4 * Program to generate cryptographic keys for ntp clients and servers
6 * This program generates password encrypted data files for use with the
7 * Autokey security protocol and Network Time Protocol Version 4. Files
8 * are prefixed with a header giving the name and date of creation
9 * followed by a type-specific descriptive label and PEM-encoded data
10 * structure compatible with programs of the OpenSSL library.
12 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
13 * <type> is the file type, <hostname> the generating host name and
14 * <filestamp> the generation time in NTP seconds. The NTP programs
15 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
16 * association maintained by soft links. Following is a list of file
17 * types; the first line is the file name and the second link name.
19 * ntpkey_MD5key_<hostname>.<filestamp>
20 * MD5 (128-bit) keys used to compute message digests in symmetric
23 * ntpkey_RSAhost_<hostname>.<filestamp>
24 * ntpkey_host_<hostname>
25 * RSA private/public host key pair used for public key signatures
27 * ntpkey_RSAsign_<hostname>.<filestamp>
28 * ntpkey_sign_<hostname>
29 * RSA private/public sign key pair used for public key signatures
31 * ntpkey_DSAsign_<hostname>.<filestamp>
32 * ntpkey_sign_<hostname>
33 * DSA Private/public sign key pair used for public key signatures
35 * Available digest/signature schemes
37 * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
38 * DSA: DSA-SHA, DSA-SHA1
40 * ntpkey_XXXcert_<hostname>.<filestamp>
41 * ntpkey_cert_<hostname>
42 * X509v3 certificate using RSA or DSA public keys and signatures.
43 * XXX is a code identifying the message digest and signature
44 * encryption algorithm
46 * Identity schemes. The key type par is used for the challenge; the key
47 * type key is used for the response.
49 * ntpkey_IFFkey_<groupname>.<filestamp>
50 * ntpkey_iffkey_<groupname>
51 * Schnorr (IFF) identity parameters and keys
53 * ntpkey_GQkey_<groupname>.<filestamp>,
54 * ntpkey_gqkey_<groupname>
55 * Guillou-Quisquater (GQ) identity parameters and keys
57 * ntpkey_MVkeyX_<groupname>.<filestamp>,
58 * ntpkey_mvkey_<groupname>
59 * Mu-Varadharajan (MV) identity parameters and keys
61 * Note: Once in a while because of some statistical fluke this program
62 * fails to generate and verify some cryptographic data, as indicated by
63 * exit status -1. In this case simply run the program again. If the
64 * program does complete with exit code 0, the data are correct as
67 * These cryptographic routines are characterized by the prime modulus
68 * size in bits. The default value of 512 bits is a compromise between
69 * cryptographic strength and computing time and is ordinarily
70 * considered adequate for this application. The routines have been
71 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
72 * digest and signature encryption schemes work with sizes less than 512
73 * bits. The computing time for sizes greater than 2048 bits is
74 * prohibitive on all but the fastest processors. An UltraSPARC Blade
75 * 1000 took something over nine minutes to generate and verify the
76 * values with size 2048. An old SPARC IPC would take a week.
78 * The OpenSSL library used by this program expects a random seed file.
79 * As described in the OpenSSL documentation, the file name defaults to
80 * first the RANDFILE environment variable in the user's home directory
81 * and then .rnd in the user's home directory.
92 #include <sys/types.h>
93 #include "ntp_types.h"
94 #include "ntp_random.h"
95 #include "ntp_stdlib.h"
96 #include "ntp_assert.h"
98 #include "ntp-keygen-opts.h"
101 #include "openssl/bn.h"
102 #include "openssl/evp.h"
103 #include "openssl/err.h"
104 #include "openssl/rand.h"
105 #include "openssl/pem.h"
106 #include "openssl/x509v3.h"
107 #include <openssl/objects.h>
109 #include <ssl_applink.c>
114 #define MD5KEYS 10 /* number of keys generated of each type */
115 #define MD5SIZE 20 /* maximum key size */
116 #define JAN_1970 2208988800UL /* NTP seconds */
117 #define YEAR ((long)60*60*24*365) /* one year in seconds */
118 #define MAXFILENAME 256 /* max file name length */
119 #define MAXHOSTNAME 256 /* max host name length */
121 #define PLEN 512 /* default prime modulus size (bits) */
122 #define ILEN 256 /* default identity modulus size (bits) */
123 #define MVMAX 100 /* max MV parameters */
126 * Strings used in X509v3 extension fields
128 #define KEY_USAGE "digitalSignature,keyCertSign"
129 #define BASIC_CONSTRAINTS "critical,CA:TRUE"
130 #define EXT_KEY_PRIVATE "private"
131 #define EXT_KEY_TRUST "trustRoot"
137 FILE *fheader (const char *, const char *, const char *);
138 int gen_md5 (char *);
140 EVP_PKEY
*gen_rsa (char *);
141 EVP_PKEY
*gen_dsa (char *);
142 EVP_PKEY
*gen_iffkey (char *);
143 EVP_PKEY
*gen_gqkey (char *);
144 EVP_PKEY
*gen_mvkey (char *, EVP_PKEY
**);
145 void gen_mvserv (char *, EVP_PKEY
**);
146 int x509 (EVP_PKEY
*, const EVP_MD
*, char *, char *,
148 void cb (int, int, void *);
149 EVP_PKEY
*genkey (char *, char *);
150 EVP_PKEY
*readkey (char *, char *, u_int
*, EVP_PKEY
**);
151 void writekey (char *, char *, u_int
*, EVP_PKEY
**);
152 u_long
asn2ntp (ASN1_TIME
*);
158 extern char *optarg
; /* command line argument */
160 volatile int debug
= 0; /* debug, not de bug */
162 u_int modulus
= PLEN
; /* prime modulus size (bits) */
163 u_int modulus2
= ILEN
; /* identity modulus size (bits) */
165 int nkeys
; /* MV keys */
166 time_t epoch
; /* Unix epoch (seconds) since 1970 */
167 u_int fstamp
; /* NTP filestamp */
168 char *hostname
= NULL
; /* host name (subject name) */
169 char *groupname
= NULL
; /* trusted host name (issuer name) */
170 char filename
[MAXFILENAME
+ 1]; /* file name */
171 char *passwd1
= NULL
; /* input private key password */
172 char *passwd2
= NULL
; /* output private key password */
174 long d0
, d1
, d2
, d3
; /* callback counters */
178 BOOL
init_randfile();
181 * Don't try to follow symbolic links
184 readlink(char *link
, char *file
, int len
)
190 * Don't try to create a symbolic link for now.
191 * Just move the file to the name you need.
194 symlink(char *filename
, char *linkname
) {
195 DeleteFile(linkname
);
196 MoveFile(filename
, linkname
);
201 WORD wVersionRequested
;
203 wVersionRequested
= MAKEWORD(2,0);
204 if (WSAStartup(wVersionRequested
, &wsaData
))
206 fprintf(stderr
, "No useable winsock.dll\n");
210 #endif /* SYS_WINNT */
217 int argc
, /* command line options */
221 struct timeval tv
; /* initialization vector */
222 int md5key
= 0; /* generate MD5 keys */
224 X509
*cert
= NULL
; /* X509 certificate */
225 X509_EXTENSION
*ext
; /* X509v3 extension */
226 EVP_PKEY
*pkey_host
= NULL
; /* host key */
227 EVP_PKEY
*pkey_sign
= NULL
; /* sign key */
228 EVP_PKEY
*pkey_iffkey
= NULL
; /* IFF sever keys */
229 EVP_PKEY
*pkey_gqkey
= NULL
; /* GQ server keys */
230 EVP_PKEY
*pkey_mvkey
= NULL
; /* MV trusted agen keys */
231 EVP_PKEY
*pkey_mvpar
[MVMAX
]; /* MV cleient keys */
232 int hostkey
= 0; /* generate RSA keys */
233 int iffkey
= 0; /* generate IFF keys */
234 int gqkey
= 0; /* generate GQ keys */
235 int mvkey
= 0; /* update MV keys */
236 int mvpar
= 0; /* generate MV parameters */
237 char *sign
= NULL
; /* sign key */
238 EVP_PKEY
*pkey
= NULL
; /* temp key */
239 const EVP_MD
*ectx
; /* EVP digest */
240 char pathbuf
[MAXFILENAME
+ 1];
241 const char *scheme
= NULL
; /* digest/signature scheme */
242 char *exten
= NULL
; /* private extension */
243 char *grpkey
= NULL
; /* identity extension */
244 int nid
; /* X509 digest/signature scheme */
245 FILE *fstr
= NULL
; /* file handle */
246 #define iffsw HAVE_OPT(ID_KEY)
248 char hostbuf
[MAXHOSTNAME
+ 1];
249 char groupbuf
[MAXHOSTNAME
+ 1];
254 /* Initialize before OpenSSL checks */
256 if (!init_randfile())
257 fprintf(stderr
, "Unable to initialize .rnd file\n");
263 fprintf(stderr
, "Using OpenSSL version %lx\n", SSLeay());
267 * Process options, initialize host name and timestamp.
