Sync usage with man page.
[netbsd-mini2440.git] / external / cddl / osnet / dist / lib / libzfs / common / libzfs_import.c
blobf8f1f7d3d9a9be1c22103cd2a795fe363b8010cc
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #pragma ident "%Z%%M% %I% %E% SMI"
29 * Pool import support functions.
31 * To import a pool, we rely on reading the configuration information from the
32 * ZFS label of each device. If we successfully read the label, then we
33 * organize the configuration information in the following hierarchy:
35 * pool guid -> toplevel vdev guid -> label txg
37 * Duplicate entries matching this same tuple will be discarded. Once we have
38 * examined every device, we pick the best label txg config for each toplevel
39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
40 * update any paths that have changed. Finally, we attempt to import the pool
41 * using our derived config, and record the results.
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <fcntl.h>
54 #include <sys/vdev_impl.h>
56 #include "libzfs.h"
57 #include "libzfs_impl.h"
60 * Intermediate structures used to gather configuration information.
62 typedef struct config_entry {
63 uint64_t ce_txg;
64 nvlist_t *ce_config;
65 struct config_entry *ce_next;
66 } config_entry_t;
68 typedef struct vdev_entry {
69 uint64_t ve_guid;
70 config_entry_t *ve_configs;
71 struct vdev_entry *ve_next;
72 } vdev_entry_t;
74 typedef struct pool_entry {
75 uint64_t pe_guid;
76 vdev_entry_t *pe_vdevs;
77 struct pool_entry *pe_next;
78 } pool_entry_t;
80 typedef struct name_entry {
81 char *ne_name;
82 uint64_t ne_guid;
83 struct name_entry *ne_next;
84 } name_entry_t;
86 typedef struct pool_list {
87 pool_entry_t *pools;
88 name_entry_t *names;
89 } pool_list_t;
91 static char *
92 get_devid(const char *path)
94 int fd;
95 ddi_devid_t devid;
96 char *minor, *ret;
98 if ((fd = open(path, O_RDONLY)) < 0)
99 return (NULL);
101 minor = NULL;
102 ret = NULL;
103 if (devid_get(fd, &devid) == 0) {
104 if (devid_get_minor_name(fd, &minor) == 0)
105 ret = devid_str_encode(devid, minor);
106 if (minor != NULL)
107 devid_str_free(minor);
108 devid_free(devid);
110 (void) close(fd);
112 return (ret);
117 * Go through and fix up any path and/or devid information for the given vdev
118 * configuration.
120 static int
121 fix_paths(nvlist_t *nv, name_entry_t *names)
123 nvlist_t **child;
124 uint_t c, children;
125 uint64_t guid;
126 name_entry_t *ne, *best;
127 char *path, *devid;
128 int matched;
130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
131 &child, &children) == 0) {
132 for (c = 0; c < children; c++)
133 if (fix_paths(child[c], names) != 0)
134 return (-1);
135 return (0);
139 * This is a leaf (file or disk) vdev. In either case, go through
140 * the name list and see if we find a matching guid. If so, replace
141 * the path and see if we can calculate a new devid.
143 * There may be multiple names associated with a particular guid, in
144 * which case we have overlapping slices or multiple paths to the same
145 * disk. If this is the case, then we want to pick the path that is
146 * the most similar to the original, where "most similar" is the number
147 * of matching characters starting from the end of the path. This will
148 * preserve slice numbers even if the disks have been reorganized, and
149 * will also catch preferred disk names if multiple paths exist.
151 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
152 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
153 path = NULL;
155 matched = 0;
156 best = NULL;
157 for (ne = names; ne != NULL; ne = ne->ne_next) {
158 if (ne->ne_guid == guid) {
159 const char *src, *dst;
160 int count;
162 if (path == NULL) {
163 best = ne;
164 break;
167 src = ne->ne_name + strlen(ne->ne_name) - 1;
168 dst = path + strlen(path) - 1;
169 for (count = 0; src >= ne->ne_name && dst >= path;
170 src--, dst--, count++)
171 if (*src != *dst)
172 break;
175 * At this point, 'count' is the number of characters
176 * matched from the end.
