbuf[jptr];
1148 hqbuf[jptr] = dtemp;
1149 hqamp += dtemp;
1150 hsqamp -= hsqbuf[kptr];
1151 hsqbuf[kptr] = dtemp;
1152 hsqamp += dtemp;
1154 rp = &up->mitig[up->achan].wwvh;
1155 rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1156 if (!(up->status & MSYNC))
1157 wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND));
1158 jptr = (jptr + 1) % SYNSIZ;
1159 kptr = (kptr + 1) % TCKSIZ;
1162 * The following section is called once per minute. It does
1163 * housekeeping and timeout functions and empties the dustbins.
1165 if (up->mphase == 0) {
1166 up->watch++;
1167 if (!(up->status & MSYNC)) {
1170 * If minute sync has not been acquired before
1171 * ACQSN timeout (6 min), or if no signal is
1172 * heard, the program cycles to the next
1173 * frequency and tries again.
1175 if (!wwv_newchan(peer))
1176 up->watch = 0;
1177 } else {
1180 * If the leap bit is set, set the minute epoch
1181 * back one second so the station processes
1182 * don't miss a beat.
1184 if (up->status & LEPSEC) {
1185 up->mphase -= SECOND;
1186 if (up->mphase < 0)
1187 up->mphase += MINUTE;
1193 * When the channel metric reaches threshold and the second
1194 * counter matches the minute epoch within the second, the
1195 * driver has synchronized to the station. The second number is
1196 * the remaining seconds until the next minute epoch, while the
1197 * sync epoch is zero. Watch out for the first second; if
1198 * already synchronized to the second, the buffered sync epoch
1199 * must be set.
1201 * Note the guard interval is 200 ms; if for some reason the
1202 * clock drifts more than that, it might wind up in the wrong
1203 * second. If the maximum frequency error is not more than about
1204 * 1 PPM, the clock can go as much as two days while still in
1205 * the same second.
1207 if (up->status & MSYNC) {
1208 wwv_epoch(peer);
1209 } else if (up->sptr != NULL) {
1210 sp = up->sptr;
1211 if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND)
1213 up->rsec = (60 - sp->mepoch / SECOND) % 60;
1214 up->rphase = 0;
1215 up->status |= MSYNC;
1216 up->watch = 0;
1217 if (!(up->status & SSYNC))
1218 up->repoch = up->yepoch = epoch;
1219 else
1220 up->repoch = up->yepoch;
1226 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1227 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1228 * pulse is used for the most precise synchronization, since if
1229 * provides a resolution of one sample (125 us). The filters run
1230 * only if the station has been reliably determined.
1232 if (up->status & SELV)
1233 mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1234 TCKCYC;
1235 else if (up->status & SELH)
1236 mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1237 TCKCYC;
1238 else
1239 mfsync = 0;
1242 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1243 * filter. Correct for the FIR matched filter delay, which is 5
1244 * ms for both the WWV and WWVH filters, and also for the
1245 * propagation delay. Once each second look for second sync. If
1246 * not in minute sync, fiddle the codec gain. Note the SNR is
1247 * computed from the maximum sample and the envelope of the
1248 * sample 6 ms before it, so if we slip more than a cycle the
1249 * SNR should plummet. The signal is scaled to produce unit
1250 * energy at the maximum value.
1252 dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1253 up->avgint);
1254 if (dtemp > epomax) {
1255 int j;
1257 epomax = dtemp;
1258 epopos = epoch;
1259 j = epoch - 6 * MS;
1260 if (j < 0)
1261 j += SECOND;
1262 nxtmax = fabs(epobuf[j]);
1264 if (epoch == 0) {
1265 up->epomax = epomax;
1266 up->eposnr = wwv_snr(epomax, nxtmax);
1267 epopos -= TCKCYC * MS;
1268 if (epopos < 0)
1269 epopos += SECOND;
1270 wwv_endpoc(peer, epopos);
1271 if (!(up->status & SSYNC))
1272 up->alarm |= SYNERR;
1273 epomax = 0;
1274 if (!(up->status & MSYNC))
1275 wwv_gain(peer);
1281 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1283 * This routine implements a virtual station process used to acquire
1284 * minute sync and to mitigate among the ten frequency and station
1285 * combinations. During minute sync acquisition the process probes each
1286 * frequency and station in turn for the minute pulse, which
1287 * involves searching through the entire 480,000-sample minute. The
1288 * process finds the maximum signal and RMS noise plus signal. Then, the
1289 * actual noise is determined by subtracting the energy of the matched
1290 * filter.
1292 * Students of radar receiver technology will discover this algorithm
1293 * amounts to a range-gate discriminator. A valid pulse must have peak
1294 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1295 * difference between the current and previous epoch must be less than
1296 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1297 * into the second, so the timing is retarded to the previous second
1298 * epoch.
1300 static void
1301 wwv_qrz(
1302 struct peer *peer, /* peer structure pointer */
1303 struct sync *sp, /* sync channel structure */
1304 int pdelay /* propagation delay (samples) */
1307 struct refclockproc *pp;
1308 struct wwvunit *up;
1309 char tbuf[TBUF]; /* monitor buffer */
1310 long epoch;
1312 pp = peer->procptr;
1313 up = (struct wwvunit *)pp->unitptr;
1316 * Find the sample with peak amplitude, which defines the minute
1317 * epoch. Accumulate all samples to determine the total noise
1318 * energy.
1320 epoch = up->mphase - pdelay - SYNSIZ;
1321 if (epoch < 0)
1322 epoch += MINUTE;
1323 if (sp->amp > sp->maxeng) {
1324 sp->maxeng = sp->amp;
1325 sp->pos = epoch;
1327 sp->noieng += sp->amp;
1330 * At the end of the minute, determine the epoch of the minute
1331 * sync pulse, as well as the difference between the current and
1332 * previous epoches due to the intrinsic frequency error plus
1333 * jitter. When calculating the SNR, subtract the pulse energy
1334 * from the total noise energy and then normalize.
