4 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
10 #if defined(REFCLOCK) && defined(CLOCK_WWV)
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
22 #ifdef HAVE_SYS_IOCTL_H
23 # include <sys/ioctl.h>
24 #endif /* HAVE_SYS_IOCTL_H */
33 * Audio WWV/H demodulator/decoder
35 * This driver synchronizes the computer time using data encoded in
36 * radio transmissions from NIST time/frequency stations WWV in Boulder,
37 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
38 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
39 * ordinary AM shortwave receiver can be tuned manually to one of these
40 * frequencies or, in the case of ICOM receivers, the receiver can be
41 * tuned automatically using this program as propagation conditions
42 * change throughout the weasons, both day and night.
44 * The driver requires an audio codec or sound card with sampling rate 8
45 * kHz and mu-law companding. This is the same standard as used by the
46 * telephone industry and is supported by most hardware and operating
47 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
48 * implementation, only one audio driver and codec can be supported on a
51 * The demodulation and decoding algorithms used in this driver are
52 * based on those developed for the TAPR DSP93 development board and the
53 * TI 320C25 digital signal processor described in: Mills, D.L. A
54 * precision radio clock for WWV transmissions. Electrical Engineering
55 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
56 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
57 * in this report have been modified somewhat to improve performance
58 * under weak signal conditions and to provide an automatic station
59 * identification feature.
61 * The ICOM code is normally compiled in the driver. It isn't used,
62 * unless the mode keyword on the server configuration command specifies
63 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
64 * debug level is greater than one.
68 * Fudge flag4 causes the dubugging output described above to be
69 * recorded in the clockstats file. Fudge flag2 selects the audio input
70 * port, where 0 is the mike port (default) and 1 is the line-in port.
71 * It does not seem useful to select the compact disc player port. Fudge
72 * flag3 enables audio monitoring of the input signal. For this purpose,
73 * the monitor gain is set to a default value.
75 * CEVNT_BADTIME invalid date or time
76 * CEVNT_PROP propagation failure - no stations heard
77 * CEVNT_TIMEOUT timeout (see newgame() below)
80 * General definitions. These ordinarily do not need to be changed.
82 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
83 #define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
84 #define PRECISION (-10) /* precision assumed (about 1 ms) */
85 #define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
86 #define SECOND 8000 /* second epoch (sample rate) (Hz) */
87 #define MINUTE (SECOND * 60) /* minute epoch */
88 #define OFFSET 128 /* companded sample offset */
89 #define SIZE 256 /* decompanding table size */
90 #define MAXAMP 6000. /* max signal level reference */
91 #define MAXCLP 100 /* max clips above reference per s */
92 #define MAXSNR 40. /* max SNR reference */
93 #define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */
94 #define DATCYC 170 /* data filter cycles */
95 #define DATSIZ (DATCYC * MS) /* data filter size */
96 #define SYNCYC 800 /* minute filter cycles */
97 #define SYNSIZ (SYNCYC * MS) /* minute filter size */
98 #define TCKCYC 5 /* tick filter cycles */
99 #define TCKSIZ (TCKCYC * MS) /* tick filter size */
100 #define NCHAN 5 /* number of radio channels */
101 #define AUDIO_PHI 5e-6 /* dispersion growth factor */
102 #define TBUF 128 /* max monitor line length */
105 * Tunable parameters. The DGAIN parameter can be changed to fit the
106 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
107 * is transmitted at about 20 percent percent modulation; the matched
108 * filter boosts it by a factor of 17 and the receiver response does
109 * what it does. The compromise value works for ICOM radios. If the
110 * radio is not tunable, the DCHAN parameter can be changed to fit the
111 * expected best propagation frequency: higher if further from the
112 * transmitter, lower if nearer. The compromise value works for the US
115 #define DCHAN 3 /* default radio channel (15 Mhz) */
116 #define DGAIN 5. /* subcarrier gain */
119 * General purpose status bits (status)
121 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
122 * on signal loss. SSYNC is set when the second sync pulse has been
123 * acquired and cleared by signal loss. MSYNC is set when the minute
124 * sync pulse has been acquired. DSYNC is set when the units digit has
125 * has reached the threshold and INSYNC is set when all nine digits have
126 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
127 * only by timeout, upon which the driver starts over from scratch.
129 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
130 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
131 * LEPSEC is set during the last minute of the leap day. At the end of
132 * this minute the driver inserts second 60 in the seconds state machine
133 * and the minute sync slips a second.
135 #define MSYNC 0x0001 /* minute epoch sync */
136 #define SSYNC 0x0002 /* second epoch sync */
137 #define DSYNC 0x0004 /* minute units sync */
138 #define INSYNC 0x0008 /* clock synchronized */
139 #define FGATE 0x0010 /* frequency gate */
140 #define DGATE 0x0020 /* data pulse amplitude error */
141 #define BGATE 0x0040 /* data pulse width error */
142 #define METRIC 0x0080 /* one or more stations heard */
143 #define LEPSEC 0x1000 /* leap minute */
146 * Station scoreboard bits
148 * These are used to establish the signal quality for each of the five
149 * frequencies and two stations.
151 #define SELV 0x0100 /* WWV station select */
152 #define SELH 0x0200 /* WWVH station select */
155 * Alarm status bits (alarm)
157 * These bits indicate various alarm conditions, which are decoded to
158 * form the quality character included in the timecode.
160 #define CMPERR 0x1 /* digit or misc bit compare error */
161 #define LOWERR 0x2 /* low bit or digit amplitude or SNR */
162 #define NINERR 0x4 /* less than nine digits in minute */
163 #define SYNERR 0x8 /* not tracking second sync */
166 * Watchcat timeouts (watch)
168 * If these timeouts expire, the status bits are mashed to zero and the
169 * driver starts from scratch. Suitably more refined procedures may be
170 * developed in future. All these are in minutes.
172 #define ACQSN 6 /* station acquisition timeout */
173 #define DATA 15 /* unit minutes timeout */
174 #define SYNCH 40 /* station sync timeout */
175 #define PANIC (2 * 1440) /* panic timeout */
178 * Thresholds. These establish the minimum signal level, minimum SNR and
179 * maximum jitter thresholds which establish the error and false alarm
180 * rates of the driver. The values defined here may be on the
181 * adventurous side in the interest of the highest sensitivity.
183 #define MTHR 13. /* minute sync gate (percent) */
184 #define TTHR 50. /* minute sync threshold (percent) */
185 #define AWND 20 /* minute sync jitter threshold (ms) */
186 #define ATHR 2500. /* QRZ minute sync threshold */
187 #define ASNR 20. /* QRZ minute sync SNR threshold (dB) */
188 #define QTHR 2500. /* QSY minute sync threshold */
189 #define QSNR 20. /* QSY minute sync SNR threshold (dB) */
190 #define STHR 2500. /* second sync threshold */
191 #define SSNR 15. /* second sync SNR threshold (dB) */
192 #define SCMP 10 /* second sync compare threshold */
193 #define DTHR 1000. /* bit threshold */
194 #define DSNR 10. /* bit SNR threshold (dB) */
195 #define AMIN 3 /* min bit count */
196 #define AMAX 6 /* max bit count */
197 #define BTHR 1000. /* digit threshold */
198 #define BSNR 3. /* digit likelihood threshold (dB) */
199 #define BCMP 3 /* digit compare threshold */
200 #define MAXERR 40 /* maximum error alarm */
203 * Tone frequency definitions. The increments are for 4.5-deg sine
206 #define MS (SECOND / 1000) /* samples per millisecond */
207 #define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
208 #define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
209 #define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
212 * Acquisition and tracking time constants
214 #define MINAVG 8 /* min averaging time */
215 #define MAXAVG 1024 /* max averaging time */
216 #define FCONST 3 /* frequency time constant */
217 #define TCONST 16 /* data bit/digit time constant */
220 * Miscellaneous status bits (misc)
222 * These bits correspond to designated bits in the WWV/H timecode. The
223 * bit probabilities are exponentially averaged over several minutes and
224 * processed by a integrator and threshold.
226 #define DUT1 0x01 /* 56 DUT .1 */
227 #define DUT2 0x02 /* 57 DUT .2 */
228 #define DUT4 0x04 /* 58 DUT .4 */
229 #define DUTS 0x08 /* 50 DUT sign */
230 #define DST1 0x10 /* 55 DST1 leap warning */
231 #define DST2 0x20 /* 2 DST2 DST1 delayed one day */
232 #define SECWAR 0x40 /* 3 leap second warning */
235 * The on-time synchronization point is the positive-going zero crossing
236 * of the first cycle of the 5-ms second pulse. The IIR baseband filter
237 * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
238 * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
239 * causes was determined by calibrating to a PPS signal from a GPS
240 * receiver. The additional propagation delay specific to each receiver
241 * location can be programmed in the fudge time1 and time2 values for
242 * WWV and WWVH, respectively.
244 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
245 * generally within .02 ms short-term with .02 ms jitter. The long-term
246 * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
247 * The processor load due to the driver is 5.8 percent.
249 #define PDELAY ((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
252 * Table of sine values at 4.5-degree increments. This is used by the
253 * synchronous matched filter demodulators.
256 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */
257 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */
258 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */
259 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */
260 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */
261 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */
262 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */
263 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */
264 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */
265 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */
266 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
267 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
268 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
269 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
270 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
271 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
272 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
273 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
274 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
275 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
276 0.000000e+00}; /* 80 */
279 * Decoder operations at the end of each second are driven by a state
280 * machine. The transition matrix consists of a dispatch table indexed
281 * by second number. Each entry in the table contains a case switch
282 * number and argument.