178 if (count > matched || best == NULL) {
179 best = ne;
180 matched = count;
185 if (best == NULL)
186 return (0);
188 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
189 return (-1);
191 if ((devid = get_devid(best->ne_name)) == NULL) {
192 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
193 } else {
194 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
195 return (-1);
196 devid_str_free(devid);
199 return (0);
203 * Add the given configuration to the list of known devices.
205 static int
206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
207 nvlist_t *config)
209 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
210 pool_entry_t *pe;
211 vdev_entry_t *ve;
212 config_entry_t *ce;
213 name_entry_t *ne;
216 * If this is a hot spare not currently in use or level 2 cache
217 * device, add it to the list of names to translate, but don't do
218 * anything else.
220 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
221 &state) == 0 &&
222 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
223 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
224 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
225 return (-1);
227 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
228 free(ne);
229 return (-1);
231 ne->ne_guid = vdev_guid;
232 ne->ne_next = pl->names;
233 pl->names = ne;
234 return (0);
238 * If we have a valid config but cannot read any of these fields, then
239 * it means we have a half-initialized label. In vdev_label_init()
240 * we write a label with txg == 0 so that we can identify the device
241 * in case the user refers to the same disk later on. If we fail to
242 * create the pool, we'll be left with a label in this state
243 * which should not be considered part of a valid pool.
245 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
246 &pool_guid) != 0 ||
247 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
248 &vdev_guid) != 0 ||
249 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
250 &top_guid) != 0 ||
251 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
252 &txg) != 0 || txg == 0) {
253 nvlist_free(config);
254 return (0);
258 * First, see if we know about this pool. If not, then add it to the
259 * list of known pools.
261 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
262 if (pe->pe_guid == pool_guid)
263 break;
266 if (pe == NULL) {
267 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
268 nvlist_free(config);
269 return (-1);
271 pe->pe_guid = pool_guid;
272 pe->pe_next = pl->pools;
273 pl->pools = pe;
277 * Second, see if we know about this toplevel vdev. Add it if its
278 * missing.
280 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
281 if (ve->ve_guid == top_guid)
282 break;
285 if (ve == NULL) {
286 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
287 nvlist_free(config);
288 return (-1);
290 ve->ve_guid = top_guid;
291 ve->ve_next = pe->pe_vdevs;
292 pe->pe_vdevs = ve;
296 * Third, see if we have a config with a matching transaction group. If
297 * so, then we do nothing. Otherwise, add it to the list of known
298 * configs.
300 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
301 if (ce->ce_txg == txg)
302 break;
305 if (ce == NULL) {
306 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
307 nvlist_free(config);
308 return (-1);
310 ce->ce_txg = txg;
311 ce->ce_config = config;
312 ce->ce_next = ve->ve_configs;
313 ve->ve_configs = ce;
314 } else {
315 nvlist_free(config);
319 * At this point we've successfully added our config to the list of
320 * known configs. The last thing to do is add the vdev guid -> path
321 * mappings so that we can fix up the configuration as necessary before
322 * doing the import.
324 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
325 return (-1);
327 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
328 free(ne);
329 return (-1);
332 ne->ne_guid = vdev_guid;
333 ne->ne_next = pl->names;
334 pl->names = ne;
336 return (0);
340 * Returns true if the named pool matches the given GUID.
