2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
6 /* deflate.c -- compress data using the deflation algorithm
7 * Copyright (C) 1995-2005 Jean-loup Gailly.
8 * For conditions of distribution and use, see copyright notice in zlib.h
11 #pragma ident "%Z%%M% %I% %E% SMI"
16 * The "deflation" process depends on being able to identify portions
17 * of the input text which are identical to earlier input (within a
18 * sliding window trailing behind the input currently being processed).
20 * The most straightforward technique turns out to be the fastest for
21 * most input files: try all possible matches and select the longest.
22 * The key feature of this algorithm is that insertions into the string
23 * dictionary are very simple and thus fast, and deletions are avoided
24 * completely. Insertions are performed at each input character, whereas
25 * string matches are performed only when the previous match ends. So it
26 * is preferable to spend more time in matches to allow very fast string
27 * insertions and avoid deletions. The matching algorithm for small
28 * strings is inspired from that of Rabin & Karp. A brute force approach
29 * is used to find longer strings when a small match has been found.
30 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
31 * (by Leonid Broukhis).
32 * A previous version of this file used a more sophisticated algorithm
33 * (by Fiala and Greene) which is guaranteed to run in linear amortized
34 * time, but has a larger average cost, uses more memory and is patented.
35 * However the F&G algorithm may be faster for some highly redundant
36 * files if the parameter max_chain_length (described below) is too large.
40 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
41 * I found it in 'freeze' written by Leonid Broukhis.
42 * Thanks to many people for bug reports and testing.
46 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
47 * Available in http://www.ietf.org/rfc/rfc1951.txt
49 * A description of the Rabin and Karp algorithm is given in the book
50 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
52 * Fiala,E.R., and Greene,D.H.
53 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
59 static const char deflate_copyright
[] =
60 " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
62 If you use the zlib library in a product, an acknowledgment is welcome
63 in the documentation of your product. If for some reason you cannot
64 include such an acknowledgment, I would appreciate that you keep this
65 copyright string in the executable of your product.
68 /* ===========================================================================
69 * Function prototypes.
72 need_more
, /* block not completed, need more input or more output */
73 block_done
, /* block flush performed */
74 finish_started
, /* finish started, need only more output at next deflate */
75 finish_done
/* finish done, accept no more input or output */
78 typedef block_state (*compress_func
) OF((deflate_state
*s
, int flush
));
79 /* Compression function. Returns the block state after the call. */
81 local
void fill_window
OF((deflate_state
*s
));
82 local block_state deflate_stored
OF((deflate_state
*s
, int flush
));
83 local block_state deflate_fast
OF((deflate_state
*s
, int flush
));
85 local block_state deflate_slow
OF((deflate_state
*s
, int flush
));
87 local
void lm_init
OF((deflate_state
*s
));
88 local
void putShortMSB
OF((deflate_state
*s
, uInt b
));
89 local
void flush_pending
OF((z_streamp strm
));
90 local
int read_buf
OF((z_streamp strm
, Bytef
*buf
, unsigned size
));
93 void match_init
OF((void)); /* asm code initialization */
94 uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
96 local uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
99 local uInt longest_match_fast
OF((deflate_state
*s
, IPos cur_match
));
102 local
void check_match
OF((deflate_state
*s
, IPos start
, IPos match
,
106 /* ===========================================================================
111 /* Tail of hash chains */
114 # define TOO_FAR 4096
116 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
118 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
119 /* Minimum amount of lookahead, except at the end of the input file.
120 * See deflate.c for comments about the MIN_MATCH+1.
123 /* Values for max_lazy_match, good_match and max_chain_length, depending on
124 * the desired pack level (0..9). The values given below have been tuned to
125 * exclude worst case performance for pathological files. Better values may be
126 * found for specific files.
128 typedef struct config_s
{
129 ush good_length
; /* reduce lazy search above this match length */
130 ush max_lazy
; /* do not perform lazy search above this match length */
131 ush nice_length
; /* quit search above this match length */
137 local
const config configuration_table
[2] = {
138 /* good lazy nice chain */
139 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
140 /* 1 */ {4, 4, 8, 4, deflate_fast
}}; /* max speed, no lazy matches */
142 local
const config configuration_table
[10] = {
143 /* good lazy nice chain */
144 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
145 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* max speed, no lazy matches */
146 /* 2 */ {4, 5, 16, 8, deflate_fast
},
147 /* 3 */ {4, 6, 32, 32, deflate_fast
},
149 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
150 /* 5 */ {8, 16, 32, 32, deflate_slow
},
151 /* 6 */ {8, 16, 128, 128, deflate_slow
},
152 /* 7 */ {8, 32, 128, 256, deflate_slow
},
153 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
154 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* max compression */
157 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
158 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
163 /* result of memcmp for equal strings */
165 #ifndef NO_DUMMY_DECL
166 struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
169 /* ===========================================================================
170 * Update a hash value with the given input byte
171 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
172 * input characters, so that a running hash key can be computed from the
173 * previous key instead of complete recalculation each time.
175 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
178 /* ===========================================================================
179 * Insert string str in the dictionary and set match_head to the previous head
180 * of the hash chain (the most recent string with same hash key). Return
181 * the previous length of the hash chain.
182 * If this file is compiled with -DFASTEST, the compression level is forced
183 * to 1, and no hash chains are maintained.
184 * IN assertion: all calls to to INSERT_STRING are made with consecutive
185 * input characters and the first MIN_MATCH bytes of str are valid
186 * (except for the last MIN_MATCH-1 bytes of the input file).
189 #define INSERT_STRING(s, str, match_head) \
190 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
191 match_head = s->head[s->ins_h], \
192 s->head[s->ins_h] = (Pos)(str))
194 #define INSERT_STRING(s, str, match_head) \
195 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
196 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
197 s->head[s->ins_h] = (Pos)(str))
200 /* ===========================================================================
201 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
202 * prev[] will be initialized on the fly.