285 int sw
; /* case switch number */
286 int arg
; /* argument */
290 * Case switch numbers
292 #define IDLE 0 /* no operation */
293 #define COEF 1 /* BCD bit */
294 #define COEF1 2 /* BCD bit for minute unit */
295 #define COEF2 3 /* BCD bit not used */
296 #define DECIM9 4 /* BCD digit 0-9 */
297 #define DECIM6 5 /* BCD digit 0-6 */
298 #define DECIM3 6 /* BCD digit 0-3 */
299 #define DECIM2 7 /* BCD digit 0-2 */
300 #define MSCBIT 8 /* miscellaneous bit */
301 #define MSC20 9 /* miscellaneous bit */
302 #define MSC21 10 /* QSY probe channel */
303 #define MIN1 11 /* latch time */
304 #define MIN2 12 /* leap second */
305 #define SYNC2 13 /* latch minute sync pulse */
306 #define SYNC3 14 /* latch data pulse */
309 * Offsets in decoding matrix
311 #define MN 0 /* minute digits (2) */
312 #define HR 2 /* hour digits (2) */
313 #define DA 4 /* day digits (3) */
314 #define YR 7 /* year digits (2) */
316 struct progx progx
[] = {
317 {SYNC2
, 0}, /* 0 latch minute sync pulse */
318 {SYNC3
, 0}, /* 1 latch data pulse */
319 {MSCBIT
, DST2
}, /* 2 dst2 */
320 {MSCBIT
, SECWAR
}, /* 3 lw */
321 {COEF
, 0}, /* 4 1 year units */
325 {DECIM9
, YR
}, /* 8 */
326 {IDLE
, 0}, /* 9 p1 */
327 {COEF1
, 0}, /* 10 1 minute units */
328 {COEF1
, 1}, /* 11 2 */
329 {COEF1
, 2}, /* 12 4 */
330 {COEF1
, 3}, /* 13 8 */
331 {DECIM9
, MN
}, /* 14 */
332 {COEF
, 0}, /* 15 10 minute tens */
333 {COEF
, 1}, /* 16 20 */
334 {COEF
, 2}, /* 17 40 */
335 {COEF2
, 3}, /* 18 80 (not used) */
336 {DECIM6
, MN
+ 1}, /* 19 p2 */
337 {COEF
, 0}, /* 20 1 hour units */
338 {COEF
, 1}, /* 21 2 */
339 {COEF
, 2}, /* 22 4 */
340 {COEF
, 3}, /* 23 8 */
341 {DECIM9
, HR
}, /* 24 */
342 {COEF
, 0}, /* 25 10 hour tens */
343 {COEF
, 1}, /* 26 20 */
344 {COEF2
, 2}, /* 27 40 (not used) */
345 {COEF2
, 3}, /* 28 80 (not used) */
346 {DECIM2
, HR
+ 1}, /* 29 p3 */
347 {COEF
, 0}, /* 30 1 day units */
348 {COEF
, 1}, /* 31 2 */
349 {COEF
, 2}, /* 32 4 */
350 {COEF
, 3}, /* 33 8 */
351 {DECIM9
, DA
}, /* 34 */
352 {COEF
, 0}, /* 35 10 day tens */
353 {COEF
, 1}, /* 36 20 */
354 {COEF
, 2}, /* 37 40 */
355 {COEF
, 3}, /* 38 80 */
356 {DECIM9
, DA
+ 1}, /* 39 p4 */
357 {COEF
, 0}, /* 40 100 day hundreds */
358 {COEF
, 1}, /* 41 200 */
359 {COEF2
, 2}, /* 42 400 (not used) */
360 {COEF2
, 3}, /* 43 800 (not used) */
361 {DECIM3
, DA
+ 2}, /* 44 */
366 {IDLE
, 0}, /* 49 p5 */
367 {MSCBIT
, DUTS
}, /* 50 dut+- */
368 {COEF
, 0}, /* 51 10 year tens */
369 {COEF
, 1}, /* 52 20 */
370 {COEF
, 2}, /* 53 40 */
371 {COEF
, 3}, /* 54 80 */
372 {MSC20
, DST1
}, /* 55 dst1 */
373 {MSCBIT
, DUT1
}, /* 56 0.1 dut */
374 {MSCBIT
, DUT2
}, /* 57 0.2 */
375 {MSC21
, DUT4
}, /* 58 0.4 QSY probe channel */
376 {MIN1
, 0}, /* 59 p6 latch time */
377 {MIN2
, 0} /* 60 leap second */
381 * BCD coefficients for maximum-likelihood digit decode
383 #define P15 1. /* max positive number */
384 #define N15 -1. /* max negative number */
389 #define P9 (P15 / 4) /* mark (+1) */
390 #define N9 (N15 / 4) /* space (-1) */
393 {N9
, N9
, N9
, N9
}, /* 0 */
394 {P9
, N9
, N9
, N9
}, /* 1 */
395 {N9
, P9
, N9
, N9
}, /* 2 */
396 {P9
, P9
, N9
, N9
}, /* 3 */
397 {N9
, N9
, P9
, N9
}, /* 4 */
398 {P9
, N9
, P9
, N9
}, /* 5 */
399 {N9
, P9
, P9
, N9
}, /* 6 */
400 {P9
, P9
, P9
, N9
}, /* 7 */
401 {N9
, N9
, N9
, P9
}, /* 8 */
402 {P9
, N9
, N9
, P9
}, /* 9 */
403 {0, 0, 0, 0} /* backstop */
407 * Digits 0-6 (minute tens)
409 #define P6 (P15 / 3) /* mark (+1) */
410 #define N6 (N15 / 3) /* space (-1) */
413 {N6
, N6
, N6
, 0}, /* 0 */
414 {P6
, N6
, N6
, 0}, /* 1 */
415 {N6
, P6
, N6
, 0}, /* 2 */
416 {P6
, P6
, N6
, 0}, /* 3 */
417 {N6
, N6
, P6
, 0}, /* 4 */
418 {P6
, N6
, P6
, 0}, /* 5 */
419 {N6
, P6
, P6
, 0}, /* 6 */
420 {0, 0, 0, 0} /* backstop */
424 * Digits 0-3 (day hundreds)
426 #define P3 (P15 / 2) /* mark (+1) */
427 #define N3 (N15 / 2) /* space (-1) */
430 {N3
, N3
, 0, 0}, /* 0 */
431 {P3
, N3
, 0, 0}, /* 1 */
432 {N3
, P3
, 0, 0}, /* 2 */
433 {P3
, P3
, 0, 0}, /* 3 */
434 {0, 0, 0, 0} /* backstop */
438 * Digits 0-2 (hour tens)
440 #define P2 (P15 / 2) /* mark (+1) */
441 #define N2 (N15 / 2) /* space (-1) */
444 {N2
, N2
, 0, 0}, /* 0 */
445 {P2
, N2
, 0, 0}, /* 1 */
446 {N2
, P2
, 0, 0}, /* 2 */
447 {0, 0, 0, 0} /* backstop */
451 * DST decode (DST2 DST1) for prettyprint
454 'S', /* 00 standard time */
455 'I', /* 01 set clock ahead at 0200 local */
456 'O', /* 10 set clock back at 0200 local */
457 'D' /* 11 daylight time */
461 * The decoding matrix consists of nine row vectors, one for each digit
462 * of the timecode. The digits are stored from least to most significant
463 * order. The maximum-likelihood timecode is formed from the digits
464 * corresponding to the maximum-likelihood values reading in the
465 * opposite order: yy ddd hh:mm.
468 int radix
; /* radix (3, 4, 6, 10) */
469 int digit
; /* current clock digit */
470 int count
; /* match count */
471 double digprb
; /* max digit probability */
472 double digsnr
; /* likelihood function (dB) */
473 double like
[10]; /* likelihood integrator 0-9 */
477 * The station structure (sp) is used to acquire the minute pulse from
478 * WWV and/or WWVH. These stations are distinguished by the frequency
479 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
480 * Hz for WWVH. Other than frequency, the format is the same.
483 double epoch
; /* accumulated epoch differences */
484 double maxeng
; /* sync max energy */
485 double noieng
; /* sync noise energy */
486 long pos
; /* max amplitude position */
487 long lastpos
; /* last max position */
488 long mepoch
; /* minute synch epoch */
490 double amp
; /* sync signal */
491 double syneng
; /* sync signal max */
492 double synmax
; /* sync signal max latched at 0 s */
493 double synsnr
; /* sync signal SNR */
494 double metric
; /* signal quality metric */
495 int reach
; /* reachability register */
496 int count
; /* bit counter */
497 int select
; /* select bits */
498 char refid
[5]; /* reference identifier */
502 * The channel structure (cp) is used to mitigate between channels.
505 int gain
; /* audio gain */
506 struct sync wwv
; /* wwv station */
507 struct sync wwvh
; /* wwvh station */
511 * WWV unit control structure (up)
514 l_fp timestamp
; /* audio sample timestamp */
515 l_fp tick
; /* audio sample increment */
516 double phase
, freq
; /* logical clock phase and frequency */
517 double monitor
; /* audio monitor point */
518 double pdelay
; /* propagation delay (s) */
520 int fd_icom
; /* ICOM file descriptor */
522 int errflg
; /* error flags */
523 int watch
; /* watchcat */
526 * Audio codec variables
528 double comp
[SIZE
]; /* decompanding table */
529 int port
; /* codec port */
530 int gain
; /* codec gain */
531 int mongain
; /* codec monitor gain */
532 int clipcnt
; /* sample clipped count */
535 * Variables used to establish basic system timing
537 int avgint
; /* master time constant */
538 int yepoch
; /* sync epoch */
539 int repoch
; /* buffered sync epoch */
540 double epomax
; /* second sync amplitude */
541 double eposnr
; /* second sync SNR */
542 double irig
; /* data I channel amplitude */
543 double qrig
; /* data Q channel amplitude */
544 int datapt
; /* 100 Hz ramp */
545 double datpha
; /* 100 Hz VFO control */
546 int rphase
; /* second sample counter */
547 long mphase
; /* minute sample counter */
550 * Variables used to mitigate which channel to use
552 struct chan mitig
[NCHAN
]; /* channel data */
553 struct sync
*sptr
; /* station pointer */
554 int dchan
; /* data channel */
555 int schan
; /* probe channel */
556 int achan
; /* active channel */
559 * Variables used by the clock state machine
561 struct decvec decvec
[9]; /* decoding matrix */
562 int rsec
; /* seconds counter */
563 int digcnt
; /* count of digits synchronized */
566 * Variables used to estimate signal levels and bit/digit
569 double datsig
; /* data signal max */
570 double datsnr
; /* data signal SNR (dB) */
573 * Variables used to establish status and alarm conditions
575 int status
; /* status bits */
576 int alarm
; /* alarm flashers */
577 int misc
; /* miscellaneous timecode bits */
578 int errcnt
; /* data bit error counter */
582 * Function prototypes
584 static int wwv_start (int, struct peer
*);
585 static void wwv_shutdown (int, struct peer
*);
586 static void wwv_receive (struct recvbuf
*);
587 static void wwv_poll (int, struct peer
*);
590 * More function prototypes
592 static void wwv_epoch (struct peer
*);
593 static void wwv_rf (struct peer
*, double);
594 static void wwv_endpoc (struct peer
*, int);
595 static void wwv_rsec (struct peer
*, double);
596 static void wwv_qrz (struct peer
*, struct sync
*, int);
597 static void wwv_corr4 (struct peer
*, struct decvec
*,
598 double [], double [][4]);
599 static void wwv_gain (struct peer
*);
600 static void wwv_tsec (struct peer
*);
601 static int timecode (struct wwvunit
*, char *);
602 static double wwv_snr (double, double);
603 static int carry (struct decvec
*);
604 static int wwv_newchan (struct peer
*);
605 static void wwv_newgame (struct peer
*);
606 static double wwv_metric (struct sync
*);
607 static void wwv_clock (struct peer
*);
609 static int wwv_qsy (struct peer
*, int);
612 static double qsy
[NCHAN
] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
617 struct refclock refclock_wwv
= {
618 wwv_start
, /* start up driver */
619 wwv_shutdown
, /* shut down driver */
620 wwv_poll
, /* transmit poll message */
621 noentry
, /* not used (old wwv_control) */
622 noentry
, /* initialize driver (not used) */
623 noentry
, /* not used (old wwv_buginfo) */
624 NOFLAGS
/* not used */
629 * wwv_start - open the devices and initialize data for processing
633 int unit
, /* instance number (used by PCM) */
634 struct peer
*peer
/* peer structure pointer */
637 struct refclockproc
*pp
;
646 int fd
; /* file descriptor */
648 double step
; /* codec adjustment */
653 fd
= audio_init(DEVICE_AUDIO
, AUDIO_BUFSIZ
, unit
);
662 * Allocate and initialize unit structure
664 if (!(up
= (struct wwvunit
*)emalloc(sizeof(struct wwvunit
)))) {
668 memset(up
, 0, sizeof(struct wwvunit
));
670 pp
->unitptr
= (caddr_t
)up
;
671 pp
->io
.clock_recv
= wwv_receive
;
672 pp
->io
.srcclock
= (caddr_t
)peer
;
675 if (!io_addclock(&pp
->io
)) {
682 * Initialize miscellaneous variables
684 peer
->precision
= PRECISION
;
685 pp
->clockdesc
= DESCRIPTION
;
688 * The companded samples are encoded sign-magnitude. The table
689 * contains all the 256 values in the interest of speed.