342 static int
343 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
344 boolean_t *isactive)
346 zpool_handle_t *zhp;
347 uint64_t theguid;
349 if (zpool_open_silent(hdl, name, &zhp) != 0)
350 return (-1);
352 if (zhp == NULL) {
353 *isactive = B_FALSE;
354 return (0);
357 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
358 &theguid) == 0);
360 zpool_close(zhp);
362 *isactive = (theguid == guid);
363 return (0);
366 static nvlist_t *
367 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
369 nvlist_t *nvl;
370 zfs_cmd_t zc = { 0 };
371 int err;
373 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
374 return (NULL);
376 if (zcmd_alloc_dst_nvlist(hdl, &zc,
377 zc.zc_nvlist_conf_size * 2) != 0) {
378 zcmd_free_nvlists(&zc);
379 return (NULL);
382 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
383 &zc)) != 0 && errno == ENOMEM) {
384 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
385 zcmd_free_nvlists(&zc);
386 return (NULL);
390 if (err) {
391 (void) zpool_standard_error(hdl, errno,
392 dgettext(TEXT_DOMAIN, "cannot discover pools"));
393 zcmd_free_nvlists(&zc);
394 return (NULL);
397 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
398 zcmd_free_nvlists(&zc);
399 return (NULL);
402 zcmd_free_nvlists(&zc);
403 return (nvl);
407 * Convert our list of pools into the definitive set of configurations. We
408 * start by picking the best config for each toplevel vdev. Once that's done,
409 * we assemble the toplevel vdevs into a full config for the pool. We make a
410 * pass to fix up any incorrect paths, and then add it to the main list to
411 * return to the user.
413 static nvlist_t *
414 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
416 pool_entry_t *pe;
417 vdev_entry_t *ve;
418 config_entry_t *ce;
419 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
420 nvlist_t **spares, **l2cache;
421 uint_t i, nspares, nl2cache;
422 boolean_t config_seen;
423 uint64_t best_txg;
424 char *name, *hostname;
425 uint64_t version, guid;
426 uint_t children = 0;
427 nvlist_t **child = NULL;
428 uint_t c;
429 boolean_t isactive;
430 uint64_t hostid;
431 nvlist_t *nvl;
432 boolean_t found_one = B_FALSE;
434 if (nvlist_alloc(&ret, 0, 0) != 0)
435 goto nomem;
437 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
438 uint64_t id;
440 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
441 goto nomem;
442 config_seen = B_FALSE;
445 * Iterate over all toplevel vdevs. Grab the pool configuration
446 * from the first one we find, and then go through the rest and
447 * add them as necessary to the 'vdevs' member of the config.
449 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
452 * Determine the best configuration for this vdev by
453 * selecting the config with the latest transaction
454 * group.
456 best_txg = 0;
457 for (ce = ve->ve_configs; ce != NULL;
458 ce = ce->ce_next) {
460 if (ce->ce_txg > best_txg) {
461 tmp = ce->ce_config;
462 best_txg = ce->ce_txg;
466 if (!config_seen) {
468 * Copy the relevant pieces of data to the pool
469 * configuration:
471 * version
472 * pool guid
473 * name
474 * pool state
475 * hostid (if available)
476 * hostname (if available)
478 uint64_t state;
480 verify(nvlist_lookup_uint64(tmp,
481 ZPOOL_CONFIG_VERSION, &version) == 0);
482 if (nvlist_add_uint64(config,
483 ZPOOL_CONFIG_VERSION, version) != 0)
484 goto nomem;
485 verify(nvlist_lookup_uint64(tmp,
486 ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
487 if (nvlist_add_uint64(config,
488 ZPOOL_CONFIG_POOL_GUID, guid) != 0)
489 goto nomem;
490 verify(nvlist_lookup_string(tmp,
491 ZPOOL_CONFIG_POOL_NAME, &name) == 0);
492 if (nvlist_add_string(config,
493 ZPOOL_CONFIG_POOL_NAME, name) != 0)
494 goto nomem;
495 verify(nvlist_lookup_uint64(tmp,
496 ZPOOL_CONFIG_POOL_STATE, &state) == 0);
497 if (nvlist_add_uint64(config,
498 ZPOOL_CONFIG_POOL_STATE, state) != 0)
499 goto nomem;
500 hostid = 0;
501 if (nvlist_lookup_uint64(tmp,
502 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
503 if (nvlist_add_uint64(config,
504 ZPOOL_CONFIG_HOSTID, hostid) != 0)
505 goto nomem;
506 verify(nvlist_lookup_string(tmp,
507 ZPOOL_CONFIG_HOSTNAME,
508 &hostname) == 0);
509 if (nvlist_add_string(config,
510 ZPOOL_CONFIG_HOSTNAME,
511 hostname) != 0)
512 goto nomem;
515 config_seen = B_TRUE;
519 * Add this top-level vdev to the child array.