204 #define CLEAR_HASH(s) \
205 s->head[s->hash_size-1] = NIL; \
206 (void) zmemzero((Bytef *)s->head, \
207 (unsigned)(s->hash_size-1)*sizeof(*s->head));
209 /* ========================================================================= */
210 int ZEXPORT
deflateInit_(strm
, level
, version
, stream_size
)
216 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
217 Z_DEFAULT_STRATEGY
, version
, stream_size
);
218 /* To do: ignore strm->next_in if we use it as window */
221 /* ========================================================================= */
222 int ZEXPORT
deflateInit2_(strm
, level
, method
, windowBits
, memLevel
, strategy
,
223 version
, stream_size
)
235 static const char my_version
[] = ZLIB_VERSION
;
238 /* We overlay pending_buf and d_buf+l_buf. This works since the average
239 * output size for (length,distance) codes is <= 24 bits.
242 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
243 stream_size
!= sizeof(z_stream
)) {
244 return Z_VERSION_ERROR
;
246 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
249 if (strm
->zalloc
== (alloc_func
)0) {
250 strm
->zalloc
= zcalloc
;
251 strm
->opaque
= (voidpf
)0;
253 if (strm
->zfree
== (free_func
)0) strm
->zfree
= zcfree
;
256 if (level
!= 0) level
= 1;
258 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
261 if (windowBits
< 0) { /* suppress zlib wrapper */
263 windowBits
= -windowBits
;
266 else if (windowBits
> 15) {
267 wrap
= 2; /* write gzip wrapper instead */
271 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
272 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
273 strategy
< 0 || strategy
> Z_FIXED
) {
274 return Z_STREAM_ERROR
;
276 if (windowBits
== 8) windowBits
= 9; /* until 256-byte window bug fixed */
277 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
278 if (s
== Z_NULL
) return Z_MEM_ERROR
;
279 strm
->state
= (struct internal_state FAR
*)s
;
284 s
->w_bits
= windowBits
;
285 s
->w_size
= 1 << s
->w_bits
;
286 s
->w_mask
= s
->w_size
- 1;
288 s
->hash_bits
= memLevel
+ 7;
289 s
->hash_size
= 1 << s
->hash_bits
;
290 s
->hash_mask
= s
->hash_size
- 1;
291 s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
293 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
294 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
295 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
297 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
299 overlay
= (ushf
*) ZALLOC(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
300 s
->pending_buf
= (uchf
*) overlay
;
301 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
303 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
304 s
->pending_buf
== Z_NULL
) {
305 s
->status
= FINISH_STATE
;
306 strm
->msg
= (char*)ERR_MSG(Z_MEM_ERROR
);
307 (void) deflateEnd (strm
);
310 s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
311 s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
314 s
->strategy
= strategy
;
315 s
->method
= (Byte
)method
;
317 return deflateReset(strm
);
320 /* ========================================================================= */
321 int ZEXPORT
deflateSetDictionary (strm
, dictionary
, dictLength
)
323 const Bytef
*dictionary
;
327 uInt length
= dictLength
;
331 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
||
332 strm
->state
->wrap
== 2 ||
333 (strm
->state
->wrap
== 1 && strm
->state
->status
!= INIT_STATE
))
334 return Z_STREAM_ERROR
;
338 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
340 if (length
< MIN_MATCH
) return Z_OK
;
341 if (length
> MAX_DIST(s
)) {
342 length
= MAX_DIST(s
);
343 dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
345 (void) zmemcpy(s
->window
, dictionary
, length
);
346 s
->strstart
= length
;
347 s
->block_start
= (long)length
;
349 /* Insert all strings in the hash table (except for the last two bytes).
350 * s->lookahead stays null, so s->ins_h will be recomputed at the next
351 * call of fill_window.
353 s
->ins_h
= s
->window
[0];
354 UPDATE_HASH(s
, s
->ins_h
, s
->window
[1]);
355 for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
356 INSERT_STRING(s
, n
, hash_head
);
358 if (hash_head
) hash_head
= 0; /* to make compiler happy */
362 /* ========================================================================= */
363 int ZEXPORT
deflateReset (strm
)
368 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
369 strm
->zalloc
== (alloc_func
)0 || strm
->zfree
== (free_func
)0) {
370 return Z_STREAM_ERROR
;
373 strm
->total_in
= strm
->total_out
= 0;
374 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
375 strm
->data_type
= Z_UNKNOWN
;
377 s
= (deflate_state
*)strm
->state
;
379 s
->pending_out
= s
->pending_buf
;
382 s
->wrap
= -s
->wrap
; /* was made negative by deflate(..., Z_FINISH); */
384 s
->status
= s
->wrap
? INIT_STATE
: BUSY_STATE
;
387 s
->wrap
== 2 ? crc32(0L, Z_NULL
, 0) :
389 adler32(0L, Z_NULL
, 0);
390 s
->last_flush
= Z_NO_FLUSH
;
398 /* ========================================================================= */
399 int ZEXPORT
deflateSetHeader (strm
, head
)
403 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
404 if (strm
->state
->wrap
!= 2) return Z_STREAM_ERROR
;
405 strm
->state
->gzhead
= head
;
409 /* ========================================================================= */
410 int ZEXPORT
deflatePrime (strm
, bits
, value
)
415 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
416 strm
->state
->bi_valid
= bits
;
417 strm
->state
->bi_buf
= (ush
)(value
& ((1 << bits
) - 1));
421 /* ========================================================================= */
422 int ZEXPORT
deflateParams(strm
, level
, strategy
)
431 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
435 if (level
!= 0) level
= 1;
437 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
439 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_FIXED
) {
440 return Z_STREAM_ERROR
;
442 func
= configuration_table
[s
->level
].func
;
444 if (func
!= configuration_table
[level
].func
&& strm
->total_in
!= 0) {
445 /* Flush the last buffer: */
446 err
= deflate(strm
, Z_PARTIAL_FLUSH
);
448 if (s
->level
!= level
) {
450 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
451 s
->good_match
= configuration_table
[level
].good_length
;
452 s
->nice_match
= configuration_table
[level
].nice_length
;
453 s
->max_chain_length
= configuration_table
[level
].max_chain
;
455 s
->strategy
= strategy
;
459 /* ========================================================================= */
460 int ZEXPORT
deflateTune(strm
, good_length
, max_lazy
, nice_length
, max_chain
)
469 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
471 s
->good_match
= good_length
;
472 s
->max_lazy_match
= max_lazy
;
473 s
->nice_match
= nice_length
;
474 s
->max_chain_length
= max_chain
;
478 /* =========================================================================
479 * For the default windowBits of 15 and memLevel of 8, this function returns
480 * a close to exact, as well as small, upper bound on the compressed size.