1336 if (up->mphase == 0) {
1337 sp->synmax = sp->maxeng;
1338 sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1339 sp->synmax) / MINUTE);
1340 if (sp->count == 0)
1341 sp->lastpos = sp->pos;
1342 epoch = (sp->pos - sp->lastpos) % MINUTE;
1343 sp->reach <<= 1;
1344 if (sp->reach & (1 << AMAX))
1345 sp->count--;
1346 if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1347 if (abs(epoch) < AWND * MS) {
1348 sp->reach |= 1;
1349 sp->count++;
1350 sp->mepoch = sp->lastpos = sp->pos;
1351 } else if (sp->count == 1) {
1352 sp->lastpos = sp->pos;
1355 if (up->watch > ACQSN)
1356 sp->metric = 0;
1357 else
1358 sp->metric = wwv_metric(sp);
1359 if (pp->sloppyclockflag & CLK_FLAG4) {
1360 sprintf(tbuf,
1361 "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1362 up->status, up->gain, sp->refid,
1363 sp->reach & 0xffff, sp->metric, sp->synmax,
1364 sp->synsnr, sp->pos % SECOND, epoch);
1365 record_clock_stats(&peer->srcadr, tbuf);
1366 #ifdef DEBUG
1367 if (debug)
1368 printf("%s\n", tbuf);
1369 #endif /* DEBUG */
1371 sp->maxeng = sp->noieng = 0;
1377 * wwv_endpoc - identify and acquire second sync pulse
1379 * This routine is called at the end of the second sync interval. It
1380 * determines the second sync epoch position within the second and
1381 * disciplines the sample clock using a frequency-lock loop (FLL).
1383 * Second sync is determined in the RF input routine as the maximum
1384 * over all 8000 samples in the second comb filter. To assure accurate
1385 * and reliable time and frequency discipline, this routine performs a
1386 * great deal of heavy-handed heuristic data filtering and grooming.
1388 static void
1389 wwv_endpoc(
1390 struct peer *peer, /* peer structure pointer */
1391 int epopos /* epoch max position */
1394 struct refclockproc *pp;
1395 struct wwvunit *up;
1396 static int epoch_mf[3]; /* epoch median filter */
1397 static int tepoch; /* current second epoch */
1398 static int xepoch; /* last second epoch */
1399 static int zepoch; /* last run epoch */
1400 static int zcount; /* last run end time */
1401 static int scount; /* seconds counter */
1402 static int syncnt; /* run length counter */
1403 static int maxrun; /* longest run length */
1404 static int mepoch; /* longest run end epoch */
1405 static int mcount; /* longest run end time */
1406 static int avgcnt; /* averaging interval counter */
1407 static int avginc; /* averaging ratchet */
1408 static int iniflg; /* initialization flag */
1409 char tbuf[TBUF]; /* monitor buffer */
1410 double dtemp;
1411 int tmp2;
1413 pp = peer->procptr;
1414 up = (struct wwvunit *)pp->unitptr;
1415 if (!iniflg) {
1416 iniflg = 1;
1417 memset((char *)epoch_mf, 0, sizeof(epoch_mf));
1421 * If the signal amplitude or SNR fall below thresholds, dim the
1422 * second sync lamp and wait for hotter ions. If no stations are
1423 * heard, we are either in a probe cycle or the ions are really
1424 * cold.
1426 scount++;
1427 if (up->epomax < STHR || up->eposnr < SSNR) {
1428 up->status &= ~(SSYNC | FGATE);
1429 avgcnt = syncnt = maxrun = 0;
1430 return;
1432 if (!(up->status & (SELV | SELH)))
1433 return;
1436 * A three-stage median filter is used to help denoise the
1437 * second sync pulse. The median sample becomes the candidate
1438 * epoch.
1440 epoch_mf[2] = epoch_mf[1];
1441 epoch_mf[1] = epoch_mf[0];
1442 epoch_mf[0] = epopos;
1443 if (epoch_mf[0] > epoch_mf[1]) {
1444 if (epoch_mf[1] > epoch_mf[2])
1445 tepoch = epoch_mf[1]; /* 0 1 2 */
1446 else if (epoch_mf[2] > epoch_mf[0])
1447 tepoch = epoch_mf[0]; /* 2 0 1 */
1448 else
1449 tepoch = epoch_mf[2]; /* 0 2 1 */
1450 } else {
1451 if (epoch_mf[1] < epoch_mf[2])
1452 tepoch = epoch_mf[1]; /* 2 1 0 */
1453 else if (epoch_mf[2] < epoch_mf[0])
1454 tepoch = epoch_mf[0]; /* 1 0 2 */
1455 else
1456 tepoch = epoch_mf[2]; /* 1 2 0 */
1461 * If the epoch candidate is the same as the last one, increment
1462 * the run counter. If not, save the length, epoch and end
1463 * time of the current run for use later and reset the counter.
1464 * The epoch is considered valid if the run is at least SCMP
1465 * (10) s, the minute is synchronized and the interval since the
1466 * last epoch is not greater than the averaging interval. Thus,
1467 * after a long absence, the program will wait a full averaging
1468 * interval while the comb filter charges up and noise
1469 * dissapates..
1471 tmp2 = (tepoch - xepoch) % SECOND;
1472 if (tmp2 == 0) {
1473 syncnt++;
1474 if (syncnt > SCMP && up->status & MSYNC && (up->status &
1475 FGATE || scount - zcount <= up->avgint)) {
1476 up->status |= SSYNC;
1477 up->yepoch = tepoch;
1479 } else if (syncnt >= maxrun) {
1480 maxrun = syncnt;
1481 mcount = scount;
1482 mepoch = xepoch;
1483 syncnt = 0;
1485 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
1486 MSYNC)) {
1487 sprintf(tbuf,
1488 "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1489 up->status, up->gain, tepoch, up->epomax,
1490 up->eposnr, tmp2, avgcnt, syncnt,
1491 maxrun);
1492 record_clock_stats(&peer->srcadr, tbuf);
1493 #ifdef DEBUG
1494 if (debug)
1495 printf("%s\n", tbuf);
1496 #endif /* DEBUG */
1498 avgcnt++;
1499 if (avgcnt < up->avgint) {
1500 xepoch = tepoch;
1501 return;
1505 * The sample clock frequency is disciplined using a first-order
1506 * feedback loop with time constant consistent with the Allan
1507 * intercept of typical computer clocks. During each averaging
1508 * interval the candidate epoch at the end of the longest run is
1509 * determined. If the longest run is zero, all epoches in the
1510 * interval are different, so the candidate epoch is the current
1511 * epoch. The frequency update is computed from the candidate
1512 * epoch difference (125-us units) and time difference (seconds)
1513 * between updates.