691 up
->comp
[0] = up
->comp
[OFFSET
] = 0.;
692 up
->comp
[1] = 1.; up
->comp
[OFFSET
+ 1] = -1.;
693 up
->comp
[2] = 3.; up
->comp
[OFFSET
+ 2] = -3.;
695 for (i
= 3; i
< OFFSET
; i
++) {
696 up
->comp
[i
] = up
->comp
[i
- 1] + step
;
697 up
->comp
[OFFSET
+ i
] = -up
->comp
[i
];
701 DTOLFP(1. / SECOND
, &up
->tick
);
704 * Initialize the decoding matrix with the radix for each digit
707 up
->decvec
[MN
].radix
= 10; /* minutes */
708 up
->decvec
[MN
+ 1].radix
= 6;
709 up
->decvec
[HR
].radix
= 10; /* hours */
710 up
->decvec
[HR
+ 1].radix
= 3;
711 up
->decvec
[DA
].radix
= 10; /* days */
712 up
->decvec
[DA
+ 1].radix
= 10;
713 up
->decvec
[DA
+ 2].radix
= 4;
714 up
->decvec
[YR
].radix
= 10; /* years */
715 up
->decvec
[YR
+ 1].radix
= 10;
719 * Initialize autotune if available. Note that the ICOM select
720 * code must be less than 128, so the high order bit can be used
721 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
722 * we don't complain if the ICOM device is not there; but, if it
723 * is, the radio better be working.
730 if (peer
->ttl
!= 0) {
731 if (peer
->ttl
& 0x80)
732 up
->fd_icom
= icom_init("/dev/icom", B1200
,
735 up
->fd_icom
= icom_init("/dev/icom", B9600
,
738 if (up
->fd_icom
> 0) {
739 if (wwv_qsy(peer
, DCHAN
) != 0) {
740 msyslog(LOG_NOTICE
, "icom: radio not found");
744 msyslog(LOG_NOTICE
, "icom: autotune enabled");
750 * Let the games begin.
758 * wwv_shutdown - shut down the clock
762 int unit
, /* instance number (not used) */
763 struct peer
*peer
/* peer structure pointer */
766 struct refclockproc
*pp
;
770 up
= (struct wwvunit
*)pp
->unitptr
;
774 io_closeclock(&pp
->io
);
784 * wwv_receive - receive data from the audio device
786 * This routine reads input samples and adjusts the logical clock to
787 * track the A/D sample clock by dropping or duplicating codec samples.
788 * It also controls the A/D signal level with an AGC loop to mimimize
789 * quantization noise and avoid overload.
793 struct recvbuf
*rbufp
/* receive buffer structure pointer */
797 struct refclockproc
*pp
;
803 double sample
; /* codec sample */
804 u_char
*dpt
; /* buffer pointer */
805 int bufcnt
; /* buffer counter */
808 peer
= (struct peer
*)rbufp
->recv_srcclock
;
810 up
= (struct wwvunit
*)pp
->unitptr
;
813 * Main loop - read until there ain't no more. Note codec
814 * samples are bit-inverted.
816 DTOLFP((double)rbufp
->recv_length
/ SECOND
, <emp
);
817 L_SUB(&rbufp
->recv_time
, <emp
);
818 up
->timestamp
= rbufp
->recv_time
;
819 dpt
= rbufp
->recv_buffer
;
820 for (bufcnt
= 0; bufcnt
< rbufp
->recv_length
; bufcnt
++) {
821 sample
= up
->comp
[~*dpt
++ & 0xff];
824 * Clip noise spikes greater than MAXAMP (6000) and
825 * record the number of clips to be used later by the
828 if (sample
> MAXAMP
) {
831 } else if (sample
< -MAXAMP
) {
837 * Variable frequency oscillator. The codec oscillator
838 * runs at the nominal rate of 8000 samples per second,
839 * or 125 us per sample. A frequency change of one unit
840 * results in either duplicating or deleting one sample
841 * per second, which results in a frequency change of
844 up
->phase
+= (up
->freq
+ clock_codec
) / SECOND
;
845 if (up
->phase
>= .5) {
847 } else if (up
->phase
< -.5) {
849 wwv_rf(peer
, sample
);
850 wwv_rf(peer
, sample
);
852 wwv_rf(peer
, sample
);
854 L_ADD(&up
->timestamp
, &up
->tick
);
858 * Set the input port and monitor gain for the next buffer.
860 if (pp
->sloppyclockflag
& CLK_FLAG2
)
864 if (pp
->sloppyclockflag
& CLK_FLAG3
)
865 up
->mongain
= MONGAIN
;
872 * wwv_poll - called by the transmit procedure
874 * This routine keeps track of status. If no offset samples have been
875 * processed during a poll interval, a timeout event is declared. If
876 * errors have have occurred during the interval, they are reported as
881 int unit
, /* instance number (not used) */
882 struct peer
*peer
/* peer structure pointer */
885 struct refclockproc
*pp
;
889 up
= (struct wwvunit
*)pp
->unitptr
;
891 refclock_report(peer
, up
->errflg
);
898 * wwv_rf - process signals and demodulate to baseband
900 * This routine grooms and filters decompanded raw audio samples. The
901 * output signal is the 100-Hz filtered baseband data signal in
902 * quadrature phase. The routine also determines the minute synch epoch,
903 * as well as certain signal maxima, minima and related values.
905 * There are two 1-s ramps used by this program. Both count the 8000
906 * logical clock samples spanning exactly one second. The epoch ramp
907 * counts the samples starting at an arbitrary time. The rphase ramp
908 * counts the samples starting at the 5-ms second sync pulse found
909 * during the epoch ramp.
911 * There are two 1-m ramps used by this program. The mphase ramp counts
912 * the 480,000 logical clock samples spanning exactly one minute and
913 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
914 * the minute starting at the 800-ms minute sync pulse found during the
915 * mphase ramp. The rsec ramp drives the seconds state machine to
916 * determine the bits and digits of the timecode.
918 * Demodulation operations are based on three synthesized quadrature
919 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
920 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
921 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
922 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
923 * at 1200 Hz). Two additional matched filters are switched in
924 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
925 * WWVH second sync signal (6 cycles at 1200 Hz).
929 struct peer
*peer
, /* peerstructure pointer */
930 double isig
/* input signal */
933 struct refclockproc
*pp
;
935 struct sync
*sp
, *rp
;
937 static double lpf
[5]; /* 150-Hz lpf delay line */
938 double data
; /* lpf output */
939 static double bpf
[9]; /* 1000/1200-Hz bpf delay line */
940 double syncx
; /* bpf output */
941 static double mf
[41]; /* 1000/1200-Hz mf delay line */
942 double mfsync
; /* mf output */
944 static int iptr
; /* data channel pointer */
945 static double ibuf
[DATSIZ
]; /* data I channel delay line */
946 static double qbuf
[DATSIZ
]; /* data Q channel delay line */
948 static int jptr
; /* sync channel pointer */
949 static int kptr
; /* tick channel pointer */
951 static int csinptr
; /* wwv channel phase */
952 static double cibuf
[SYNSIZ
]; /* wwv I channel delay line */
953 static double cqbuf
[SYNSIZ
]; /* wwv Q channel delay line */
954 static double ciamp
; /* wwv I channel amplitude */
955 static double cqamp
; /* wwv Q channel amplitude */
957 static double csibuf
[TCKSIZ
]; /* wwv I tick delay line */
958 static double csqbuf
[TCKSIZ
]; /* wwv Q tick delay line */
959 static double csiamp
; /* wwv I tick amplitude */
960 static double csqamp
; /* wwv Q tick amplitude */
962 static int hsinptr
; /* wwvh channel phase */
963 static double hibuf
[SYNSIZ
]; /* wwvh I channel delay line */
964 static double hqbuf
[SYNSIZ
]; /* wwvh Q channel delay line */
965 static double hiamp
; /* wwvh I channel amplitude */
966 static double hqamp
; /* wwvh Q channel amplitude */
968 static double hsibuf
[TCKSIZ
]; /* wwvh I tick delay line */
969 static double hsqbuf
[TCKSIZ
]; /* wwvh Q tick delay line */
970 static double hsiamp
; /* wwvh I tick amplitude */
971 static double hsqamp
; /* wwvh Q tick amplitude */
973 static double epobuf
[SECOND
]; /* second sync comb filter */
974 static double epomax
, nxtmax
; /* second sync amplitude buffer */
975 static int epopos
; /* epoch second sync position buffer */
977 static int iniflg
; /* initialization flag */
978 int epoch
; /* comb filter index */
983 up
= (struct wwvunit
*)pp
->unitptr
;
987 memset((char *)lpf
, 0, sizeof(lpf
));
988 memset((char *)bpf
, 0, sizeof(bpf
));
989 memset((char *)mf
, 0, sizeof(mf
));
990 memset((char *)ibuf
, 0, sizeof(ibuf
));
991 memset((char *)qbuf
, 0, sizeof(qbuf
));
992 memset((char *)cibuf
, 0, sizeof(cibuf
));
993 memset((char *)cqbuf
, 0, sizeof(cqbuf
));
994 memset((char *)csibuf
, 0, sizeof(csibuf
));
995 memset((char *)csqbuf
, 0, sizeof(csqbuf
));
996 memset((char *)hibuf
, 0, sizeof(hibuf
));
997 memset((char *)hqbuf
, 0, sizeof(hqbuf
));
998 memset((char *)hsibuf
, 0, sizeof(hsibuf
));
999 memset((char *)hsqbuf
, 0, sizeof(hsqbuf
));
1000 memset((char *)epobuf
, 0, sizeof(epobuf
));
1004 * Baseband data demodulation. The 100-Hz subcarrier is
1005 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1006 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1007 * 600-Hz tones and most of the noise and voice modulation
1010 * The subcarrier is transmitted 10 dB down from the carrier.