521 verify(nvlist_lookup_nvlist(tmp,
522 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
523 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
524 &id) == 0);
525 if (id >= children) {
526 nvlist_t **newchild;
528 newchild = zfs_alloc(hdl, (id + 1) *
529 sizeof (nvlist_t *));
530 if (newchild == NULL)
531 goto nomem;
533 for (c = 0; c < children; c++)
534 newchild[c] = child[c];
536 free(child);
537 child = newchild;
538 children = id + 1;
540 if (nvlist_dup(nvtop, &child[id], 0) != 0)
541 goto nomem;
545 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
546 &guid) == 0);
549 * Look for any missing top-level vdevs. If this is the case,
550 * create a faked up 'missing' vdev as a placeholder. We cannot
551 * simply compress the child array, because the kernel performs
552 * certain checks to make sure the vdev IDs match their location
553 * in the configuration.
555 for (c = 0; c < children; c++)
556 if (child[c] == NULL) {
557 nvlist_t *missing;
558 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
559 0) != 0)
560 goto nomem;
561 if (nvlist_add_string(missing,
562 ZPOOL_CONFIG_TYPE,
563 VDEV_TYPE_MISSING) != 0 ||
564 nvlist_add_uint64(missing,
565 ZPOOL_CONFIG_ID, c) != 0 ||
566 nvlist_add_uint64(missing,
567 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
568 nvlist_free(missing);
569 goto nomem;
571 child[c] = missing;
575 * Put all of this pool's top-level vdevs into a root vdev.
577 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
578 goto nomem;
579 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
580 VDEV_TYPE_ROOT) != 0 ||
581 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
582 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
583 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
584 child, children) != 0) {
585 nvlist_free(nvroot);
586 goto nomem;
589 for (c = 0; c < children; c++)
590 nvlist_free(child[c]);
591 free(child);
592 children = 0;
593 child = NULL;
596 * Go through and fix up any paths and/or devids based on our
597 * known list of vdev GUID -> path mappings.
599 if (fix_paths(nvroot, pl->names) != 0) {
600 nvlist_free(nvroot);
601 goto nomem;
605 * Add the root vdev to this pool's configuration.
607 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
608 nvroot) != 0) {
609 nvlist_free(nvroot);
610 goto nomem;
612 nvlist_free(nvroot);
615 * zdb uses this path to report on active pools that were
616 * imported or created using -R.
618 if (active_ok)
619 goto add_pool;
622 * Determine if this pool is currently active, in which case we
623 * can't actually import it.
625 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
626 &name) == 0);
627 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
628 &guid) == 0);
630 if (pool_active(hdl, name, guid, &isactive) != 0)
631 goto error;
633 if (isactive) {
634 nvlist_free(config);
635 config = NULL;
636 continue;
639 if ((nvl = refresh_config(hdl, config)) == NULL)
640 goto error;
642 nvlist_free(config);
643 config = nvl;
646 * Go through and update the paths for spares, now that we have
647 * them.
649 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
650 &nvroot) == 0);
651 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
652 &spares, &nspares) == 0) {
653 for (i = 0; i < nspares; i++) {
654 if (fix_paths(spares[i], pl->names) != 0)
655 goto nomem;
660 * Update the paths for l2cache devices.
662 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
663 &l2cache, &nl2cache) == 0) {
664 for (i = 0; i < nl2cache; i++) {
665 if (fix_paths(l2cache[i], pl->names) != 0)
666 goto nomem;
671 * Restore the original information read from the actual label.