1515 if (syncnt >= maxrun) {
1516 maxrun = syncnt;
1517 mcount = scount;
1518 mepoch = xepoch;
1520 xepoch = tepoch;
1521 if (maxrun == 0) {
1522 mepoch = tepoch;
1523 mcount = scount;
1527 * The master clock runs at the codec sample frequency of 8000
1528 * Hz, so the intrinsic time resolution is 125 us. The frequency
1529 * resolution ranges from 18 PPM at the minimum averaging
1530 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1531 * s. An offset update is determined at the end of the longest
1532 * run in each averaging interval. The frequency adjustment is
1533 * computed from the difference between offset updates and the
1534 * interval between them.
1536 * The maximum frequency adjustment ranges from 187 PPM at the
1537 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1538 * exceeds the maximum, the update is discarded and the
1539 * hysteresis counter is decremented. Otherwise, the frequency
1540 * is incremented by the adjustment, but clamped to the maximum
1541 * 187.5 PPM. If the update is less than half the maximum, the
1542 * hysteresis counter is incremented. If the counter increments
1543 * to +3, the averaging interval is doubled and the counter set
1544 * to zero; if it decrements to -3, the interval is halved and
1545 * the counter set to zero.
1547 dtemp = (mepoch - zepoch) % SECOND;
1548 if (up->status & FGATE) {
1549 if (abs(dtemp) < MAXFREQ * MINAVG) {
1550 up->freq += (dtemp / 2.) / ((mcount - zcount) *
1551 FCONST);
1552 if (up->freq > MAXFREQ)
1553 up->freq = MAXFREQ;
1554 else if (up->freq < -MAXFREQ)
1555 up->freq = -MAXFREQ;
1556 if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
1557 if (avginc < 3) {
1558 avginc++;
1559 } else {
1560 if (up->avgint < MAXAVG) {
1561 up->avgint <<= 1;
1562 avginc = 0;
1566 } else {
1567 if (avginc > -3) {
1568 avginc--;
1569 } else {
1570 if (up->avgint > MINAVG) {
1571 up->avgint >>= 1;
1572 avginc = 0;
1577 if (pp->sloppyclockflag & CLK_FLAG4) {
1578 sprintf(tbuf,
1579 "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1580 up->status, up->epomax, up->eposnr, mepoch,
1581 up->avgint, maxrun, mcount - zcount, dtemp,
1582 up->freq * 1e6 / SECOND);
1583 record_clock_stats(&peer->srcadr, tbuf);
1584 #ifdef DEBUG
1585 if (debug)
1586 printf("%s\n", tbuf);
1587 #endif /* DEBUG */
1591 * This is a valid update; set up for the next interval.
1593 up->status |= FGATE;
1594 zepoch = mepoch;
1595 zcount = mcount;
1596 avgcnt = syncnt = maxrun = 0;
1601 * wwv_epoch - epoch scanner
1603 * This routine extracts data signals from the 100-Hz subcarrier. It
1604 * scans the receiver second epoch to determine the signal amplitudes
1605 * and pulse timings. Receiver synchronization is determined by the
1606 * minute sync pulse detected in the wwv_rf() routine and the second
1607 * sync pulse detected in the wwv_epoch() routine. The transmitted
1608 * signals are delayed by the propagation delay, receiver delay and
1609 * filter delay of this program. Delay corrections are introduced
1610 * separately for WWV and WWVH.
1612 * Most communications radios use a highpass filter in the audio stages,
1613 * which can do nasty things to the subcarrier phase relative to the
1614 * sync pulses. Therefore, the data subcarrier reference phase is
1615 * disciplined using the hardlimited quadrature-phase signal sampled at
1616 * the same time as the in-phase signal. The phase tracking loop uses
1617 * phase adjustments of plus-minus one sample (125 us).
1619 static void
1620 wwv_epoch(
1621 struct peer *peer /* peer structure pointer */
1624 struct refclockproc *pp;
1625 struct wwvunit *up;
1626 struct chan *cp;
1627 static double sigmin, sigzer, sigone, engmax, engmin;
1629 pp = peer->procptr;
1630 up = (struct wwvunit *)pp->unitptr;
1633 * Find the maximum minute sync pulse energy for both the
1634 * WWV and WWVH stations. This will be used later for channel
1635 * and station mitigation. Also set the seconds epoch at 800 ms
1636 * well before the end of the second to make sure we never set
1637 * the epoch backwards.
1639 cp = &up->mitig[up->achan];
1640 if (cp->wwv.amp > cp->wwv.syneng)
1641 cp->wwv.syneng = cp->wwv.amp;
1642 if (cp->wwvh.amp > cp->wwvh.syneng)
1643 cp->wwvh.syneng = cp->wwvh.amp;
1644 if (up->rphase == 800 * MS)
1645 up->repoch = up->yepoch;
1648 * Use the signal amplitude at epoch 15 ms as the noise floor.
1649 * This gives a guard time of +-15 ms from the beginning of the
1650 * second until the second pulse rises at 30 ms. There is a
1651 * compromise here; we want to delay the sample as long as
1652 * possible to give the radio time to change frequency and the
1653 * AGC to stabilize, but as early as possible if the second
1654 * epoch is not exact.
1656 if (up->rphase == 15 * MS)
1657 sigmin = sigzer = sigone = up->irig;
1660 * Latch the data signal at 200 ms. Keep this around until the
1661 * end of the second. Use the signal energy as the peak to
1662 * compute the SNR. Use the Q sample to adjust the 100-Hz
1663 * reference oscillator phase.
1665 if (up->rphase == 200 * MS) {
1666 sigzer = up->irig;
1667 engmax = sqrt(up->irig * up->irig + up->qrig *
1668 up->qrig);
1669 up->datpha = up->qrig / up->avgint;
1670 if (up->datpha >= 0) {
1671 up->datapt++;
1672 if (up->datapt >= 80)
1673 up->datapt -= 80;
1674 } else {
1675 up->datapt--;
1676 if (up->datapt < 0)
1677 up->datapt += 80;
1683 * Latch the data signal at 500 ms. Keep this around until the
1684 * end of the second.
1686 else if (up->rphase == 500 * MS)
1687 sigone = up->irig;
1690 * At the end of the second crank the clock state machine and
1691 * adjust the codec gain. Note the epoch is buffered from the
1692 * center of the second in order to avoid jitter while the
1693 * seconds synch is diddling the epoch. Then, determine the true
1694 * offset and update the median filter in the driver interface.
1696 * Use the energy at the end of the second as the noise to
1697 * compute the SNR for the data pulse. This gives a better
1698 * measurement than the beginning of the second, especially when
1699 * returning from the probe channel. This gives a guard time of
1700 * 30 ms from the decay of the longest pulse to the rise of the
1701 * next pulse.
