Sync usage with man page.
[netbsd-mini2440.git] / external / bsd / ntp / dist / util / ntp-keygen.c
blob4e01019525af4cf588a959e1bf32c01c956dcee2
1 /* $NetBSD$ */
3 /*
4 * Program to generate cryptographic keys for ntp clients and servers
6 * This program generates password encrypted data files for use with the
7 * Autokey security protocol and Network Time Protocol Version 4. Files
8 * are prefixed with a header giving the name and date of creation
9 * followed by a type-specific descriptive label and PEM-encoded data
10 * structure compatible with programs of the OpenSSL library.
12 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
13 * <type> is the file type, <hostname> the generating host name and
14 * <filestamp> the generation time in NTP seconds. The NTP programs
15 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
16 * association maintained by soft links. Following is a list of file
17 * types; the first line is the file name and the second link name.
19 * ntpkey_MD5key_<hostname>.<filestamp>
20 * MD5 (128-bit) keys used to compute message digests in symmetric
21 * key cryptography
23 * ntpkey_RSAhost_<hostname>.<filestamp>
24 * ntpkey_host_<hostname>
25 * RSA private/public host key pair used for public key signatures
27 * ntpkey_RSAsign_<hostname>.<filestamp>
28 * ntpkey_sign_<hostname>
29 * RSA private/public sign key pair used for public key signatures
31 * ntpkey_DSAsign_<hostname>.<filestamp>
32 * ntpkey_sign_<hostname>
33 * DSA Private/public sign key pair used for public key signatures
35 * Available digest/signature schemes
37 * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
38 * DSA: DSA-SHA, DSA-SHA1
40 * ntpkey_XXXcert_<hostname>.<filestamp>
41 * ntpkey_cert_<hostname>
42 * X509v3 certificate using RSA or DSA public keys and signatures.
43 * XXX is a code identifying the message digest and signature
44 * encryption algorithm
46 * Identity schemes. The key type par is used for the challenge; the key
47 * type key is used for the response.
49 * ntpkey_IFFkey_<groupname>.<filestamp>
50 * ntpkey_iffkey_<groupname>
51 * Schnorr (IFF) identity parameters and keys
53 * ntpkey_GQkey_<groupname>.<filestamp>,
54 * ntpkey_gqkey_<groupname>
55 * Guillou-Quisquater (GQ) identity parameters and keys
57 * ntpkey_MVkeyX_<groupname>.<filestamp>,
58 * ntpkey_mvkey_<groupname>
59 * Mu-Varadharajan (MV) identity parameters and keys
61 * Note: Once in a while because of some statistical fluke this program
62 * fails to generate and verify some cryptographic data, as indicated by
63 * exit status -1. In this case simply run the program again. If the
64 * program does complete with exit code 0, the data are correct as
65 * verified.
67 * These cryptographic routines are characterized by the prime modulus
68 * size in bits. The default value of 512 bits is a compromise between
69 * cryptographic strength and computing time and is ordinarily
70 * considered adequate for this application. The routines have been
71 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
72 * digest and signature encryption schemes work with sizes less than 512
73 * bits. The computing time for sizes greater than 2048 bits is
74 * prohibitive on all but the fastest processors. An UltraSPARC Blade
75 * 1000 took something over nine minutes to generate and verify the
76 * values with size 2048. An old SPARC IPC would take a week.
78 * The OpenSSL library used by this program expects a random seed file.
79 * As described in the OpenSSL documentation, the file name defaults to
80 * first the RANDFILE environment variable in the user's home directory
81 * and then .rnd in the user's home directory.
83 #ifdef HAVE_CONFIG_H
84 # include <config.h>
85 #endif
86 #include <string.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <unistd.h>
90 #include <sys/stat.h>
91 #include <sys/time.h>
92 #include <sys/types.h>
93 #include "ntp_types.h"
94 #include "ntp_random.h"
95 #include "ntp_stdlib.h"
96 #include "ntp_assert.h"
98 #include "ntp-keygen-opts.h"
100 #ifdef OPENSSL
101 #include "openssl/bn.h"
102 #include "openssl/evp.h"
103 #include "openssl/err.h"
104 #include "openssl/rand.h"
105 #include "openssl/pem.h"
106 #include "openssl/x509v3.h"
107 #include <openssl/objects.h>
108 #endif /* OPENSSL */
109 #include <ssl_applink.c>
112 * Cryptodefines
114 #define MD5KEYS 10 /* number of keys generated of each type */
115 #define MD5SIZE 20 /* maximum key size */
116 #define JAN_1970 2208988800UL /* NTP seconds */
117 #define YEAR ((long)60*60*24*365) /* one year in seconds */
118 #define MAXFILENAME 256 /* max file name length */
119 #define MAXHOSTNAME 256 /* max host name length */
120 #ifdef OPENSSL
121 #define PLEN 512 /* default prime modulus size (bits) */
122 #define ILEN 256 /* default identity modulus size (bits) */
123 #define MVMAX 100 /* max MV parameters */
126 * Strings used in X509v3 extension fields
128 #define KEY_USAGE "digitalSignature,keyCertSign"
129 #define BASIC_CONSTRAINTS "critical,CA:TRUE"
130 #define EXT_KEY_PRIVATE "private"
131 #define EXT_KEY_TRUST "trustRoot"
132 #endif /* OPENSSL */
135 * Prototypes
137 FILE *fheader (const char *, const char *, const char *);
138 int gen_md5 (char *);
139 #ifdef OPENSSL
140 EVP_PKEY *gen_rsa (char *);
141 EVP_PKEY *gen_dsa (char *);
142 EVP_PKEY *gen_iffkey (char *);
143 EVP_PKEY *gen_gqkey (char *);
144 EVP_PKEY *gen_mvkey (char *, EVP_PKEY **);
145 void gen_mvserv (char *, EVP_PKEY **);
146 int x509 (EVP_PKEY *, const EVP_MD *, char *, char *,
147 char *);
148 void cb (int, int, void *);
149 EVP_PKEY *genkey (char *, char *);
150 EVP_PKEY *readkey (char *, char *, u_int *, EVP_PKEY **);
151 void writekey (char *, char *, u_int *, EVP_PKEY **);
152 u_long asn2ntp (ASN1_TIME *);
153 #endif /* OPENSSL */
156 * Program variables
158 extern char *optarg; /* command line argument */
159 char *progname;
160 volatile int debug = 0; /* debug, not de bug */
161 #ifdef OPENSSL
162 u_int modulus = PLEN; /* prime modulus size (bits) */
163 u_int modulus2 = ILEN; /* identity modulus size (bits) */
164 #endif
165 int nkeys; /* MV keys */
166 time_t epoch; /* Unix epoch (seconds) since 1970 */
167 u_int fstamp; /* NTP filestamp */
168 char *hostname = NULL; /* host name (subject name) */
169 char *groupname = NULL; /* trusted host name (issuer name) */
170 char filename[MAXFILENAME + 1]; /* file name */
171 char *passwd1 = NULL; /* input private key password */
172 char *passwd2 = NULL; /* output private key password */
173 #ifdef OPENSSL
174 long d0, d1, d2, d3; /* callback counters */
175 #endif /* OPENSSL */
177 #ifdef SYS_WINNT
178 BOOL init_randfile();
181 * Don't try to follow symbolic links
184 readlink(char *link, char *file, int len)
186 return (-1);
190 * Don't try to create a symbolic link for now.
191 * Just move the file to the name you need.