481 * They are coded as constants here for a reason--if the #define's are
482 * changed, then this function needs to be changed as well. The return
483 * value for 15 and 8 only works for those exact settings.
485 * For any setting other than those defaults for windowBits and memLevel,
486 * the value returned is a conservative worst case for the maximum expansion
487 * resulting from using fixed blocks instead of stored blocks, which deflate
488 * can emit on compressed data for some combinations of the parameters.
490 * This function could be more sophisticated to provide closer upper bounds
491 * for every combination of windowBits and memLevel, as well as wrap.
492 * But even the conservative upper bound of about 14% expansion does not
493 * seem onerous for output buffer allocation.
495 uLong ZEXPORT
deflateBound(strm
, sourceLen
)
502 /* conservative upper bound */
503 destLen
= sourceLen
+
504 ((sourceLen
+ 7) >> 3) + ((sourceLen
+ 63) >> 6) + 11;
506 /* if can't get parameters, return conservative bound */
507 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
)
510 /* if not default parameters, return conservative bound */
512 if (s
->w_bits
!= 15 || s
->hash_bits
!= 8 + 7)
515 /* default settings: return tight bound for that case */
516 return compressBound(sourceLen
);
519 /* =========================================================================
520 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
521 * IN assertion: the stream state is correct and there is enough room in
524 local
void putShortMSB (s
, b
)
528 put_byte(s
, (Byte
)(b
>> 8));
529 put_byte(s
, (Byte
)(b
& 0xff));
532 /* =========================================================================
533 * Flush as much pending output as possible. All deflate() output goes
534 * through this function so some applications may wish to modify it
535 * to avoid allocating a large strm->next_out buffer and copying into it.
536 * (See also read_buf()).
538 local
void flush_pending(strm
)
541 unsigned len
= strm
->state
->pending
;
543 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
544 if (len
== 0) return;
546 zmemcpy(strm
->next_out
, strm
->state
->pending_out
, len
);
547 strm
->next_out
+= len
;
548 strm
->state
->pending_out
+= len
;
549 strm
->total_out
+= len
;
550 strm
->avail_out
-= len
;
551 strm
->state
->pending
-= len
;
552 if (strm
->state
->pending
== 0) {
553 strm
->state
->pending_out
= strm
->state
->pending_buf
;
557 /* ========================================================================= */
558 int ZEXPORT
deflate (strm
, flush
)
562 int old_flush
; /* value of flush param for previous deflate call */
565 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
566 flush
> Z_FINISH
|| flush
< 0) {
567 return Z_STREAM_ERROR
;
571 if (strm
->next_out
== Z_NULL
||
572 (strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
573 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
574 ERR_RETURN(strm
, Z_STREAM_ERROR
);
576 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
578 s
->strm
= strm
; /* just in case */
579 old_flush
= s
->last_flush
;
580 s
->last_flush
= flush
;
582 /* Write the header */
583 if (s
->status
== INIT_STATE
) {
586 strm
->adler
= crc32(0L, Z_NULL
, 0);
590 if (s
->gzhead
== NULL
) {
596 put_byte(s
, s
->level
== 9 ? 2 :
597 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
599 put_byte(s
, OS_CODE
);
600 s
->status
= BUSY_STATE
;
603 put_byte(s
, (s
->gzhead
->text
? 1 : 0) +
604 (s
->gzhead
->hcrc
? 2 : 0) +
605 (s
->gzhead
->extra
== Z_NULL
? 0 : 4) +
606 (s
->gzhead
->name
== Z_NULL
? 0 : 8) +
607 (s
->gzhead
->comment
== Z_NULL
? 0 : 16)
609 put_byte(s
, (Byte
)(s
->gzhead
->time
& 0xff));
610 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 8) & 0xff));
611 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 16) & 0xff));
612 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 24) & 0xff));
613 put_byte(s
, s
->level
== 9 ? 2 :
614 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
616 put_byte(s
, s
->gzhead
->os
& 0xff);
617 if (s
->gzhead
->extra
!= NULL
) {
618 put_byte(s
, s
->gzhead
->extra_len
& 0xff);
619 put_byte(s
, (s
->gzhead
->extra_len
>> 8) & 0xff);
622 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
,
625 s
->status
= EXTRA_STATE
;
631 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
634 if (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2)
636 else if (s
->level
< 6)
638 else if (s
->level
== 6)
642 header
|= (level_flags
<< 6);
643 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
644 header
+= 31 - (header
% 31);
646 s
->status
= BUSY_STATE
;
647 putShortMSB(s
, header
);
649 /* Save the adler32 of the preset dictionary: */
650 if (s
->strstart
!= 0) {
651 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
652 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
654 strm
->adler
= adler32(0L, Z_NULL
, 0);
658 if (s
->status
== EXTRA_STATE
) {
659 if (s
->gzhead
->extra
!= NULL
) {
660 uInt beg
= s
->pending
; /* start of bytes to update crc */
662 while (s
->gzindex
< (s
->gzhead
->extra_len
& 0xffff)) {
663 if (s
->pending
== s
->pending_buf_size
) {
664 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
665 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
669 if (s
->pending
== s
->pending_buf_size
)
672 put_byte(s
, s
->gzhead
->extra
[s
->gzindex
]);
675 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
676 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
678 if (s
->gzindex
== s
->gzhead
->extra_len
) {
680 s
->status
= NAME_STATE
;
684 s