1703 up->rphase++;
1704 if (up->mphase % SECOND == up->repoch) {
1705 up->status &= ~(DGATE | BGATE);
1706 engmin = sqrt(up->irig * up->irig + up->qrig *
1707 up->qrig);
1708 up->datsig = engmax;
1709 up->datsnr = wwv_snr(engmax, engmin);
1712 * If the amplitude or SNR is below threshold, average a
1713 * 0 in the the integrators; otherwise, average the
1714 * bipolar signal. This is done to avoid noise polution.
1716 if (engmax < DTHR || up->datsnr < DSNR) {
1717 up->status |= DGATE;
1718 wwv_rsec(peer, 0);
1719 } else {
1720 sigzer -= sigone;
1721 sigone -= sigmin;
1722 wwv_rsec(peer, sigone - sigzer);
1724 if (up->status & (DGATE | BGATE))
1725 up->errcnt++;
1726 if (up->errcnt > MAXERR)
1727 up->alarm |= LOWERR;
1728 wwv_gain(peer);
1729 cp = &up->mitig[up->achan];
1730 cp->wwv.syneng = 0;
1731 cp->wwvh.syneng = 0;
1732 up->rphase = 0;
1738 * wwv_rsec - process receiver second
1740 * This routine is called at the end of each receiver second to
1741 * implement the per-second state machine. The machine assembles BCD
1742 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1744 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1745 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1746 * for leap years) or 31 December (day 365 or 366 for leap years) is
1747 * augmented by one second numbered 60. This is accomplished by
1748 * extending the minute interval by one second and teaching the state
1749 * machine to ignore it.
1751 static void
1752 wwv_rsec(
1753 struct peer *peer, /* peer structure pointer */
1754 double bit
1757 static int iniflg; /* initialization flag */
1758 static double bcddld[4]; /* BCD data bits */
1759 static double bitvec[61]; /* bit integrator for misc bits */
1760 struct refclockproc *pp;
1761 struct wwvunit *up;
1762 struct chan *cp;
1763 struct sync *sp, *rp;
1764 char tbuf[TBUF]; /* monitor buffer */
1765 int sw, arg, nsec;
1767 pp = peer->procptr;
1768 up = (struct wwvunit *)pp->unitptr;
1769 if (!iniflg) {
1770 iniflg = 1;
1771 memset((char *)bitvec, 0, sizeof(bitvec));
1775 * The bit represents the probability of a hit on zero (negative
1776 * values), a hit on one (positive values) or a miss (zero
1777 * value). The likelihood vector is the exponential average of
1778 * these probabilities. Only the bits of this vector
1779 * corresponding to the miscellaneous bits of the timecode are
1780 * used, but it's easier to do them all. After that, crank the
1781 * seconds state machine.
1783 nsec = up->rsec;
1784 up->rsec++;
1785 bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1786 sw = progx[nsec].sw;
1787 arg = progx[nsec].arg;
1790 * The minute state machine. Fly off to a particular section as
1791 * directed by the transition matrix and second number.
1793 switch (sw) {
1796 * Ignore this second.
1798 case IDLE: /* 9, 45-49 */
1799 break;
1802 * Probe channel stuff
1804 * The WWV/H format contains data pulses in second 59 (position
1805 * identifier) and second 1, but not in second 0. The minute
1806 * sync pulse is contained in second 0. At the end of second 58
1807 * QSY to the probe channel, which rotates in turn over all
1808 * WWV/H frequencies. At the end of second 0 measure the minute
1809 * sync pulse. At the end of second 1 measure the data pulse and
1810 * QSY back to the data channel. Note that the actions commented
1811 * here happen at the end of the second numbered as shown.
1813 * At the end of second 0 save the minute sync amplitude latched
1814 * at 800 ms as the signal later used to calculate the SNR.
1816 case SYNC2: /* 0 */
1817 cp = &up->mitig[up->achan];
1818 cp->wwv.synmax = cp->wwv.syneng;
1819 cp->wwvh.synmax = cp->wwvh.syneng;
1820 break;
1823 * At the end of second 1 use the minute sync amplitude latched
1824 * at 800 ms as the noise to calculate the SNR. If the minute
1825 * sync pulse and SNR are above thresholds and the data pulse
1826 * amplitude and SNR are above thresolds, shift a 1 into the
1827 * station reachability register; otherwise, shift a 0. The
1828 * number of 1 bits in the last six intervals is a component of
1829 * the channel metric computed by the wwv_metric() routine.
1830 * Finally, QSY back to the data channel.
1832 case SYNC3: /* 1 */
1833 cp = &up->mitig[up->achan];
1836 * WWV station
1838 sp = &cp->wwv;
1839 sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1840 sp->reach <<= 1;
1841 if (sp->reach & (1 << AMAX))
1842 sp->count--;
1843 if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1844 !(up->status & (DGATE | BGATE))) {
1845 sp->reach |= 1;
1846 sp->count++;
1848 sp->metric = wwv_metric(sp);
1851 * WWVH station
1853 rp = &cp->wwvh;
1854 rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1855 rp->reach <<= 1;
1856 if (rp->reach & (1 << AMAX))
1857 rp->count--;
1858 if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1859 !(up->status & (DGATE | BGATE))) {
1860 rp->reach |= 1;
1861 rp->count++;
1863 rp->metric = wwv_metric(rp);
1864 if (pp->sloppyclockflag & CLK_FLAG4) {
1865 sprintf(tbuf,
1866 "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1867 up->status, up->gain, up->yepoch,
1868 up->epomax, up->eposnr, up->datsig,
1869 up->datsnr,
1870 sp->refid, sp->reach & 0xffff,
1871 sp->metric, sp->synmax, sp->synsnr,
1872 rp->refid, rp->reach & 0xffff,
1873 rp->metric, rp->synmax, rp->synsnr);
1874 record_clock_stats(&peer->srcadr, tbuf);
1875 #ifdef DEBUG
1876 if (debug)
1877 printf("%s\n", tbuf);
1878 #endif /* DEBUG */
1880 up->errcnt = up->digcnt = up->alarm = 0;
1883 * If synchronized to a station, restart if no stations
1884 * have been heard within the PANIC timeout (2 days). If
1885 * not and the minute digit has been found, restart if
1886 * not synchronized withing the SYNCH timeout (40 m). If
1887 * not, restart if the unit digit has not been found
1888 * within the DATA timeout (15 m).