194 symlink(char *filename, char *linkname) {
195 DeleteFile(linkname);
196 MoveFile(filename, linkname);
197 return (0);
199 void
200 InitWin32Sockets() {
201 WORD wVersionRequested;
202 WSADATA wsaData;
203 wVersionRequested = MAKEWORD(2,0);
204 if (WSAStartup(wVersionRequested, &wsaData))
206 fprintf(stderr, "No useable winsock.dll\n");
207 exit(1);
210 #endif /* SYS_WINNT */
213 * Main program
216 main(
217 int argc, /* command line options */
218 char **argv
221 struct timeval tv; /* initialization vector */
222 int md5key = 0; /* generate MD5 keys */
223 #ifdef OPENSSL
224 X509 *cert = NULL; /* X509 certificate */
225 X509_EXTENSION *ext; /* X509v3 extension */
226 EVP_PKEY *pkey_host = NULL; /* host key */
227 EVP_PKEY *pkey_sign = NULL; /* sign key */
228 EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
229 EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
230 EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
231 EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
232 int hostkey = 0; /* generate RSA keys */
233 int iffkey = 0; /* generate IFF keys */
234 int gqkey = 0; /* generate GQ keys */
235 int mvkey = 0; /* update MV keys */
236 int mvpar = 0; /* generate MV parameters */
237 char *sign = NULL; /* sign key */
238 EVP_PKEY *pkey = NULL; /* temp key */
239 const EVP_MD *ectx; /* EVP digest */
240 char pathbuf[MAXFILENAME + 1];
241 const char *scheme = NULL; /* digest/signature scheme */
242 char *exten = NULL; /* private extension */
243 char *grpkey = NULL; /* identity extension */
244 int nid; /* X509 digest/signature scheme */
245 FILE *fstr = NULL; /* file handle */
246 #define iffsw HAVE_OPT(ID_KEY)
247 #endif /* OPENSSL */
248 char hostbuf[MAXHOSTNAME + 1];
249 char groupbuf[MAXHOSTNAME + 1];
251 progname = argv[0];
253 #ifdef SYS_WINNT
254 /* Initialize before OpenSSL checks */
255 InitWin32Sockets();
256 if (!init_randfile())
257 fprintf(stderr, "Unable to initialize .rnd file\n");
258 ssl_applink();
259 #endif
261 #ifdef OPENSSL
262 ssl_check_version();
263 fprintf(stderr, "Using OpenSSL version %lx\n", SSLeay());
264 #endif /* OPENSSL */
267 * Process options, initialize host name and timestamp.
269 gethostname(hostbuf, MAXHOSTNAME);
270 hostname = hostbuf;
271 gettimeofday(&tv, 0);
273 epoch = tv.tv_sec;
276 int optct = optionProcess(&ntp_keygenOptions, argc, argv);
277 argc -= optct;
278 argv += optct;
280 debug = DESC(DEBUG_LEVEL).optOccCt;
281 if (HAVE_OPT( MD5KEY ))
282 md5key++;
284 #ifdef OPENSSL
285 passwd1 = hostbuf;
286 if (HAVE_OPT( PVT_PASSWD ))
287 passwd1 = strdup(OPT_ARG( PVT_PASSWD ));
289 if (HAVE_OPT( GET_PVT_PASSWD ))
290 passwd2 = strdup(OPT_ARG( GET_PVT_PASSWD ));
292 if (HAVE_OPT( HOST_KEY ))
293 hostkey++;
295 if (HAVE_OPT( SIGN_KEY ))
296 sign = strdup(OPT_ARG( SIGN_KEY ));
298 if (HAVE_OPT( GQ_PARAMS ))
299 gqkey++;
301 if (HAVE_OPT( IFFKEY ))
302 iffkey++;
304 if (HAVE_OPT( MV_PARAMS )) {
305 mvkey++;
306 nkeys = OPT_VALUE_MV_PARAMS;
308 if (HAVE_OPT( MV_KEYS )) {
309 mvpar++;
310 nkeys = OPT_VALUE_MV_KEYS;
312 if (HAVE_OPT( MODULUS ))
313 modulus = OPT_VALUE_MODULUS;
315 if (HAVE_OPT( CERTIFICATE ))
316 scheme = OPT_ARG( CERTIFICATE );
318 if (HAVE_OPT( SUBJECT_NAME ))
319 hostname = strdup(OPT_ARG( SUBJECT_NAME ));
321 if (HAVE_OPT( ISSUER_NAME ))
322 groupname = strdup(OPT_ARG( ISSUER_NAME ));
324 if (HAVE_OPT( PVT_CERT ))
325 exten = EXT_KEY_PRIVATE;
327 if (HAVE_OPT( TRUSTED_CERT ))
328 exten = EXT_KEY_TRUST;
331 * Seed random number generator and grow weeds.
333 ERR_load_crypto_strings();
334 OpenSSL_add_all_algorithms();
335 if (!RAND_status()) {
336 u_int temp;
338 if (RAND_file_name(pathbuf, MAXFILENAME) == NULL) {
339 fprintf(stderr, "RAND_file_name %s\n",
340 ERR_error_string(ERR_get_error(), NULL));
341 exit (-1);
343 temp = RAND_load_file(pathbuf, -1);
344 if (temp == 0) {
345 fprintf(stderr,
346 "RAND_load_file %s not found or empty\n",
347 pathbuf);
348 exit (-1);
350 fprintf(stderr,
351 "Random seed file %s %u bytes\n", pathbuf, temp);
352 RAND_add(&epoch, sizeof(epoch), 4.0);
356 * Load previous certificate if available.
358 sprintf(filename, "ntpkey_cert_%s", hostname);
359 if ((fstr = fopen(filename, "r")) != NULL) {
360 cert = PEM_read_X509(fstr, NULL, NULL, NULL);
361 fclose(fstr);
363 if (cert != NULL) {
366 * Extract subject name.
368 X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
369 MAXFILENAME);
372 * Extract digest/signature scheme.
374 if (scheme == NULL) {
375 nid = OBJ_obj2nid(cert->cert_info->
376 signature->algorithm);
377 scheme = OBJ_nid2sn(nid);
381 * If a key_usage extension field is present, determine
382 * whether this is a trusted or private certificate.
384 if (exten == NULL) {
385 BIO *bp;
386 int i, cnt;
387 char *ptr;
389 ptr = strstr(groupbuf, "CN=");
390 cnt = X509_get_ext_count(cert);
391 for (i = 0; i < cnt; i++) {
392 ext = X509_get_ext(cert, i);
393 if (OBJ_obj2nid(ext->object) ==
394 NID_ext_key_usage) {
395 bp = BIO_new(BIO_s_mem());
396 X509V3_EXT_print(bp, ext, 0, 0);
397 BIO_gets(bp, pathbuf,
398 MAXFILENAME);
399 BIO_free(bp);
400 if (strcmp(pathbuf,
401 "Trust Root") == 0)
402 exten = EXT_KEY_TRUST;
403 else if (strcmp(pathbuf,
404 "Private") == 0)
405 exten = EXT_KEY_PRIVATE;
406 if (groupname == NULL)
407 groupname = ptr + 3;
412 if (scheme == NULL)
413 scheme = "RSA-MD5";
414 if (groupname == NULL)
415 groupname = hostname;
416 fprintf(stderr, "Using host %s group %s\n", hostname,
417 groupname);
418 if ((iffkey || gqkey || mvkey) && exten == NULL)
419 fprintf(stderr,
420 "Warning: identity files may not be useful with a nontrusted certificate.\n");
421 #endif /* OPENSSL */
424 * Create new unencrypted MD5 keys file if requested. If this
425 * option is selected, ignore all other options.
427 if (md5key) {
428 gen_md5("md5");
429 exit (0);
432 #ifdef OPENSSL
434 * Create a new encrypted RSA host key file if requested;
435 * otherwise, look for an existing host key file. If not found,
436 * create a new encrypted RSA host key file. If that fails, go
437 * no further.
439 if (hostkey)
440 pkey_host = genkey("RSA", "host");
441 if (pkey_host == NULL) {
442 sprintf(filename, "ntpkey_host_%s", hostname);
443 pkey_host = readkey(filename, passwd1, &fstamp, NULL);
444 if (pkey_host != NULL) {
445 readlink(filename, filename, sizeof(filename));
446 fprintf(stderr, "Using host key %s\n",
447 filename);
448 } else {
449 pkey_host = genkey("RSA", "host");
452 if (pkey_host == NULL) {
453 fprintf(stderr, "Generating host key fails\n");
454 exit (-1);
458 * Create new encrypted RSA or DSA sign keys file if requested;
459 * otherwise, look for an existing sign key file. If not found,
460 * use the host key instead.
462 if (sign != NULL)
463 pkey_sign = genkey(sign, "sign");
464 if (pkey_sign == NULL) {
465 sprintf(filename, "ntpkey_sign_%s", hostname);
466 pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
467 if (pkey_sign != NULL) {
468 readlink(filename, filename, sizeof(filename));
469 fprintf(stderr, "Using sign key %s\n",
470 filename);
471 } else if (pkey_host != NULL) {
472 pkey_sign = pkey_host;
473 fprintf(stderr, "Using host key as sign key\n");
478 * Create new encrypted GQ server keys file if requested;
479 * otherwise, look for an exisiting file. If found, fetch the
480 * public key for the certificate.
482 if (gqkey)
483 pkey_gqkey = gen_gqkey("gqkey");
484 if (pkey_gqkey == NULL) {
485 sprintf(filename, "ntpkey_gqkey_%s", groupname);
486 pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
487 if (pkey_gqkey != NULL) {
488 readlink(filename, filename, sizeof(filename));
489 fprintf(stderr, "Using GQ parameters %s\n",
490 filename);
493 if (pkey_gqkey != NULL)
494 grpkey = BN_bn2hex(pkey_gqkey->pkey.rsa->q);
497 * Write the nonencrypted GQ client parameters to the stdout
498 * stream. The parameter file is the server key file with the
499 * private key obscured.