673 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
674 DATA_TYPE_UINT64);
675 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
676 DATA_TYPE_STRING);
677 if (hostid != 0) {
678 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
679 hostid) == 0);
680 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
681 hostname) == 0);
684 add_pool:
686 * Add this pool to the list of configs.
688 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
689 &name) == 0);
690 if (nvlist_add_nvlist(ret, name, config) != 0)
691 goto nomem;
693 found_one = B_TRUE;
694 nvlist_free(config);
695 config = NULL;
698 if (!found_one) {
699 nvlist_free(ret);
700 ret = NULL;
703 return (ret);
705 nomem:
706 (void) no_memory(hdl);
707 error:
708 nvlist_free(config);
709 nvlist_free(ret);
710 for (c = 0; c < children; c++)
711 nvlist_free(child[c]);
712 free(child);
714 return (NULL);
718 * Return the offset of the given label.
720 static uint64_t
721 label_offset(uint64_t size, int l)
723 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
724 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
725 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
729 * Given a file descriptor, read the label information and return an nvlist
730 * describing the configuration, if there is one.
733 zpool_read_label(int fd, nvlist_t **config)
735 struct stat64 statbuf;
736 int l;
737 vdev_label_t *label;
738 uint64_t state, txg, size;
740 *config = NULL;
742 if (fstat64(fd, &statbuf) == -1)
743 return (0);
744 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
746 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
747 return (-1);
749 for (l = 0; l < VDEV_LABELS; l++) {
750 if (pread64(fd, label, sizeof (vdev_label_t),
751 label_offset(size, l)) != sizeof (vdev_label_t))
752 continue;
754 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
755 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
756 continue;
758 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
759 &state) != 0 || state > POOL_STATE_L2CACHE) {
760 nvlist_free(*config);
761 continue;
764 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
765 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
766 &txg) != 0 || txg == 0)) {
767 nvlist_free(*config);
768 continue;
771 free(label);
772 return (0);
775 free(label);
776 *config = NULL;
777 return (0);
781 * Given a list of directories to search, find all pools stored on disk. This
782 * includes partial pools which are not available to import. If no args are
783 * given (argc is 0), then the default directory (/dev/dsk) is searched.
784 * poolname or guid (but not both) are provided by the caller when trying
785 * to import a specific pool.
787 static nvlist_t *
788 zpool_find_import_impl(libzfs_handle_t *hdl, int argc, char **argv,
789 boolean_t active_ok, char *poolname, uint64_t guid)
791 int i;
792 DIR *dirp = NULL;
793 struct dirent64 *dp;
794 char path[MAXPATHLEN];
795 char *end;
796 size_t pathleft;
797 struct stat64 statbuf;
798 nvlist_t *ret = NULL, *config;
799 static char *default_dir = "/dev/dsk";
800 int fd;
801 pool_list_t pools = { 0 };
802 pool_entry_t *pe, *penext;
803 vdev_entry_t *ve, *venext;
804 config_entry_t *ce, *cenext;
805 name_entry_t *ne, *nenext;
807 verify(poolname == NULL || guid == 0);
809 if (argc == 0) {
810 argc = 1;
811 argv = &default_dir;
815 * Go through and read the label configuration information from every
816 * possible device, organizing the information according to pool GUID
817 * and toplevel GUID.
819 for (i = 0; i < argc; i++) {
820 char *rdsk;
821 int dfd;
823 /* use realpath to normalize the path */
824 if (realpath(argv[i], path) == 0) {
825 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
826 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
827 argv[i]);
828 goto error;
830 end = &path[strlen(path)];
831 *end++ = '/';
832 *end = 0;
833 pathleft = &path[sizeof (path)] - end;
836 * Using raw devices instead of block devices when we're
837 * reading the labels skips a bunch of slow operations during
838 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
840 if (strcmp(path, "/dev/dsk/") == 0)
841 rdsk = "/dev/rdsk/";
842 else
843 rdsk = path;
845 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
846 (dirp = fdopendir(dfd)) == NULL) {
847 zfs_error_aux(hdl, strerror(errno));
848 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
849 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
850 rdsk);
851 goto error;
855 * This is not MT-safe, but we have no MT consumers of libzfs
857 while ((dp = readdir64(dirp)) != NULL) {
858 const char *name = dp->d_name;
859 if (name[0] == '.' &&
860 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
861 continue;
863 (void)snprintf(path, sizeof (path), "%s/%s",
864 rdsk, dp->d_name);
866 if ((fd = open(path, O_RDONLY)) < 0)
867 continue;
870 * Ignore failed stats. We only want regular
871 * files, character devs and block devs.