1890 if (up->status & INSYNC) {
1891 if (up->watch > PANIC) {
1892 wwv_newgame(peer);
1893 return;
1895 } else if (up->status & DSYNC) {
1896 if (up->watch > SYNCH) {
1897 wwv_newgame(peer);
1898 return;
1900 } else if (up->watch > DATA) {
1901 wwv_newgame(peer);
1902 return;
1904 wwv_newchan(peer);
1905 break;
1908 * Save the bit probability in the BCD data vector at the index
1909 * given by the argument. Bits not used in the digit are forced
1910 * to zero.
1912 case COEF1: /* 4-7 */
1913 bcddld[arg] = bit;
1914 break;
1916 case COEF: /* 10-13, 15-17, 20-23, 25-26,
1917 30-33, 35-38, 40-41, 51-54 */
1918 if (up->status & DSYNC)
1919 bcddld[arg] = bit;
1920 else
1921 bcddld[arg] = 0;
1922 break;
1924 case COEF2: /* 18, 27-28, 42-43 */
1925 bcddld[arg] = 0;
1926 break;
1929 * Correlate coefficient vector with each valid digit vector and
1930 * save in decoding matrix. We step through the decoding matrix
1931 * digits correlating each with the coefficients and saving the
1932 * greatest and the next lower for later SNR calculation.
1934 case DECIM2: /* 29 */
1935 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1936 break;
1938 case DECIM3: /* 44 */
1939 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1940 break;
1942 case DECIM6: /* 19 */
1943 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1944 break;
1946 case DECIM9: /* 8, 14, 24, 34, 39 */
1947 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1948 break;
1951 * Miscellaneous bits. If above the positive threshold, declare
1952 * 1; if below the negative threshold, declare 0; otherwise
1953 * raise the BGATE bit. The design is intended to avoid
1954 * integrating noise under low SNR conditions.
1956 case MSC20: /* 55 */
1957 wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1958 /* fall through */
1960 case MSCBIT: /* 2-3, 50, 56-57 */
1961 if (bitvec[nsec] > BTHR) {
1962 if (!(up->misc & arg))
1963 up->alarm |= CMPERR;
1964 up->misc |= arg;
1965 } else if (bitvec[nsec] < -BTHR) {
1966 if (up->misc & arg)
1967 up->alarm |= CMPERR;
1968 up->misc &= ~arg;
1969 } else {
1970 up->status |= BGATE;
1972 break;
1975 * Save the data channel gain, then QSY to the probe channel and
1976 * dim the seconds comb filters. The www_newchan() routine will
1977 * light them back up.
1979 case MSC21: /* 58 */
1980 if (bitvec[nsec] > BTHR) {
1981 if (!(up->misc & arg))
1982 up->alarm |= CMPERR;
1983 up->misc |= arg;
1984 } else if (bitvec[nsec] < -BTHR) {
1985 if (up->misc & arg)
1986 up->alarm |= CMPERR;
1987 up->misc &= ~arg;
1988 } else {
1989 up->status |= BGATE;
1991 up->status &= ~(SELV | SELH);
1992 #ifdef ICOM
1993 if (up->fd_icom > 0) {
1994 up->schan = (up->schan + 1) % NCHAN;
1995 wwv_qsy(peer, up->schan);
1996 } else {
1997 up->mitig[up->achan].gain = up->gain;
1999 #else
2000 up->mitig[up->achan].gain = up->gain;
2001 #endif /* ICOM */
2002 break;
2005 * The endgames
2007 * During second 59 the receiver and codec AGC are settling
2008 * down, so the data pulse is unusable as quality metric. If
2009 * LEPSEC is set on the last minute of 30 June or 31 December,
2010 * the transmitter and receiver insert an extra second (60) in
2011 * the timescale and the minute sync repeats the second. Once
2012 * leaps occurred at intervals of about 18 months, but the last
2013 * leap before the most recent leap in 1995 was in 1998.
2015 case MIN1: /* 59 */
2016 if (up->status & LEPSEC)
2017 break;
2019 /* fall through */
2021 case MIN2: /* 60 */
2022 up->status &= ~LEPSEC;
2023 wwv_tsec(peer);
2024 up->rsec = 0;
2025 wwv_clock(peer);
2026 break;
2028 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2029 DSYNC)) {
2030 sprintf(tbuf,
2031 "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2032 nsec, up->status, up->gain, up->yepoch, up->epomax,
2033 up->eposnr, up->datsig, up->datsnr, bit);
2034 record_clock_stats(&peer->srcadr, tbuf);
2035 #ifdef DEBUG
2036 if (debug)
2037 printf("%s\n", tbuf);
2038 #endif /* DEBUG */
2040 pp->disp += AUDIO_PHI;
2044 * The radio clock is set if the alarm bits are all zero. After that,
2045 * the time is considered valid if the second sync bit is lit. It should
2046 * not be a surprise, especially if the radio is not tunable, that
2047 * sometimes no stations are above the noise and the integrators
2048 * discharge below the thresholds. We assume that, after a day of signal
2049 * loss, the minute sync epoch will be in the same second. This requires
2050 * the codec frequency be accurate within 6 PPM. Practical experience
2051 * shows the frequency typically within 0.1 PPM, so after a day of
2052 * signal loss, the time should be within 8.6 ms..