501 if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
502 RSA *rsa;
504 epoch = fstamp - JAN_1970;
505 sprintf(filename, "ntpkey_gqpar_%s.%u", groupname,
506 fstamp);
507 fprintf(stderr, "Writing GQ parameters %s to stdout\n",
508 filename);
509 fprintf(stdout, "# %s\n# %s\n", filename,
510 ctime(&epoch));
511 rsa = pkey_gqkey->pkey.rsa;
512 BN_copy(rsa->p, BN_value_one());
513 BN_copy(rsa->q, BN_value_one());
514 pkey = EVP_PKEY_new();
515 EVP_PKEY_assign_RSA(pkey, rsa);
516 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL,
517 NULL);
518 fclose(stdout);
519 if (debug)
520 RSA_print_fp(stderr, rsa, 0);
524 * Write the encrypted GQ server keys to the stdout stream.
526 if (pkey_gqkey != NULL && passwd2 != NULL) {
527 RSA *rsa;
529 sprintf(filename, "ntpkey_gqkey_%s.%u", groupname,
530 fstamp);
531 fprintf(stderr, "Writing GQ keys %s to stdout\n",
532 filename);
533 fprintf(stdout, "# %s\n# %s\n", filename,
534 ctime(&epoch));
535 rsa = pkey_gqkey->pkey.rsa;
536 pkey = EVP_PKEY_new();
537 EVP_PKEY_assign_RSA(pkey, rsa);
538 PEM_write_PrivateKey(stdout, pkey,
539 EVP_des_cbc(), NULL, 0, NULL, passwd2);
540 fclose(stdout);
541 if (debug)
542 RSA_print_fp(stderr, rsa, 0);
546 * Create new encrypted IFF server keys file if requested;
547 * otherwise, look for existing file.
549 if (iffkey)
550 pkey_iffkey = gen_iffkey("iffkey");
551 if (pkey_iffkey == NULL) {
552 sprintf(filename, "ntpkey_iffkey_%s", groupname);
553 pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
554 if (pkey_iffkey != NULL) {
555 readlink(filename, filename, sizeof(filename));
556 fprintf(stderr, "Using IFF keys %s\n",
557 filename);
562 * Write the nonencrypted IFF client parameters to the stdout
563 * stream. The parameter file is the server key file with the
564 * private key obscured.
566 if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
567 DSA *dsa;
569 epoch = fstamp - JAN_1970;
570 sprintf(filename, "ntpkey_iffpar_%s.%u", groupname,
571 fstamp);
572 fprintf(stderr, "Writing IFF parameters %s to stdout\n",
573 filename);
574 fprintf(stdout, "# %s\n# %s\n", filename,
575 ctime(&epoch));
576 dsa = pkey_iffkey->pkey.dsa;
577 BN_copy(dsa->priv_key, BN_value_one());
578 pkey = EVP_PKEY_new();
579 EVP_PKEY_assign_DSA(pkey, dsa);
580 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL,
581 NULL);
582 fclose(stdout);
583 if (debug)
584 DSA_print_fp(stderr, dsa, 0);
588 * Write the encrypted IFF server keys to the stdout stream.
590 if (pkey_iffkey != NULL && passwd2 != NULL) {
591 DSA *dsa;
593 epoch = fstamp - JAN_1970;
594 sprintf(filename, "ntpkey_iffkey_%s.%u", groupname,
595 fstamp);
596 fprintf(stderr, "Writing IFF keys %s to stdout\n",
597 filename);
598 fprintf(stdout, "# %s\n# %s\n", filename,
599 ctime(&epoch));
600 dsa = pkey_iffkey->pkey.dsa;
601 pkey = EVP_PKEY_new();
602 EVP_PKEY_assign_DSA(pkey, dsa);
603 PEM_write_PrivateKey(stdout, pkey, EVP_des_cbc(), NULL,
604 0, NULL, passwd2);
605 fclose(stdout);
606 if (debug)
607 DSA_print_fp(stderr, dsa, 0);
611 * Create new encrypted MV trusted-authority keys file if
612 * requested; otherwise, look for existing keys file.
614 if (mvkey)
615 pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
616 if (pkey_mvkey == NULL) {
617 sprintf(filename, "ntpkey_mvta_%s", groupname);
618 pkey_mvkey = readkey(filename, passwd1, &fstamp,
619 pkey_mvpar);
620 if (pkey_mvkey != NULL) {
621 readlink(filename, filename, sizeof(filename));
622 fprintf(stderr, "Using MV keys %s\n",
623 filename);
628 * Write the nonencrypted MV client parameters to the stdout
629 * stream. For the moment, we always use the client parameters
630 * associated with client key 1.
632 if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
633 epoch = fstamp - JAN_1970;
634 sprintf(filename, "ntpkey_mvpar_%s.%u", groupname,
635 fstamp);
636 fprintf(stderr, "Writing MV parameters %s to stdout\n",
637 filename);
638 fprintf(stdout, "# %s\n# %s\n", filename,
639 ctime(&epoch));
640 pkey = pkey_mvpar[2];
641 PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL,
642 NULL);
643 fclose(stdout);
644 if (debug)
645 DSA_print_fp(stderr, pkey->pkey.dsa, 0);
649 * Write the encrypted MV server keys to the stdout stream.
651 if (pkey_mvkey != NULL && passwd2 != NULL) {
652 epoch = fstamp - JAN_1970;
653 sprintf(filename, "ntpkey_mvkey_%s.%u", groupname,
654 fstamp);
655 fprintf(stderr, "Writing MV keys %s to stdout\n",
656 filename);
657 fprintf(stdout, "# %s\n# %s\n", filename,
658 ctime(&epoch));
659 pkey = pkey_mvpar[1];
660 PEM_write_PrivateKey(stdout, pkey, EVP_des_cbc(), NULL,
661 0, NULL, passwd2);
662 fclose(stdout);
663 if (debug)
664 DSA_print_fp(stderr, pkey->pkey.dsa, 0);
668 * Don't generate a certificate if no host keys or extracting
669 * encrypted or nonencrypted keys to the standard output stream.
671 if (pkey_host == NULL || HAVE_OPT(ID_KEY) || passwd2 != NULL)
672 exit (0);
675 * Decode the digest/signature scheme. If trusted, set the
676 * subject and issuer names to the group name; if not set both
677 * to the host name.
679 ectx = EVP_get_digestbyname(scheme);
680 if (ectx == NULL) {
681 fprintf(stderr,
682 "Invalid digest/signature combination %s\n",
683 scheme);
684 exit (-1);
686 if (exten == NULL)
687 x509(pkey_sign, ectx, grpkey, exten, hostname);
688 else
689 x509(pkey_sign, ectx, grpkey, exten, groupname);
690 #endif /* OPENSSL */
691 exit (0);
696 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
697 * if OpenSSL is around, generate random SHA1 keys compatible with
698 * symmetric key cryptography.
701 gen_md5(
702 char *id /* file name id */
705 u_char md5key[MD5SIZE + 1]; /* MD5 key */
706 FILE *str;
707 int i, j;
708 #ifdef OPENSSL
709 u_char keystr[MD5SIZE];
710 u_char hexstr[2 * MD5SIZE + 1];
711 u_char hex[] = "0123456789abcdef";
712 #endif /* OPENSSL */
714 str = fheader("MD5key", id, groupname);
715 ntp_srandom((u_long)epoch);
716 for (i = 1; i <= MD5KEYS; i++) {
717 for (j = 0; j < MD5SIZE; j++) {
718 int temp;
720 while (1) {
721 temp = ntp_random() & 0xff;
722 if (temp == '#')
723 continue;
725 if (temp > 0x20 && temp < 0x7f)
726 break;
728 md5key[j] = (u_char)temp;
730 md5key[j] = '\0';
731 fprintf(str, "%2d MD5 %s # MD5 key\n", i,
732 md5key);
734 #ifdef OPENSSL
735 for (i = 1; i <= MD5KEYS; i++) {
736 RAND_bytes(keystr, 20);
737 for (j = 0; j < MD5SIZE; j++) {
738 hexstr[2 * j] = hex[keystr[j] >> 4];
739 hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
741 hexstr[2 * MD5SIZE] = '\0';
742 fprintf(str, "%2d SHA1 %s # SHA1 key\n", i + MD5KEYS,
743 hexstr);
745 #endif /* OPENSSL */
746 fclose(str);
747 return (1);
751 #ifdef OPENSSL
753 * readkey - load cryptographic parameters and keys
755 * This routine loads a PEM-encoded file of given name and password and
756 * extracts the filestamp from the file name. It returns a pointer to
757 * the first key if valid, NULL if not.