873 if (fstat64(fd, &statbuf) != 0 ||
874 (!S_ISREG(statbuf.st_mode) &&
875 !S_ISCHR(statbuf.st_mode) &&
876 !S_ISBLK(statbuf.st_mode))) {
877 (void) close(fd);
878 continue;
881 if ((zpool_read_label(fd, &config)) != 0) {
882 (void) close(fd);
883 (void) no_memory(hdl);
884 goto error;
887 (void) close(fd);
889 if (config != NULL) {
890 boolean_t matched = B_TRUE;
892 if (poolname != NULL) {
893 char *pname;
895 matched = nvlist_lookup_string(config,
896 ZPOOL_CONFIG_POOL_NAME,
897 &pname) == 0 &&
898 strcmp(poolname, pname) == 0;
899 } else if (guid != 0) {
900 uint64_t this_guid;
902 matched = nvlist_lookup_uint64(config,
903 ZPOOL_CONFIG_POOL_GUID,
904 &this_guid) == 0 &&
905 guid == this_guid;
907 if (!matched) {
908 nvlist_free(config);
909 config = NULL;
910 continue;
912 /* use the non-raw path for the config */
913 (void) strlcpy(end, name, pathleft);
914 if (add_config(hdl, &pools, path, config) != 0)
915 goto error;
919 (void) closedir(dirp);
920 dirp = NULL;
923 ret = get_configs(hdl, &pools, active_ok);
925 error:
926 for (pe = pools.pools; pe != NULL; pe = penext) {
927 penext = pe->pe_next;
928 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
929 venext = ve->ve_next;
930 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
931 cenext = ce->ce_next;
932 if (ce->ce_config)
933 nvlist_free(ce->ce_config);
934 free(ce);
936 free(ve);
938 free(pe);
941 for (ne = pools.names; ne != NULL; ne = nenext) {
942 nenext = ne->ne_next;
943 if (ne->ne_name)
944 free(ne->ne_name);
945 free(ne);
948 if (dirp)
949 (void) closedir(dirp);
951 return (ret);
954 nvlist_t *
955 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
957 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, 0));
960 nvlist_t *
961 zpool_find_import_byname(libzfs_handle_t *hdl, int argc, char **argv,
962 char *pool)
964 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, pool, 0));
967 nvlist_t *
968 zpool_find_import_byguid(libzfs_handle_t *hdl, int argc, char **argv,
969 uint64_t guid)
971 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, guid));
974 nvlist_t *
975 zpool_find_import_activeok(libzfs_handle_t *hdl, int argc, char **argv)
977 return (zpool_find_import_impl(hdl, argc, argv, B_TRUE, NULL, 0));
981 * Given a cache file, return the contents as a list of importable pools.
982 * poolname or guid (but not both) are provided by the caller when trying
983 * to import a specific pool.