1011 * The DGAIN parameter can be adjusted for this and to
1012 * compensate for the radio audio response at 100 Hz.
1014 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1015 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1017 data
= (lpf
[4] = lpf
[3]) * 8.360961e-01;
1018 data
+= (lpf
[3] = lpf
[2]) * -3.481740e+00;
1019 data
+= (lpf
[2] = lpf
[1]) * 5.452988e+00;
1020 data
+= (lpf
[1] = lpf
[0]) * -3.807229e+00;
1021 lpf
[0] = isig
* DGAIN
- data
;
1022 data
= lpf
[0] * 3.281435e-03
1023 + lpf
[1] * -1.149947e-02
1024 + lpf
[2] * 1.654858e-02
1025 + lpf
[3] * -1.149947e-02
1026 + lpf
[4] * 3.281435e-03;
1029 * The 100-Hz data signal is demodulated using a pair of
1030 * quadrature multipliers, matched filters and a phase lock
1031 * loop. The I and Q quadrature data signals are produced by
1032 * multiplying the filtered signal by 100-Hz sine and cosine
1033 * signals, respectively. The signals are processed by 170-ms
1034 * synchronous matched filters to produce the amplitude and
1035 * phase signals used by the demodulator. The signals are scaled
1036 * to produce unit energy at the maximum value.
1039 up
->datapt
= (up
->datapt
+ IN100
) % 80;
1040 dtemp
= sintab
[i
] * data
/ (MS
/ 2. * DATCYC
);
1041 up
->irig
-= ibuf
[iptr
];
1046 dtemp
= sintab
[i
] * data
/ (MS
/ 2. * DATCYC
);
1047 up
->qrig
-= qbuf
[iptr
];
1050 iptr
= (iptr
+ 1) % DATSIZ
;
1053 * Baseband sync demodulation. The 1000/1200 sync signals are
1054 * extracted using a 600-Hz IIR bandpass filter. This removes
1055 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1056 * tones and most of the noise and voice modulation components.
1058 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1059 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1061 syncx
= (bpf
[8] = bpf
[7]) * 4.897278e-01;
1062 syncx
+= (bpf
[7] = bpf
[6]) * -2.765914e+00;
1063 syncx
+= (bpf
[6] = bpf
[5]) * 8.110921e+00;
1064 syncx
+= (bpf
[5] = bpf
[4]) * -1.517732e+01;
1065 syncx
+= (bpf
[4] = bpf
[3]) * 1.975197e+01;
1066 syncx
+= (bpf
[3] = bpf
[2]) * -1.814365e+01;
1067 syncx
+= (bpf
[2] = bpf
[1]) * 1.159783e+01;
1068 syncx
+= (bpf
[1] = bpf
[0]) * -4.735040e+00;
1069 bpf
[0] = isig
- syncx
;
1070 syncx
= bpf
[0] * 8.203628e-03
1071 + bpf
[1] * -2.375732e-02
1072 + bpf
[2] * 3.353214e-02
1073 + bpf
[3] * -4.080258e-02
1074 + bpf
[4] * 4.605479e-02
1075 + bpf
[5] * -4.080258e-02
1076 + bpf
[6] * 3.353214e-02
1077 + bpf
[7] * -2.375732e-02
1078 + bpf
[8] * 8.203628e-03;
1081 * The 1000/1200 sync signals are demodulated using a pair of
1082 * quadrature multipliers and matched filters. However,
1083 * synchronous demodulation at these frequencies is impractical,
1084 * so only the signal amplitude is used. The I and Q quadrature
1085 * sync signals are produced by multiplying the filtered signal
1086 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1087 * respectively. The WWV and WWVH signals are processed by 800-
1088 * ms synchronous matched filters and combined to produce the
1089 * minute sync signal and detect which one (or both) the WWV or
1090 * WWVH signal is present. The WWV and WWVH signals are also
1091 * processed by 5-ms synchronous matched filters and combined to
1092 * produce the second sync signal. The signals are scaled to
1093 * produce unit energy at the maximum value.
1095 * Note the master timing ramps, which run continuously. The
1096 * minute counter (mphase) counts the samples in the minute,
1097 * while the second counter (epoch) counts the samples in the
1100 up
->mphase
= (up
->mphase
+ 1) % MINUTE
;
1101 epoch
= up
->mphase
% SECOND
;
1107 csinptr
= (csinptr
+ IN1000
) % 80;
1109 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1110 ciamp
-= cibuf
[jptr
];
1111 cibuf
[jptr
] = dtemp
;
1113 csiamp
-= csibuf
[kptr
];
1114 csibuf
[kptr
] = dtemp
;
1118 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1119 cqamp
-= cqbuf
[jptr
];
1120 cqbuf
[jptr
] = dtemp
;
1122 csqamp
-= csqbuf
[kptr
];
1123 csqbuf
[kptr
] = dtemp
;
1126 sp
= &up
->mitig
[up
->achan
].wwv
;
1127 sp
->amp
= sqrt(ciamp
* ciamp
+ cqamp
* cqamp
) / SYNCYC
;
1128 if (!(up
->status
& MSYNC
))
1129 wwv_qrz(peer
, sp
, (int)(pp
->fudgetime1
* SECOND
));
1135 hsinptr
= (hsinptr
+ IN1200
) % 80;
1137 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1138 hiamp
-= hibuf
[jptr
];
1139 hibuf
[jptr
] = dtemp
;
1141 hsiamp
-= hsibuf
[kptr
];
1142 hsibuf
[kptr
] = dtemp
;
1146 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1147 hqamp
-= hqbuf
[jptr
];
1148 hqbuf
[jptr
] = dtemp
;
1150 hsqamp
-= hsqbuf
[kptr
];
1151 hsqbuf
[kptr
] = dtemp
;
1154 rp
= &up
->mitig
[up
->achan
].wwvh
;
1155 rp
->amp
= sqrt(hiamp
* hiamp
+ hqamp
* hqamp
) / SYNCYC
;
1156 if (!(up
->status
& MSYNC
))
1157 wwv_qrz(peer
, rp
, (int)(pp
->fudgetime2
* SECOND
));
1158 jptr
= (jptr
+ 1) % SYNSIZ
;
1159 kptr
= (kptr
+ 1) % TCKSIZ
;
1162 * The following section is called once per minute. It does
1163 * housekeeping and timeout functions and empties the dustbins.
1165 if (up
->mphase
== 0) {
1167 if (!(up
->status
& MSYNC
)) {
1170 * If minute sync has not been acquired before
1171 * ACQSN timeout (6 min), or if no signal is
1172 * heard, the program cycles to the next
1173 * frequency and tries again.
1175 if (!wwv_newchan(peer
))
1180 * If the leap bit is set, set the minute epoch
1181 * back one second so the station processes
1182 * don't miss a beat.
1184 if (up
->status
& LEPSEC
) {
1185 up
->mphase
-= SECOND
;
1187 up
->mphase
+= MINUTE
;
1193 * When the channel metric reaches threshold and the second
1194 * counter matches the minute epoch within the second, the
1195 * driver has synchronized to the station. The second number is
1196 * the remaining seconds until the next minute epoch, while the
1197 * sync epoch is zero. Watch out for the first second; if
1198 * already synchronized to the second, the buffered sync epoch
1201 * Note the guard interval is 200 ms; if for some reason the
1202 * clock drifts more than that, it might wind up in the wrong
1203 * second. If the maximum frequency error is not more than about
1204 * 1 PPM, the clock can go as much as two days while still in
1207 if (up
->status
& MSYNC
) {
1209 } else if (up
->sptr
!= NULL
) {
1211 if (sp
->metric
>= TTHR
&& epoch
== sp
->mepoch
% SECOND
)
1213 up
->rsec
= (60 - sp
->mepoch
/ SECOND
) % 60;
1215 up
->status
|= MSYNC
;
1217 if (!(up
->status
& SSYNC
))
1218 up
->repoch
= up
->yepoch
= epoch
;
1220 up
->repoch
= up
->yepoch
;
1226 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1227 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1228 * pulse is used for the most precise synchronization, since if
1229 * provides a resolution of one sample (125 us). The filters run
1230 * only if the station has been reliably determined.
1232 if (up
->status
& SELV
)
1233 mfsync
= sqrt(csiamp
* csiamp
+ csqamp
* csqamp
) /
1235 else if (up
->status
& SELH
)
1236 mfsync
= sqrt(hsiamp
* hsiamp
+ hsqamp
* hsqamp
) /
1242 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1243 * filter. Correct for the FIR matched filter delay, which is 5
1244 * ms for both the WWV and WWVH filters, and also for the
1245 * propagation delay. Once each second look for second sync. If
1246 * not in minute sync, fiddle the codec gain. Note the SNR is
1247 * computed from the maximum sample and the envelope of the
1248 * sample 6 ms before it, so if we slip more than a cycle the
1249 * SNR should plummet. The signal is scaled to produce unit
1250 * energy at the maximum value.
