Sync usage with man page.
[netbsd-mini2440.git] / external / cddl / osnet / sys / kern / taskq.c
blob58140185782e296eee535598cf68ab3a1a76ddf5
1 /* $NetBSD: taskq.c,v 1.1 2009/03/26 22:11:45 ad Exp $ */
3 /*
4 * CDDL HEADER START
6 * The contents of this file are subject to the terms of the
7 * Common Development and Distribution License, Version 1.0 only
8 * (the "License"). You may not use this file except in compliance
9 * with the License.
11 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
12 * or http://www.opensolaris.org/os/licensing.
13 * See the License for the specific language governing permissions
14 * and limitations under the License.
16 * When distributing Covered Code, include this CDDL HEADER in each
17 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
18 * If applicable, add the following below this CDDL HEADER, with the
19 * fields enclosed by brackets "[]" replaced with your own identifying
20 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * CDDL HEADER END
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
29 #pragma ident "%Z%%M% %I% %E% SMI"
32 * Kernel task queues: general-purpose asynchronous task scheduling.
34 * A common problem in kernel programming is the need to schedule tasks
35 * to be performed later, by another thread. There are several reasons
36 * you may want or need to do this:
38 * (1) The task isn't time-critical, but your current code path is.
40 * (2) The task may require grabbing locks that you already hold.
42 * (3) The task may need to block (e.g. to wait for memory), but you
43 * cannot block in your current context.
45 * (4) Your code path can't complete because of some condition, but you can't
46 * sleep or fail, so you queue the task for later execution when condition
47 * disappears.
49 * (5) You just want a simple way to launch multiple tasks in parallel.
51 * Task queues provide such a facility. In its simplest form (used when
52 * performance is not a critical consideration) a task queue consists of a
53 * single list of tasks, together with one or more threads to service the
54 * list. There are some cases when this simple queue is not sufficient:
56 * (1) The task queues are very hot and there is a need to avoid data and lock
57 * contention over global resources.
59 * (2) Some tasks may depend on other tasks to complete, so they can't be put in
60 * the same list managed by the same thread.
62 * (3) Some tasks may block for a long time, and this should not block other
63 * tasks in the queue.
65 * To provide useful service in such cases we define a "dynamic task queue"
66 * which has an individual thread for each of the tasks. These threads are
67 * dynamically created as they are needed and destroyed when they are not in
68 * use. The API for managing task pools is the same as for managing task queues
69 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
70 * dynamic task pool behavior is desired.
72 * Dynamic task queues may also place tasks in the normal queue (called "backing
73 * queue") when task pool runs out of resources. Users of task queues may
74 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
75 * flags.
77 * The backing task queue is also used for scheduling internal tasks needed for
78 * dynamic task queue maintenance.
80 * INTERFACES:
82 * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
84 * Create a taskq with specified properties.
85 * Possible 'flags':
87 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is
88 * specified, 'nthreads' specifies the maximum number of threads in
89 * the task queue. Task execution order for dynamic task queues is
90 * not predictable.
92 * If this flag is not specified (default case) a
93 * single-list task queue is created with 'nthreads' threads
94 * servicing it. Entries in this queue are managed by
95 * taskq_ent_alloc() and taskq_ent_free() which try to keep the
96 * task population between 'minalloc' and 'maxalloc', but the
97 * latter limit is only advisory for TQ_SLEEP dispatches and the
98 * former limit is only advisory for TQ_NOALLOC dispatches. If
99 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be
100 * prepopulated with 'minalloc' task structures.
102 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
103 * executed in the order they are scheduled if nthreads == 1.
104 * If nthreads > 1, task execution order is not predictable.
106 * TASKQ_PREPOPULATE: Prepopulate task queue with threads.
107 * Also prepopulate the task queue with 'minalloc' task structures.
109 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
110 * use their own protocol for handling CPR issues. This flag is not
111 * supported for DYNAMIC task queues.
113 * The 'pri' field specifies the default priority for the threads that
114 * service all scheduled tasks.