2054 static void
2055 wwv_clock(
2056 struct peer *peer /* peer unit pointer */
2059 struct refclockproc *pp;
2060 struct wwvunit *up;
2061 l_fp offset; /* offset in NTP seconds */
2063 pp = peer->procptr;
2064 up = (struct wwvunit *)pp->unitptr;
2065 if (!(up->status & SSYNC))
2066 up->alarm |= SYNERR;
2067 if (up->digcnt < 9)
2068 up->alarm |= NINERR;
2069 if (!(up->alarm))
2070 up->status |= INSYNC;
2071 if (up->status & INSYNC && up->status & SSYNC) {
2072 if (up->misc & SECWAR)
2073 pp->leap = LEAP_ADDSECOND;
2074 else
2075 pp->leap = LEAP_NOWARNING;
2076 pp->second = up->rsec;
2077 pp->minute = up->decvec[MN].digit + up->decvec[MN +
2078 1].digit * 10;
2079 pp->hour = up->decvec[HR].digit + up->decvec[HR +
2080 1].digit * 10;
2081 pp->day = up->decvec[DA].digit + up->decvec[DA +
2082 1].digit * 10 + up->decvec[DA + 2].digit * 100;
2083 pp->year = up->decvec[YR].digit + up->decvec[YR +
2084 1].digit * 10;
2085 pp->year += 2000;
2086 L_CLR(&offset);
2087 if (!clocktime(pp->day, pp->hour, pp->minute,
2088 pp->second, GMT, up->timestamp.l_ui,
2089 &pp->yearstart, &offset.l_ui)) {
2090 up->errflg = CEVNT_BADTIME;
2091 } else {
2092 up->watch = 0;
2093 pp->disp = 0;
2094 pp->lastref = up->timestamp;
2095 refclock_process_offset(pp, offset,
2096 up->timestamp, PDELAY + up->pdelay);
2097 refclock_receive(peer);
2100 pp->lencode = timecode(up, pp->a_lastcode);
2101 record_clock_stats(&peer->srcadr, pp->a_lastcode);
2102 #ifdef DEBUG
2103 if (debug)
2104 printf("wwv: timecode %d %s\n", pp->lencode,
2105 pp->a_lastcode);
2106 #endif /* DEBUG */
2111 * wwv_corr4 - determine maximum-likelihood digit
2113 * This routine correlates the received digit vector with the BCD
2114 * coefficient vectors corresponding to all valid digits at the given
2115 * position in the decoding matrix. The maximum value corresponds to the
2116 * maximum-likelihood digit, while the ratio of this value to the next
2117 * lower value determines the likelihood function. Note that, if the
2118 * digit is invalid, the likelihood vector is averaged toward a miss.
2120 static void
2121 wwv_corr4(
2122 struct peer *peer, /* peer unit pointer */
2123 struct decvec *vp, /* decoding table pointer */
2124 double data[], /* received data vector */
2125 double tab[][4] /* correlation vector array */
2128 struct refclockproc *pp;
2129 struct wwvunit *up;
2130 double topmax, nxtmax; /* metrics */
2131 double acc; /* accumulator */
2132 char tbuf[TBUF]; /* monitor buffer */
2133 int mldigit; /* max likelihood digit */
2134 int i, j;
2136 pp = peer->procptr;
2137 up = (struct wwvunit *)pp->unitptr;
2140 * Correlate digit vector with each BCD coefficient vector. If
2141 * any BCD digit bit is bad, consider all bits a miss. Until the
2142 * minute units digit has been resolved, don't to anything else.
2143 * Note the SNR is calculated as the ratio of the largest
2144 * likelihood value to the next largest likelihood value.
2146 mldigit = 0;
2147 topmax = nxtmax = -MAXAMP;
2148 for (i = 0; tab[i][0] != 0; i++) {
2149 acc = 0;
2150 for (j = 0; j < 4; j++)
2151 acc += data[j] * tab[i][j];
2152 acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2153 if (acc > topmax) {
2154 nxtmax = topmax;
2155 topmax = acc;
2156 mldigit = i;
2157 } else if (acc > nxtmax) {
2158 nxtmax = acc;
2161 vp->digprb = topmax;
2162 vp->digsnr = wwv_snr(topmax, nxtmax);
2165 * The current maximum-likelihood digit is compared to the last
2166 * maximum-likelihood digit. If different, the compare counter
2167 * and maximum-likelihood digit are reset. When the compare
2168 * counter reaches the BCMP threshold (3), the digit is assumed
2169 * correct. When the compare counter of all nine digits have
2170 * reached threshold, the clock is assumed correct.
2172 * Note that the clock display digit is set before the compare
2173 * counter has reached threshold; however, the clock display is
2174 * not considered correct until all nine clock digits have
2175 * reached threshold. This is intended as eye candy, but avoids
2176 * mistakes when the signal is low and the SNR is very marginal.
2178 if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2179 up->status |= BGATE;
2180 } else {
2181 if (vp->digit != mldigit) {
2182 up->alarm |= CMPERR;
2183 if (vp->count > 0)
2184 vp->count--;
2185 if (vp->count == 0)
2186 vp->digit = mldigit;
2187 } else {
2188 if (vp->count < BCMP)
2189 vp->count++;
2190 if (vp->count == BCMP) {
2191 up->status |= DSYNC;
2192 up->digcnt++;
2196 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2197 INSYNC)) {
2198 sprintf(tbuf,
2199 "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2200 up->rsec - 1, up->status, up->gain, up->yepoch,
2201 up->epomax, vp->radix, vp->digit, mldigit,
2202 vp->count, vp->digprb, vp->digsnr);
2203 record_clock_stats(&peer->srcadr, tbuf);
2204 #ifdef DEBUG
2205 if (debug)
2206 printf("%s\n", tbuf);
2207 #endif /* DEBUG */
2213 * wwv_tsec - transmitter minute processing
2215 * This routine is called at the end of the transmitter minute. It
2216 * implements a state machine that advances the logical clock subject to
2217 * the funny rules that govern the conventional clock and calendar.
2219 static void
2220 wwv_tsec(
2221 struct peer *peer /* driver structure pointer */
2224 struct refclockproc *pp;
2225 struct wwvunit *up;
2226 int minute, day, isleap;
2227 int temp;
2229 pp = peer->procptr;
2230 up = (struct wwvunit *)pp->unitptr;
2233 * Advance minute unit of the day. Don't propagate carries until
2234 * the unit minute digit has been found.
2236 temp = carry(&up->decvec[MN]); /* minute units */
2237 if (!(up->status & DSYNC))
2238 return;
2241 * Propagate carries through the day.
2243 if (temp == 0) /* carry minutes */
2244 temp = carry(&up->decvec[MN + 1]);
2245 if (temp == 0) /* carry hours */
2246 temp = carry(&up->decvec[HR]);
2247 if (temp == 0)
2248 temp = carry(&up->decvec[HR + 1]);
2251 * Decode the current minute and day. Set leap day if the
2252 * timecode leap bit is set on 30 June or 31 December. Set leap
2253 * minute if the last minute on leap day, but only if the clock
2254 * is syncrhronized. This code fails in 2400 AD.
2256 minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2257 10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2258 1].digit * 600;
2259 day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2260 up->decvec[DA + 2].digit * 100;
2263 * Set the leap bit on the last minute of the leap day.
2265 isleap = up->decvec[YR].digit & 0x3;
2266 if (up->misc & SECWAR && up->status & INSYNC) {
2267 if ((day == (isleap ? 182 : 183) || day == (isleap ?
2268 365 : 366)) && minute == 1439)
2269 up->status |= LEPSEC;
2273 * Roll the day if this the first minute and propagate carries
2274 * through the year.