->status
= NAME_STATE
;
686 if (s
->status
== NAME_STATE
) {
687 if (s
->gzhead
->name
!= NULL
) {
688 uInt beg
= s
->pending
; /* start of bytes to update crc */
692 if (s
->pending
== s
->pending_buf_size
) {
693 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
694 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
698 if (s
->pending
== s
->pending_buf_size
) {
703 val
= s
->gzhead
->name
[s
->gzindex
++];
706 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
707 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
711 s
->status
= COMMENT_STATE
;
715 s
->status
= COMMENT_STATE
;
717 if (s
->status
== COMMENT_STATE
) {
718 if (s
->gzhead
->comment
!= NULL
) {
719 uInt beg
= s
->pending
; /* start of bytes to update crc */
723 if (s
->pending
== s
->pending_buf_size
) {
724 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
725 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
729 if (s
->pending
== s
->pending_buf_size
) {
734 val
= s
->gzhead
->comment
[s
->gzindex
++];
737 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
738 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
741 s
->status
= HCRC_STATE
;
744 s
->status
= HCRC_STATE
;
746 if (s
->status
== HCRC_STATE
) {
747 if (s
->gzhead
->hcrc
) {
748 if (s
->pending
+ 2 > s
->pending_buf_size
)
750 if (s
->pending
+ 2 <= s
->pending_buf_size
) {
751 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
752 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
753 strm
->adler
= crc32(0L, Z_NULL
, 0);
754 s
->status
= BUSY_STATE
;
758 s
->status
= BUSY_STATE
;
762 /* Flush as much pending output as possible */
763 if (s
->pending
!= 0) {
765 if (strm
->avail_out
== 0) {
766 /* Since avail_out is 0, deflate will be called again with
767 * more output space, but possibly with both pending and
768 * avail_in equal to zero. There won't be anything to do,
769 * but this is not an error situation so make sure we
770 * return OK instead of BUF_ERROR at next call of deflate:
776 /* Make sure there is something to do and avoid duplicate consecutive
777 * flushes. For repeated and useless calls with Z_FINISH, we keep
778 * returning Z_STREAM_END instead of Z_BUF_ERROR.
780 } else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
782 ERR_RETURN(strm
, Z_BUF_ERROR
);
785 /* User must not provide more input after the first FINISH: */
786 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
787 ERR_RETURN(strm
, Z_BUF_ERROR
);
790 /* Start a new block or continue the current one.
792 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
793 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
796 bstate
= (*(configuration_table
[s
->level
].func
))(s
, flush
);
798 if (bstate
== finish_started
|| bstate
== finish_done
) {
799 s
->status
= FINISH_STATE
;
801 if (bstate
== need_more
|| bstate
== finish_started
) {
802 if (strm
->avail_out
== 0) {
803 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
806 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
807 * of deflate should use the same flush parameter to make sure
808 * that the flush is complete. So we don't have to output an
809 * empty block here, this will be done at next call. This also
810 * ensures that for a very small output buffer, we emit at most
814 if (bstate
== block_done
) {
815 if (flush
== Z_PARTIAL_FLUSH
) {
817 } else { /* FULL_FLUSH or SYNC_FLUSH */
818 _tr_stored_block(s
, (char*)0, 0L, 0);
819 /* For a full flush, this empty block will be recognized
820 * as a special marker by inflate_sync().
822 if (flush
== Z_FULL_FLUSH
) {
823 CLEAR_HASH(s
); /* forget history */
827 if (strm
->avail_out
== 0) {
828 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
833 Assert(strm
->avail_out
> 0, "bug2");
835 if (flush
!= Z_FINISH
) return Z_OK
;
836 if (s
->wrap
<= 0) return Z_STREAM_END
;
838 /* Write the trailer */
841 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
842 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
843 put_byte(s
, (Byte
)((strm
->adler
>> 16) & 0xff));
844 put_byte(s
, (Byte
)((strm
->adler
>> 24) & 0xff));
845 put_byte(s
, (Byte
)(strm
->total_in
& 0xff));
846 put_byte(s
, (Byte
)((strm
->total_in
>> 8) & 0xff));
847 put_byte(s
, (Byte
)((strm
->total_in
>> 16) & 0xff));
848 put_byte(s
, (Byte
)((strm
->total_in
>> 24) & 0xff));
853 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
854 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
857 /* If avail_out is zero, the application will call deflate again
860 if (s
->wrap
> 0) s
->wrap
= -s
->wrap
; /* write the trailer only once! */
861 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
864 /* ========================================================================= */
865 int ZEXPORT
deflateEnd (strm
)
870 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
872 status
= strm
->state
->status
;
873 if (status
!= INIT_STATE
&&
874 status
!= EXTRA_STATE
&&
875 status
!= NAME_STATE
&&
876 status
!= COMMENT_STATE
&&
877 status
!= HCRC_STATE
&&
878 status
!= BUSY_STATE
&&
879 status
!= FINISH_STATE
) {
880 return Z_STREAM_ERROR
;
883 /* Deallocate in reverse order of allocations: */
884 TRY_FREE(strm
, strm
->state
->pending_buf
);
885 TRY_FREE(strm
, strm
->state
->head
);
886 TRY_FREE(strm
, strm
->state
->prev
);
887 TRY_FREE(strm
, strm
->state
->window
);
889 ZFREE(strm
, strm
->state
);
890 strm
->state
= Z_NULL
;
892 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
895 /* =========================================================================
896 * Copy the source state to the destination state.