116 * void taskq_destroy(tap):
118 * Waits for any scheduled tasks to complete, then destroys the taskq.
119 * Caller should guarantee that no new tasks are scheduled in the closing
120 * taskq.
122 * taskqid_t taskq_dispatch(tq, func, arg, flags):
124 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
125 * the caller is willing to block for memory. The function returns an
126 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP
127 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
128 * and returns (taskqid_t)0.
130 * ASSUMES: func != NULL.
132 * Possible flags:
133 * TQ_NOSLEEP: Do not wait for resources; may fail.
135 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with
136 * non-dynamic task queues.
138 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
139 * lack of available resources and fail. If this flag is not
140 * set, and the task pool is exhausted, the task may be scheduled
141 * in the backing queue. This flag may ONLY be used with dynamic
142 * task queues.
144 * NOTE: This flag should always be used when a task queue is used
145 * for tasks that may depend on each other for completion.
146 * Enqueueing dependent tasks may create deadlocks.
148 * TQ_SLEEP: May block waiting for resources. May still fail for
149 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise
150 * always succeed.
152 * NOTE: Dynamic task queues are much more likely to fail in
153 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
154 * is important to have backup strategies handling such failures.
156 * void taskq_wait(tq):
158 * Waits for all previously scheduled tasks to complete.
160 * NOTE: It does not stop any new task dispatches.
161 * Do NOT call taskq_wait() from a task: it will cause deadlock.
163 * void taskq_suspend(tq)
165 * Suspend all task execution. Tasks already scheduled for a dynamic task
166 * queue will still be executed, but all new scheduled tasks will be
167 * suspended until taskq_resume() is called.
169 * int taskq_suspended(tq)
171 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to
172 * ASSERT that the task queue is suspended.
174 * void taskq_resume(tq)
176 * Resume task queue execution.
178 * int taskq_member(tq, thread)
180 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
181 * intended use is to ASSERT that a given function is called in taskq
182 * context only.
184 * system_taskq
186 * Global system-wide dynamic task queue for common uses. It may be used by
187 * any subsystem that needs to schedule tasks and does not need to manage
188 * its own task queues. It is initialized quite early during system boot.
190 * IMPLEMENTATION.
192 * This is schematic representation of the task queue structures.
194 * taskq:
195 * +-------------+
196 * |tq_lock | +---< taskq_ent_free()
197 * +-------------+ |
198 * |... | | tqent: tqent:
199 * +-------------+ | +------------+ +------------+
200 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
201 * +-------------+ +------------+ +------------+
202 * |... | | ... | | ... |
203 * +-------------+ +------------+ +------------+
204 * | tq_task | |
205 * | | +-------------->taskq_ent_alloc()
206 * +--------------------------------------------------------------------------+
207 * | | | tqent tqent |
208 * | +---------------------+ +--> +------------+ +--> +------------+ |
209 * | | ... | | | func, arg | | | func, arg | |
210 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ |
211 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+
212 * +---------------------+ | +------------+ ^ | +------------+
213 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^
214 * | +---------------------+ +------------+ | +------------+ |
215 * | |... | | ... | | | ... | |
216 * | +---------------------+ +------------+ | +------------+ |
217 * | ^ | |
218 * | | | |
219 * +--------------------------------------+--------------+ TQ_APPEND() -+
220 * | | |
221 * |... | taskq_thread()-----+
222 * +-------------+
223 * | tq_buckets |--+-------> [ NULL ] (for regular task queues)
224 * +-------------+ |
225 * | DYNAMIC TASK QUEUES:
227 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch()
228 * +-------------------+ ^
229 * +--->| tqbucket_lock | |
230 * | +-------------------+ +--------+ +--------+
231 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^
232 * | +-------------------+<--+--------+<--...+--------+ |
233 * | | ... | | thread | | thread | |
234 * | +-------------------+ +--------+ +--------+ |
235 * | +-------------------+ |
236 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+
237 * TQ_HASH() | +-------------------+ +--------+ +--------+
238 * | | tqbucket_freelist |-->| tqent |-->...| tqent |
239 * | +-------------------+<--+--------+<--...+--------+
240 * | | ... | | thread | | thread |
241 * | +-------------------+ +--------+ +--------+
242 * +---> ...