2276 if (minute != 1440)
2277 return;
2279 minute = 0;
2280 while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2281 while (carry(&up->decvec[HR + 1]) != 0);
2282 day++;
2283 temp = carry(&up->decvec[DA]); /* carry days */
2284 if (temp == 0)
2285 temp = carry(&up->decvec[DA + 1]);
2286 if (temp == 0)
2287 temp = carry(&up->decvec[DA + 2]);
2290 * Roll the year if this the first day and propagate carries
2291 * through the century.
2293 if (day != (isleap ? 365 : 366))
2294 return;
2296 day = 1;
2297 while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2298 while (carry(&up->decvec[DA + 1]) != 0);
2299 while (carry(&up->decvec[DA + 2]) != 0);
2300 temp = carry(&up->decvec[YR]); /* carry years */
2301 if (temp == 0)
2302 carry(&up->decvec[YR + 1]);
2307 * carry - process digit
2309 * This routine rotates a likelihood vector one position and increments
2310 * the clock digit modulo the radix. It returns the new clock digit or
2311 * zero if a carry occurred. Once synchronized, the clock digit will
2312 * match the maximum-likelihood digit corresponding to that position.
2314 static int
2315 carry(
2316 struct decvec *dp /* decoding table pointer */
2319 int temp;
2320 int j;
2322 dp->digit++;
2323 if (dp->digit == dp->radix)
2324 dp->digit = 0;
2325 temp = dp->like[dp->radix - 1];
2326 for (j = dp->radix - 1; j > 0; j--)
2327 dp->like[j] = dp->like[j - 1];
2328 dp->like[0] = temp;
2329 return (dp->digit);
2334 * wwv_snr - compute SNR or likelihood function
2336 static double
2337 wwv_snr(
2338 double signal, /* signal */
2339 double noise /* noise */
2342 double rval;
2345 * This is a little tricky. Due to the way things are measured,
2346 * either or both the signal or noise amplitude can be negative
2347 * or zero. The intent is that, if the signal is negative or
2348 * zero, the SNR must always be zero. This can happen with the
2349 * subcarrier SNR before the phase has been aligned. On the
2350 * other hand, in the likelihood function the "noise" is the
2351 * next maximum down from the peak and this could be negative.
2352 * However, in this case the SNR is truly stupendous, so we
2353 * simply cap at MAXSNR dB (40).
2355 if (signal <= 0) {
2356 rval = 0;
2357 } else if (noise <= 0) {
2358 rval = MAXSNR;
2359 } else {
2360 rval = 20. * log10(signal / noise);
2361 if (rval > MAXSNR)
2362 rval = MAXSNR;
2364 return (rval);
2369 * wwv_newchan - change to new data channel
2371 * The radio actually appears to have ten channels, one channel for each
2372 * of five frequencies and each of two stations (WWV and WWVH), although
2373 * if not tunable only the DCHAN channel appears live. While the radio
2374 * is tuned to the working data channel frequency and station for most
2375 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2376 * probe frequency in order to search for minute sync pulse and data
2377 * subcarrier from other transmitters.
2379 * The search for WWV and WWVH operates simultaneously, with WWV minute
2380 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2381 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2382 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2383 * on 25 MHz.
2385 * This routine selects the best channel using a metric computed from
2386 * the reachability register and minute pulse amplitude. Normally, the
2387 * award goes to the the channel with the highest metric; but, in case
2388 * of ties, the award goes to the channel with the highest minute sync
2389 * pulse amplitude and then to the highest frequency.
2391 * The routine performs an important squelch function to keep dirty data
2392 * from polluting the integrators. In order to consider a station valid,
2393 * the metric must be at least MTHR (13); otherwise, the station select
2394 * bits are cleared so the second sync is disabled and the data bit
2395 * integrators averaged to a miss.
2397 static int
2398 wwv_newchan(
2399 struct peer *peer /* peer structure pointer */
2402 struct refclockproc *pp;
2403 struct wwvunit *up;
2404 struct sync *sp, *rp;
2405 double rank, dtemp;
2406 int i, j, rval;
2408 pp = peer->procptr;
2409 up = (struct wwvunit *)pp->unitptr;
2412 * Search all five station pairs looking for the channel with
2413 * maximum metric.
2415 sp = NULL;
2416 j = 0;
2417 rank = 0;
2418 for (i = 0; i < NCHAN; i++) {
2419 rp = &up->mitig[i].wwvh;
2420 dtemp = rp->metric;
2421 if (dtemp >= rank) {
2422 rank = dtemp;
2423 sp = rp;
2424 j = i;
2426 rp = &up->mitig[i].wwv;
2427 dtemp = rp->metric;
2428 if (dtemp >= rank) {
2429 rank = dtemp;
2430 sp = rp;
2431 j = i;
2436 * If the strongest signal is less than the MTHR threshold (13),
2437 * we are beneath the waves, so squelch the second sync and
2438 * advance to the next station. This makes sure all stations are
2439 * scanned when the ions grow dim. If the strongest signal is
2440 * greater than the threshold, tune to that frequency and
2441 * transmitter QTH.
2443 up->status &= ~(SELV | SELH);
2444 if (rank < MTHR) {
2445 up->dchan = (up->dchan + 1) % NCHAN;
2446 if (up->status & METRIC) {
2447 up->status &= ~METRIC;
2448 refclock_report(peer, CEVNT_PROP);
2450 rval = FALSE;
2451 } else {
2452 up->dchan = j;
2453 up->sptr = sp;
2454 memcpy(&pp->refid, sp->refid, 4);
2455 peer->refid = pp->refid;
2456 up->status |= METRIC;
2457 if (sp->select & SELV) {
2458 up->status |= SELV;
2459 up->pdelay = pp->fudgetime1;
2460 } else if (sp->select & SELH) {
2461 up->status |= SELH;
2462 up->pdelay = pp->fudgetime2;
2463 } else {
2464 up->pdelay = 0;
2466 rval = TRUE;
2468 #ifdef ICOM
2469 if (up->fd_icom > 0)
2470 wwv_qsy(peer, up->dchan);
2471 #endif /* ICOM */
2472 return (rval);
2477 * wwv_newgame - reset and start over
2479 * There are three conditions resulting in a new game:
2481 * 1 After finding the minute pulse (MSYNC lit), going 15 minutes
2482 * (DATA) without finding the unit seconds digit.