897 * To simplify the source, this is not supported for 16-bit MSDOS (which
898 * doesn't have enough memory anyway to duplicate compression states).
900 int ZEXPORT
deflateCopy (dest
, source
)
905 return Z_STREAM_ERROR
;
912 if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
) {
913 return Z_STREAM_ERROR
;
918 zmemcpy(dest
, source
, sizeof(z_stream
));
920 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
921 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
922 dest
->state
= (struct internal_state FAR
*) ds
;
923 zmemcpy(ds
, ss
, sizeof(deflate_state
));
926 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
927 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
928 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
929 overlay
= (ushf
*) ZALLOC(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
930 ds
->pending_buf
= (uchf
*) overlay
;
932 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
933 ds
->pending_buf
== Z_NULL
) {
937 /* following zmemcpy do not work for 16-bit MSDOS */
938 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
939 zmemcpy(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
940 zmemcpy(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
941 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
943 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
944 ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
945 ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
947 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
948 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
949 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
952 #endif /* MAXSEG_64K */
955 /* ===========================================================================
956 * Read a new buffer from the current input stream, update the adler32
957 * and total number of bytes read. All deflate() input goes through
958 * this function so some applications may wish to modify it to avoid
959 * allocating a large strm->next_in buffer and copying from it.
960 * (See also flush_pending()).
962 local
int read_buf(strm
, buf
, size
)
967 unsigned len
= strm
->avail_in
;
969 if (len
> size
) len
= size
;
970 if (len
== 0) return 0;
972 strm
->avail_in
-= len
;
974 if (strm
->state
->wrap
== 1) {
975 strm
->adler
= adler32(strm
->adler
, strm
->next_in
, len
);
978 else if (strm
->state
->wrap
== 2) {
979 strm
->adler
= crc32(strm
->adler
, strm
->next_in
, len
);
982 zmemcpy(buf
, strm
->next_in
, len
);
983 strm
->next_in
+= len
;
984 strm
->total_in
+= len
;
989 /* ===========================================================================
990 * Initialize the "longest match" routines for a new zlib stream
992 local
void lm_init (s
)
995 s
->window_size
= (ulg
)2L*s
->w_size
;
999 /* Set the default configuration parameters:
1001 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
1002 s
->good_match
= configuration_table
[s
->level
].good_length
;
1003 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
1004 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
1007 s
->block_start
= 0L;
1009 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
1010 s
->match_available
= 0;
1014 match_init(); /* initialize the asm code */
1020 /* ===========================================================================
1021 * Set match_start to the longest match starting at the given string and
1022 * return its length. Matches shorter or equal to prev_length are discarded,
1023 * in which case the result is equal to prev_length and match_start is
1025 * IN assertions: cur_match is the head of the hash chain for the current
1026 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1027 * OUT assertion: the match length is not greater than s->lookahead.
1030 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1031 * match.S. The code will be functionally equivalent.
1033 local uInt
longest_match(s
, cur_match
)
1035 IPos cur_match
; /* current match */
1037 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1038 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1039 register Bytef
*match
; /* matched string */
1040 register int len
; /* length of current match */
1041 int best_len
= s
->prev_length
; /* best match length so far */
1042 int nice_match
= s
->nice_match
; /* stop if match long enough */
1043 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1044 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1045 /* Stop when cur_match becomes <= limit. To simplify the code,
1046 * we prevent matches with the string of window index 0.
1048 Posf
*prev
= s
->prev
;
1049 uInt wmask
= s
->w_mask
;
1052 /* Compare two bytes at a time. Note: this is not always beneficial.
1053 * Try with and without -DUNALIGNED_OK to check.
1055 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1056 register ush scan_start
= *(ushf
*)scan
;
1057 register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
1059 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1060 register Byte scan_end1
= scan
[best_len
-1];
1061 register Byte scan_end
= scan
[best_len
];
1064 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1065 * It is easy to get rid of this optimization if necessary.
1067 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1069 /* Do not waste too much time if we already have a good match: */
1070 if (s
->prev_length
>= s
->good_match
) {
1073 /* Do not look for matches beyond the end of the input. This is necessary
1074 * to make deflate deterministic.
1076 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
1078 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1081 Assert(cur_match
< s
->strstart
, "no future");
1082 match
= s
->window
+ cur_match
;
1084 /* Skip to next match if the match length cannot increase
1085 * or if the match length is less than 2. Note that the checks below
1086 * for insufficient lookahead only occur occasionally for performance
1087 * reasons. Therefore uninitialized memory will be accessed, and
1088 * conditional jumps will be made that depend on those values.
1089 * However the length of the match is limited to the lookahead, so
1090 * the output of deflate is not affected by the uninitialized values.
1092 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1093 /* This code assumes sizeof(unsigned short) == 2. Do not use
1094 * UNALIGNED_OK if your compiler uses a different size.
1096 if (*(ushf
*)(match
+best_len
-1) != scan_end
||
1097 *(ushf
*)match
!= scan_start
) continue;
1099 /* It is not necessary to compare scan[2] and match[2] since they are
1100 * always equal when the other bytes match, given that the hash keys
1101 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1102 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1103 * lookahead only every 4th comparison; the 128th check will be made
1104 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1105 * necessary to put more guard bytes at the end of the window, or
1106 * to check more often for insufficient lookahead.