759 EVP_PKEY * /* public/private key pair */
760 readkey(
761 char *cp, /* file name */
762 char *passwd, /* password */
763 u_int *estamp, /* file stamp */
764 EVP_PKEY **evpars /* parameter list pointer */
767 FILE *str; /* file handle */
768 EVP_PKEY *pkey = NULL; /* public/private key */
769 u_int gstamp; /* filestamp */
770 char linkname[MAXFILENAME]; /* filestamp buffer) */
771 EVP_PKEY *parkey;
772 char *ptr;
773 int i;
776 * Open the key file.
778 str = fopen(cp, "r");
779 if (str == NULL)
780 return (NULL);
783 * Read the filestamp, which is contained in the first line.
785 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
786 fprintf(stderr, "Empty key file %s\n", cp);
787 fclose(str);
788 return (NULL);
790 if ((ptr = strrchr(ptr, '.')) == NULL) {
791 fprintf(stderr, "No filestamp found in %s\n", cp);
792 fclose(str);
793 return (NULL);
795 if (sscanf(++ptr, "%u", &gstamp) != 1) {
796 fprintf(stderr, "Invalid filestamp found in %s\n", cp);
797 fclose(str);
798 return (NULL);
802 * Read and decrypt PEM-encoded private keys. The first one
803 * found is returned. If others are expected, add them to the
804 * parameter list.
806 for (i = 0; i <= MVMAX - 1;) {
807 parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
808 if (evpars != NULL) {
809 evpars[i++] = parkey;
810 evpars[i] = NULL;
812 if (parkey == NULL)
813 break;
815 if (pkey == NULL)
816 pkey = parkey;
817 if (debug) {
818 if (parkey->type == EVP_PKEY_DSA)
819 DSA_print_fp(stderr, parkey->pkey.dsa,
821 else if (parkey->type == EVP_PKEY_RSA)
822 RSA_print_fp(stderr, parkey->pkey.rsa,
826 fclose(str);
827 if (pkey == NULL) {
828 fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
829 cp, passwd, ERR_error_string(ERR_get_error(),
830 NULL));
831 exit (-1);
833 *estamp = gstamp;
834 return (pkey);
839 * Generate RSA public/private key pair
841 EVP_PKEY * /* public/private key pair */
842 gen_rsa(
843 char *id /* file name id */
846 EVP_PKEY *pkey; /* private key */
847 RSA *rsa; /* RSA parameters and key pair */
848 FILE *str;
850 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
851 rsa = RSA_generate_key(modulus, 3, cb, "RSA");
852 fprintf(stderr, "\n");
853 if (rsa == NULL) {
854 fprintf(stderr, "RSA generate keys fails\n%s\n",
855 ERR_error_string(ERR_get_error(), NULL));
856 return (NULL);
860 * For signature encryption it is not necessary that the RSA
861 * parameters be strictly groomed and once in a while the
862 * modulus turns out to be non-prime. Just for grins, we check
863 * the primality.
865 if (!RSA_check_key(rsa)) {
866 fprintf(stderr, "Invalid RSA key\n%s\n",
867 ERR_error_string(ERR_get_error(), NULL));
868 RSA_free(rsa);
869 return (NULL);
873 * Write the RSA parameters and keys as a RSA private key
874 * encoded in PEM.
876 if (strcmp(id, "sign") == 0)
877 str = fheader("RSAsign", id, hostname);
878 else
879 str = fheader("RSAhost", id, hostname);
880 pkey = EVP_PKEY_new();
881 EVP_PKEY_assign_RSA(pkey, rsa);
882 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL,
883 passwd1);
884 fclose(str);
885 if (debug)
886 RSA_print_fp(stderr, rsa, 0);
887 return (pkey);
892 * Generate DSA public/private key pair
894 EVP_PKEY * /* public/private key pair */
895 gen_dsa(
896 char *id /* file name id */
899 EVP_PKEY *pkey; /* private key */
900 DSA *dsa; /* DSA parameters */
901 u_char seed[20]; /* seed for parameters */
902 FILE *str;
905 * Generate DSA parameters.
907 fprintf(stderr,
908 "Generating DSA parameters (%d bits)...\n", modulus);
909 RAND_bytes(seed, sizeof(seed));
910 dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
911 NULL, cb, "DSA");
912 fprintf(stderr, "\n");
913 if (dsa == NULL) {
914 fprintf(stderr, "DSA generate parameters fails\n%s\n",
915 ERR_error_string(ERR_get_error(), NULL));
916 return (NULL);
920 * Generate DSA keys.
922 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
923 if (!DSA_generate_key(dsa)) {
924 fprintf(stderr, "DSA generate keys fails\n%s\n",
925 ERR_error_string(ERR_get_error(), NULL));
926 DSA_free(dsa);
927 return (NULL);
931 * Write the DSA parameters and keys as a DSA private key
932 * encoded in PEM.
934 str = fheader("DSAsign", id, hostname);
935 pkey = EVP_PKEY_new();
936 EVP_PKEY_assign_DSA(pkey, dsa);
937 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL,
938 passwd1);
939 fclose(str);
940 if (debug)
941 DSA_print_fp(stderr, dsa, 0);
942 return (pkey);
947 ***********************************************************************
949 * The following routines implement the Schnorr (IFF) identity scheme *
951 ***********************************************************************
953 * The Schnorr (IFF) identity scheme is intended for use when
954 * certificates are generated by some other trusted certificate
955 * authority and the certificate cannot be used to convey public
956 * parameters. There are two kinds of files: encrypted server files that
957 * contain private and public values and nonencrypted client files that
958 * contain only public values. New generations of server files must be
959 * securely transmitted to all servers of the group; client files can be
960 * distributed by any means. The scheme is self contained and
961 * independent of new generations of host keys, sign keys and
962 * certificates.
964 * The IFF values hide in a DSA cuckoo structure which uses the same
965 * parameters. The values are used by an identity scheme based on DSA
966 * cryptography and described in Stimson p. 285. The p is a 512-bit
967 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
968 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
969 * private random group key b (0 < b < q) and public key v = g^b, then
970 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
971 * Alice challenges Bob to confirm identity using the protocol described
972 * below.
974 * How it works
976 * The scheme goes like this. Both Alice and Bob have the public primes
977 * p, q and generator g. The TA gives private key b to Bob and public
978 * key v to Alice.
980 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
981 * the IFF request message. Bob rolls new random k (0 < k < q), then
982 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
983 * to Alice in the response message. Besides making the response
984 * shorter, the hash makes it effectivey impossible for an intruder to
985 * solve for b by observing a number of these messages.
987 * Alice receives the response and computes g^y v^r mod p. After a bit
988 * of algebra, this simplifies to g^k. If the hash of this result
989 * matches hash(x), Alice knows that Bob has the group key b. The signed
990 * response binds this knowledge to Bob's private key and the public key
991 * previously received in his certificate.
994 * Generate Schnorr (IFF) keys.
996 EVP_PKEY * /* DSA cuckoo nest */
997 gen_iffkey(
998 char *id /* file name id */
1001 EVP_PKEY *pkey; /* private key */
1002 DSA *dsa; /* DSA parameters */
1003 u_char seed[20]; /* seed for parameters */
1004 BN_CTX *ctx; /* BN working space */
1005 BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */
1006 FILE *str;
1007 u_int temp;
1010 * Generate DSA parameters for use as IFF parameters.
1012 fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1013 modulus2);
1014 RAND_bytes(seed, sizeof(seed));
1015 dsa = DSA_generate_parameters(modulus2, seed, sizeof(seed), NULL,
1016 NULL, cb, "IFF");
1017 fprintf(stderr, "\n");
1018 if (dsa == NULL) {
1019 fprintf(stderr, "DSA generate parameters fails\n%s\n",
1020 ERR_error_string(ERR_get_error(), NULL));
1021 return (NULL);;
1025 * Generate the private and public keys. The DSA parameters and
1026 * private key are distributed to the servers, while all except
1027 * the private key are distributed to the clients.
1029 b = BN_new(); r = BN_new(); k = BN_new();
1030 u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1031 BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */
1032 BN_mod(b, b, dsa->q, ctx);
1033 BN_sub(v, dsa->q, b);
1034 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */
1035 BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */
1036 BN_mod_mul(u, u, v, dsa->p, ctx);
1037 temp = BN_is_one(u);
1038 fprintf(stderr,
1039 "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1040 "yes" : "no");
1041 if (!temp) {
1042 BN_free(b); BN_free(r); BN_free(k);
1043 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1044 return (NULL);
1046 dsa->priv_key = BN_dup(b); /* private key */
1047 dsa->pub_key = BN_dup(v); /* public key */
1050 * Here is a trial round of the protocol. First, Alice rolls
1051 * random nonce r mod q and sends it to Bob. She needs only
1052 * q from parameters.