1252 dtemp
= (epobuf
[epoch
] += (mfsync
- epobuf
[epoch
]) /
1254 if (dtemp
> epomax
) {
1262 nxtmax
= fabs(epobuf
[j
]);
1265 up
->epomax
= epomax
;
1266 up
->eposnr
= wwv_snr(epomax
, nxtmax
);
1267 epopos
-= TCKCYC
* MS
;
1270 wwv_endpoc(peer
, epopos
);
1271 if (!(up
->status
& SSYNC
))
1272 up
->alarm
|= SYNERR
;
1274 if (!(up
->status
& MSYNC
))
1281 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1283 * This routine implements a virtual station process used to acquire
1284 * minute sync and to mitigate among the ten frequency and station
1285 * combinations. During minute sync acquisition the process probes each
1286 * frequency and station in turn for the minute pulse, which
1287 * involves searching through the entire 480,000-sample minute. The
1288 * process finds the maximum signal and RMS noise plus signal. Then, the
1289 * actual noise is determined by subtracting the energy of the matched
1292 * Students of radar receiver technology will discover this algorithm
1293 * amounts to a range-gate discriminator. A valid pulse must have peak
1294 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1295 * difference between the current and previous epoch must be less than
1296 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1297 * into the second, so the timing is retarded to the previous second
1302 struct peer
*peer
, /* peer structure pointer */
1303 struct sync
*sp
, /* sync channel structure */
1304 int pdelay
/* propagation delay (samples) */
1307 struct refclockproc
*pp
;
1309 char tbuf
[TBUF
]; /* monitor buffer */
1313 up
= (struct wwvunit
*)pp
->unitptr
;
1316 * Find the sample with peak amplitude, which defines the minute
1317 * epoch. Accumulate all samples to determine the total noise
1320 epoch
= up
->mphase
- pdelay
- SYNSIZ
;
1323 if (sp
->amp
> sp
->maxeng
) {
1324 sp
->maxeng
= sp
->amp
;
1327 sp
->noieng
+= sp
->amp
;
1330 * At the end of the minute, determine the epoch of the minute
1331 * sync pulse, as well as the difference between the current and
1332 * previous epoches due to the intrinsic frequency error plus
1333 * jitter. When calculating the SNR, subtract the pulse energy
1334 * from the total noise energy and then normalize.
1336 if (up
->mphase
== 0) {
1337 sp
->synmax
= sp
->maxeng
;
1338 sp
->synsnr
= wwv_snr(sp
->synmax
, (sp
->noieng
-
1339 sp
->synmax
) / MINUTE
);
1341 sp
->lastpos
= sp
->pos
;
1342 epoch
= (sp
->pos
- sp
->lastpos
) % MINUTE
;
1344 if (sp
->reach
& (1 << AMAX
))
1346 if (sp
->synmax
> ATHR
&& sp
->synsnr
> ASNR
) {
1347 if (abs(epoch
) < AWND
* MS
) {
1350 sp
->mepoch
= sp
->lastpos
= sp
->pos
;
1351 } else if (sp
->count
== 1) {
1352 sp
->lastpos
= sp
->pos
;
1355 if (up
->watch
> ACQSN
)
1358 sp
->metric
= wwv_metric(sp
);
1359 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1361 "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1362 up
->status
, up
->gain
, sp
->refid
,
1363 sp
->reach
& 0xffff, sp
->metric
, sp
->synmax
,
1364 sp
->synsnr
, sp
->pos
% SECOND
, epoch
);
1365 record_clock_stats(&peer
->srcadr
, tbuf
);
1368 printf("%s\n", tbuf
);
1371 sp
->maxeng
= sp
->noieng
= 0;
1377 * wwv_endpoc - identify and acquire second sync pulse
1379 * This routine is called at the end of the second sync interval. It
1380 * determines the second sync epoch position within the second and
1381 * disciplines the sample clock using a frequency-lock loop (FLL).
1383 * Second sync is determined in the RF input routine as the maximum
1384 * over all 8000 samples in the second comb filter. To assure accurate
1385 * and reliable time and frequency discipline, this routine performs a
1386 * great deal of heavy-handed heuristic data filtering and grooming.
1390 struct peer
*peer
, /* peer structure pointer */
1391 int epopos
/* epoch max position */
1394 struct refclockproc
*pp
;
1396 static int epoch_mf
[3]; /* epoch median filter */
1397 static int tepoch
; /* current second epoch */
1398 static int xepoch
; /* last second epoch */
1399 static int zepoch
; /* last run epoch */
1400 static int zcount
; /* last run end time */
1401 static int scount
; /* seconds counter */
1402 static int syncnt
; /* run length counter */
1403 static int maxrun
; /* longest run length */
1404 static int mepoch
; /* longest run end epoch */
1405 static int mcount
; /* longest run end time */
1406 static int avgcnt
; /* averaging interval counter */
1407 static int avginc
; /* averaging ratchet */
1408 static int iniflg
; /* initialization flag */
1409 char tbuf
[TBUF
]; /* monitor buffer */
1414 up
= (struct wwvunit
*)pp
->unitptr
;
1417 memset((char *)epoch_mf
, 0, sizeof(epoch_mf
));
1421 * If the signal amplitude or SNR fall below thresholds, dim the
1422 * second sync lamp and wait for hotter ions. If no stations are
1423 * heard, we are either in a probe cycle or the ions are really
1427 if (up
->epomax
< STHR
|| up
->eposnr
< SSNR
) {
1428 up
->status
&= ~(SSYNC
| FGATE
);
1429 avgcnt
= syncnt
= maxrun
= 0;
1432 if (!(up
->status
& (SELV
| SELH
)))
1436 * A three-stage median filter is used to help denoise the
1437 * second sync pulse. The median sample becomes the candidate
1440 epoch_mf
[2] = epoch_mf
[1];
1441 epoch_mf
[1] = epoch_mf
[0];
1442 epoch_mf
[0] = epopos
;
1443 if (epoch_mf
[0] > epoch_mf
[1]) {
1444 if (epoch_mf
[1] > epoch_mf
[2])
1445 tepoch
= epoch_mf
[1]; /* 0 1 2 */
1446 else if (epoch_mf
[2] > epoch_mf
[0])
1447 tepoch
= epoch_mf
[0]; /* 2 0 1 */
1449 tepoch
= epoch_mf
[2]; /* 0 2 1 */
1451 if (epoch_mf
[1] < epoch_mf
[2])
1452 tepoch
= epoch_mf
[1]; /* 2 1 0 */
1453 else if (epoch_mf
[2] < epoch_mf
[0])
1454 tepoch
= epoch_mf
[0]; /* 1 0 2 */
1456 tepoch
= epoch_mf
[2]; /* 1 2 0 */
1461 * If the epoch candidate is the same as the last one, increment
1462 * the run counter. If not, save the length, epoch and end
1463 * time of the current run for use later and reset the counter.
1464 * The epoch is considered valid if the run is at least SCMP
1465 * (10) s, the minute is synchronized and the interval since the
1466 * last epoch is not greater than the averaging interval. Thus,
1467 * after a long absence, the program will wait a full averaging
1468 * interval while the comb filter charges up and noise
1471 tmp2
= (tepoch
- xepoch
) % SECOND
;
1474 if (syncnt
> SCMP
&& up
->status
& MSYNC
&& (up
->status
&
1475 FGATE
|| scount
- zcount
<= up
->avgint
)) {
1476 up
->status
|= SSYNC
;
1477 up
->yepoch
= tepoch
;
1479 } else if (syncnt
>= maxrun
) {
1485 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
&
1488 "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1489 up
->status
, up
->gain
, tepoch
, up
->epomax
,
1490 up
->eposnr
, tmp2
, avgcnt
, syncnt
,
1492 record_clock_stats(&peer
->srcadr
, tbuf
);
1495 printf("%s\n", tbuf
);
1499 if (avgcnt
< up
->avgint
) {
1505 * The sample clock frequency is disciplined using a first-order
1506 * feedback loop with time constant consistent with the Allan
1507 * intercept of typical computer clocks. During each averaging
1508 * interval the candidate epoch at the end of the longest run is
1509 * determined. If the longest run is zero, all epoches in the
1510 * interval are different, so the candidate epoch is the current
1511 * epoch. The frequency update is computed from the candidate
1512 * epoch difference (125-us units) and time difference (seconds)
1515 if (syncnt
>= maxrun
) {
1527 * The master clock runs at the codec sample frequency of 8000
1528 * Hz, so the intrinsic time resolution is 125 us. The frequency
1529 * resolution ranges from 18 PPM at the minimum averaging
1530 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1531 * s. An offset update is determined at the end of the longest
1532 * run in each averaging interval. The frequency adjustment is
1533 * computed from the difference between offset updates and the
1534 * interval between them.
1536 * The maximum frequency adjustment ranges from 187 PPM at the
1537 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1538 * exceeds the maximum, the update is discarded and the
1539 * hysteresis counter is decremented. Otherwise, the frequency
1540 * is incremented by the adjustment, but clamped to the maximum
1541 * 187.5 PPM. If the update is less than half the maximum, the
1542 * hysteresis counter is incremented. If the counter increments
1543 * to +3, the averaging interval is doubled and the counter set
1544 * to zero; if it decrements to -3, the interval is halved and
1545 * the counter set to zero.
1547 dtemp
= (mepoch
- zepoch
) % SECOND
;
1548 if (up
->status
& FGATE
) {
1549 if (abs(dtemp
) < MAXFREQ
* MINAVG
) {
1550 up
->freq
+= (dtemp
/ 2.) / ((mcount
- zcount
) *
1552 if (up
->freq
> MAXFREQ
)
1554 else if (up
->freq
< -MAXFREQ
)
1555 up
->freq
= -MAXFREQ
;
1556 if (abs(dtemp
) < MAXFREQ
* MINAVG
/ 2.) {
1560 if (up
->avgint
< MAXAVG
) {
1570 if (up
->avgint
> MINAVG
) {
1577 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1579 "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1580 up
->status
, up
->epomax
, up
->eposnr
, mepoch
,
1581 up
->avgint
, maxrun
, mcount
- zcount
, dtemp
,
1582 up
->freq
* 1e6
/ SECOND
);
1583 record_clock_stats(&peer
->srcadr
, tbuf
);
1586 printf("%s\n", tbuf
);
1591 * This is a valid update; set up for the next interval.
1593 up
->status
|= FGATE
;
1596 avgcnt
= syncnt
= maxrun
= 0;
1601 * wwv_epoch - epoch scanner
1603 * This routine extracts data signals from the 100-Hz subcarrier. It
1604 * scans the receiver second epoch to determine the signal amplitudes
1605 * and pulse timings. Receiver synchronization is determined by the
1606 * minute sync pulse detected in the wwv_rf() routine and the second
1607 * sync pulse detected in the wwv_epoch() routine. The transmitted
1608 * signals are delayed by the propagation delay, receiver delay and
1609 * filter delay of this program. Delay corrections are introduced
1610 * separately for WWV and WWVH.