1108 Assert(scan
[2] == match
[2], "scan[2]?");
1111 } while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1112 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1113 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1114 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1116 /* The funny "do {}" generates better code on most compilers */
1118 /* Here, scan <= window+strstart+257 */
1119 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1120 if (*scan
== *match
) scan
++;
1122 len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
1123 scan
= strend
- (MAX_MATCH
-1);
1125 #else /* UNALIGNED_OK */
1127 if (match
[best_len
] != scan_end
||
1128 match
[best_len
-1] != scan_end1
||
1130 *++match
!= scan
[1]) continue;
1132 /* The check at best_len-1 can be removed because it will be made
1133 * again later. (This heuristic is not always a win.)
1134 * It is not necessary to compare scan[2] and match[2] since they
1135 * are always equal when the other bytes match, given that
1136 * the hash keys are equal and that HASH_BITS >= 8.
1139 Assert(*scan
== *match
, "match[2]?");
1141 /* We check for insufficient lookahead only every 8th comparison;
1142 * the 256th check will be made at strstart+258.
1145 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1146 *++scan
== *++match
&& *++scan
== *++match
&&
1147 *++scan
== *++match
&& *++scan
== *++match
&&
1148 *++scan
== *++match
&& *++scan
== *++match
&&
1151 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1153 len
= MAX_MATCH
- (int)(strend
- scan
);
1154 scan
= strend
- MAX_MATCH
;
1156 #endif /* UNALIGNED_OK */
1158 if (len
> best_len
) {
1159 s
->match_start
= cur_match
;
1161 if (len
>= nice_match
) break;
1163 scan_end
= *(ushf
*)(scan
+best_len
-1);
1165 scan_end1
= scan
[best_len
-1];
1166 scan_end
= scan
[best_len
];
1169 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1170 && --chain_length
!= 0);
1172 if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
1173 return s
->lookahead
;
1176 #endif /* FASTEST */
1178 /* ---------------------------------------------------------------------------
1179 * Optimized version for level == 1 or strategy == Z_RLE only
1181 local uInt
longest_match_fast(s
, cur_match
)
1183 IPos cur_match
; /* current match */
1185 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1186 register Bytef
*match
; /* matched string */
1187 register int len
; /* length of current match */
1188 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1190 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1191 * It is easy to get rid of this optimization if necessary.
1193 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1195 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1197 Assert(cur_match
< s
->strstart
, "no future");
1199 match
= s
->window
+ cur_match
;
1201 /* Return failure if the match length is less than 2:
1203 if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
1205 /* The check at best_len-1 can be removed because it will be made
1206 * again later. (This heuristic is not always a win.)
1207 * It is not necessary to compare scan[2] and match[2] since they
1208 * are always equal when the other bytes match, given that
1209 * the hash keys are equal and that HASH_BITS >= 8.
1211 scan
+= 2, match
+= 2;
1212 Assert(*scan
== *match
, "match[2]?");
1214 /* We check for insufficient lookahead only every 8th comparison;
1215 * the 256th check will be made at strstart+258.
1218 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1219 *++scan
== *++match
&& *++scan
== *++match
&&
1220 *++scan
== *++match
&& *++scan
== *++match
&&
1221 *++scan
== *++match
&& *++scan
== *++match
&&
1224 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1226 len
= MAX_MATCH
- (int)(strend
- scan
);
1228 if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
1230 s
->match_start
= cur_match
;
1231 return (uInt
)len
<= s
->lookahead
? (uInt
)len
: s
->lookahead
;
1235 /* ===========================================================================
1236 * Check that the match at match_start is indeed a match.
1238 local
void check_match(s
, start
, match
, length
)
1243 /* check that the match is indeed a match */
1244 if (zmemcmp(s
->window
+ match
,
1245 s
->window
+ start
, length
) != EQUAL
) {
1246 fprintf(stderr
, " start %u, match %u, length %d\n",
1247 start
, match
, length
);
1249 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1250 } while (--length
!= 0);
1251 z_error("invalid match");
1253 if (z_verbose
> 1) {
1254 fprintf(stderr
,"\\[%d,%d]", start
-match
, length
);
1255 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1259 # define check_match(s, start, match, length)
1262 /* ===========================================================================
1263 * Fill the window when the lookahead becomes insufficient.
1264 * Updates strstart and lookahead.
1266 * IN assertion: lookahead < MIN_LOOKAHEAD
1267 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1268 * At least one byte has been read, or avail_in == 0; reads are
1269 * performed for at least two bytes (required for the zip translate_eol
1270 * option -- not supported here).
1272 local
void fill_window(s
)
1275 register unsigned n
, m
;
1277 unsigned more
; /* Amount of free space at the end of the window. */
1278 uInt wsize
= s
->w_size
;
1281 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
1283 /* Deal with !@#$% 64K limit: */
1284 if (sizeof(int) <= 2) {
1285 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
1288 } else if (more
== (unsigned)(-1)) {
1289 /* Very unlikely, but possible on 16 bit machine if
1290 * strstart == 0 && lookahead == 1 (input done a byte at time)
1296 /* If the window is almost full and there is insufficient lookahead,
1297 * move the upper half to the lower one to make room in the upper half.
1299 if (s
->strstart
>= wsize
+MAX_DIST(s
)) {
1301 zmemcpy(s
->window
, s
->window
+wsize
, (unsigned)wsize
);
1302 s
->match_start
-= wsize
;
1303 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
1304 s
->block_start
-= (long) wsize
;
1306 /* Slide the hash table (could be avoided with 32 bit values
1307 at the expense of memory usage). We slide even when level == 0
1308 to keep the hash table consistent if we switch back to level > 0
1309 later. (Using level 0 permanently is not an optimal usage of
1310 zlib, so we don't care about this pathological case.)
1312 /* %%% avoid this when Z_RLE */
1317 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1325 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1326 /* If n is not on any hash chain, prev[n] is garbage but
1327 * its value will never be used.