269 gethostname(hostbuf
, MAXHOSTNAME
);
271 gettimeofday(&tv
, 0);
276 int optct
= optionProcess(&ntp_keygenOptions
, argc
, argv
);
280 debug
= DESC(DEBUG_LEVEL
).optOccCt
;
281 if (HAVE_OPT( MD5KEY
))
286 if (HAVE_OPT( PVT_PASSWD
))
287 passwd1
= strdup(OPT_ARG( PVT_PASSWD
));
289 if (HAVE_OPT( GET_PVT_PASSWD
))
290 passwd2
= strdup(OPT_ARG( GET_PVT_PASSWD
));
292 if (HAVE_OPT( HOST_KEY
))
295 if (HAVE_OPT( SIGN_KEY
))
296 sign
= strdup(OPT_ARG( SIGN_KEY
));
298 if (HAVE_OPT( GQ_PARAMS
))
301 if (HAVE_OPT( IFFKEY
))
304 if (HAVE_OPT( MV_PARAMS
)) {
306 nkeys
= OPT_VALUE_MV_PARAMS
;
308 if (HAVE_OPT( MV_KEYS
)) {
310 nkeys
= OPT_VALUE_MV_KEYS
;
312 if (HAVE_OPT( MODULUS
))
313 modulus
= OPT_VALUE_MODULUS
;
315 if (HAVE_OPT( CERTIFICATE
))
316 scheme
= OPT_ARG( CERTIFICATE
);
318 if (HAVE_OPT( SUBJECT_NAME
))
319 hostname
= strdup(OPT_ARG( SUBJECT_NAME
));
321 if (HAVE_OPT( ISSUER_NAME
))
322 groupname
= strdup(OPT_ARG( ISSUER_NAME
));
324 if (HAVE_OPT( PVT_CERT
))
325 exten
= EXT_KEY_PRIVATE
;
327 if (HAVE_OPT( TRUSTED_CERT
))
328 exten
= EXT_KEY_TRUST
;
331 * Seed random number generator and grow weeds.
333 ERR_load_crypto_strings();
334 OpenSSL_add_all_algorithms();
335 if (!RAND_status()) {
338 if (RAND_file_name(pathbuf
, MAXFILENAME
) == NULL
) {
339 fprintf(stderr
, "RAND_file_name %s\n",
340 ERR_error_string(ERR_get_error(), NULL
));
343 temp
= RAND_load_file(pathbuf
, -1);
346 "RAND_load_file %s not found or empty\n",
351 "Random seed file %s %u bytes\n", pathbuf
, temp
);
352 RAND_add(&epoch
, sizeof(epoch
), 4.0);
356 * Load previous certificate if available.
358 sprintf(filename
, "ntpkey_cert_%s", hostname
);
359 if ((fstr
= fopen(filename
, "r")) != NULL
) {
360 cert
= PEM_read_X509(fstr
, NULL
, NULL
, NULL
);
366 * Extract subject name.
368 X509_NAME_oneline(X509_get_subject_name(cert
), groupbuf
,
372 * Extract digest/signature scheme.
374 if (scheme
== NULL
) {
375 nid
= OBJ_obj2nid(cert
->cert_info
->
376 signature
->algorithm
);
377 scheme
= OBJ_nid2sn(nid
);
381 * If a key_usage extension field is present, determine
382 * whether this is a trusted or private certificate.
389 ptr
= strstr(groupbuf
, "CN=");
390 cnt
= X509_get_ext_count(cert
);
391 for (i
= 0; i
< cnt
; i
++) {
392 ext
= X509_get_ext(cert
, i
);
393 if (OBJ_obj2nid(ext
->object
) ==
395 bp
= BIO_new(BIO_s_mem());
396 X509V3_EXT_print(bp
, ext
, 0, 0);
397 BIO_gets(bp
, pathbuf
,
402 exten
= EXT_KEY_TRUST
;
403 else if (strcmp(pathbuf
,
405 exten
= EXT_KEY_PRIVATE
;
406 if (groupname
== NULL
)
414 if (groupname
== NULL
)
415 groupname
= hostname
;
416 fprintf(stderr
, "Using host %s group %s\n", hostname
,
418 if ((iffkey
|| gqkey
|| mvkey
) && exten
== NULL
)
420 "Warning: identity files may not be useful with a nontrusted certificate.\n");
424 * Create new unencrypted MD5 keys file if requested. If this
425 * option is selected, ignore all other options.
434 * Create a new encrypted RSA host key file if requested;
435 * otherwise, look for an existing host key file. If not found,
436 * create a new encrypted RSA host key file. If that fails, go
440 pkey_host
= genkey("RSA", "host");
441 if (pkey_host
== NULL
) {
442 sprintf(filename
, "ntpkey_host_%s", hostname
);
443 pkey_host
= readkey(filename
, passwd1
, &fstamp
, NULL
);
444 if (pkey_host
!= NULL
) {
445 readlink(filename
, filename
, sizeof(filename
));
446 fprintf(stderr
, "Using host key %s\n",
449 pkey_host
= genkey("RSA", "host");
452 if (pkey_host
== NULL
) {
453 fprintf(stderr
, "Generating host key fails\n");
458 * Create new encrypted RSA or DSA sign keys file if requested;
459 * otherwise, look for an existing sign key file. If not found,
460 * use the host key instead.
463 pkey_sign
= genkey(sign
, "sign");
464 if (pkey_sign
== NULL
) {
465 sprintf(filename
, "ntpkey_sign_%s", hostname
);
466 pkey_sign
= readkey(filename
, passwd1
, &fstamp
, NULL
);
467 if (pkey_sign
!= NULL
) {
468 readlink(filename
, filename
, sizeof(filename
));
469 fprintf(stderr
, "Using sign key %s\n",
471 } else if (pkey_host
!= NULL
) {
472 pkey_sign
= pkey_host
;
473 fprintf(stderr
, "Using host key as sign key\n");
478 * Create new encrypted GQ server keys file if requested;
479 * otherwise, look for an exisiting file. If found, fetch the
480 * public key for the certificate.
483 pkey_gqkey
= gen_gqkey("gqkey");
484 if (pkey_gqkey
== NULL
) {
485 sprintf(filename
, "ntpkey_gqkey_%s", groupname
);
486 pkey_gqkey
= readkey(filename
, passwd1
, &fstamp
, NULL
);
487 if (pkey_gqkey
!= NULL
) {
488 readlink(filename
, filename
, sizeof(filename
));
489 fprintf(stderr
, "Using GQ parameters %s\n",
493 if (pkey_gqkey
!= NULL
)
494 grpkey
= BN_bn2hex(pkey_gqkey
->pkey
.rsa
->q
);
497 * Write the nonencrypted GQ client parameters to the stdout
498 * stream. The parameter file is the server key file with the
499 * private key obscured.
501 if (pkey_gqkey
!= NULL
&& HAVE_OPT(ID_KEY
)) {
504 epoch
= fstamp
- JAN_1970
;
505 sprintf(filename
, "ntpkey_gqpar_%s.%u", groupname
,
507 fprintf(stderr
, "Writing GQ parameters %s to stdout\n",
509 fprintf(stdout
, "# %s\n# %s\n", filename
,
511 rsa
= pkey_gqkey
->pkey
.rsa
;
512 BN_copy(rsa
->p
, BN_value_one());
513 BN_copy(rsa
->q
, BN_value_one());
514 pkey
= EVP_PKEY_new();
515 EVP_PKEY_assign_RSA(pkey
, rsa
);
516 PEM_write_PrivateKey(stdout
, pkey
, NULL
, NULL
, 0, NULL
,
520 RSA_print_fp(stderr
, rsa
, 0);
524 * Write the encrypted GQ server keys to the stdout stream.