1054 BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */
1055 BN_mod(r, r, dsa->q, ctx);
1058 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1059 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1060 * p, q and b from parameters and r from Alice.
1062 BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */
1063 BN_mod(k, k, dsa->q, ctx);
1064 BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */
1065 BN_add(v, v, k);
1066 BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */
1067 BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */
1070 * Alice verifies x = g^y v^r to confirm that Bob has group key
1071 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1072 * original r. We omit the detail here thatt only the hash of y
1073 * is sent.
1075 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */
1076 BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */
1077 BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */
1078 temp = BN_cmp(u, v);
1079 fprintf(stderr,
1080 "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1081 0 ? "yes" : "no");
1082 BN_free(b); BN_free(r); BN_free(k);
1083 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1084 if (temp != 0) {
1085 DSA_free(dsa);
1086 return (NULL);
1090 * Write the IFF keys as an encrypted DSA private key encoded in
1091 * PEM.
1093 * p modulus p
1094 * q modulus q
1095 * g generator g
1096 * priv_key b
1097 * public_key v
1098 * kinv not used
1099 * r not used
1101 str = fheader("IFFkey", id, groupname);
1102 pkey = EVP_PKEY_new();
1103 EVP_PKEY_assign_DSA(pkey, dsa);
1104 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL,
1105 passwd1);
1106 fclose(str);
1107 if (debug)
1108 DSA_print_fp(stderr, dsa, 0);
1109 return (pkey);
1114 ***********************************************************************
1116 * The following routines implement the Guillou-Quisquater (GQ) *
1117 * identity scheme *
1119 ***********************************************************************
1121 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1122 * the certificate can be used to convey public parameters. The scheme
1123 * uses a X509v3 certificate extension field do convey the public key of
1124 * a private key known only to servers. There are two kinds of files:
1125 * encrypted server files that contain private and public values and
1126 * nonencrypted client files that contain only public values. New
1127 * generations of server files must be securely transmitted to all
1128 * servers of the group; client files can be distributed by any means.
1129 * The scheme is self contained and independent of new generations of
1130 * host keys and sign keys. The scheme is self contained and independent
1131 * of new generations of host keys and sign keys.
1133 * The GQ parameters hide in a RSA cuckoo structure which uses the same
1134 * parameters. The values are used by an identity scheme based on RSA
1135 * cryptography and described in Stimson p. 300 (with errors). The 512-
1136 * bit public modulus is n = p q, where p and q are secret large primes.
1137 * The TA rolls private random group key b as RSA exponent. These values
1138 * are known to all group members.
1140 * When rolling new certificates, a server recomputes the private and
1141 * public keys. The private key u is a random roll, while the public key
1142 * is the inverse obscured by the group key v = (u^-1)^b. These values
1143 * replace the private and public keys normally generated by the RSA
1144 * scheme. Alice challenges Bob to confirm identity using the protocol
1145 * described below.
1147 * How it works
1149 * The scheme goes like this. Both Alice and Bob have the same modulus n
1150 * and some random b as the group key. These values are computed and
1151 * distributed in advance via secret means, although only the group key
1152 * b is truly secret. Each has a private random private key u and public
1153 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1154 * can regenerate the key pair from time to time without affecting
1155 * operations. The public key is conveyed on the certificate in an
1156 * extension field; the private key is never revealed.
1158 * Alice rolls new random challenge r and sends to Bob in the GQ
1159 * request message. Bob rolls new random k, then computes y = k u^r mod
1160 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1161 * message. Besides making the response shorter, the hash makes it
1162 * effectivey impossible for an intruder to solve for b by observing
1163 * a number of these messages.
1165 * Alice receives the response and computes y^b v^r mod n. After a bit
1166 * of algebra, this simplifies to k^b. If the hash of this result
1167 * matches hash(x), Alice knows that Bob has the group key b. The signed
1168 * response binds this knowledge to Bob's private key and the public key
1169 * previously received in his certificate.
1172 * Generate Guillou-Quisquater (GQ) parameters file.
1174 EVP_PKEY * /* RSA cuckoo nest */
1175 gen_gqkey(
1176 char *id /* file name id */
1179 EVP_PKEY *pkey; /* private key */
1180 RSA *rsa; /* RSA parameters */
1181 BN_CTX *ctx; /* BN working space */
1182 BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */
1183 FILE *str;
1184 u_int temp;
1187 * Generate RSA parameters for use as GQ parameters.
1189 fprintf(stderr,
1190 "Generating GQ parameters (%d bits)...\n",
1191 modulus2);
1192 rsa = RSA_generate_key(modulus2, 3, cb, "GQ");
1193 fprintf(stderr, "\n");
1194 if (rsa == NULL) {
1195 fprintf(stderr, "RSA generate keys fails\n%s\n",
1196 ERR_error_string(ERR_get_error(), NULL));
1197 return (NULL);
1199 ctx = BN_CTX_new(); u = BN_new(); v = BN_new();
1200 g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new();
1203 * Generate the group key b, which is saved in the e member of
1204 * the RSA structure. The group key is transmitted to each group
1205 * member encrypted by the member private key.
1207 ctx = BN_CTX_new();
1208 BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */
1209 BN_mod(rsa->e, rsa->e, rsa->n, ctx);
1212 * When generating his certificate, Bob rolls random private key
1213 * u, then computes inverse v = u^-1.
1215 BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */
1216 BN_mod(u, u, rsa->n, ctx);
1217 BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */
1218 BN_mod_mul(k, v, u, rsa->n, ctx);
1221 * Bob computes public key v = (u^-1)^b, which is saved in an
1222 * extension field on his certificate. We check that u^b v =
1223 * 1 mod n.
1225 BN_mod_exp(v, v, rsa->e, rsa->n, ctx);
1226 BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */
1227 BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */
1228 temp = BN_is_one(g);
1229 fprintf(stderr,
1230 "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1231 "no");
1232 if (!temp) {
1233 BN_free(u); BN_free(v);
1234 BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1235 BN_CTX_free(ctx);
1236 RSA_free(rsa);
1237 return (NULL);
1239 BN_copy(rsa->p, u); /* private key */
1240 BN_copy(rsa->q, v); /* public key */
1243 * Here is a trial run of the protocol. First, Alice rolls
1244 * random nonce r mod n and sends it to Bob. She needs only n
1245 * from parameters.
1247 BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */
1248 BN_mod(r, r, rsa->n, ctx);
1251 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1252 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1253 * from parameters and r from Alice.
1255 BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */
1256 BN_mod(k, k, rsa->n, ctx);
1257 BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */
1258 BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */
1259 BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */
1262 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1263 * private key u. She needs n, g from parameters, public key v =
1264 * (u^-1)^b from the certificate, (y, g) from Bob and the
1265 * original r. We omit the detaul here that only the hash of g
1266 * is sent.
1268 BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */
1269 BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */
1270 BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */
1271 temp = BN_cmp(y, g);
1272 fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1273 "yes" : "no");
1274 BN_CTX_free(ctx); BN_free(u); BN_free(v);
1275 BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1276 if (temp != 0) {
1277 RSA_free(rsa);
1278 return (NULL);
1282 * Write the GQ parameter file as an encrypted RSA private key
1283 * encoded in PEM.
1285 * n modulus n
1286 * e group key b
1287 * d not used
1288 * p private key u
1289 * q public key (u^-1)^b
1290 * dmp1 not used
1291 * dmq1 not used
1292 * iqmp not used
1294 BN_copy(rsa->d, BN_value_one());
1295 BN_copy(rsa->dmp1, BN_value_one());
1296 BN_copy(rsa->dmq1, BN_value_one());
1297 BN_copy(rsa->iqmp, BN_value_one());
1298 str = fheader("GQkey", id, groupname);
1299 pkey = EVP_PKEY_new();
1300 EVP_PKEY_assign_RSA(pkey, rsa);
1301 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL,
1302 passwd1);
1303 fclose(str);
1304 if (debug)
1305 RSA_print_fp(stderr, rsa, 0);
1306 return (pkey);
1311 ***********************************************************************
1313 * The following routines implement the Mu-Varadharajan (MV) identity *
1314 * scheme *
1316 ***********************************************************************
1318 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1319 * servers broadcast messages to clients, but clients never send
1320 * messages to servers. There is one encryption key for the server and a
1321 * separate decryption key for each client. It operated something like a
1322 * pay-per-view satellite broadcasting system where the session key is
1323 * encrypted by the broadcaster and the decryption keys are held in a
1324 * tamperproof set-top box.