1612 * Most communications radios use a highpass filter in the audio stages,
1613 * which can do nasty things to the subcarrier phase relative to the
1614 * sync pulses. Therefore, the data subcarrier reference phase is
1615 * disciplined using the hardlimited quadrature-phase signal sampled at
1616 * the same time as the in-phase signal. The phase tracking loop uses
1617 * phase adjustments of plus-minus one sample (125 us).
1621 struct peer
*peer
/* peer structure pointer */
1624 struct refclockproc
*pp
;
1627 static double sigmin
, sigzer
, sigone
, engmax
, engmin
;
1630 up
= (struct wwvunit
*)pp
->unitptr
;
1633 * Find the maximum minute sync pulse energy for both the
1634 * WWV and WWVH stations. This will be used later for channel
1635 * and station mitigation. Also set the seconds epoch at 800 ms
1636 * well before the end of the second to make sure we never set
1637 * the epoch backwards.
1639 cp
= &up
->mitig
[up
->achan
];
1640 if (cp
->wwv
.amp
> cp
->wwv
.syneng
)
1641 cp
->wwv
.syneng
= cp
->wwv
.amp
;
1642 if (cp
->wwvh
.amp
> cp
->wwvh
.syneng
)
1643 cp
->wwvh
.syneng
= cp
->wwvh
.amp
;
1644 if (up
->rphase
== 800 * MS
)
1645 up
->repoch
= up
->yepoch
;
1648 * Use the signal amplitude at epoch 15 ms as the noise floor.
1649 * This gives a guard time of +-15 ms from the beginning of the
1650 * second until the second pulse rises at 30 ms. There is a
1651 * compromise here; we want to delay the sample as long as
1652 * possible to give the radio time to change frequency and the
1653 * AGC to stabilize, but as early as possible if the second
1654 * epoch is not exact.
1656 if (up
->rphase
== 15 * MS
)
1657 sigmin
= sigzer
= sigone
= up
->irig
;
1660 * Latch the data signal at 200 ms. Keep this around until the
1661 * end of the second. Use the signal energy as the peak to
1662 * compute the SNR. Use the Q sample to adjust the 100-Hz
1663 * reference oscillator phase.
1665 if (up
->rphase
== 200 * MS
) {
1667 engmax
= sqrt(up
->irig
* up
->irig
+ up
->qrig
*
1669 up
->datpha
= up
->qrig
/ up
->avgint
;
1670 if (up
->datpha
>= 0) {
1672 if (up
->datapt
>= 80)
1683 * Latch the data signal at 500 ms. Keep this around until the
1684 * end of the second.
1686 else if (up
->rphase
== 500 * MS
)
1690 * At the end of the second crank the clock state machine and
1691 * adjust the codec gain. Note the epoch is buffered from the
1692 * center of the second in order to avoid jitter while the
1693 * seconds synch is diddling the epoch. Then, determine the true
1694 * offset and update the median filter in the driver interface.
1696 * Use the energy at the end of the second as the noise to
1697 * compute the SNR for the data pulse. This gives a better
1698 * measurement than the beginning of the second, especially when
1699 * returning from the probe channel. This gives a guard time of
1700 * 30 ms from the decay of the longest pulse to the rise of the
1704 if (up
->mphase
% SECOND
== up
->repoch
) {
1705 up
->status
&= ~(DGATE
| BGATE
);
1706 engmin
= sqrt(up
->irig
* up
->irig
+ up
->qrig
*
1708 up
->datsig
= engmax
;
1709 up
->datsnr
= wwv_snr(engmax
, engmin
);
1712 * If the amplitude or SNR is below threshold, average a
1713 * 0 in the the integrators; otherwise, average the
1714 * bipolar signal. This is done to avoid noise polution.
1716 if (engmax
< DTHR
|| up
->datsnr
< DSNR
) {
1717 up
->status
|= DGATE
;
1722 wwv_rsec(peer
, sigone
- sigzer
);
1724 if (up
->status
& (DGATE
| BGATE
))
1726 if (up
->errcnt
> MAXERR
)
1727 up
->alarm
|= LOWERR
;
1729 cp
= &up
->mitig
[up
->achan
];
1731 cp
->wwvh
.syneng
= 0;
1738 * wwv_rsec - process receiver second
1740 * This routine is called at the end of each receiver second to
1741 * implement the per-second state machine. The machine assembles BCD
1742 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1744 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1745 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1746 * for leap years) or 31 December (day 365 or 366 for leap years) is
1747 * augmented by one second numbered 60. This is accomplished by
1748 * extending the minute interval by one second and teaching the state
1749 * machine to ignore it.
1753 struct peer
*peer
, /* peer structure pointer */
1757 static int iniflg
; /* initialization flag */
1758 static double bcddld
[4]; /* BCD data bits */
1759 static double bitvec
[61]; /* bit integrator for misc bits */
1760 struct refclockproc
*pp
;
1763 struct sync
*sp
, *rp
;
1764 char tbuf
[TBUF
]; /* monitor buffer */
1768 up
= (struct wwvunit
*)pp
->unitptr
;
1771 memset((char *)bitvec
, 0, sizeof(bitvec
));
1775 * The bit represents the probability of a hit on zero (negative
1776 * values), a hit on one (positive values) or a miss (zero
1777 * value). The likelihood vector is the exponential average of
1778 * these probabilities. Only the bits of this vector
1779 * corresponding to the miscellaneous bits of the timecode are
1780 * used, but it's easier to do them all. After that, crank the
1781 * seconds state machine.
1785 bitvec
[nsec
] += (bit
- bitvec
[nsec
]) / TCONST
;
1786 sw
= progx
[nsec
].sw
;
1787 arg
= progx
[nsec
].arg
;
1790 * The minute state machine. Fly off to a particular section as
1791 * directed by the transition matrix and second number.
1796 * Ignore this second.
1798 case IDLE
: /* 9, 45-49 */
1802 * Probe channel stuff
1804 * The WWV/H format contains data pulses in second 59 (position
1805 * identifier) and second 1, but not in second 0. The minute
1806 * sync pulse is contained in second 0. At the end of second 58
1807 * QSY to the probe channel, which rotates in turn over all
1808 * WWV/H frequencies. At the end of second 0 measure the minute
1809 * sync pulse. At the end of second 1 measure the data pulse and
1810 * QSY back to the data channel. Note that the actions commented
1811 * here happen at the end of the second numbered as shown.
1813 * At the end of second 0 save the minute sync amplitude latched
1814 * at 800 ms as the signal later used to calculate the SNR.
1817 cp
= &up
->mitig
[up
->achan
];
1818 cp
->wwv
.synmax
= cp
->wwv
.syneng
;
1819 cp
->wwvh
.synmax
= cp
->wwvh
.syneng
;
1823 * At the end of second 1 use the minute sync amplitude latched
1824 * at 800 ms as the noise to calculate the SNR. If the minute
1825 * sync pulse and SNR are above thresholds and the data pulse
1826 * amplitude and SNR are above thresolds, shift a 1 into the
1827 * station reachability register; otherwise, shift a 0. The
1828 * number of 1 bits in the last six intervals is a component of
1829 * the channel metric computed by the wwv_metric() routine.
1830 * Finally, QSY back to the data channel.
1833 cp
= &up
->mitig
[up
->achan
];
1839 sp
->synsnr
= wwv_snr(sp
->synmax
, sp
->amp
);
1841 if (sp
->reach
& (1 << AMAX
))
1843 if (sp
->synmax
>= QTHR
&& sp
->synsnr
>= QSNR
&&
1844 !(up
->status
& (DGATE
| BGATE
))) {
1848 sp
->metric
= wwv_metric(sp
);
1854 rp
->synsnr
= wwv_snr(rp
->synmax
, rp
->amp
);
1856 if (rp
->reach
& (1 << AMAX
))
1858 if (rp
->synmax
>= QTHR
&& rp
->synsnr
>= QSNR
&&
1859 !(up
->status
& (DGATE
| BGATE
))) {
1863 rp
->metric
= wwv_metric(rp
);
1864 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1866 "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1867 up
->status
, up
->gain
, up
->yepoch
,
1868 up
->epomax
, up
->eposnr
, up
->datsig
,
1870 sp
->refid
, sp
->reach
& 0xffff,
1871 sp
->metric
, sp
->synmax
, sp
->synsnr
,
1872 rp
->refid
, rp
->reach
& 0xffff,
1873 rp
->metric
, rp
->synmax
, rp
->synsnr
);
1874 record_clock_stats(&peer
->srcadr
, tbuf
);
1877 printf("%s\n", tbuf
);
1880 up
->errcnt
= up
->digcnt
= up
->alarm
= 0;
1883 * If synchronized to a station, restart if no stations
1884 * have been heard within the PANIC timeout (2 days). If
1885 * not and the minute digit has been found, restart if
1886 * not synchronized withing the SYNCH timeout (40 m). If
1887 * not, restart if the unit digit has not been found
1888 * within the DATA timeout (15 m).
1890 if (up
->status
& INSYNC
) {
1891 if (up
->watch
> PANIC
) {
1895 } else if (up
->status
& DSYNC
) {
1896 if (up
->watch
> SYNCH
) {
1900 } else if (up
->watch
> DATA
) {
1908 * Save the bit probability in the BCD data vector at the index
1909 * given by the argument. Bits not used in the digit are forced
1912 case COEF1
: /* 4-7 */
1916 case COEF
: /* 10-13, 15-17, 20-23, 25-26,
1917 30-33, 35-38, 40-41, 51-54 */
1918 if (up
->status
& DSYNC
)
1924 case COEF2
: /* 18, 27-28, 42-43 */
1929 * Correlate coefficient vector with each valid digit vector and
1930 * save in decoding matrix. We step through the decoding matrix
1931 * digits correlating each with the coefficients and saving the
1932 * greatest and the next lower for later SNR calculation.
1934 case DECIM2
: /* 29 */
1935 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd2
);
1938 case DECIM3
: /* 44 */
1939 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd3
);
1942 case DECIM6
: /* 19 */
1943 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd6
);
1946 case DECIM9
: /* 8, 14, 24, 34, 39 */
1947 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd9
);
1951 * Miscellaneous bits. If above the positive threshold, declare
1952 * 1; if below the negative threshold, declare 0; otherwise
1953 * raise the BGATE bit. The design is intended to avoid
1954 * integrating noise under low SNR conditions.