245 * Task queues use tq_task field to link new entry in the queue. The queue is a
246 * circular doubly-linked list. Entries are put in the end of the list with
247 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
248 * FIFO order. Task queue entries are cached in the free list managed by
249 * taskq_ent_alloc() and taskq_ent_free() functions.
251 * All threads used by task queues mark t_taskq field of the thread to
252 * point to the task queue.
254 * Dynamic Task Queues Implementation.
256 * For a dynamic task queues there is a 1-to-1 mapping between a thread and
257 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
258 * is controlled by a single entry.
260 * Entries are distributed over a set of buckets. To avoid using modulo
261 * arithmetics the number of buckets is 2^n and is determined as the nearest
262 * power of two roundown of the number of CPUs in the system. Tunable
263 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
264 * is attached to a bucket for its lifetime and can't migrate to other buckets.
266 * Entries that have scheduled tasks are not placed in any list. The dispatch
267 * function sets their "func" and "arg" fields and signals the corresponding
268 * thread to execute the task. Once the thread executes the task it clears the
269 * "func" field and places an entry on the bucket cache of free entries pointed
270 * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
271 * field equal to NULL. The free list is a circular doubly-linked list identical
272 * in structure to the tq_task list above, but entries are taken from it in LIFO
273 * order - the last freed entry is the first to be allocated. The
274 * taskq_bucket_dispatch() function gets the most recently used entry from the
275 * free list, sets its "func" and "arg" fields and signals a worker thread.
277 * After executing each task a per-entry thread taskq_d_thread() places its
278 * entry on the bucket free list and goes to a timed sleep. If it wakes up
279 * without getting new task it removes the entry from the free list and destroys
280 * itself. The thread sleep time is controlled by a tunable variable
281 * `taskq_thread_timeout'.
283 * There is various statistics kept in the bucket which allows for later
284 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
285 * death statistics is kept in the global taskq data structure. Since thread
286 * creation and death happen rarely, updating such global data does not present
287 * a performance problem.
289 * NOTE: Threads are not bound to any CPU and there is absolutely no association
290 * between the bucket and actual thread CPU, so buckets are used only to
291 * split resources and reduce resource contention. Having threads attached
292 * to the CPU denoted by a bucket may reduce number of times the job
293 * switches between CPUs.
295 * Current algorithm creates a thread whenever a bucket has no free
296 * entries. It would be nice to know how many threads are in the running
297 * state and don't create threads if all CPUs are busy with existing
298 * tasks, but it is unclear how such strategy can be implemented.
300 * Currently buckets are created statically as an array attached to task
301 * queue. On some system with nCPUs < max_ncpus it may waste system
302 * memory. One solution may be allocation of buckets when they are first
303 * touched, but it is not clear how useful it is.
305 * SUSPEND/RESUME implementation.
307 * Before executing a task taskq_thread() (executing non-dynamic task
308 * queues) obtains taskq's thread lock as a reader. The taskq_suspend()
309 * function gets the same lock as a writer blocking all non-dynamic task
310 * execution. The taskq_resume() function releases the lock allowing
311 * taskq_thread to continue execution.
313 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
314 * taskq_suspend() function. After that taskq_bucket_dispatch() always
315 * fails, so that taskq_dispatch() will either enqueue tasks for a
316 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
317 * flags.
319 * NOTE: taskq_suspend() does not immediately block any tasks already
320 * scheduled for dynamic task queues. It only suspends new tasks
321 * scheduled after taskq_suspend() was called.
323 * taskq_member() function works by comparing a thread t_taskq pointer with
324 * the passed thread pointer.
326 * LOCKS and LOCK Hierarchy:
328 * There are two locks used in task queues.