1326 * The MV parameters and private encryption key hide in a DSA cuckoo
1327 * structure which uses the same parameters, but generated in a
1328 * different way. The values are used in an encryption scheme similar to
1329 * El Gamal cryptography and a polynomial formed from the expansion of
1330 * product terms (x - x[j]), as described in Mu, Y., and V.
1331 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1332 * 223-231. The paper has significant errors and serious omissions.
1334 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1335 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1336 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1337 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1338 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1339 * project into Zp* as exponents of g. Sometimes we have to compute an
1340 * inverse b^-1 of random b in Zq, but for that purpose we require
1341 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1342 * relatively small, like 30. These are the parameters of the scheme and
1343 * they are expensive to compute.
1345 * We set up an instance of the scheme as follows. A set of random
1346 * values x[j] mod q (j = 1...n), are generated as the zeros of a
1347 * polynomial of order n. The product terms (x - x[j]) are expanded to
1348 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1349 * used as exponents of the generator g mod p to generate the private
1350 * encryption key A. The pair (gbar, ghat) of public server keys and the
1351 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1352 * to construct the decryption keys. The devil is in the details.
1354 * This routine generates a private server encryption file including the
1355 * private encryption key E and partial decryption keys gbar and ghat.
1356 * It then generates public client decryption files including the public
1357 * keys xbar[j] and xhat[j] for each client j. The partial decryption
1358 * files are used to compute the inverse of E. These values are suitably
1359 * blinded so secrets are not revealed.
1361 * The distinguishing characteristic of this scheme is the capability to
1362 * revoke keys. Included in the calculation of E, gbar and ghat is the
1363 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1364 * subsequently removed from the product and E, gbar and ghat
1365 * recomputed, the jth client will no longer be able to compute E^-1 and
1366 * thus unable to decrypt the messageblock.
1368 * How it works
1370 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
1371 * ghat) and Alice has the client values (p, xbar, xhat).
1373 * Alice rolls new random nonce r mod p and sends to Bob in the MV
1374 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1375 * mod p and sends (y, gbar^k, ghat^k) to Alice.
1377 * Alice receives the response and computes the inverse (E^k)^-1 from
1378 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1379 * decrypts y and verifies it matches the original r. The signed
1380 * response binds this knowledge to Bob's private key and the public key
1381 * previously received in his certificate.
1383 EVP_PKEY * /* DSA cuckoo nest */
1384 gen_mvkey(
1385 char *id, /* file name id */
1386 EVP_PKEY **evpars /* parameter list pointer */
1389 EVP_PKEY *pkey, *pkey1; /* private keys */
1390 DSA *dsa, *dsa2, *sdsa; /* DSA parameters */
1391 BN_CTX *ctx; /* BN working space */
1392 BIGNUM *a[MVMAX]; /* polynomial coefficient vector */
1393 BIGNUM *g[MVMAX]; /* public key vector */
1394 BIGNUM *s1[MVMAX]; /* private enabling keys */
1395 BIGNUM *x[MVMAX]; /* polynomial zeros vector */
1396 BIGNUM *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1397 BIGNUM *b; /* group key */
1398 BIGNUM *b1; /* inverse group key */
1399 BIGNUM *s; /* enabling key */
1400 BIGNUM *biga; /* master encryption key */
1401 BIGNUM *bige; /* session encryption key */
1402 BIGNUM *gbar, *ghat; /* public key */
1403 BIGNUM *u, *v, *w; /* BN scratch */
1404 int i, j, n;
1405 FILE *str;
1406 u_int temp;
1409 * Generate MV parameters.
1411 * The object is to generate a multiplicative group Zp* modulo a
1412 * prime p and a subset Zq mod q, where q is the product of n
1413 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1414 * first generate n m-bit primes, where the product n m is in
1415 * the order of 512 bits. One or more of these may have to be
1416 * replaced later. As a practical matter, it is tough to find
1417 * more than 31 distinct primes for 512 bits or 61 primes for
1418 * 1024 bits. The latter can take several hundred iterations
1419 * and several minutes on a Sun Blade 1000.
1421 n = nkeys;
1422 fprintf(stderr,
1423 "Generating MV parameters for %d keys (%d bits)...\n", n,
1424 modulus2 / n);
1425 ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1426 b = BN_new(); b1 = BN_new();
1427 dsa = DSA_new();
1428 dsa->p = BN_new(); dsa->q = BN_new(); dsa->g = BN_new();
1429 dsa->priv_key = BN_new(); dsa->pub_key = BN_new();
1430 temp = 0;
1431 for (j = 1; j <= n; j++) {
1432 s1[j] = BN_new();
1433 while (1) {
1434 BN_generate_prime(s1[j], modulus2 / n, 0, NULL,
1435 NULL, NULL, NULL);
1436 for (i = 1; i < j; i++) {
1437 if (BN_cmp(s1[i], s1[j]) == 0)
1438 break;
1440 if (i == j)
1441 break;
1442 temp++;
1445 fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1448 * Compute the modulus q as the product of the primes. Compute
1449 * the modulus p as 2 * q + 1 and test p for primality. If p
1450 * is composite, replace one of the primes with a new distinct
1451 * one and try again. Note that q will hardly be a secret since
1452 * we have to reveal p to servers, but not clients. However,
1453 * factoring q to find the primes should be adequately hard, as
1454 * this is the same problem considered hard in RSA. Question: is
1455 * it as hard to find n small prime factors totalling n bits as
1456 * it is to find two large prime factors totalling n bits?
1457 * Remember, the bad guy doesn't know n.
1459 temp = 0;
1460 while (1) {
1461 BN_one(dsa->q);
1462 for (j = 1; j <= n; j++)
1463 BN_mul(dsa->q, dsa->q, s1[j], ctx);
1464 BN_copy(dsa->p, dsa->q);
1465 BN_add(dsa->p, dsa->p, dsa->p);
1466 BN_add_word(dsa->p, 1);
1467 if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx,
1468 NULL))
1469 break;
1471 temp++;
1472 j = temp % n + 1;
1473 while (1) {
1474 BN_generate_prime(u, modulus2 / n, 0, 0, NULL,
1475 NULL, NULL);
1476 for (i = 1; i <= n; i++) {
1477 if (BN_cmp(u, s1[i]) == 0)
1478 break;
1480 if (i > n)
1481 break;
1483 BN_copy(s1[j], u);
1485 fprintf(stderr, "Defective keys regenerated %d\n", temp);
1488 * Compute the generator g using a random roll such that
1489 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1490 * q. This may take several iterations.
1492 BN_copy(v, dsa->p);
1493 BN_sub_word(v, 1);
1494 while (1) {
1495 BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0);
1496 BN_mod(dsa->g, dsa->g, dsa->p, ctx);
1497 BN_gcd(u, dsa->g, v, ctx);
1498 if (!BN_is_one(u))
1499 continue;
1501 BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx);
1502 if (BN_is_one(u))
1503 break;
1507 * Setup is now complete. Roll random polynomial roots x[j]
1508 * (j = 1...n) for all j. While it may not be strictly
1509 * necessary, Make sure each root has no factors in common with
1510 * q.
1512 fprintf(stderr,
1513 "Generating polynomial coefficients for %d roots (%d bits)\n",
1514 n, BN_num_bits(dsa->q));
1515 for (j = 1; j <= n; j++) {
1516 x[j] = BN_new();
1518 while (1) {
1519 BN_rand(x[j], BN_num_bits(dsa->q), 0, 0);
1520 BN_mod(x[j], x[j], dsa->q, ctx);
1521 BN_gcd(u, x[j], dsa->q, ctx);
1522 if (BN_is_one(u))
1523 break;
1528 * Generate polynomial coefficients a[i] (i = 0...n) from the
1529 * expansion of root products (x - x[j]) mod q for all j. The
1530 * method is a present from Charlie Boncelet.
1532 for (i = 0; i <= n; i++) {
1533 a[i] = BN_new();
1535 BN_one(a[i]);
1537 for (j = 1; j <= n; j++) {
1538 BN_zero(w);
1539 for (i = 0; i < j; i++) {
1540 BN_copy(u, dsa->q);
1541 BN_mod_mul(v, a[i], x[j], dsa->q, ctx);
1542 BN_sub(u, u, v);
1543 BN_add(u, u, w);
1544 BN_copy(w, a[i]);
1545 BN_mod(a[i], u, dsa->q, ctx);
1550 * Generate g[i] = g^a[i] mod p for all i and the generator g.