985 nvlist_t *
986 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
987 char *poolname, uint64_t guid)
989 char *buf;
990 int fd;
991 struct stat64 statbuf;
992 nvlist_t *raw, *src, *dst;
993 nvlist_t *pools;
994 nvpair_t *elem;
995 char *name;
996 uint64_t this_guid;
997 boolean_t active;
999 verify(poolname == NULL || guid == 0);
1001 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1002 zfs_error_aux(hdl, "%s", strerror(errno));
1003 (void) zfs_error(hdl, EZFS_BADCACHE,
1004 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1005 return (NULL);
1008 if (fstat64(fd, &statbuf) != 0) {
1009 zfs_error_aux(hdl, "%s", strerror(errno));
1010 (void) close(fd);
1011 (void) zfs_error(hdl, EZFS_BADCACHE,
1012 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1013 return (NULL);
1016 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1017 (void) close(fd);
1018 return (NULL);
1021 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1022 (void) close(fd);
1023 free(buf);
1024 (void) zfs_error(hdl, EZFS_BADCACHE,
1025 dgettext(TEXT_DOMAIN,
1026 "failed to read cache file contents"));
1027 return (NULL);
1030 (void) close(fd);
1032 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1033 free(buf);
1034 (void) zfs_error(hdl, EZFS_BADCACHE,
1035 dgettext(TEXT_DOMAIN,
1036 "invalid or corrupt cache file contents"));
1037 return (NULL);
1040 free(buf);
1043 * Go through and get the current state of the pools and refresh their
1044 * state.
1046 if (nvlist_alloc(&pools, 0, 0) != 0) {
1047 (void) no_memory(hdl);
1048 nvlist_free(raw);
1049 return (NULL);
1052 elem = NULL;
1053 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1054 verify(nvpair_value_nvlist(elem, &src) == 0);
1056 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1057 &name) == 0);
1058 if (poolname != NULL && strcmp(poolname, name) != 0)
1059 continue;
1061 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1062 &this_guid) == 0);
1063 if (guid != 0) {
1064 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1065 &this_guid) == 0);
1066 if (guid != this_guid)
1067 continue;
1070 if (pool_active(hdl, name, this_guid, &active) != 0) {
1071 nvlist_free(raw);
1072 nvlist_free(pools);
1073 return (NULL);
1076 if (active)
1077 continue;
1079 if ((dst = refresh_config(hdl, src)) == NULL) {
1080 nvlist_free(raw);
1081 nvlist_free(pools);
1082 return (NULL);
1085 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1086 (void) no_memory(hdl);
1087 nvlist_free(dst);
1088 nvlist_free(raw);
1089 nvlist_free(pools);
1090 return (NULL);
1092 nvlist_free(dst);
1095 nvlist_free(raw);
1096 return (pools);
1100 boolean_t
1101 find_guid(nvlist_t *nv, uint64_t guid)
1103 uint64_t tmp;
1104 nvlist_t **child;
1105 uint_t c, children;
1107 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1108 if (tmp == guid)
1109 return (B_TRUE);
1111 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1112 &child, &children) == 0) {
1113 for (c = 0; c < children; c++)
1114 if (find_guid(child[c], guid))
1115 return (B_TRUE);
1118 return (B_FALSE);
1121 typedef struct aux_cbdata {
1122 const char *cb_type;
1123 uint64_t cb_guid;
1124 zpool_handle_t *cb_zhp;
1125 } aux_cbdata_t;
1127 static int
1128 find_aux(zpool_handle_t *zhp, void *data)
1130 aux_cbdata_t *cbp = data;
1131 nvlist_t **list;
1132 uint_t i, count;
1133 uint64_t guid;
1134 nvlist_t *nvroot;
1136 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1137 &nvroot) == 0);
1139 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1140 &list, &count) == 0) {
1141 for (i = 0; i < count; i++) {
1142 verify(nvlist_lookup_uint64(list[i],
1143 ZPOOL_CONFIG_GUID, &guid) == 0);
1144 if (guid == cbp->cb_guid) {
1145 cbp->cb_zhp = zhp;
1146 return (1);
1151 zpool_close(zhp);
1152 return (0);
1156 * Determines if the pool is in use. If so, it returns true and the state of
1157 * the pool as well as the name of the pool. Both strings are allocated and
1158 * must be freed by the caller.
