Sync usage with man page.
[netbsd-mini2440.git] / external / bsd / pcc / dist / pcc-libs / libpcc / qdivrem.c
blob443483efdda859ba5b40f4d0308522f0ff612046
1 /* $Id: qdivrem.c,v 1.1.1.2 2009/09/04 00:27:36 gmcgarry Exp $ */
2 /* $NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $ */
4 /*-
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
39 * section 4.3.1, pp. 257--259.
42 #include "quad.h"
44 #define B ((int)1 << HALF_BITS) /* digit base */
46 /* Combine two `digits' to make a single two-digit number. */
47 #define COMBINE(a, b) (((unsigned int)(a) << HALF_BITS) | (b))
49 /* select a type for digits in base B: use unsigned short if they fit */
50 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
51 typedef unsigned short digit;
52 #else
53 typedef unsigned int digit;
54 #endif
56 static void shl(digit *p, int len, int sh);
59 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
61 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
62 * fit within unsigned int. As a consequence, the maximum length dividend and
63 * divisor are 4 `digits' in this base (they are shorter if they have
64 * leading zeros).
66 u_quad_t
67 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
69 union uu tmp;
70 digit *u, *v, *q;
71 digit v1, v2;
72 unsigned int qhat, rhat, t;
73 int m, n, d, j, i;
74 digit uspace[5], vspace[5], qspace[5];
77 * Take care of special cases: divide by zero, and u < v.
79 if (vq == 0) {
80 /* divide by zero. */
81 static volatile const unsigned int zero = 0;
83 tmp.ul[H] = tmp.ul[L] = 1 / zero;
84 if (arq)
85 *arq = uq;
86 return (tmp.q);
88 if (uq < vq) {
89 if (arq)
90 *arq = uq;
91 return (0);
93 u = &uspace[0];
94 v = &vspace[0];
95 q = &qspace[0];
98 * Break dividend and divisor into digits in base B, then
99 * count leading zeros to determine m and n. When done, we
100 * will have:
101 * u = (u[1]u[2]...u[m+n]) sub B
102 * v = (v[1]v[2]...v[n]) sub B
103 * v[1] != 0
104 * 1 < n <= 4 (if n = 1, we use a different division algorithm)
105 * m >= 0 (otherwise u < v, which we already checked)
106 * m + n = 4
107 * and thus
108 * m = 4 - n <= 2
110 tmp.uq = uq;
111 u[0] = 0;
112 u[1] = (digit)HHALF(tmp.ul[H]);
113 u[2] = (digit)LHALF(tmp.ul[H]);
114 u[3] = (digit)HHALF(tmp.ul[L]);
115 u[4] = (digit)LHALF(tmp.ul[L]);
116 tmp.uq = vq;
117 v[1] = (digit)HHALF(tmp.ul[H]);
118 v[2] = (digit)LHALF(tmp.ul[H]);
119 v[3] = (digit)HHALF(tmp.ul[L]);
120 v[4] = (digit)LHALF(tmp.ul[L]);
121 for (n = 4; v[1] == 0; v++) {
122 if (--n == 1) {
123 unsigned int rbj; /* r*B+u[j] (not root boy jim) */
124 digit q1, q2, q3, q4;
127 * Change of plan, per exercise 16.
128 * r = 0;
129 * for j = 1..4:
130 * q[j] = floor((r*B + u[j]) / v),
131 * r = (r*B + u[j]) % v;
132 * We unroll this completely here.
134 t = v[2]; /* nonzero, by definition */
135 q1 = (digit)(u[1] / t);
136 rbj = COMBINE(u[1] % t, u[2]);
137 q2 = (digit)(rbj / t);
138 rbj = COMBINE(rbj % t, u[3]);
139 q3 = (digit)(rbj / t);
140 rbj = COMBINE(rbj % t, u[4]);
141 q4 = (digit)(rbj / t);
142 if (arq)
143 *arq = rbj % t;
144 tmp.ul[H] = COMBINE(q1, q2);
145 tmp.ul[L] = COMBINE(q3, q4);
146 return (tmp.q);
151 * By adjusting q once we determine m, we can guarantee that
152 * there is a complete four-digit quotient at &qspace[1] when
153 * we finally stop.