526 if (pkey_gqkey
!= NULL
&& passwd2
!= NULL
) {
529 sprintf(filename
, "ntpkey_gqkey_%s.%u", groupname
,
531 fprintf(stderr
, "Writing GQ keys %s to stdout\n",
533 fprintf(stdout
, "# %s\n# %s\n", filename
,
535 rsa
= pkey_gqkey
->pkey
.rsa
;
536 pkey
= EVP_PKEY_new();
537 EVP_PKEY_assign_RSA(pkey
, rsa
);
538 PEM_write_PrivateKey(stdout
, pkey
,
539 EVP_des_cbc(), NULL
, 0, NULL
, passwd2
);
542 RSA_print_fp(stderr
, rsa
, 0);
546 * Create new encrypted IFF server keys file if requested;
547 * otherwise, look for existing file.
550 pkey_iffkey
= gen_iffkey("iffkey");
551 if (pkey_iffkey
== NULL
) {
552 sprintf(filename
, "ntpkey_iffkey_%s", groupname
);
553 pkey_iffkey
= readkey(filename
, passwd1
, &fstamp
, NULL
);
554 if (pkey_iffkey
!= NULL
) {
555 readlink(filename
, filename
, sizeof(filename
));
556 fprintf(stderr
, "Using IFF keys %s\n",
562 * Write the nonencrypted IFF client parameters to the stdout
563 * stream. The parameter file is the server key file with the
564 * private key obscured.
566 if (pkey_iffkey
!= NULL
&& HAVE_OPT(ID_KEY
)) {
569 epoch
= fstamp
- JAN_1970
;
570 sprintf(filename
, "ntpkey_iffpar_%s.%u", groupname
,
572 fprintf(stderr
, "Writing IFF parameters %s to stdout\n",
574 fprintf(stdout
, "# %s\n# %s\n", filename
,
576 dsa
= pkey_iffkey
->pkey
.dsa
;
577 BN_copy(dsa
->priv_key
, BN_value_one());
578 pkey
= EVP_PKEY_new();
579 EVP_PKEY_assign_DSA(pkey
, dsa
);
580 PEM_write_PrivateKey(stdout
, pkey
, NULL
, NULL
, 0, NULL
,
584 DSA_print_fp(stderr
, dsa
, 0);
588 * Write the encrypted IFF server keys to the stdout stream.
590 if (pkey_iffkey
!= NULL
&& passwd2
!= NULL
) {
593 epoch
= fstamp
- JAN_1970
;
594 sprintf(filename
, "ntpkey_iffkey_%s.%u", groupname
,
596 fprintf(stderr
, "Writing IFF keys %s to stdout\n",
598 fprintf(stdout
, "# %s\n# %s\n", filename
,
600 dsa
= pkey_iffkey
->pkey
.dsa
;
601 pkey
= EVP_PKEY_new();
602 EVP_PKEY_assign_DSA(pkey
, dsa
);
603 PEM_write_PrivateKey(stdout
, pkey
, EVP_des_cbc(), NULL
,
607 DSA_print_fp(stderr
, dsa
, 0);
611 * Create new encrypted MV trusted-authority keys file if
612 * requested; otherwise, look for existing keys file.
615 pkey_mvkey
= gen_mvkey("mv", pkey_mvpar
);
616 if (pkey_mvkey
== NULL
) {
617 sprintf(filename
, "ntpkey_mvta_%s", groupname
);
618 pkey_mvkey
= readkey(filename
, passwd1
, &fstamp
,
620 if (pkey_mvkey
!= NULL
) {
621 readlink(filename
, filename
, sizeof(filename
));
622 fprintf(stderr
, "Using MV keys %s\n",
628 * Write the nonencrypted MV client parameters to the stdout
629 * stream. For the moment, we always use the client parameters
630 * associated with client key 1.
632 if (pkey_mvkey
!= NULL
&& HAVE_OPT(ID_KEY
)) {
633 epoch
= fstamp
- JAN_1970
;
634 sprintf(filename
, "ntpkey_mvpar_%s.%u", groupname
,
636 fprintf(stderr
, "Writing MV parameters %s to stdout\n",
638 fprintf(stdout
, "# %s\n# %s\n", filename
,
640 pkey
= pkey_mvpar
[2];
641 PEM_write_PrivateKey(stdout
, pkey
, NULL
, NULL
, 0, NULL
,
645 DSA_print_fp(stderr
, pkey
->pkey
.dsa
, 0);
649 * Write the encrypted MV server keys to the stdout stream.
651 if (pkey_mvkey
!= NULL
&& passwd2
!= NULL
) {
652 epoch
= fstamp
- JAN_1970
;
653 sprintf(filename
, "ntpkey_mvkey_%s.%u", groupname
,
655 fprintf(stderr
, "Writing MV keys %s to stdout\n",
657 fprintf(stdout
, "# %s\n# %s\n", filename
,
659 pkey
= pkey_mvpar
[1];
660 PEM_write_PrivateKey(stdout
, pkey
, EVP_des_cbc(), NULL
,
664 DSA_print_fp(stderr
, pkey
->pkey
.dsa
, 0);
668 * Don't generate a certificate if no host keys or extracting
669 * encrypted or nonencrypted keys to the standard output stream.
671 if (pkey_host
== NULL
|| HAVE_OPT(ID_KEY
) || passwd2
!= NULL
)
675 * Decode the digest/signature scheme. If trusted, set the
676 * subject and issuer names to the group name; if not set both
679 ectx
= EVP_get_digestbyname(scheme
);
682 "Invalid digest/signature combination %s\n",
687 x509(pkey_sign
, ectx
, grpkey
, exten
, hostname
);
689 x509(pkey_sign
, ectx
, grpkey
, exten
, groupname
);
696 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
697 * if OpenSSL is around, generate random SHA1 keys compatible with
698 * symmetric key cryptography.
702 char *id
/* file name id */
705 u_char md5key
[MD5SIZE
+ 1]; /* MD5 key */
709 u_char keystr
[MD5SIZE
];
710 u_char hexstr
[2 * MD5SIZE
+ 1];
711 u_char hex
[] = "0123456789abcdef";
714 str
= fheader("MD5key", id
, groupname
);
715 ntp_srandom((u_long
)epoch
);
716 for (i
= 1; i
<= MD5KEYS
; i
++) {
717 for (j
= 0; j
< MD5SIZE
; j
++) {
721 temp
= ntp_random() & 0xff;
725 if (temp
> 0x20 && temp
< 0x7f)
728 md5key
[j
] = (u_char
)temp
;
731 fprintf(str
, "%2d MD5 %s # MD5 key\n", i
,
735 for (i
= 1; i
<= MD5KEYS
; i
++) {
736 RAND_bytes(keystr
, 20);
737 for (j
= 0; j
< MD5SIZE
; j
++) {
738 hexstr
[2 * j
] = hex
[keystr
[j
] >> 4];
739 hexstr
[2 * j
+ 1] = hex
[keystr
[j
] & 0xf];
741 hexstr
[2 * MD5SIZE
] = '\0';
742 fprintf(str
, "%2d SHA1 %s # SHA1 key\n", i
+ MD5KEYS
,
753 * readkey - load cryptographic parameters and keys
755 * This routine loads a PEM-encoded file of given name and password and
756 * extracts the filestamp from the file name. It returns a pointer to
757 * the first key if valid, NULL if not.
759 EVP_PKEY
* /* public/private key pair */
761 char *cp
, /* file name */
762 char *passwd
, /* password */
763 u_int
*estamp
, /* file stamp */
764 EVP_PKEY
**evpars
/* parameter list pointer */
767 FILE *str
; /* file handle */
768 EVP_PKEY
*pkey
= NULL
; /* public/private key */
769 u_int gstamp
; /* filestamp */
770 char linkname
[MAXFILENAME
]; /* filestamp buffer) */
778 str
= fopen(cp
, "r");
783 * Read the filestamp, which is contained in the first line.