1552 for (i = 0; i <= n; i++) {
1553 g[i] = BN_new();
1555 BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx);
1559 * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1560 * a[i] x[j]^i exponent is computed mod q, but the g[i] is
1561 * computed mod p. also note the expression given in the paper
1562 * is incorrect.
1564 temp = 1;
1565 for (j = 1; j <= n; j++) {
1566 BN_one(u);
1567 for (i = 0; i <= n; i++) {
1568 BN_set_word(v, i);
1569 BN_mod_exp(v, x[j], v, dsa->q, ctx);
1570 BN_mod_mul(v, v, a[i], dsa->q, ctx);
1571 BN_mod_exp(v, dsa->g, v, dsa->p, ctx);
1572 BN_mod_mul(u, u, v, dsa->p, ctx);
1574 if (!BN_is_one(u))
1575 temp = 0;
1577 fprintf(stderr,
1578 "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1579 "yes" : "no");
1580 if (!temp) {
1581 return (NULL);
1585 * Make private encryption key A. Keep it around for awhile,
1586 * since it is expensive to compute.
1588 biga = BN_new();
1590 BN_one(biga);
1591 for (j = 1; j <= n; j++) {
1592 for (i = 0; i < n; i++) {
1593 BN_set_word(v, i);
1594 BN_mod_exp(v, x[j], v, dsa->q, ctx);
1595 BN_mod_exp(v, g[i], v, dsa->p, ctx);
1596 BN_mod_mul(biga, biga, v, dsa->p, ctx);
1601 * Roll private random group key b mod q (0 < b < q), where
1602 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1603 * mod q. If b is changed, the client keys must be recomputed.
1605 while (1) {
1606 BN_rand(b, BN_num_bits(dsa->q), 0, 0);
1607 BN_mod(b, b, dsa->q, ctx);
1608 BN_gcd(u, b, dsa->q, ctx);
1609 if (BN_is_one(u))
1610 break;
1612 BN_mod_inverse(b1, b, dsa->q, ctx);
1615 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1616 * that the keys for the jth client do not s1[j] or the product
1617 * s1[j]) (j = 1...n) which is q by construction.
1619 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1620 * easy way to do this is to compute (q + s1[j]) / s1[j].
1621 * Exercise for the student: prove the remainder is always zero.
1623 for (j = 1; j <= n; j++) {
1624 xbar[j] = BN_new(); xhat[j] = BN_new();
1626 BN_add(w, dsa->q, s1[j]);
1627 BN_div(w, u, w, s1[j], ctx);
1628 BN_zero(xbar[j]);
1629 BN_set_word(v, n);
1630 for (i = 1; i <= n; i++) {
1631 if (i == j)
1632 continue;
1633 BN_mod_exp(u, x[i], v, dsa->q, ctx);
1634 BN_add(xbar[j], xbar[j], u);
1636 BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx);
1637 BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx);
1638 BN_mod_mul(xhat[j], xhat[j], w, dsa->q, ctx);
1642 * We revoke client j by dividing q by s1[j]. The quotient
1643 * becomes the enabling key s. Note we always have to revoke
1644 * one key; otherwise, the plaintext and cryptotext would be
1645 * identical. For the present there are no provisions to revoke
1646 * additional keys, so we sail on with only token revocations.
1648 s = BN_new();
1650 BN_copy(s, dsa->q);
1651 BN_div(s, u, s, s1[10], ctx);
1652 BN_div(s, u, s, s1[n], ctx);
1655 * For each combination of clients to be revoked, make private
1656 * encryption key E = A^s and partial decryption keys gbar = g^s
1657 * and ghat = g^(s b), all mod p. The servers use these keys to
1658 * compute the session encryption key and partial decryption
1659 * keys. These values must be regenerated if the enabling key is
1660 * changed.
1662 bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1664 BN_mod_exp(bige, biga, s, dsa->p, ctx);
1665 BN_mod_exp(gbar, dsa->g, s, dsa->p, ctx);
1666 BN_mod_mul(v, s, b, dsa->q, ctx);
1667 BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx);
1670 * Notes: We produce the key media in three steps. The first
1671 * step is to generate the system parameters p, q, g, b, A and
1672 * the enabling keys s1[j]. Associated with each s1[j] are
1673 * parameters xbar[j] and xhat[j]. All of these parameters are
1674 * retained in a data structure protecteted by the trusted-agent
1675 * password. The p, xbar[j] and xhat[j] paremeters are
1676 * distributed to the j clients. When the client keys are to be
1677 * activated, the enabled keys are multipied together to form
1678 * the master enabling key s. This and the other parameters are
1679 * used to compute the server encryption key E and the partial
1680 * decryption keys gbar and ghat.
1682 * In the identity exchange the client rolls random r and sends
1683 * it to the server. The server rolls random k, which is used
1684 * only once, then computes the session key E^k and partial
1685 * decryption keys gbar^k and ghat^k. The server sends the
1686 * encrypted r along with gbar^k and ghat^k to the client. The
1687 * client completes the decryption and verifies it matches r.
1690 * Write the MV trusted-agent parameters and keys as a DSA
1691 * private key encoded in PEM.
1693 * p modulus p
1694 * q modulus q
1695 * g generator g
1696 * priv_key A mod p
1697 * pub_key b mod q
1698 * (remaining values are not used)
1700 i = 0;
1701 str = fheader("MVta", "mvta", groupname);
1702 fprintf(stderr, "Generating MV trusted-authority keys\n");
1703 BN_copy(dsa->priv_key, biga);
1704 BN_copy(dsa->pub_key, b);
1705 pkey = EVP_PKEY_new();
1706 EVP_PKEY_assign_DSA(pkey, dsa);
1707 PEM_write_PrivateKey(str, pkey, EVP_des_cbc(), NULL, 0, NULL,
1708 passwd1);
1709 evpars[i++] = pkey;
1710 if (debug)
1711 DSA_print_fp(stderr, dsa, 0);
1714 * Append the MV server parameters and keys as a DSA key encoded
1715 * in PEM.
1717 * p modulus p
1718 * q modulus q (used only when generating k)
1719 * g bige
1720 * priv_key gbar
1721 * pub_key ghat
1722 * (remaining values are not used)
1724 fprintf(stderr, "Generating MV server keys\n");
1725 dsa2 = DSA_new();
1726 dsa2->p = BN_dup(dsa->p);
1727 dsa2->q = BN_dup(dsa->q);
1728 dsa2->g = BN_dup(bige);
1729 dsa2->priv_key = BN_dup(gbar);
1730 dsa2->pub_key = BN_dup(ghat);
1731 pkey1 = EVP_PKEY_new();
1732 EVP_PKEY_assign_DSA(pkey1, dsa2);
1733 PEM_write_PrivateKey(str, pkey1, EVP_des_cbc(), NULL, 0, NULL,
1734 passwd1);
1735 evpars[i++] = pkey1;
1736 if (debug)
1737 DSA_print_fp(stderr, dsa2, 0);
1740 * Append the MV client parameters for each client j as DSA keys
1741 * encoded in PEM.
1743 * p modulus p
1744 * priv_key xbar[j] mod q
1745 * pub_key xhat[j] mod q
1746 * (remaining values are not used)
1748 fprintf(stderr, "Generating %d MV client keys\n", n);
1749 for (j = 1; j <= n; j++) {
1750 sdsa = DSA_new();
1752 sdsa->p = BN_dup(dsa->p);
1753 sdsa->q = BN_dup(BN_value_one());
1754 sdsa->g = BN_dup(BN_value_one());
1755 sdsa->priv_key = BN_dup(xbar[j]);
1756 sdsa->pub_key = BN_dup(xhat[j]);
1757 pkey1 = EVP_PKEY_new();
1758 EVP_PKEY_set1_DSA(pkey1, sdsa);
1759 PEM_write_PrivateKey(str, pkey1, EVP_des_cbc(), NULL, 0,
1760 NULL, passwd1);
1761 evpars[i++] = pkey1;
1762 if (debug)
1763 DSA_print_fp(stderr, sdsa, 0);
1766 * The product gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1767 * are inverses of each other. We check that the product
1768 * is one for each client except the ones that have been
1769 * revoked.
1771 BN_mod_exp(v, dsa2->priv_key, sdsa->pub_key, dsa->p,
1772 ctx);
1773 BN_mod_exp(u, dsa2->pub_key, sdsa->priv_key, dsa->p,
1774 ctx);
1775 BN_mod_mul(u, u, v, dsa->p, ctx);
1776 BN_mod_mul(u, u, bige, dsa->p, ctx);
1777 if (!BN_is_one(u)) {
1778 fprintf(stderr, "Revoke key %d\n", j);
1779 continue;
1782 evpars[i++] = NULL;
1783 fclose(str);
1786 * Free the countries.