1161 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1162 boolean_t *inuse)
1164 nvlist_t *config;
1165 char *name;
1166 boolean_t ret;
1167 uint64_t guid, vdev_guid;
1168 zpool_handle_t *zhp;
1169 nvlist_t *pool_config;
1170 uint64_t stateval, isspare;
1171 aux_cbdata_t cb = { 0 };
1172 boolean_t isactive;
1174 *inuse = B_FALSE;
1176 if (zpool_read_label(fd, &config) != 0) {
1177 (void) no_memory(hdl);
1178 return (-1);
1181 if (config == NULL)
1182 return (0);
1184 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1185 &stateval) == 0);
1186 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1187 &vdev_guid) == 0);
1189 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1190 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1191 &name) == 0);
1192 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1193 &guid) == 0);
1196 switch (stateval) {
1197 case POOL_STATE_EXPORTED:
1198 ret = B_TRUE;
1199 break;
1201 case POOL_STATE_ACTIVE:
1203 * For an active pool, we have to determine if it's really part
1204 * of a currently active pool (in which case the pool will exist
1205 * and the guid will be the same), or whether it's part of an
1206 * active pool that was disconnected without being explicitly
1207 * exported.
1209 if (pool_active(hdl, name, guid, &isactive) != 0) {
1210 nvlist_free(config);
1211 return (-1);
1214 if (isactive) {
1216 * Because the device may have been removed while
1217 * offlined, we only report it as active if the vdev is
1218 * still present in the config. Otherwise, pretend like
1219 * it's not in use.
1221 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1222 (pool_config = zpool_get_config(zhp, NULL))
1223 != NULL) {
1224 nvlist_t *nvroot;
1226 verify(nvlist_lookup_nvlist(pool_config,
1227 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1228 ret = find_guid(nvroot, vdev_guid);
1229 } else {
1230 ret = B_FALSE;
1234 * If this is an active spare within another pool, we
1235 * treat it like an unused hot spare. This allows the
1236 * user to create a pool with a hot spare that currently
1237 * in use within another pool. Since we return B_TRUE,
1238 * libdiskmgt will continue to prevent generic consumers
1239 * from using the device.
1241 if (ret && nvlist_lookup_uint64(config,
1242 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1243 stateval = POOL_STATE_SPARE;
1245 if (zhp != NULL)
1246 zpool_close(zhp);
1247 } else {
1248 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1249 ret = B_TRUE;
1251 break;
1253 case POOL_STATE_SPARE:
1255 * For a hot spare, it can be either definitively in use, or
1256 * potentially active. To determine if it's in use, we iterate
1257 * over all pools in the system and search for one with a spare
1258 * with a matching guid.
1260 * Due to the shared nature of spares, we don't actually report
1261 * the potentially active case as in use. This means the user
1262 * can freely create pools on the hot spares of exported pools,
1263 * but to do otherwise makes the resulting code complicated, and
1264 * we end up having to deal with this case anyway.
1266 cb.cb_zhp = NULL;
1267 cb.cb_guid = vdev_guid;
1268 cb.cb_type = ZPOOL_CONFIG_SPARES;
1269 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1270 name = (char *)zpool_get_name(cb.cb_zhp);
1271 ret = TRUE;
1272 } else {
1273 ret = FALSE;
1275 break;
1277 case POOL_STATE_L2CACHE:
1280 * Check if any pool is currently using this l2cache device.
1282 cb.cb_zhp = NULL;
1283 cb.cb_guid = vdev_guid;
1284 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1285 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1286 name = (char *)zpool_get_name(cb.cb_zhp);
1287 ret = TRUE;
1288 } else {
1289 ret = FALSE;
1291 break;
1293 default:
1294 ret = B_FALSE;
1298 if (ret) {
1299 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1300 if (cb.cb_zhp)
1301 zpool_close(cb.cb_zhp);
1302 nvlist_free(config);
1303 return (-1);
1305 *state = (pool_state_t)stateval;
1308 if (cb.cb_zhp)
1309 zpool_close(cb.cb_zhp);
1311 nvlist_free(config);
1312 *inuse = ret;
1313 return (0);