785 if ((ptr
= fgets(linkname
, MAXFILENAME
, str
)) == NULL
) {
786 fprintf(stderr
, "Empty key file %s\n", cp
);
790 if ((ptr
= strrchr(ptr
, '.')) == NULL
) {
791 fprintf(stderr
, "No filestamp found in %s\n", cp
);
795 if (sscanf(++ptr
, "%u", &gstamp
) != 1) {
796 fprintf(stderr
, "Invalid filestamp found in %s\n", cp
);
802 * Read and decrypt PEM-encoded private keys. The first one
803 * found is returned. If others are expected, add them to the
806 for (i
= 0; i
<= MVMAX
- 1;) {
807 parkey
= PEM_read_PrivateKey(str
, NULL
, NULL
, passwd
);
808 if (evpars
!= NULL
) {
809 evpars
[i
++] = parkey
;
818 if (parkey
->type
== EVP_PKEY_DSA
)
819 DSA_print_fp(stderr
, parkey
->pkey
.dsa
,
821 else if (parkey
->type
== EVP_PKEY_RSA
)
822 RSA_print_fp(stderr
, parkey
->pkey
.rsa
,
828 fprintf(stderr
, "Corrupt file %s or wrong key %s\n%s\n",
829 cp
, passwd
, ERR_error_string(ERR_get_error(),
839 * Generate RSA public/private key pair
841 EVP_PKEY
* /* public/private key pair */
843 char *id
/* file name id */
846 EVP_PKEY
*pkey
; /* private key */
847 RSA
*rsa
; /* RSA parameters and key pair */
850 fprintf(stderr
, "Generating RSA keys (%d bits)...\n", modulus
);
851 rsa
= RSA_generate_key(modulus
, 3, cb
, "RSA");
852 fprintf(stderr
, "\n");
854 fprintf(stderr
, "RSA generate keys fails\n%s\n",
855 ERR_error_string(ERR_get_error(), NULL
));
860 * For signature encryption it is not necessary that the RSA
861 * parameters be strictly groomed and once in a while the
862 * modulus turns out to be non-prime. Just for grins, we check
865 if (!RSA_check_key(rsa
)) {
866 fprintf(stderr
, "Invalid RSA key\n%s\n",
867 ERR_error_string(ERR_get_error(), NULL
));
873 * Write the RSA parameters and keys as a RSA private key
876 if (strcmp(id
, "sign") == 0)
877 str
= fheader("RSAsign", id
, hostname
);
879 str
= fheader("RSAhost", id
, hostname
);
880 pkey
= EVP_PKEY_new();
881 EVP_PKEY_assign_RSA(pkey
, rsa
);
882 PEM_write_PrivateKey(str
, pkey
, EVP_des_cbc(), NULL
, 0, NULL
,
886 RSA_print_fp(stderr
, rsa
, 0);
892 * Generate DSA public/private key pair
894 EVP_PKEY
* /* public/private key pair */
896 char *id
/* file name id */
899 EVP_PKEY
*pkey
; /* private key */
900 DSA
*dsa
; /* DSA parameters */
901 u_char seed
[20]; /* seed for parameters */
905 * Generate DSA parameters.
908 "Generating DSA parameters (%d bits)...\n", modulus
);
909 RAND_bytes(seed
, sizeof(seed
));
910 dsa
= DSA_generate_parameters(modulus
, seed
, sizeof(seed
), NULL
,
912 fprintf(stderr
, "\n");
914 fprintf(stderr
, "DSA generate parameters fails\n%s\n",
915 ERR_error_string(ERR_get_error(), NULL
));
922 fprintf(stderr
, "Generating DSA keys (%d bits)...\n", modulus
);
923 if (!DSA_generate_key(dsa
)) {
924 fprintf(stderr
, "DSA generate keys fails\n%s\n",
925 ERR_error_string(ERR_get_error(), NULL
));
931 * Write the DSA parameters and keys as a DSA private key
934 str
= fheader("DSAsign", id
, hostname
);
935 pkey
= EVP_PKEY_new();
936 EVP_PKEY_assign_DSA(pkey
, dsa
);
937 PEM_write_PrivateKey(str
, pkey
, EVP_des_cbc(), NULL
, 0, NULL
,
941 DSA_print_fp(stderr
, dsa
, 0);
947 ***********************************************************************
949 * The following routines implement the Schnorr (IFF) identity scheme *
951 ***********************************************************************
953 * The Schnorr (IFF) identity scheme is intended for use when
954 * certificates are generated by some other trusted certificate
955 * authority and the certificate cannot be used to convey public
956 * parameters. There are two kinds of files: encrypted server files that
957 * contain private and public values and nonencrypted client files that
958 * contain only public values. New generations of server files must be
959 * securely transmitted to all servers of the group; client files can be
960 * distributed by any means. The scheme is self contained and
961 * independent of new generations of host keys, sign keys and
964 * The IFF values hide in a DSA cuckoo structure which uses the same
965 * parameters. The values are used by an identity scheme based on DSA
966 * cryptography and described in Stimson p. 285. The p is a 512-bit
967 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
968 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
969 * private random group key b (0 < b < q) and public key v = g^b, then
970 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
971 * Alice challenges Bob to confirm identity using the protocol described
976 * The scheme goes like this. Both Alice and Bob have the public primes
977 * p, q and generator g. The TA gives private key b to Bob and public
980 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
981 * the IFF request message. Bob rolls new random k (0 < k < q), then
982 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
983 * to Alice in the response message. Besides making the response
984 * shorter, the hash makes it effectivey impossible for an intruder to
985 * solve for b by observing a number of these messages.
987 * Alice receives the response and computes g^y v^r mod p. After a bit
988 * of algebra, this simplifies to g^k. If the hash of this result
989 * matches hash(x), Alice knows that Bob has the group key b. The signed
990 * response binds this knowledge to Bob's private key and the public key
991 * previously received in his certificate.
994 * Generate Schnorr (IFF) keys.
996 EVP_PKEY
* /* DSA cuckoo nest */
998 char *id
/* file name id */
1001 EVP_PKEY
*pkey
; /* private key */
1002 DSA
*dsa
; /* DSA parameters */
1003 u_char seed
[20]; /* seed for parameters */
1004 BN_CTX
*ctx
; /* BN working space */
1005 BIGNUM
*b
, *r
, *k
, *u
, *v
, *w
; /* BN temp */
1010 * Generate DSA parameters for use as IFF parameters.
1012 fprintf(stderr
, "Generating IFF keys (%d bits)...\n",
1014 RAND_bytes(seed
, sizeof(seed
));
1015 dsa
= DSA_generate_parameters(modulus2
, seed
, sizeof(seed
), NULL
,
1017 fprintf(stderr
, "\n");
1019 fprintf(stderr
, "DSA generate parameters fails\n%s\n",
1020 ERR_error_string(ERR_get_error(), NULL
));
1025 * Generate the private and public keys. The DSA parameters and
1026 * private key are distributed to the servers, while all except
1027 * the private key are distributed to the clients.
1029 b
= BN_new(); r
= BN_new(); k
= BN_new();
1030 u
= BN_new(); v
= BN_new(); w
= BN_new(); ctx
= BN_CTX_new();
1031 BN_rand(b
, BN_num_bits(dsa
->q
), -1, 0); /* a */
1032 BN_mod(b
, b
, dsa
->q
, ctx
);
1033 BN_sub(v
, dsa
->q
, b
);
1034 BN_mod_exp(v
, dsa
->g
, v
, dsa
->p
, ctx
); /* g^(q - b) mod p */
1035 BN_mod_exp(u
, dsa
->g
, b
, dsa
->p
, ctx
); /* g^b mod p */
1036 BN_mod_mul(u
, u
, v
, dsa
->p
, ctx
);
1037 temp
= BN_is_one(u
);
1039 "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp
== 1 ?
1042 BN_free(b
); BN_free(r
); BN_free(k
);
1043 BN_free(u
); BN_free(v
); BN_free(w
); BN_CTX_free(ctx
);
1046 dsa
->priv_key
= BN_dup(b
); /* private key */
1047 dsa
->pub_key
= BN_dup(v
); /* public key */
1050 * Here is a trial round of the protocol. First, Alice rolls
1051 * random nonce r mod q and sends it to Bob. She needs only
1052 * q from parameters.
1054 BN_rand(r
, BN_num_bits(dsa
->q
), -1, 0); /* r */
1055 BN_mod(r
, r
, dsa
->q
, ctx
);
1058 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1059 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1060 * p, q and b from parameters and r from Alice.
1062 BN_rand(k
, BN_num_bits(dsa
->q
), -1, 0); /* k, 0 < k < q */
1063 BN_mod(k
, k
, dsa
->q
, ctx
);
1064 BN_mod_mul(v
, dsa
->priv_key
, r
, dsa
->q
, ctx
); /* b r mod q */
1066 BN_mod(v
, v
, dsa
->q
, ctx
); /* y = k + b r mod q */
1067 BN_mod_exp(u
, dsa
->g
, k
, dsa
->p
, ctx
); /* x = g^k mod p */
1070 * Alice verifies x = g^y v^r to confirm that Bob has group key
1071 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1072 * original r. We omit the detail here thatt only the hash of y
1075 BN_mod_exp(v
, dsa
->g
, v
, dsa
->p
, ctx
); /* g^y mod p */
1076 BN_mod_exp(w
, dsa
->pub_key
, r
, dsa
->p
, ctx
); /* v^r */
1077 BN_mod_mul(v
, w
, v
, dsa
->p
, ctx
); /* product mod p */
1078 temp
= BN_cmp(u
, v
);
1080 "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp
==
1082 BN_free(b
); BN_free(r
); BN_free(k
);
1083 BN_free(u
); BN_free(v
); BN_free(w
); BN_CTX_free(ctx
);
1090 * Write the IFF keys as an encrypted DSA private key encoded in
1101 str
= fheader("IFFkey", id
, groupname
);
1102 pkey
= EVP_PKEY_new();
1103 EVP_PKEY_assign_DSA(pkey
, dsa
);
1104 PEM_write_PrivateKey(str
, pkey
, EVP_des_cbc(), NULL
, 0, NULL
,
1108 DSA_print_fp(stderr
, dsa
, 0);
1114 ***********************************************************************
1116 * The following routines implement the Guillou-Quisquater (GQ) *
1119 ***********************************************************************
1121 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1122 * the certificate can be used to convey public parameters. The scheme
1123 * uses a X509v3 certificate extension field do convey the public key of
1124 * a private key known only to servers. There are two kinds of files:
1125 * encrypted server files that contain private and public values and
1126 * nonencrypted client files that contain only public values. New
1127 * generations of server files must be securely transmitted to all
1128 * servers of the group; client files can be distributed by any means.