330 * 1) Task queue structure has a lock, protecting global task queue state.
332 * 2) Each per-CPU bucket has a lock for bucket management.
334 * If both locks are needed, task queue lock should be taken only after bucket
335 * lock.
337 * DEBUG FACILITIES.
339 * For DEBUG kernels it is possible to induce random failures to
340 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
341 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
342 * failures for dynamic and static task queues respectively.
344 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
346 * TUNABLES
348 * system_taskq_size - Size of the global system_taskq.
349 * This value is multiplied by nCPUs to determine
350 * actual size.
351 * Default value: 64
353 * taskq_thread_timeout - Maximum idle time for taskq_d_thread()
354 * Default value: 5 minutes
356 * taskq_maxbuckets - Maximum number of buckets in any task queue
357 * Default value: 128
359 * taskq_search_depth - Maximum # of buckets searched for a free entry
360 * Default value: 4
362 * taskq_dmtbf - Mean time between induced dispatch failures
363 * for dynamic task queues.
364 * Default value: UINT_MAX (no induced failures)
366 * taskq_smtbf - Mean time between induced dispatch failures
367 * for static task queues.
368 * Default value: UINT_MAX (no induced failures)
370 * CONDITIONAL compilation.
372 * TASKQ_STATISTIC - If set will enable bucket statistic (default).
376 #include <sys/kthread.h>
377 #include <sys/taskq_impl.h>
378 #include <sys/proc.h>
379 #include <sys/kmem.h>
380 #include <sys/callb.h>
381 #include <sys/systm.h>
382 #include <sys/cmn_err.h>
383 #include <sys/debug.h>
384 #include <sys/sysmacros.h>
385 #include <sys/sdt.h>
386 #include <sys/mutex.h>
387 #include <sys/kernel.h>
388 #include <sys/limits.h>
390 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
392 /* Global system task queue for common use */
393 taskq_t *system_taskq;
396 * Maxmimum number of entries in global system taskq is
397 * system_taskq_size * max_ncpus
399 #define SYSTEM_TASKQ_SIZE 1
400 int system_taskq_size = SYSTEM_TASKQ_SIZE;
403 * Dynamic task queue threads that don't get any work within
404 * taskq_thread_timeout destroy themselves
406 #define TASKQ_THREAD_TIMEOUT (60 * 5)
407 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
409 #define TASKQ_MAXBUCKETS 128
410 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
413 * When a bucket has no available entries another buckets are tried.
414 * taskq_search_depth parameter limits the amount of buckets that we search
415 * before failing. This is mostly useful in systems with many CPUs where we may
416 * spend too much time scanning busy buckets.
418 #define TASKQ_SEARCH_DEPTH 4
419 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
422 * Hashing function: mix various bits of x. May be pretty much anything.
424 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
427 * We do not create any new threads when the system is low on memory and start
428 * throttling memory allocations. The following macro tries to estimate such
429 * condition.
431 #define ENOUGH_MEMORY() (freemem > throttlefree)
434 * Static functions.
436 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int,
437 int, uint_t);
438 static void taskq_thread(void *);
439 static int taskq_constructor(void *, void *, int);
440 static void taskq_destructor(void *, void *);
441 static int taskq_ent_constructor(void *, void *, int);
442 static void taskq_ent_destructor(void *, void *);
443 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
444 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
447 * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
449 #define TASKQ_STATISTIC 1
451 #if TASKQ_STATISTIC
452 #define TQ_STAT(b, x) b->tqbucket_stat.x++
453 #else
454 #define TQ_STAT(b, x)
455 #endif
458 * Random fault injection.
460 uint_t taskq_random;
461 uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */
462 uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */
465 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
467 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
468 * they could prepopulate the cache and make sure that they do not use more
469 * then minalloc entries. So, fault injection in this case insures that
470 * either TASKQ_PREPOPULATE is not set or there are more entries allocated
471 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed
472 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
473 * dispatches.