2484 * 2 After finding good data (DSYNC lit), going more than 40 minutes
2485 * (SYNCH) without finding station sync (INSYNC lit).
2487 * 3 After finding station sync (INSYNC lit), going more than 2 days
2488 * (PANIC) without finding any station.
2490 static void
2491 wwv_newgame(
2492 struct peer *peer /* peer structure pointer */
2495 struct refclockproc *pp;
2496 struct wwvunit *up;
2497 struct chan *cp;
2498 int i;
2500 pp = peer->procptr;
2501 up = (struct wwvunit *)pp->unitptr;
2504 * Initialize strategic values. Note we set the leap bits
2505 * NOTINSYNC and the refid "NONE".
2507 if (up->status)
2508 up->errflg = CEVNT_TIMEOUT;
2509 peer->leap = LEAP_NOTINSYNC;
2510 up->watch = up->status = up->alarm = 0;
2511 up->avgint = MINAVG;
2512 up->freq = 0;
2513 up->gain = MAXGAIN / 2;
2516 * Initialize the station processes for audio gain, select bit,
2517 * station/frequency identifier and reference identifier. Start
2518 * probing at the strongest channel or the default channel if
2519 * nothing heard.
2521 memset(up->mitig, 0, sizeof(up->mitig));
2522 for (i = 0; i < NCHAN; i++) {
2523 cp = &up->mitig[i];
2524 cp->gain = up->gain;
2525 cp->wwv.select = SELV;
2526 sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
2527 cp->wwvh.select = SELH;
2528 sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
2530 up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
2531 wwv_newchan(peer);
2532 up->schan = up->dchan;
2536 * wwv_metric - compute station metric
2538 * The most significant bits represent the number of ones in the
2539 * station reachability register. The least significant bits represent
2540 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2542 double
2543 wwv_metric(
2544 struct sync *sp /* station pointer */
2547 double dtemp;
2549 dtemp = sp->count * MAXAMP;
2550 if (sp->synmax < MAXAMP)
2551 dtemp += sp->synmax;
2552 else
2553 dtemp += MAXAMP - 1;
2554 dtemp /= (AMAX + 1) * MAXAMP;
2555 return (dtemp * 100.);
2559 #ifdef ICOM
2561 * wwv_qsy - Tune ICOM receiver
2563 * This routine saves the AGC for the current channel, switches to a new
2564 * channel and restores the AGC for that channel. If a tunable receiver
2565 * is not available, just fake it.
2567 static int
2568 wwv_qsy(
2569 struct peer *peer, /* peer structure pointer */
2570 int chan /* channel */
2573 int rval = 0;
2574 struct refclockproc *pp;
2575 struct wwvunit *up;
2577 pp = peer->procptr;
2578 up = (struct wwvunit *)pp->unitptr;
2579 if (up->fd_icom > 0) {
2580 up->mitig[up->achan].gain = up->gain;
2581 rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2582 qsy[chan]);
2583 up->achan = chan;
2584 up->gain = up->mitig[up->achan].gain;
2586 return (rval);
2588 #endif /* ICOM */
2592 * timecode - assemble timecode string and length
2594 * Prettytime format - similar to Spectracom
2596 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2598 * s sync indicator ('?' or ' ')
2599 * q error bits (hex 0-F)
2600 * yyyy year of century
2601 * ddd day of year
2602 * hh hour of day
2603 * mm minute of hour
2604 * ss second of minute)
2605 * l leap second warning (' ' or 'L')
2606 * d DST state ('S', 'D', 'I', or 'O')
2607 * dut DUT sign and magnitude (0.1 s)
2608 * lset minutes since last clock update
2609 * agc audio gain (0-255)
2610 * iden reference identifier (station and frequency)
2611 * sig signal quality (0-100)
2612 * errs bit errors in last minute
2613 * freq frequency offset (PPM)
2614 * avgt averaging time (s)
2616 static int
2617 timecode(
2618 struct wwvunit *up, /* driver structure pointer */
2619 char *ptr /* target string */
2622 struct sync *sp;
2623 int year, day, hour, minute, second, dut;
2624 char synchar, leapchar, dst;
2625 char cptr[50];
2629 * Common fixed-format fields
2631 synchar = (up->status & INSYNC) ? ' ' : '?';
2632 year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2633 2000;
2634 day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2635 up->decvec[DA + 2].digit * 100;
2636 hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2637 minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2638 second = 0;
2639 leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2640 dst = dstcod[(up->misc >> 4) & 0x3];
2641 dut = up->misc & 0x7;
2642 if (!(up->misc & DUTS))
2643 dut = -dut;
2644 sprintf(ptr, "%c%1X", synchar, up->alarm);
2645 sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
2646 year, day, hour, minute, second, leapchar, dst, dut);
2647 strcat(ptr, cptr);
2650 * Specific variable-format fields
2652 sp = up->sptr;
2653 sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
2654 up->mitig[up->dchan].gain, sp->refid, sp->metric,
2655 up->errcnt, up->freq / SECOND * 1e6, up->avgint);
2656 strcat(ptr, cptr);
2657 return (strlen(ptr));
2662 * wwv_gain - adjust codec gain
2664 * This routine is called at the end of each second. During the second
2665 * the number of signal clips above the MAXAMP threshold (6000). If
2666 * there are no clips, the gain is bumped up; if there are more than
2667 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2668 * insensitive to amplitude, so this crudity works just peachy. The
2669 * routine also jiggles the input port and selectively mutes the
2670 * monitor.
2672 static void
2673 wwv_gain(
2674 struct peer *peer /* peer structure pointer */
2677 struct refclockproc *pp;
2678 struct wwvunit *up;
2680 pp = peer->procptr;
2681 up = (struct wwvunit *)pp->unitptr;
2684 * Apparently, the codec uses only the high order bits of the
2685 * gain control field. Thus, it may take awhile for changes to
2686 * wiggle the hardware bits.
2688 if (up->clipcnt == 0) {
2689 up->gain += 4;
2690 if (up->gain > MAXGAIN)
2691 up->gain = MAXGAIN;
2692 } else if (up->clipcnt > MAXCLP) {
2693 up->gain -= 4;
2694 if (up->gain < 0)
2695 up->gain = 0;
2697 audio_gain(up->gain, up->mongain, up->port);
2698 up->clipcnt = 0;
2699 #if DEBUG
2700 if (debug > 1)
2701 audio_show();
2702 #endif
2706 #else
2707 int refclock_wwv_bs;
2708 #endif /* REFCLOCK */