1129 * The scheme is self contained and independent of new generations of
1130 * host keys and sign keys. The scheme is self contained and independent
1131 * of new generations of host keys and sign keys.
1133 * The GQ parameters hide in a RSA cuckoo structure which uses the same
1134 * parameters. The values are used by an identity scheme based on RSA
1135 * cryptography and described in Stimson p. 300 (with errors). The 512-
1136 * bit public modulus is n = p q, where p and q are secret large primes.
1137 * The TA rolls private random group key b as RSA exponent. These values
1138 * are known to all group members.
1140 * When rolling new certificates, a server recomputes the private and
1141 * public keys. The private key u is a random roll, while the public key
1142 * is the inverse obscured by the group key v = (u^-1)^b. These values
1143 * replace the private and public keys normally generated by the RSA
1144 * scheme. Alice challenges Bob to confirm identity using the protocol
1149 * The scheme goes like this. Both Alice and Bob have the same modulus n
1150 * and some random b as the group key. These values are computed and
1151 * distributed in advance via secret means, although only the group key
1152 * b is truly secret. Each has a private random private key u and public
1153 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1154 * can regenerate the key pair from time to time without affecting
1155 * operations. The public key is conveyed on the certificate in an
1156 * extension field; the private key is never revealed.
1158 * Alice rolls new random challenge r and sends to Bob in the GQ
1159 * request message. Bob rolls new random k, then computes y = k u^r mod
1160 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1161 * message. Besides making the response shorter, the hash makes it
1162 * effectivey impossible for an intruder to solve for b by observing
1163 * a number of these messages.
1165 * Alice receives the response and computes y^b v^r mod n. After a bit
1166 * of algebra, this simplifies to k^b. If the hash of this result
1167 * matches hash(x), Alice knows that Bob has the group key b. The signed
1168 * response binds this knowledge to Bob's private key and the public key
1169 * previously received in his certificate.
1172 * Generate Guillou-Quisquater (GQ) parameters file.
1174 EVP_PKEY
* /* RSA cuckoo nest */
1176 char *id
/* file name id */
1179 EVP_PKEY
*pkey
; /* private key */
1180 RSA
*rsa
; /* RSA parameters */
1181 BN_CTX
*ctx
; /* BN working space */
1182 BIGNUM
*u
, *v
, *g
, *k
, *r
, *y
; /* BN temps */
1187 * Generate RSA parameters for use as GQ parameters.
1190 "Generating GQ parameters (%d bits)...\n",
1192 rsa
= RSA_generate_key(modulus2
, 3, cb
, "GQ");
1193 fprintf(stderr
, "\n");
1195 fprintf(stderr
, "RSA generate keys fails\n%s\n",
1196 ERR_error_string(ERR_get_error(), NULL
));
1199 ctx
= BN_CTX_new(); u
= BN_new(); v
= BN_new();
1200 g
= BN_new(); k
= BN_new(); r
= BN_new(); y
= BN_new();
1203 * Generate the group key b, which is saved in the e member of
1204 * the RSA structure. The group key is transmitted to each group
1205 * member encrypted by the member private key.
1208 BN_rand(rsa
->e
, BN_num_bits(rsa
->n
), -1, 0); /* b */
1209 BN_mod(rsa
->e
, rsa
->e
, rsa
->n
, ctx
);
1212 * When generating his certificate, Bob rolls random private key
1213 * u, then computes inverse v = u^-1.
1215 BN_rand(u
, BN_num_bits(rsa
->n
), -1, 0); /* u */
1216 BN_mod(u
, u
, rsa
->n
, ctx
);
1217 BN_mod_inverse(v
, u
, rsa
->n
, ctx
); /* u^-1 mod n */
1218 BN_mod_mul(k
, v
, u
, rsa
->n
, ctx
);
1221 * Bob computes public key v = (u^-1)^b, which is saved in an
1222 * extension field on his certificate. We check that u^b v =
1225 BN_mod_exp(v
, v
, rsa
->e
, rsa
->n
, ctx
);
1226 BN_mod_exp(g
, u
, rsa
->e
, rsa
->n
, ctx
); /* u^b */
1227 BN_mod_mul(g
, g
, v
, rsa
->n
, ctx
); /* u^b (u^-1)^b */
1228 temp
= BN_is_one(g
);
1230 "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp
? "yes" :
1233 BN_free(u
); BN_free(v
);
1234 BN_free(g
); BN_free(k
); BN_free(r
); BN_free(y
);
1239 BN_copy(rsa
->p
, u
); /* private key */
1240 BN_copy(rsa
->q
, v
); /* public key */
1243 * Here is a trial run of the protocol. First, Alice rolls
1244 * random nonce r mod n and sends it to Bob. She needs only n
1247 BN_rand(r
, BN_num_bits(rsa
->n
), -1, 0); /* r */
1248 BN_mod(r
, r
, rsa
->n
, ctx
);
1251 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1252 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1253 * from parameters and r from Alice.
1255 BN_rand(k
, BN_num_bits(rsa
->n
), -1, 0); /* k */
1256 BN_mod(k
, k
, rsa
->n
, ctx
);
1257 BN_mod_exp(y
, rsa
->p
, r
, rsa
->n
, ctx
); /* u^r mod n */
1258 BN_mod_mul(y
, k
, y
, rsa
->n
, ctx
); /* y = k u^r mod n */
1259 BN_mod_exp(g
, k
, rsa
->e
, rsa
->n
, ctx
); /* g = k^b mod n */
1262 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1263 * private key u. She needs n, g from parameters, public key v =
1264 * (u^-1)^b from the certificate, (y, g) from Bob and the
1265 * original r. We omit the detaul here that only the hash of g
1268 BN_mod_exp(v
, rsa
->q
, r
, rsa
->n
, ctx
); /* v^r mod n */
1269 BN_mod_exp(y
, y
, rsa
->e
, rsa
->n
, ctx
); /* y^b mod n */
1270 BN_mod_mul(y
, v
, y
, rsa
->n
, ctx
); /* v^r y^b mod n */
1271 temp
= BN_cmp(y
, g
);
1272 fprintf(stderr
, "Confirm g^k = v^r y^b mod n: %s\n", temp
== 0 ?
1274 BN_CTX_free(ctx
); BN_free(u
); BN_free(v
);
1275 BN_free(g
); BN_free(k
); BN_free(r
); BN_free(y
);
1282 * Write the GQ parameter file as an encrypted RSA private key
1289 * q public key (u^-1)^b
1294 BN_copy(rsa
->d
, BN_value_one());
1295 BN_copy(rsa
->dmp1
, BN_value_one());
1296 BN_copy(rsa
->dmq1
, BN_value_one());
1297 BN_copy(rsa
->iqmp
, BN_value_one());
1298 str
= fheader("GQkey", id
, groupname
);
1299 pkey
= EVP_PKEY_new();
1300 EVP_PKEY_assign_RSA(pkey
, rsa
);
1301 PEM_write_PrivateKey(str
, pkey
, EVP_des_cbc(), NULL
, 0, NULL
,
1305 RSA_print_fp(stderr
, rsa
, 0);
1311 ***********************************************************************
1313 * The following routines implement the Mu-Varadharajan (MV) identity *
1316 ***********************************************************************
1318 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1319 * servers broadcast messages to clients, but clients never send
1320 * messages to servers. There is one encryption key for the server and a
1321 * separate decryption key for each client. It operated something like a
1322 * pay-per-view satellite broadcasting system where the session key is
1323 * encrypted by the broadcaster and the decryption keys are held in a
1324 * tamperproof set-top box.