1333 if (s
->strm
->avail_in
== 0) return;
1335 /* If there was no sliding:
1336 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1337 * more == window_size - lookahead - strstart
1338 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1339 * => more >= window_size - 2*WSIZE + 2
1340 * In the BIG_MEM or MMAP case (not yet supported),
1341 * window_size == input_size + MIN_LOOKAHEAD &&
1342 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1343 * Otherwise, window_size == 2*WSIZE so more >= 2.
1344 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1346 Assert(more
>= 2, "more < 2");
1348 n
= read_buf(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
1351 /* Initialize the hash value now that we have some input: */
1352 if (s
->lookahead
>= MIN_MATCH
) {
1353 s
->ins_h
= s
->window
[s
->strstart
];
1354 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1356 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1359 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1360 * but this is not important since only literal bytes will be emitted.
1363 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
1366 /* ===========================================================================
1367 * Flush the current block, with given end-of-file flag.
1368 * IN assertion: strstart is set to the end of the current match.
1370 #define FLUSH_BLOCK_ONLY(s, eof) { \
1371 _tr_flush_block(s, (s->block_start >= 0L ? \
1372 (charf *)&s->window[(unsigned)s->block_start] : \
1374 (ulg)((long)s->strstart - s->block_start), \
1376 s->block_start = s->strstart; \
1377 flush_pending(s->strm); \
1378 Tracev((stderr,"[FLUSH]")); \
1381 /* Same but force premature exit if necessary. */
1382 #define FLUSH_BLOCK(s, eof) { \
1383 FLUSH_BLOCK_ONLY(s, eof); \
1384 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1387 /* ===========================================================================
1388 * Copy without compression as much as possible from the input stream, return
1389 * the current block state.
1390 * This function does not insert new strings in the dictionary since
1391 * uncompressible data is probably not useful. This function is used
1392 * only for the level=0 compression option.
1393 * NOTE: this function should be optimized to avoid extra copying from
1394 * window to pending_buf.
1396 local block_state
deflate_stored(s
, flush
)
1400 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1401 * to pending_buf_size, and each stored block has a 5 byte header:
1403 ulg max_block_size
= 0xffff;
1406 if (max_block_size
> s
->pending_buf_size
- 5) {
1407 max_block_size
= s
->pending_buf_size
- 5;
1410 /* Copy as much as possible from input to output: */
1412 /* Fill the window as much as possible: */
1413 if (s
->lookahead
<= 1) {
1415 Assert(s
->strstart
< s
->w_size
+MAX_DIST(s
) ||
1416 s
->block_start
>= (long)s
->w_size
, "slide too late");
1419 if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
1421 if (s
->lookahead
== 0) break; /* flush the current block */
1423 Assert(s
->block_start
>= 0L, "block gone");
1425 s
->strstart
+= s
->lookahead
;
1428 /* Emit a stored block if pending_buf will be full: */
1429 max_start
= s
->block_start
+ max_block_size
;
1430 if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
1431 /* strstart == 0 is possible when wraparound on 16-bit machine */
1432 s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
1433 s
->strstart
= (uInt
)max_start
;
1436 /* Flush if we may have to slide, otherwise block_start may become
1437 * negative and the data will be gone:
1439 if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST(s
)) {
1443 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1444 return flush
== Z_FINISH
? finish_done
: block_done
;
1447 /* ===========================================================================
1448 * Compress as much as possible from the input stream, return the current
1450 * This function does not perform lazy evaluation of matches and inserts
1451 * new strings in the dictionary only for unmatched strings or for short
1452 * matches. It is used only for the fast compression options.
1454 local block_state
deflate_fast(s
, flush
)
1458 IPos hash_head
= NIL
; /* head of the hash chain */
1459 int bflush
; /* set if current block must be flushed */
1462 /* Make sure that we always have enough lookahead, except
1463 * at the end of the input file. We need MAX_MATCH bytes
1464 * for the next match, plus MIN_MATCH bytes to insert the
1465 * string following the next match.
1467 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1469 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1472 if (s
->lookahead
== 0) break; /* flush the current block */
1475 /* Insert the string window[strstart .. strstart+2] in the
1476 * dictionary, and set hash_head to the head of the hash chain:
1478 if (s
->lookahead
>= MIN_MATCH
) {
1479 INSERT_STRING(s
, s
->strstart
, hash_head
);
1482 /* Find the longest match, discarding those <= prev_length.
1483 * At this point we have always match_length < MIN_MATCH
1485 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1486 /* To simplify the code, we prevent matches with the string
1487 * of window index 0 (in particular we have to avoid a match
1488 * of the string with itself at the start of the input file).
1491 if ((s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) ||
1492 (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1)) {
1493 s
->match_length
= longest_match_fast (s
, hash_head
);
1496 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1497 s
->match_length
= longest_match (s
, hash_head
);
1498 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1499 s
->match_length
= longest_match_fast (s
, hash_head
);
1502 /* longest_match() or longest_match_fast() sets match_start */
1504 if (s
->match_length
>= MIN_MATCH
) {
1505 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1507 _tr_tally_dist(s
, s
->strstart
- s
->match_start
,
1508 s
->match_length
- MIN_MATCH
, bflush
);
1510 s
->lookahead
-= s
->match_length
;
1512 /* Insert new strings in the hash table only if the match length
1513 * is not too large. This saves time but degrades compression.
1516 if (s
->match_length
<= s
->max_insert_length
&&
1517 s
->lookahead
>= MIN_MATCH
) {
1518 s
->match_length
--; /* string at strstart already in table */
1521 INSERT_STRING(s
, s
->strstart
, hash_head
);
1522 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1523 * always MIN_MATCH bytes ahead.