155 for (m = 4 - n; u[1] == 0; u++)
156 m--;
157 for (i = 4 - m; --i >= 0;)
158 q[i] = 0;
159 q += 4 - m;
162 * Here we run Program D, translated from MIX to C and acquiring
163 * a few minor changes.
165 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
167 d = 0;
168 for (t = v[1]; t < B / 2; t <<= 1)
169 d++;
170 if (d > 0) {
171 shl(&u[0], m + n, d); /* u <<= d */
172 shl(&v[1], n - 1, d); /* v <<= d */
175 * D2: j = 0.
177 j = 0;
178 v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
179 v2 = v[2]; /* for D3 */
180 do {
181 digit uj0, uj1, uj2;
184 * D3: Calculate qhat (\^q, in TeX notation).
185 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
186 * let rhat = (u[j]*B + u[j+1]) mod v[1].
187 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
188 * decrement qhat and increase rhat correspondingly.
189 * Note that if rhat >= B, v[2]*qhat < rhat*B.
191 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
192 uj1 = u[j + 1]; /* for D3 only */
193 uj2 = u[j + 2]; /* for D3 only */
194 if (uj0 == v1) {
195 qhat = B;
196 rhat = uj1;
197 goto qhat_too_big;
198 } else {
199 unsigned int nn = COMBINE(uj0, uj1);
200 qhat = nn / v1;
201 rhat = nn % v1;
203 while (v2 * qhat > COMBINE(rhat, uj2)) {
204 qhat_too_big:
205 qhat--;
206 if ((rhat += v1) >= B)
207 break;
210 * D4: Multiply and subtract.
211 * The variable `t' holds any borrows across the loop.
212 * We split this up so that we do not require v[0] = 0,
213 * and to eliminate a final special case.
215 for (t = 0, i = n; i > 0; i--) {
216 t = u[i + j] - v[i] * qhat - t;
217 u[i + j] = (digit)LHALF(t);
218 t = (B - HHALF(t)) & (B - 1);
220 t = u[j] - t;
221 u[j] = (digit)LHALF(t);
223 * D5: test remainder.
224 * There is a borrow if and only if HHALF(t) is nonzero;
225 * in that (rare) case, qhat was too large (by exactly 1).
226 * Fix it by adding v[1..n] to u[j..j+n].
228 if (HHALF(t)) {
229 qhat--;
230 for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
231 t += u[i + j] + v[i];
232 u[i + j] = (digit)LHALF(t);
233 t = HHALF(t);
235 u[j] = (digit)LHALF(u[j] + t);
237 q[j] = (digit)qhat;
238 } while (++j <= m); /* D7: loop on j. */
241 * If caller wants the remainder, we have to calculate it as
242 * u[m..m+n] >> d (this is at most n digits and thus fits in
243 * u[m+1..m+n], but we may need more source digits).
245 if (arq) {
246 if (d) {
247 for (i = m + n; i > m; --i)
248 u[i] = (digit)(((unsigned int)u[i] >> d) |
249 LHALF((unsigned int)u[i - 1] << (HALF_BITS - d)));
250 u[i] = 0;
252 tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
253 tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
254 *arq = tmp.q;
257 tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
258 tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
259 return (tmp.q);
263 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
264 * `fall out' the left (there never will be any such anyway).
265 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
267 static void
268 shl(digit *p, int len, int sh)
270 int i;
272 for (i = 0; i < len; i++)
273 p[i] = (digit)(LHALF((unsigned int)p[i] << sh) |
274 ((unsigned int)p[i + 1] >> (HALF_BITS - sh)));
275 p[i] = (digit)(LHALF((unsigned int)p[i] << sh));