1956 case MSC20
: /* 55 */
1957 wwv_corr4(peer
, &up
->decvec
[YR
+ 1], bcddld
, bcd9
);
1960 case MSCBIT
: /* 2-3, 50, 56-57 */
1961 if (bitvec
[nsec
] > BTHR
) {
1962 if (!(up
->misc
& arg
))
1963 up
->alarm
|= CMPERR
;
1965 } else if (bitvec
[nsec
] < -BTHR
) {
1967 up
->alarm
|= CMPERR
;
1970 up
->status
|= BGATE
;
1975 * Save the data channel gain, then QSY to the probe channel and
1976 * dim the seconds comb filters. The www_newchan() routine will
1977 * light them back up.
1979 case MSC21
: /* 58 */
1980 if (bitvec
[nsec
] > BTHR
) {
1981 if (!(up
->misc
& arg
))
1982 up
->alarm
|= CMPERR
;
1984 } else if (bitvec
[nsec
] < -BTHR
) {
1986 up
->alarm
|= CMPERR
;
1989 up
->status
|= BGATE
;
1991 up
->status
&= ~(SELV
| SELH
);
1993 if (up
->fd_icom
> 0) {
1994 up
->schan
= (up
->schan
+ 1) % NCHAN
;
1995 wwv_qsy(peer
, up
->schan
);
1997 up
->mitig
[up
->achan
].gain
= up
->gain
;
2000 up
->mitig
[up
->achan
].gain
= up
->gain
;
2007 * During second 59 the receiver and codec AGC are settling
2008 * down, so the data pulse is unusable as quality metric. If
2009 * LEPSEC is set on the last minute of 30 June or 31 December,
2010 * the transmitter and receiver insert an extra second (60) in
2011 * the timescale and the minute sync repeats the second. Once
2012 * leaps occurred at intervals of about 18 months, but the last
2013 * leap before the most recent leap in 1995 was in 1998.
2016 if (up
->status
& LEPSEC
)
2022 up
->status
&= ~LEPSEC
;
2028 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
&
2031 "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2032 nsec
, up
->status
, up
->gain
, up
->yepoch
, up
->epomax
,
2033 up
->eposnr
, up
->datsig
, up
->datsnr
, bit
);
2034 record_clock_stats(&peer
->srcadr
, tbuf
);
2037 printf("%s\n", tbuf
);
2040 pp
->disp
+= AUDIO_PHI
;
2044 * The radio clock is set if the alarm bits are all zero. After that,
2045 * the time is considered valid if the second sync bit is lit. It should
2046 * not be a surprise, especially if the radio is not tunable, that
2047 * sometimes no stations are above the noise and the integrators
2048 * discharge below the thresholds. We assume that, after a day of signal
2049 * loss, the minute sync epoch will be in the same second. This requires
2050 * the codec frequency be accurate within 6 PPM. Practical experience
2051 * shows the frequency typically within 0.1 PPM, so after a day of
2052 * signal loss, the time should be within 8.6 ms..
2056 struct peer
*peer
/* peer unit pointer */
2059 struct refclockproc
*pp
;
2061 l_fp offset
; /* offset in NTP seconds */
2064 up
= (struct wwvunit
*)pp
->unitptr
;
2065 if (!(up
->status
& SSYNC
))
2066 up
->alarm
|= SYNERR
;
2068 up
->alarm
|= NINERR
;
2070 up
->status
|= INSYNC
;
2071 if (up
->status
& INSYNC
&& up
->status
& SSYNC
) {
2072 if (up
->misc
& SECWAR
)
2073 pp
->leap
= LEAP_ADDSECOND
;
2075 pp
->leap
= LEAP_NOWARNING
;
2076 pp
->second
= up
->rsec
;
2077 pp
->minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+
2079 pp
->hour
= up
->decvec
[HR
].digit
+ up
->decvec
[HR
+
2081 pp
->day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+
2082 1].digit
* 10 + up
->decvec
[DA
+ 2].digit
* 100;
2083 pp
->year
= up
->decvec
[YR
].digit
+ up
->decvec
[YR
+
2087 if (!clocktime(pp
->day
, pp
->hour
, pp
->minute
,
2088 pp
->second
, GMT
, up
->timestamp
.l_ui
,
2089 &pp
->yearstart
, &offset
.l_ui
)) {
2090 up
->errflg
= CEVNT_BADTIME
;
2094 pp
->lastref
= up
->timestamp
;
2095 refclock_process_offset(pp
, offset
,
2096 up
->timestamp
, PDELAY
+ up
->pdelay
);
2097 refclock_receive(peer
);
2100 pp
->lencode
= timecode(up
, pp
->a_lastcode
);
2101 record_clock_stats(&peer
->srcadr
, pp
->a_lastcode
);
2104 printf("wwv: timecode %d %s\n", pp
->lencode
,
2111 * wwv_corr4 - determine maximum-likelihood digit
2113 * This routine correlates the received digit vector with the BCD
2114 * coefficient vectors corresponding to all valid digits at the given
2115 * position in the decoding matrix. The maximum value corresponds to the
2116 * maximum-likelihood digit, while the ratio of this value to the next
2117 * lower value determines the likelihood function. Note that, if the
2118 * digit is invalid, the likelihood vector is averaged toward a miss.
2122 struct peer
*peer
, /* peer unit pointer */
2123 struct decvec
*vp
, /* decoding table pointer */
2124 double data
[], /* received data vector */
2125 double tab
[][4] /* correlation vector array */
2128 struct refclockproc
*pp
;
2130 double topmax
, nxtmax
; /* metrics */
2131 double acc
; /* accumulator */
2132 char tbuf
[TBUF
]; /* monitor buffer */
2133 int mldigit
; /* max likelihood digit */
2137 up
= (struct wwvunit
*)pp
->unitptr
;
2140 * Correlate digit vector with each BCD coefficient vector. If
2141 * any BCD digit bit is bad, consider all bits a miss. Until the
2142 * minute units digit has been resolved, don't to anything else.
2143 * Note the SNR is calculated as the ratio of the largest
2144 * likelihood value to the next largest likelihood value.
2147 topmax
= nxtmax
= -MAXAMP
;
2148 for (i
= 0; tab
[i
][0] != 0; i
++) {
2150 for (j
= 0; j
< 4; j
++)
2151 acc
+= data
[j
] * tab
[i
][j
];
2152 acc
= (vp
->like
[i
] += (acc
- vp
->like
[i
]) / TCONST
);
2157 } else if (acc
> nxtmax
) {
2161 vp
->digprb
= topmax
;
2162 vp
->digsnr
= wwv_snr(topmax
, nxtmax
);
2165 * The current maximum-likelihood digit is compared to the last
2166 * maximum-likelihood digit. If different, the compare counter
2167 * and maximum-likelihood digit are reset. When the compare
2168 * counter reaches the BCMP threshold (3), the digit is assumed
2169 * correct. When the compare counter of all nine digits have
2170 * reached threshold, the clock is assumed correct.
2172 * Note that the clock display digit is set before the compare
2173 * counter has reached threshold; however, the clock display is
2174 * not considered correct until all nine clock digits have
2175 * reached threshold. This is intended as eye candy, but avoids
2176 * mistakes when the signal is low and the SNR is very marginal.
2178 if (vp
->digprb
< BTHR
|| vp
->digsnr
< BSNR
) {
2179 up
->status
|= BGATE
;
2181 if (vp
->digit
!= mldigit
) {
2182 up
->alarm
|= CMPERR
;
2186 vp
->digit
= mldigit
;
2188 if (vp
->count
< BCMP
)
2190 if (vp
->count
== BCMP
) {
2191 up
->status
|= DSYNC
;
2196 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
&
2199 "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2200 up
->rsec
- 1, up
->status
, up
->gain
, up
->yepoch
,
2201 up
->epomax
, vp
->radix
, vp
->digit
, mldigit
,
2202 vp
->count
, vp
->digprb
, vp
->digsnr
);
2203 record_clock_stats(&peer
->srcadr
, tbuf
);
2206 printf("%s\n", tbuf
);
2213 * wwv_tsec - transmitter minute processing
2215 * This routine is called at the end of the transmitter minute. It
2216 * implements a state machine that advances the logical clock subject to
2217 * the funny rules that govern the conventional clock and calendar.
2221 struct peer
*peer
/* driver structure pointer */
2224 struct refclockproc
*pp
;
2226 int minute
, day
, isleap
;
2230 up
= (struct wwvunit
*)pp
->unitptr
;
2233 * Advance minute unit of the day. Don't propagate carries until
2234 * the unit minute digit has been found.
2236 temp
= carry(&up
->decvec
[MN
]); /* minute units */
2237 if (!(up
->status
& DSYNC
))
2241 * Propagate carries through the day.
2243 if (temp
== 0) /* carry minutes */
2244 temp
= carry(&up
->decvec
[MN
+ 1]);
2245 if (temp
== 0) /* carry hours */
2246 temp
= carry(&up
->decvec
[HR
]);
2248 temp
= carry(&up
->decvec
[HR
+ 1]);
2251 * Decode the current minute and day. Set leap day if the
2252 * timecode leap bit is set on 30 June or 31 December. Set leap
2253 * minute if the last minute on leap day, but only if the clock
2254 * is syncrhronized. This code fails in 2400 AD.
2256 minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+ 1].digit
*
2257 10 + up
->decvec
[HR
].digit
* 60 + up
->decvec
[HR
+
2259 day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+ 1].digit
* 10 +
2260 up
->decvec
[DA
+ 2].digit
* 100;
2263 * Set the leap bit on the last minute of the leap day.
2265 isleap
= up
->decvec
[YR
].digit
& 0x3;
2266 if (up
->misc
& SECWAR
&& up
->status
& INSYNC
) {
2267 if ((day
== (isleap
? 182 : 183) || day
== (isleap
?
2268 365 : 366)) && minute
== 1439)
2269 up
->status
|= LEPSEC
;
2273 * Roll the day if this the first minute and propagate carries
2280 while (carry(&up
->decvec
[HR
]) != 0); /* advance to minute 0 */
2281 while (carry(&up
->decvec
[HR
+ 1]) != 0);
2283 temp
= carry(&up
->decvec
[DA
]); /* carry days */
2285 temp
= carry(&up
->decvec
[DA
+ 1]);
2287 temp
= carry(&up
->decvec
[DA
+ 2]);
2290 * Roll the year if this the first day and propagate carries
2291 * through the century.
2293 if (day
!= (isleap
? 365 : 366))
2297 while (carry(&up
->decvec
[DA
]) != 1); /* advance to day 1 */
2298 while (carry(&up
->decvec
[DA
+ 1]) != 0);
2299 while (carry(&up
->decvec
[DA
+ 2]) != 0);
2300 temp
= carry(&up
->decvec
[YR
]); /* carry years */
2302 carry(&up
->decvec
[YR
+ 1]);
2307 * carry - process digit
2309 * This routine rotates a likelihood vector one position and increments
2310 * the clock digit modulo the radix. It returns the new clock digit or
2311 * zero if a carry occurred. Once synchronized, the clock digit will
2312 * match the maximum-likelihood digit corresponding to that position.