1326 * The MV parameters and private encryption key hide in a DSA cuckoo
1327 * structure which uses the same parameters, but generated in a
1328 * different way. The values are used in an encryption scheme similar to
1329 * El Gamal cryptography and a polynomial formed from the expansion of
1330 * product terms (x - x[j]), as described in Mu, Y., and V.
1331 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1332 * 223-231. The paper has significant errors and serious omissions.
1334 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1335 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1336 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1337 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1338 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1339 * project into Zp* as exponents of g. Sometimes we have to compute an
1340 * inverse b^-1 of random b in Zq, but for that purpose we require
1341 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1342 * relatively small, like 30. These are the parameters of the scheme and
1343 * they are expensive to compute.
1345 * We set up an instance of the scheme as follows. A set of random
1346 * values x[j] mod q (j = 1...n), are generated as the zeros of a
1347 * polynomial of order n. The product terms (x - x[j]) are expanded to
1348 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1349 * used as exponents of the generator g mod p to generate the private
1350 * encryption key A. The pair (gbar, ghat) of public server keys and the
1351 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1352 * to construct the decryption keys. The devil is in the details.
1354 * This routine generates a private server encryption file including the
1355 * private encryption key E and partial decryption keys gbar and ghat.
1356 * It then generates public client decryption files including the public
1357 * keys xbar[j] and xhat[j] for each client j. The partial decryption
1358 * files are used to compute the inverse of E. These values are suitably
1359 * blinded so secrets are not revealed.
1361 * The distinguishing characteristic of this scheme is the capability to
1362 * revoke keys. Included in the calculation of E, gbar and ghat is the
1363 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1364 * subsequently removed from the product and E, gbar and ghat
1365 * recomputed, the jth client will no longer be able to compute E^-1 and
1366 * thus unable to decrypt the messageblock.
1370 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
1371 * ghat) and Alice has the client values (p, xbar, xhat).
1373 * Alice rolls new random nonce r mod p and sends to Bob in the MV
1374 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1375 * mod p and sends (y, gbar^k, ghat^k) to Alice.
1377 * Alice receives the response and computes the inverse (E^k)^-1 from
1378 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1379 * decrypts y and verifies it matches the original r. The signed
1380 * response binds this knowledge to Bob's private key and the public key
1381 * previously received in his certificate.
1383 EVP_PKEY
* /* DSA cuckoo nest */
1385 char *id
, /* file name id */
1386 EVP_PKEY
**evpars
/* parameter list pointer */
1389 EVP_PKEY
*pkey
, *pkey1
; /* private keys */
1390 DSA
*dsa
, *dsa2
, *sdsa
; /* DSA parameters */
1391 BN_CTX
*ctx
; /* BN working space */
1392 BIGNUM
*a
[MVMAX
]; /* polynomial coefficient vector */
1393 BIGNUM
*g
[MVMAX
]; /* public key vector */
1394 BIGNUM
*s1
[MVMAX
]; /* private enabling keys */
1395 BIGNUM
*x
[MVMAX
]; /* polynomial zeros vector */
1396 BIGNUM
*xbar
[MVMAX
], *xhat
[MVMAX
]; /* private keys vector */
1397 BIGNUM
*b
; /* group key */
1398 BIGNUM
*b1
; /* inverse group key */
1399 BIGNUM
*s
; /* enabling key */
1400 BIGNUM
*biga
; /* master encryption key */
1401 BIGNUM
*bige
; /* session encryption key */
1402 BIGNUM
*gbar
, *ghat
; /* public key */
1403 BIGNUM
*u
, *v
, *w
; /* BN scratch */
1409 * Generate MV parameters.
1411 * The object is to generate a multiplicative group Zp* modulo a
1412 * prime p and a subset Zq mod q, where q is the product of n
1413 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1414 * first generate n m-bit primes, where the product n m is in
1415 * the order of 512 bits. One or more of these may have to be
1416 * replaced later. As a practical matter, it is tough to find
1417 * more than 31 distinct primes for 512 bits or 61 primes for
1418 * 1024 bits. The latter can take several hundred iterations
1419 * and several minutes on a Sun Blade 1000.
1423 "Generating MV parameters for %d keys (%d bits)...\n", n
,
1425 ctx
= BN_CTX_new(); u
= BN_new(); v
= BN_new(); w
= BN_new();
1426 b
= BN_new(); b1
= BN_new();
1428 dsa
->p
= BN_new(); dsa
->q
= BN_new(); dsa
->g
= BN_new();
1429 dsa
->priv_key
= BN_new(); dsa
->pub_key
= BN_new();
1431 for (j
= 1; j
<= n
; j
++) {
1434 BN_generate_prime(s1
[j
], modulus2
/ n
, 0, NULL
,
1436 for (i
= 1; i
< j
; i
++) {
1437 if (BN_cmp(s1
[i
], s1
[j
]) == 0)
1445 fprintf(stderr
, "Birthday keys regenerated %d\n", temp
);
1448 * Compute the modulus q as the product of the primes. Compute
1449 * the modulus p as 2 * q + 1 and test p for primality. If p
1450 * is composite, replace one of the primes with a new distinct
1451 * one and try again. Note that q will hardly be a secret since
1452 * we have to reveal p to servers, but not clients. However,
1453 * factoring q to find the primes should be adequately hard, as
1454 * this is the same problem considered hard in RSA. Question: is
1455 * it as hard to find n small prime factors totalling n bits as
1456 * it is to find two large prime factors totalling n bits?
1457 * Remember, the bad guy doesn't know n.
1462 for (j
= 1; j
<= n
; j
++)
1463 BN_mul(dsa
->q
, dsa
->q
, s1
[j
], ctx
);
1464 BN_copy(dsa
->p
, dsa
->q
);
1465 BN_add(dsa
->p
, dsa
->p
, dsa
->p
);
1466 BN_add_word(dsa
->p
, 1);
1467 if (BN_is_prime(dsa
->p
, BN_prime_checks
, NULL
, ctx
,
1474 BN_generate_prime(u
, modulus2
/ n
, 0, 0, NULL
,
1476 for (i
= 1; i
<= n
; i
++) {
1477 if (BN_cmp(u
, s1
[i
]) == 0)
1485 fprintf(stderr
, "Defective keys regenerated %d\n", temp
);
1488 * Compute the generator g using a random roll such that
1489 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1490 * q. This may take several iterations.
1495 BN_rand(dsa
->g
, BN_num_bits(dsa
->p
) - 1, 0, 0);
1496 BN_mod(dsa
->g
, dsa
->g
, dsa
->p
, ctx
);
1497 BN_gcd(u
, dsa
->g
, v
, ctx
);
1501 BN_mod_exp(u
, dsa
->g
, dsa
->q
, dsa
->p
, ctx
);
1507 * Setup is now complete. Roll random polynomial roots x[j]
1508 * (j = 1...n) for all j. While it may not be strictly
1509 * necessary, Make sure each root has no factors in common with
1513 "Generating polynomial coefficients for %d roots (%d bits)\n",
1514 n
, BN_num_bits(dsa
->q
));
1515 for (j
= 1; j
<= n
; j
++) {
1519 BN_rand(x
[j
], BN_num_bits(dsa
->q
), 0, 0);
1520 BN_mod(x
[j
], x
[j
], dsa
->q
, ctx
);
1521 BN_gcd(u
, x
[j
], dsa
->q
, ctx
);
1528 * Generate polynomial coefficients a[i] (i = 0...n) from the
1529 * expansion of root products (x - x[j]) mod q for all j. The
1530 * method is a present from Charlie Boncelet.
1532 for (i
= 0; i
<= n
; i
++) {
1537 for (j
= 1; j
<= n
; j
++) {
1539 for (i
= 0; i
< j
; i
++) {
1541 BN_mod_mul(v
, a
[i
], x
[j
], dsa
->q
, ctx
);
1545 BN_mod(a
[i
], u
, dsa
->q
, ctx
);
1550 * Generate g[i] = g^a[i] mod p for all i and the generator g.
1552 for (i
= 0; i
<= n
; i
++) {
1555 BN_mod_exp(g
[i
], dsa
->g
, a
[i
], dsa
->p
, ctx
);
1559 * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1560 * a[i] x[j]^i exponent is computed mod q, but the g[i] is
1561 * computed mod p. also note the expression given in the paper
1565 for (j
= 1; j
<= n
; j
++) {
1567 for (i
= 0; i
<= n
; i
++) {
1569 BN_mod_exp(v
, x
[j
], v
, dsa
->q
, ctx
);
1570 BN_mod_mul(v
, v
, a
[i
], dsa
->q
, ctx
);
1571 BN_mod_exp(v
, dsa
->g
, v
, dsa
->p
, ctx
);
1572 BN_mod_mul(u
, u
, v
, dsa
->p
, ctx
);
1578 "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp
?