475 #ifdef DEBUG
476 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \
477 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
478 if ((flag & TQ_NOSLEEP) && \
479 taskq_random < 1771875 / taskq_dmtbf) { \
480 return (NULL); \
483 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \
484 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
485 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \
486 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \
487 (tq->tq_nalloc > tq->tq_minalloc)) && \
488 (taskq_random < (1771875 / taskq_smtbf))) { \
489 mutex_exit(&tq->tq_lock); \
490 return ((taskqid_t)0); \
492 #else
493 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
494 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
495 #endif
497 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \
498 ((l).tqent_prev == &(l)))
501 * Append `tqe' in the end of the doubly-linked list denoted by l.
503 #define TQ_APPEND(l, tqe) { \
504 tqe->tqent_next = &l; \
505 tqe->tqent_prev = l.tqent_prev; \
506 tqe->tqent_next->tqent_prev = tqe; \
507 tqe->tqent_prev->tqent_next = tqe; \
511 * Schedule a task specified by func and arg into the task queue entry tqe.
513 #define TQ_ENQUEUE(tq, tqe, func, arg) { \
514 ASSERT(MUTEX_HELD(&tq->tq_lock)); \
515 TQ_APPEND(tq->tq_task, tqe); \
516 tqe->tqent_func = (func); \
517 tqe->tqent_arg = (arg); \
518 tq->tq_tasks++; \
519 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \
520 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \
521 cv_signal(&tq->tq_dispatch_cv); \
522 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
526 * Do-nothing task which may be used to prepopulate thread caches.
528 /*ARGSUSED*/
529 void
530 nulltask(void *unused)
535 /*ARGSUSED*/
536 static int
537 taskq_constructor(void *arg, void *obj, int kmflags)
539 taskq_t *tq = obj;
541 memset(tq, 0, sizeof (taskq_t));
543 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
544 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
545 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
546 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
548 tq->tq_task.tqent_next = &tq->tq_task;
549 tq->tq_task.tqent_prev = &tq->tq_task;
551 return (0);
554 /*ARGSUSED*/
555 static void
556 taskq_destructor(void *arg, void *obj)
558 taskq_t *tq = obj;
560 mutex_destroy(&tq->tq_lock);
561 rw_destroy(&tq->tq_threadlock);
562 cv_destroy(&tq->tq_dispatch_cv);
563 cv_destroy(&tq->tq_wait_cv);
566 /*ARGSUSED*/
567 static int
568 taskq_ent_constructor(void *arg, void *obj, int kmflags)
570 taskq_ent_t *tqe = obj;
572 tqe->tqent_thread = NULL;
573 cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
575 return (0);
578 /*ARGSUSED*/
579 static void
580 taskq_ent_destructor(void *arg, void *obj)
582 taskq_ent_t *tqe = obj;
584 ASSERT(tqe->tqent_thread == NULL);
585 cv_destroy(&tqe->tqent_cv);
589 * Create global system dynamic task queue.
591 void
592 system_taskq_init(void)
594 system_taskq = taskq_create_common("system_taskq", 0,
595 system_taskq_size * max_ncpus, minclsyspri, 4, 512,
596 TASKQ_PREPOPULATE);
599 void
600 system_taskq_fini(void)
602 taskq_destroy(system_taskq);
605 void
606 taskq_init(void)
608 taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
609 sizeof (taskq_ent_t), 0, taskq_ent_constructor,
610 taskq_ent_destructor, NULL, NULL, NULL, 0);
611 taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
612 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
613 system_taskq_init();
616 void
617 taskq_fini(void)
619 system_taskq_fini();
620 kmem_cache_destroy(taskq_cache);
621 kmem_cache_destroy(taskq_ent_cache);
625 * taskq_ent_alloc()
627 * Allocates a new taskq_ent_t structure either from the free list or from the
628 * cache. Returns NULL if it can't be allocated.
630 * Assumes: tq->tq_lock is held.