2316 struct decvec
*dp
/* decoding table pointer */
2323 if (dp
->digit
== dp
->radix
)
2325 temp
= dp
->like
[dp
->radix
- 1];
2326 for (j
= dp
->radix
- 1; j
> 0; j
--)
2327 dp
->like
[j
] = dp
->like
[j
- 1];
2334 * wwv_snr - compute SNR or likelihood function
2338 double signal
, /* signal */
2339 double noise
/* noise */
2345 * This is a little tricky. Due to the way things are measured,
2346 * either or both the signal or noise amplitude can be negative
2347 * or zero. The intent is that, if the signal is negative or
2348 * zero, the SNR must always be zero. This can happen with the
2349 * subcarrier SNR before the phase has been aligned. On the
2350 * other hand, in the likelihood function the "noise" is the
2351 * next maximum down from the peak and this could be negative.
2352 * However, in this case the SNR is truly stupendous, so we
2353 * simply cap at MAXSNR dB (40).
2357 } else if (noise
<= 0) {
2360 rval
= 20. * log10(signal
/ noise
);
2369 * wwv_newchan - change to new data channel
2371 * The radio actually appears to have ten channels, one channel for each
2372 * of five frequencies and each of two stations (WWV and WWVH), although
2373 * if not tunable only the DCHAN channel appears live. While the radio
2374 * is tuned to the working data channel frequency and station for most
2375 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2376 * probe frequency in order to search for minute sync pulse and data
2377 * subcarrier from other transmitters.
2379 * The search for WWV and WWVH operates simultaneously, with WWV minute
2380 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2381 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2382 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2385 * This routine selects the best channel using a metric computed from
2386 * the reachability register and minute pulse amplitude. Normally, the
2387 * award goes to the the channel with the highest metric; but, in case
2388 * of ties, the award goes to the channel with the highest minute sync
2389 * pulse amplitude and then to the highest frequency.
2391 * The routine performs an important squelch function to keep dirty data
2392 * from polluting the integrators. In order to consider a station valid,
2393 * the metric must be at least MTHR (13); otherwise, the station select
2394 * bits are cleared so the second sync is disabled and the data bit
2395 * integrators averaged to a miss.
2399 struct peer
*peer
/* peer structure pointer */
2402 struct refclockproc
*pp
;
2404 struct sync
*sp
, *rp
;
2409 up
= (struct wwvunit
*)pp
->unitptr
;
2412 * Search all five station pairs looking for the channel with
2418 for (i
= 0; i
< NCHAN
; i
++) {
2419 rp
= &up
->mitig
[i
].wwvh
;
2421 if (dtemp
>= rank
) {
2426 rp
= &up
->mitig
[i
].wwv
;
2428 if (dtemp
>= rank
) {
2436 * If the strongest signal is less than the MTHR threshold (13),
2437 * we are beneath the waves, so squelch the second sync and
2438 * advance to the next station. This makes sure all stations are
2439 * scanned when the ions grow dim. If the strongest signal is
2440 * greater than the threshold, tune to that frequency and
2443 up
->status
&= ~(SELV
| SELH
);
2445 up
->dchan
= (up
->dchan
+ 1) % NCHAN
;
2446 if (up
->status
& METRIC
) {
2447 up
->status
&= ~METRIC
;
2448 refclock_report(peer
, CEVNT_PROP
);
2454 memcpy(&pp
->refid
, sp
->refid
, 4);
2455 peer
->refid
= pp
->refid
;
2456 up
->status
|= METRIC
;
2457 if (sp
->select
& SELV
) {
2459 up
->pdelay
= pp
->fudgetime1
;
2460 } else if (sp
->select
& SELH
) {
2462 up
->pdelay
= pp
->fudgetime2
;
2469 if (up
->fd_icom
> 0)
2470 wwv_qsy(peer
, up
->dchan
);
2477 * wwv_newgame - reset and start over
2479 * There are three conditions resulting in a new game:
2481 * 1 After finding the minute pulse (MSYNC lit), going 15 minutes
2482 * (DATA) without finding the unit seconds digit.
2484 * 2 After finding good data (DSYNC lit), going more than 40 minutes
2485 * (SYNCH) without finding station sync (INSYNC lit).
2487 * 3 After finding station sync (INSYNC lit), going more than 2 days
2488 * (PANIC) without finding any station.
2492 struct peer
*peer
/* peer structure pointer */
2495 struct refclockproc
*pp
;
2501 up
= (struct wwvunit
*)pp
->unitptr
;
2504 * Initialize strategic values. Note we set the leap bits
2505 * NOTINSYNC and the refid "NONE".
2508 up
->errflg
= CEVNT_TIMEOUT
;
2509 peer
->leap
= LEAP_NOTINSYNC
;
2510 up
->watch
= up
->status
= up
->alarm
= 0;
2511 up
->avgint
= MINAVG
;
2513 up
->gain
= MAXGAIN
/ 2;
2516 * Initialize the station processes for audio gain, select bit,
2517 * station/frequency identifier and reference identifier. Start
2518 * probing at the strongest channel or the default channel if
2521 memset(up
->mitig
, 0, sizeof(up
->mitig
));
2522 for (i
= 0; i
< NCHAN
; i
++) {
2524 cp
->gain
= up
->gain
;
2525 cp
->wwv
.select
= SELV
;
2526 sprintf(cp
->wwv
.refid
, "WV%.0f", floor(qsy
[i
]));
2527 cp
->wwvh
.select
= SELH
;
2528 sprintf(cp
->wwvh
.refid
, "WH%.0f", floor(qsy
[i
]));
2530 up
->dchan
= (DCHAN
+ NCHAN
- 1) % NCHAN
;
2532 up
->schan
= up
->dchan
;
2536 * wwv_metric - compute station metric
2538 * The most significant bits represent the number of ones in the
2539 * station reachability register. The least significant bits represent
2540 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2544 struct sync
*sp
/* station pointer */
2549 dtemp
= sp
->count
* MAXAMP
;
2550 if (sp
->synmax
< MAXAMP
)
2551 dtemp
+= sp
->synmax
;
2553 dtemp
+= MAXAMP
- 1;
2554 dtemp
/= (AMAX
+ 1) * MAXAMP
;
2555 return (dtemp
* 100.);
2561 * wwv_qsy - Tune ICOM receiver
2563 * This routine saves the AGC for the current channel, switches to a new
2564 * channel and restores the AGC for that channel. If a tunable receiver
2565 * is not available, just fake it.
2569 struct peer
*peer
, /* peer structure pointer */
2570 int chan
/* channel */
2574 struct refclockproc
*pp
;
2578 up
= (struct wwvunit
*)pp
->unitptr
;
2579 if (up
->fd_icom
> 0) {
2580 up
->mitig
[up
->achan
].gain
= up
->gain
;
2581 rval
= icom_freq(up
->fd_icom
, peer
->ttl
& 0x7f,
2584 up
->gain
= up
->mitig
[up
->achan
].gain
;
2592 * timecode - assemble timecode string and length
2594 * Prettytime format - similar to Spectracom
2596 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2598 * s sync indicator ('?' or ' ')
2599 * q error bits (hex 0-F)
2600 * yyyy year of century
2604 * ss second of minute)
2605 * l leap second warning (' ' or 'L')
2606 * d DST state ('S', 'D', 'I', or 'O')
2607 * dut DUT sign and magnitude (0.1 s)
2608 * lset minutes since last clock update
2609 * agc audio gain (0-255)
2610 * iden reference identifier (station and frequency)
2611 * sig signal quality (0-100)
2612 * errs bit errors in last minute
2613 * freq frequency offset (PPM)
2614 * avgt averaging time (s)
2618 struct wwvunit
*up
, /* driver structure pointer */
2619 char *ptr
/* target string */
2623 int year
, day
, hour
, minute
, second
, dut
;
2624 char synchar
, leapchar
, dst
;
2629 * Common fixed-format fields
2631 synchar
= (up
->status
& INSYNC
) ? ' ' : '?';
2632 year
= up
->decvec
[YR
].digit
+ up
->decvec
[YR
+ 1].digit
* 10 +
2634 day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+ 1].digit
* 10 +
2635 up
->decvec
[DA
+ 2].digit
* 100;
2636 hour
= up
->decvec
[HR
].digit
+ up
->decvec
[HR
+ 1].digit
* 10;
2637 minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+ 1].digit
* 10;
2639 leapchar
= (up
->misc
& SECWAR
) ? 'L' : ' ';
2640 dst
= dstcod
[(up
->misc
>> 4) & 0x3];
2641 dut
= up
->misc
& 0x7;
2642 if (!(up
->misc
& DUTS
))
2644 sprintf(ptr
, "%c%1X", synchar
, up
->alarm
);
2645 sprintf(cptr
, " %4d %03d %02d:%02d:%02d %c%c %+d",
2646 year
, day
, hour
, minute
, second
, leapchar
, dst
, dut
);
2650 * Specific variable-format fields
2653 sprintf(cptr
, " %d %d %s %.0f %d %.1f %d", up
->watch
,
2654 up
->mitig
[up
->dchan
].gain
, sp
->refid
, sp
->metric
,
2655 up
->errcnt
, up
->freq
/ SECOND
* 1e6
, up
->avgint
);
2657 return (strlen(ptr
));
2662 * wwv_gain - adjust codec gain
2664 * This routine is called at the end of each second. During the second
2665 * the number of signal clips above the MAXAMP threshold (6000). If
2666 * there are no clips, the gain is bumped up; if there are more than
2667 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2668 * insensitive to amplitude, so this crudity works just peachy. The
2669 * routine also jiggles the input port and selectively mutes the
2674 struct peer
*peer
/* peer structure pointer */
2677 struct refclockproc
*pp
;
2681 up
= (struct wwvunit
*)pp
->unitptr
;
2684 * Apparently, the codec uses only the high order bits of the
2685 * gain control field. Thus, it may take awhile for changes to
2686 * wiggle the hardware bits.
2688 if (up
->clipcnt
== 0) {
2690 if (up
->gain
> MAXGAIN
)
2692 } else if (up
->clipcnt
> MAXCLP
) {
2697 audio_gain(up
->gain
, up
->mongain
, up
->port
);
2707 int refclock_wwv_bs
;
2708 #endif /* REFCLOCK */