1788 for (i = 0; i <= n; i++) {
1789 BN_free(a[i]); BN_free(g[i]);
1791 for (j = 1; j <= n; j++) {
1792 BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1793 BN_free(s1[j]);
1795 return (pkey);
1800 * Generate X509v3 certificate.
1802 * The certificate consists of the version number, serial number,
1803 * validity interval, issuer name, subject name and public key. For a
1804 * self-signed certificate, the issuer name is the same as the subject
1805 * name and these items are signed using the subject private key. The
1806 * validity interval extends from the current time to the same time one
1807 * year hence. For NTP purposes, it is convenient to use the NTP seconds
1808 * of the current time as the serial number.
1811 x509 (
1812 EVP_PKEY *pkey, /* generic signature algorithm */
1813 const EVP_MD *md, /* generic digest algorithm */
1814 char *gqpub, /* identity extension (hex string) */
1815 char *exten, /* private cert extension */
1816 char *name /* subject/issuer namd */
1819 X509 *cert; /* X509 certificate */
1820 X509_NAME *subj; /* distinguished (common) name */
1821 X509_EXTENSION *ex; /* X509v3 extension */
1822 FILE *str; /* file handle */
1823 ASN1_INTEGER *serial; /* serial number */
1824 const char *id; /* digest/signature scheme name */
1825 char pathbuf[MAXFILENAME + 1];
1828 * Generate X509 self-signed certificate.
1830 * Set the certificate serial to the NTP seconds for grins. Set
1831 * the version to 3. Set the initial validity to the current
1832 * time and the finalvalidity one year hence.
1834 id = OBJ_nid2sn(md->pkey_type);
1835 fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1836 cert = X509_new();
1837 X509_set_version(cert, 2L);
1838 serial = ASN1_INTEGER_new();
1839 ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1840 X509_set_serialNumber(cert, serial);
1841 ASN1_INTEGER_free(serial);
1842 X509_time_adj(X509_get_notBefore(cert), 0L, &epoch);
1843 X509_time_adj(X509_get_notAfter(cert), YEAR, &epoch);
1844 subj = X509_get_subject_name(cert);
1845 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1846 (unsigned char *) name, strlen(name), -1, 0);
1847 subj = X509_get_issuer_name(cert);
1848 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1849 (unsigned char *) name, strlen(name), -1, 0);
1850 if (!X509_set_pubkey(cert, pkey)) {
1851 fprintf(stderr, "Assign key fails\n%s\n",
1852 ERR_error_string(ERR_get_error(), NULL));
1853 X509_free(cert);
1854 return (0);
1858 * Add X509v3 extensions if present. These represent the minimum
1859 * set defined in RFC3280 less the certificate_policy extension,
1860 * which is seriously obfuscated in OpenSSL.
1863 * The basic_constraints extension CA:TRUE allows servers to
1864 * sign client certficitates.
1866 fprintf(stderr, "%s: %s\n", LN_basic_constraints,
1867 BASIC_CONSTRAINTS);
1868 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
1869 BASIC_CONSTRAINTS);
1870 if (!X509_add_ext(cert, ex, -1)) {
1871 fprintf(stderr, "Add extension field fails\n%s\n",
1872 ERR_error_string(ERR_get_error(), NULL));
1873 return (0);
1875 X509_EXTENSION_free(ex);
1878 * The key_usage extension designates the purposes the key can
1879 * be used for.
1881 fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
1882 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, KEY_USAGE);
1883 if (!X509_add_ext(cert, ex, -1)) {
1884 fprintf(stderr, "Add extension field fails\n%s\n",
1885 ERR_error_string(ERR_get_error(), NULL));
1886 return (0);
1888 X509_EXTENSION_free(ex);
1890 * The subject_key_identifier is used for the GQ public key.
1891 * This should not be controversial.
1893 if (gqpub != NULL) {
1894 fprintf(stderr, "%s\n", LN_subject_key_identifier);
1895 ex = X509V3_EXT_conf_nid(NULL, NULL,
1896 NID_subject_key_identifier, gqpub);
1897 if (!X509_add_ext(cert, ex, -1)) {
1898 fprintf(stderr,
1899 "Add extension field fails\n%s\n",
1900 ERR_error_string(ERR_get_error(), NULL));
1901 return (0);
1903 X509_EXTENSION_free(ex);
1907 * The extended key usage extension is used for special purpose
1908 * here. The semantics probably do not conform to the designer's
1909 * intent and will likely change in future.
1911 * "trustRoot" designates a root authority
1912 * "private" designates a private certificate
1914 if (exten != NULL) {
1915 fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
1916 ex = X509V3_EXT_conf_nid(NULL, NULL,
1917 NID_ext_key_usage, exten);
1918 if (!X509_add_ext(cert, ex, -1)) {
1919 fprintf(stderr,
1920 "Add extension field fails\n%s\n",
1921 ERR_error_string(ERR_get_error(), NULL));
1922 return (0);
1924 X509_EXTENSION_free(ex);
1928 * Sign and verify.
1930 X509_sign(cert, pkey, md);
1931 if (!X509_verify(cert, pkey)) {
1932 fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
1933 ERR_error_string(ERR_get_error(), NULL));
1934 X509_free(cert);
1935 return (0);
1939 * Write the certificate encoded in PEM.
1941 sprintf(pathbuf, "%scert", id);
1942 str = fheader(pathbuf, "cert", hostname);
1943 PEM_write_X509(str, cert);
1944 fclose(str);
1945 if (debug)
1946 X509_print_fp(stderr, cert);
1947 X509_free(cert);
1948 return (1);
1951 #if 0 /* asn2ntp is used only with commercial certificates */
1953 * asn2ntp - convert ASN1_TIME time structure to NTP time
1955 u_long
1956 asn2ntp (
1957 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */
1960 char *v; /* pointer to ASN1_TIME string */
1961 struct tm tm; /* time decode structure time */
1964 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
1965 * Note that the YY, MM, DD fields start with one, the HH, MM,
1966 * SS fiels start with zero and the Z character should be 'Z'
1967 * for UTC. Also note that years less than 50 map to years
1968 * greater than 100. Dontcha love ASN.1?
1970 if (asn1time->length > 13)
1971 return (-1);
1972 v = (char *)asn1time->data;
1973 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
1974 if (tm.tm_year < 50)
1975 tm.tm_year += 100;
1976 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
1977 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
1978 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
1979 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
1980 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
1981 tm.tm_wday = 0;
1982 tm.tm_yday = 0;
1983 tm.tm_isdst = 0;
1984 return (mktime(&tm) + JAN_1970);
1986 #endif
1989 * Callback routine
1991 void
1992 cb (
1993 int n1, /* arg 1 */
1994 int n2, /* arg 2 */
1995 void *chr /* arg 3 */
1998 switch (n1) {
1999 case 0:
2000 d0++;
2001 fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2002 d0);
2003 break;
2004 case 1:
2005 d1++;
2006 fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2007 n2, d1);
2008 break;
2009 case 2:
2010 d2++;
2011 fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2012 n1, n2, d2);
2013 break;
2014 case 3:
2015 d3++;
2016 fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2017 (char *)chr, n1, n2, d3);
2018 break;
2024 * Generate key
2026 EVP_PKEY * /* public/private key pair */
2027 genkey(
2028 char *type, /* key type (RSA or DSA) */
2029 char *id /* file name id */
2032 if (type == NULL)
2033 return (NULL);
2034 if (strcmp(type, "RSA") == 0)
2035 return (gen_rsa(id));
2037 else if (strcmp(type, "DSA") == 0)
2038 return (gen_dsa(id));
2040 fprintf(stderr, "Invalid %s key type %s\n", id, type);
2041 return (NULL);
2043 #endif /* OPENSSL */
2047 * Generate file header and link
2049 FILE *
2050 fheader (
2051 const char *file, /* file name id */
2052 const char *ulink, /* linkname */
2053 const char *owner /* owner name */
2056 FILE *str; /* file handle */
2057 char linkname[MAXFILENAME]; /* link name */
2058 int temp;
2060 sprintf(filename, "ntpkey_%s_%s.%lu", file, owner, epoch +
2061 JAN_1970);
2062 if ((str = fopen(filename, "w")) == NULL) {
2063 perror("Write");
2064 exit (-1);
2066 sprintf(linkname, "ntpkey_%s_%s", ulink, owner);
2067 remove(linkname);
2068 temp = symlink(filename, linkname);
2069 if (temp < 0)
2070 perror(file);
2071 fprintf(stderr, "Generating new %s file and link\n", ulink);
2072 fprintf(stderr, "%s->%s\n", linkname, filename);
2073 fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2074 return (str);