1585 * Make private encryption key A. Keep it around for awhile,
1586 * since it is expensive to compute.
1591 for (j
= 1; j
<= n
; j
++) {
1592 for (i
= 0; i
< n
; i
++) {
1594 BN_mod_exp(v
, x
[j
], v
, dsa
->q
, ctx
);
1595 BN_mod_exp(v
, g
[i
], v
, dsa
->p
, ctx
);
1596 BN_mod_mul(biga
, biga
, v
, dsa
->p
, ctx
);
1601 * Roll private random group key b mod q (0 < b < q), where
1602 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1603 * mod q. If b is changed, the client keys must be recomputed.
1606 BN_rand(b
, BN_num_bits(dsa
->q
), 0, 0);
1607 BN_mod(b
, b
, dsa
->q
, ctx
);
1608 BN_gcd(u
, b
, dsa
->q
, ctx
);
1612 BN_mod_inverse(b1
, b
, dsa
->q
, ctx
);
1615 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1616 * that the keys for the jth client do not s1[j] or the product
1617 * s1[j]) (j = 1...n) which is q by construction.
1619 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1620 * easy way to do this is to compute (q + s1[j]) / s1[j].
1621 * Exercise for the student: prove the remainder is always zero.
1623 for (j
= 1; j
<= n
; j
++) {
1624 xbar
[j
] = BN_new(); xhat
[j
] = BN_new();
1626 BN_add(w
, dsa
->q
, s1
[j
]);
1627 BN_div(w
, u
, w
, s1
[j
], ctx
);
1630 for (i
= 1; i
<= n
; i
++) {
1633 BN_mod_exp(u
, x
[i
], v
, dsa
->q
, ctx
);
1634 BN_add(xbar
[j
], xbar
[j
], u
);
1636 BN_mod_mul(xbar
[j
], xbar
[j
], b1
, dsa
->q
, ctx
);
1637 BN_mod_exp(xhat
[j
], x
[j
], v
, dsa
->q
, ctx
);
1638 BN_mod_mul(xhat
[j
], xhat
[j
], w
, dsa
->q
, ctx
);
1642 * We revoke client j by dividing q by s1[j]. The quotient
1643 * becomes the enabling key s. Note we always have to revoke
1644 * one key; otherwise, the plaintext and cryptotext would be
1645 * identical. For the present there are no provisions to revoke
1646 * additional keys, so we sail on with only token revocations.
1651 BN_div(s
, u
, s
, s1
[10], ctx
);
1652 BN_div(s
, u
, s
, s1
[n
], ctx
);
1655 * For each combination of clients to be revoked, make private
1656 * encryption key E = A^s and partial decryption keys gbar = g^s
1657 * and ghat = g^(s b), all mod p. The servers use these keys to
1658 * compute the session encryption key and partial decryption
1659 * keys. These values must be regenerated if the enabling key is
1662 bige
= BN_new(); gbar
= BN_new(); ghat
= BN_new();
1664 BN_mod_exp(bige
, biga
, s
, dsa
->p
, ctx
);
1665 BN_mod_exp(gbar
, dsa
->g
, s
, dsa
->p
, ctx
);
1666 BN_mod_mul(v
, s
, b
, dsa
->q
, ctx
);
1667 BN_mod_exp(ghat
, dsa
->g
, v
, dsa
->p
, ctx
);
1670 * Notes: We produce the key media in three steps. The first
1671 * step is to generate the system parameters p, q, g, b, A and
1672 * the enabling keys s1[j]. Associated with each s1[j] are
1673 * parameters xbar[j] and xhat[j]. All of these parameters are
1674 * retained in a data structure protecteted by the trusted-agent
1675 * password. The p, xbar[j] and xhat[j] paremeters are
1676 * distributed to the j clients. When the client keys are to be
1677 * activated, the enabled keys are multipied together to form
1678 * the master enabling key s. This and the other parameters are
1679 * used to compute the server encryption key E and the partial
1680 * decryption keys gbar and ghat.
1682 * In the identity exchange the client rolls random r and sends
1683 * it to the server. The server rolls random k, which is used
1684 * only once, then computes the session key E^k and partial
1685 * decryption keys gbar^k and ghat^k. The server sends the
1686 * encrypted r along with gbar^k and ghat^k to the client. The
1687 * client completes the decryption and verifies it matches r.
1690 * Write the MV trusted-agent parameters and keys as a DSA
1691 * private key encoded in PEM.
1698 * (remaining values are not used)
1701 str
= fheader("MVta", "mvta", groupname
);
1702 fprintf(stderr
, "Generating MV trusted-authority keys\n");
1703 BN_copy(dsa
->priv_key
, biga
);
1704 BN_copy(dsa
->pub_key
, b
);
1705 pkey
= EVP_PKEY_new();
1706 EVP_PKEY_assign_DSA(pkey
, dsa
);
1707 PEM_write_PrivateKey(str
, pkey
, EVP_des_cbc(), NULL
, 0, NULL
,
1711 DSA_print_fp(stderr
, dsa
, 0);
1714 * Append the MV server parameters and keys as a DSA key encoded
1718 * q modulus q (used only when generating k)
1722 * (remaining values are not used)
1724 fprintf(stderr
, "Generating MV server keys\n");
1726 dsa2
->p
= BN_dup(dsa
->p
);
1727 dsa2
->q
= BN_dup(dsa
->q
);
1728 dsa2
->g
= BN_dup(bige
);
1729 dsa2
->priv_key
= BN_dup(gbar
);
1730 dsa2
->pub_key
= BN_dup(ghat
);
1731 pkey1
= EVP_PKEY_new();
1732 EVP_PKEY_assign_DSA(pkey1
, dsa2
);
1733 PEM_write_PrivateKey(str
, pkey1
, EVP_des_cbc(), NULL
, 0, NULL
,
1735 evpars
[i
++] = pkey1
;
1737 DSA_print_fp(stderr
, dsa2
, 0);
1740 * Append the MV client parameters for each client j as DSA keys
1744 * priv_key xbar[j] mod q
1745 * pub_key xhat[j] mod q
1746 * (remaining values are not used)
1748 fprintf(stderr
, "Generating %d MV client keys\n", n
);
1749 for (j
= 1; j
<= n
; j
++) {
1752 sdsa
->p
= BN_dup(dsa
->p
);
1753 sdsa
->q
= BN_dup(BN_value_one());
1754 sdsa
->g
= BN_dup(BN_value_one());
1755 sdsa
->priv_key
= BN_dup(xbar
[j
]);
1756 sdsa
->pub_key
= BN_dup(xhat
[j
]);
1757 pkey1
= EVP_PKEY_new();
1758 EVP_PKEY_set1_DSA(pkey1
, sdsa
);
1759 PEM_write_PrivateKey(str
, pkey1
, EVP_des_cbc(), NULL
, 0,
1761 evpars
[i
++] = pkey1
;
1763 DSA_print_fp(stderr
, sdsa
, 0);
1766 * The product gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1767 * are inverses of each other. We check that the product
1768 * is one for each client except the ones that have been
1771 BN_mod_exp(v
, dsa2
->priv_key
, sdsa
->pub_key
, dsa
->p
,
1773 BN_mod_exp(u
, dsa2
->pub_key
, sdsa
->priv_key
, dsa
->p
,
1775 BN_mod_mul(u
, u
, v
, dsa
->p
, ctx
);
1776 BN_mod_mul(u
, u
, bige
, dsa
->p
, ctx
);
1777 if (!BN_is_one(u
)) {
1778 fprintf(stderr
, "Revoke key %d\n", j
);
1786 * Free the countries.
1788 for (i
= 0; i
<= n
; i
++) {
1789 BN_free(a
[i
]); BN_free(g
[i
]);
1791 for (j
= 1; j
<= n
; j
++) {
1792 BN_free(x
[j
]); BN_free(xbar
[j
]); BN_free(xhat
[j
]);
1800 * Generate X509v3 certificate.
1802 * The certificate consists of the version number, serial number,
1803 * validity interval, issuer name, subject name and public key. For a
1804 * self-signed certificate, the issuer name is the same as the subject
1805 * name and these items are signed using the subject private key. The
1806 * validity interval extends from the current time to the same time one
1807 * year hence. For NTP purposes, it is convenient to use the NTP seconds
1808 * of the current time as the serial number.