1525 } while (--s
->match_length
!= 0);
1530 s
->strstart
+= s
->match_length
;
1531 s
->match_length
= 0;
1532 s
->ins_h
= s
->window
[s
->strstart
];
1533 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1535 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1537 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1538 * matter since it will be recomputed at next deflate call.
1542 /* No match, output a literal byte */
1543 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1544 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1548 if (bflush
) FLUSH_BLOCK(s
, 0);
1550 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1551 return flush
== Z_FINISH
? finish_done
: block_done
;
1555 /* ===========================================================================
1556 * Same as above, but achieves better compression. We use a lazy
1557 * evaluation for matches: a match is finally adopted only if there is
1558 * no better match at the next window position.
1560 local block_state
deflate_slow(s
, flush
)
1564 IPos hash_head
= NIL
; /* head of hash chain */
1565 int bflush
; /* set if current block must be flushed */
1567 /* Process the input block. */
1569 /* Make sure that we always have enough lookahead, except
1570 * at the end of the input file. We need MAX_MATCH bytes
1571 * for the next match, plus MIN_MATCH bytes to insert the
1572 * string following the next match.
1574 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1576 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1579 if (s
->lookahead
== 0) break; /* flush the current block */
1582 /* Insert the string window[strstart .. strstart+2] in the
1583 * dictionary, and set hash_head to the head of the hash chain:
1585 if (s
->lookahead
>= MIN_MATCH
) {
1586 INSERT_STRING(s
, s
->strstart
, hash_head
);
1589 /* Find the longest match, discarding those <= prev_length.
1591 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1592 s
->match_length
= MIN_MATCH
-1;
1594 if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
1595 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1596 /* To simplify the code, we prevent matches with the string
1597 * of window index 0 (in particular we have to avoid a match
1598 * of the string with itself at the start of the input file).
1600 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1601 s
->match_length
= longest_match (s
, hash_head
);
1602 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1603 s
->match_length
= longest_match_fast (s
, hash_head
);
1605 /* longest_match() or longest_match_fast() sets match_start */
1607 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
1608 #if TOO_FAR <= 32767
1609 || (s
->match_length
== MIN_MATCH
&&
1610 s
->strstart
- s
->match_start
> TOO_FAR
)
1614 /* If prev_match is also MIN_MATCH, match_start is garbage
1615 * but we will ignore the current match anyway.
1617 s
->match_length
= MIN_MATCH
-1;
1620 /* If there was a match at the previous step and the current
1621 * match is not better, output the previous match:
1623 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
1624 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1625 /* Do not insert strings in hash table beyond this. */
1627 check_match(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
1629 _tr_tally_dist(s
, s
->strstart
-1 - s
->prev_match
,
1630 s
->prev_length
- MIN_MATCH
, bflush
);
1632 /* Insert in hash table all strings up to the end of the match.
1633 * strstart-1 and strstart are already inserted. If there is not
1634 * enough lookahead, the last two strings are not inserted in
1637 s
->lookahead
-= s
->prev_length
-1;
1638 s
->prev_length
-= 2;
1640 if (++s
->strstart
<= max_insert
) {
1641 INSERT_STRING(s
, s
->strstart
, hash_head
);
1643 } while (--s
->prev_length
!= 0);
1644 s
->match_available
= 0;
1645 s
->match_length
= MIN_MATCH
-1;
1648 if (bflush
) FLUSH_BLOCK(s
, 0);
1650 } else if (s
->match_available
) {
1651 /* If there was no match at the previous position, output a
1652 * single literal. If there was a match but the current match
1653 * is longer, truncate the previous match to a single literal.
1655 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1656 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1658 FLUSH_BLOCK_ONLY(s
, 0);
1662 if (s
->strm
->avail_out
== 0) return need_more
;
1664 /* There is no previous match to compare with, wait for
1665 * the next step to decide.
1667 s
->match_available
= 1;
1672 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1673 if (s
->match_available
) {
1674 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1675 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1676 s
->match_available
= 0;
1678 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1679 return flush
== Z_FINISH
? finish_done
: block_done
;
1681 #endif /* FASTEST */
1684 /* ===========================================================================
1685 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1686 * one. Do not maintain a hash table. (It will be regenerated if this run of
1687 * deflate switches away from Z_RLE.)
1689 local block_state
deflate_rle(s
, flush
)
1693 int bflush
; /* set if current block must be flushed */
1694 uInt run
; /* length of run */
1695 uInt max
; /* maximum length of run */
1696 uInt prev
; /* byte at distance one to match */
1697 Bytef
*scan
; /* scan for end of run */
1700 /* Make sure that we always have enough lookahead, except
1701 * at the end of the input file. We need MAX_MATCH bytes
1702 * for the longest encodable run.
1704 if (s
->lookahead
< MAX_MATCH
) {
1706 if (s
->lookahead
< MAX_MATCH
&& flush
== Z_NO_FLUSH
) {
1709 if (s
->lookahead
== 0) break; /* flush the current block */
1712 /* See how many times the previous byte repeats */
1714 if (s
->strstart
> 0) { /* if there is a previous byte, that is */
1715 max
= s
->lookahead
< MAX_MATCH
? s
->lookahead
: MAX_MATCH
;
1716 scan
= s
->window
+ s
->strstart
- 1;
1719 if (*scan
++ != prev
)
1721 } while (++run
< max
);
1724 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1725 if (run
>= MIN_MATCH
) {
1726 check_match(s
, s
->strstart
, s
->strstart
- 1, run
);
1727 _tr_tally_dist(s
, 1, run
- MIN_MATCH
, bflush
);
1728 s
->lookahead
-= run
;
1731 /* No match, output a literal byte */
1732 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1733 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1737 if (bflush
) FLUSH_BLOCK(s
, 0);
1739 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1740 return flush
== Z_FINISH
? finish_done
: block_done
;