1812 EVP_PKEY
*pkey
, /* generic signature algorithm */
1813 const EVP_MD
*md
, /* generic digest algorithm */
1814 char *gqpub
, /* identity extension (hex string) */
1815 char *exten
, /* private cert extension */
1816 char *name
/* subject/issuer namd */
1819 X509
*cert
; /* X509 certificate */
1820 X509_NAME
*subj
; /* distinguished (common) name */
1821 X509_EXTENSION
*ex
; /* X509v3 extension */
1822 FILE *str
; /* file handle */
1823 ASN1_INTEGER
*serial
; /* serial number */
1824 const char *id
; /* digest/signature scheme name */
1825 char pathbuf
[MAXFILENAME
+ 1];
1828 * Generate X509 self-signed certificate.
1830 * Set the certificate serial to the NTP seconds for grins. Set
1831 * the version to 3. Set the initial validity to the current
1832 * time and the finalvalidity one year hence.
1834 id
= OBJ_nid2sn(md
->pkey_type
);
1835 fprintf(stderr
, "Generating new certificate %s %s\n", name
, id
);
1837 X509_set_version(cert
, 2L);
1838 serial
= ASN1_INTEGER_new();
1839 ASN1_INTEGER_set(serial
, (long)epoch
+ JAN_1970
);
1840 X509_set_serialNumber(cert
, serial
);
1841 ASN1_INTEGER_free(serial
);
1842 X509_time_adj(X509_get_notBefore(cert
), 0L, &epoch
);
1843 X509_time_adj(X509_get_notAfter(cert
), YEAR
, &epoch
);
1844 subj
= X509_get_subject_name(cert
);
1845 X509_NAME_add_entry_by_txt(subj
, "commonName", MBSTRING_ASC
,
1846 (unsigned char *) name
, strlen(name
), -1, 0);
1847 subj
= X509_get_issuer_name(cert
);
1848 X509_NAME_add_entry_by_txt(subj
, "commonName", MBSTRING_ASC
,
1849 (unsigned char *) name
, strlen(name
), -1, 0);
1850 if (!X509_set_pubkey(cert
, pkey
)) {
1851 fprintf(stderr
, "Assign key fails\n%s\n",
1852 ERR_error_string(ERR_get_error(), NULL
));
1858 * Add X509v3 extensions if present. These represent the minimum
1859 * set defined in RFC3280 less the certificate_policy extension,
1860 * which is seriously obfuscated in OpenSSL.
1863 * The basic_constraints extension CA:TRUE allows servers to
1864 * sign client certficitates.
1866 fprintf(stderr
, "%s: %s\n", LN_basic_constraints
,
1868 ex
= X509V3_EXT_conf_nid(NULL
, NULL
, NID_basic_constraints
,
1870 if (!X509_add_ext(cert
, ex
, -1)) {
1871 fprintf(stderr
, "Add extension field fails\n%s\n",
1872 ERR_error_string(ERR_get_error(), NULL
));
1875 X509_EXTENSION_free(ex
);
1878 * The key_usage extension designates the purposes the key can
1881 fprintf(stderr
, "%s: %s\n", LN_key_usage
, KEY_USAGE
);
1882 ex
= X509V3_EXT_conf_nid(NULL
, NULL
, NID_key_usage
, KEY_USAGE
);
1883 if (!X509_add_ext(cert
, ex
, -1)) {
1884 fprintf(stderr
, "Add extension field fails\n%s\n",
1885 ERR_error_string(ERR_get_error(), NULL
));
1888 X509_EXTENSION_free(ex
);
1890 * The subject_key_identifier is used for the GQ public key.
1891 * This should not be controversial.
1893 if (gqpub
!= NULL
) {
1894 fprintf(stderr
, "%s\n", LN_subject_key_identifier
);
1895 ex
= X509V3_EXT_conf_nid(NULL
, NULL
,
1896 NID_subject_key_identifier
, gqpub
);
1897 if (!X509_add_ext(cert
, ex
, -1)) {
1899 "Add extension field fails\n%s\n",
1900 ERR_error_string(ERR_get_error(), NULL
));
1903 X509_EXTENSION_free(ex
);
1907 * The extended key usage extension is used for special purpose
1908 * here. The semantics probably do not conform to the designer's
1909 * intent and will likely change in future.
1911 * "trustRoot" designates a root authority
1912 * "private" designates a private certificate
1914 if (exten
!= NULL
) {
1915 fprintf(stderr
, "%s: %s\n", LN_ext_key_usage
, exten
);
1916 ex
= X509V3_EXT_conf_nid(NULL
, NULL
,
1917 NID_ext_key_usage
, exten
);
1918 if (!X509_add_ext(cert
, ex
, -1)) {
1920 "Add extension field fails\n%s\n",
1921 ERR_error_string(ERR_get_error(), NULL
));
1924 X509_EXTENSION_free(ex
);
1930 X509_sign(cert
, pkey
, md
);
1931 if (!X509_verify(cert
, pkey
)) {
1932 fprintf(stderr
, "Verify %s certificate fails\n%s\n", id
,
1933 ERR_error_string(ERR_get_error(), NULL
));
1939 * Write the certificate encoded in PEM.
1941 sprintf(pathbuf
, "%scert", id
);
1942 str
= fheader(pathbuf
, "cert", hostname
);
1943 PEM_write_X509(str
, cert
);
1946 X509_print_fp(stderr
, cert
);
1951 #if 0 /* asn2ntp is used only with commercial certificates */
1953 * asn2ntp - convert ASN1_TIME time structure to NTP time
1957 ASN1_TIME
*asn1time
/* pointer to ASN1_TIME structure */
1960 char *v
; /* pointer to ASN1_TIME string */
1961 struct tm tm
; /* time decode structure time */
1964 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
1965 * Note that the YY, MM, DD fields start with one, the HH, MM,
1966 * SS fiels start with zero and the Z character should be 'Z'
1967 * for UTC. Also note that years less than 50 map to years
1968 * greater than 100. Dontcha love ASN.1?
1970 if (asn1time
->length
> 13)
1972 v
= (char *)asn1time
->data
;
1973 tm
.tm_year
= (v
[0] - '0') * 10 + v
[1] - '0';
1974 if (tm
.tm_year
< 50)
1976 tm
.tm_mon
= (v
[2] - '0') * 10 + v
[3] - '0' - 1;
1977 tm
.tm_mday
= (v
[4] - '0') * 10 + v
[5] - '0';
1978 tm
.tm_hour
= (v
[6] - '0') * 10 + v
[7] - '0';
1979 tm
.tm_min
= (v
[8] - '0') * 10 + v
[9] - '0';
1980 tm
.tm_sec
= (v
[10] - '0') * 10 + v
[11] - '0';
1984 return (mktime(&tm
) + JAN_1970
);
1995 void *chr
/* arg 3 */
2001 fprintf(stderr
, "%s %d %d %lu\r", (char *)chr
, n1
, n2
,
2006 fprintf(stderr
, "%s\t\t%d %d %lu\r", (char *)chr
, n1
,
2011 fprintf(stderr
, "%s\t\t\t\t%d %d %lu\r", (char *)chr
,
2016 fprintf(stderr
, "%s\t\t\t\t\t\t%d %d %lu\r",
2017 (char *)chr
, n1
, n2
, d3
);
2026 EVP_PKEY
* /* public/private key pair */
2028 char *type
, /* key type (RSA or DSA) */
2029 char *id
/* file name id */
2034 if (strcmp(type
, "RSA") == 0)
2035 return (gen_rsa(id
));
2037 else if (strcmp(type
, "DSA") == 0)
2038 return (gen_dsa(id
));
2040 fprintf(stderr
, "Invalid %s key type %s\n", id
, type
);
2043 #endif /* OPENSSL */
2047 * Generate file header and link
2051 const char *file
, /* file name id */
2052 const char *ulink
, /* linkname */
2053 const char *owner
/* owner name */
2056 FILE *str
; /* file handle */
2057 char linkname
[MAXFILENAME
]; /* link name */
2060 sprintf(filename
, "ntpkey_%s_%s.%lu", file
, owner
, epoch
+
2062 if ((str
= fopen(filename
, "w")) == NULL
) {
2066 sprintf(linkname
, "ntpkey_%s_%s", ulink
, owner
);
2068 temp
= symlink(filename
, linkname
);
2071 fprintf(stderr
, "Generating new %s file and link\n", ulink
);
2072 fprintf(stderr
, "%s->%s\n", linkname
, filename
);
2073 fprintf(str
, "# %s\n# %s\n", filename
, ctime(&epoch
));