632 static taskq_ent_t *
633 taskq_ent_alloc(taskq_t *tq, int flags)
635 int kmflags = KM_NOSLEEP;
637 taskq_ent_t *tqe;
639 ASSERT(MUTEX_HELD(&tq->tq_lock));
642 * TQ_NOALLOC allocations are allowed to use the freelist, even if
643 * we are below tq_minalloc.
645 if ((tqe = tq->tq_freelist) != NULL &&
646 ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
647 tq->tq_freelist = tqe->tqent_next;
648 } else {
649 if (flags & TQ_NOALLOC)
650 return (NULL);
652 mutex_exit(&tq->tq_lock);
653 if (tq->tq_nalloc >= tq->tq_maxalloc) {
654 if (kmflags & KM_NOSLEEP) {
655 mutex_enter(&tq->tq_lock);
656 return (NULL);
659 * We don't want to exceed tq_maxalloc, but we can't
660 * wait for other tasks to complete (and thus free up
661 * task structures) without risking deadlock with
662 * the caller. So, we just delay for one second
663 * to throttle the allocation rate.
665 delay(hz);
667 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
668 mutex_enter(&tq->tq_lock);
669 if (tqe != NULL)
670 tq->tq_nalloc++;
672 return (tqe);
676 * taskq_ent_free()
678 * Free taskq_ent_t structure by either putting it on the free list or freeing
679 * it to the cache.
681 * Assumes: tq->tq_lock is held.
683 static void
684 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
686 ASSERT(MUTEX_HELD(&tq->tq_lock));
688 if (tq->tq_nalloc <= tq->tq_minalloc) {
689 tqe->tqent_next = tq->tq_freelist;
690 tq->tq_freelist = tqe;
691 } else {
692 tq->tq_nalloc--;
693 mutex_exit(&tq->tq_lock);
694 kmem_cache_free(taskq_ent_cache, tqe);
695 mutex_enter(&tq->tq_lock);
700 * Dispatch a task.
702 * Assumes: func != NULL
704 * Returns: NULL if dispatch failed.
705 * non-NULL if task dispatched successfully.
706 * Actual return value is the pointer to taskq entry that was used to
707 * dispatch a task. This is useful for debugging.
709 /* ARGSUSED */
710 taskqid_t
711 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
713 taskq_ent_t *tqe = NULL;
715 ASSERT(tq != NULL);
716 ASSERT(func != NULL);
717 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
720 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
722 ASSERT(! (flags & TQ_NOQUEUE));
725 * Enqueue the task to the underlying queue.
727 mutex_enter(&tq->tq_lock);
729 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
731 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
732 mutex_exit(&tq->tq_lock);
733 return ((taskqid_t)NULL);
735 TQ_ENQUEUE(tq, tqe, func, arg);
736 mutex_exit(&tq->tq_lock);
737 return ((taskqid_t)tqe);
741 * Wait for all pending tasks to complete.
742 * Calling taskq_wait from a task will cause deadlock.
744 void
745 taskq_wait(taskq_t *tq)
748 mutex_enter(&tq->tq_lock);
749 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
750 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
751 mutex_exit(&tq->tq_lock);
755 * Suspend execution of tasks.
757 * Tasks in the queue part will be suspended immediately upon return from this
758 * function. Pending tasks in the dynamic part will continue to execute, but all
759 * new tasks will be suspended.
761 void
762 taskq_suspend(taskq_t *tq)
764 rw_enter(&tq->tq_threadlock, RW_WRITER);
767 * Mark task queue as being suspended. Needed for taskq_suspended().
769 mutex_enter(&tq->tq_lock);
770 ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
771 tq->tq_flags |= TASKQ_SUSPENDED;
772 mutex_exit(&tq->tq_lock);
776 * returns: 1 if tq is suspended, 0 otherwise.
779 taskq_suspended(taskq_t *tq)
781 return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
785 * Resume taskq execution.
787 void
788 taskq_resume(taskq_t *tq)
790 ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
792 mutex_enter(&tq->tq_lock);
793 ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
794 tq->tq_flags &= ~TASKQ_SUSPENDED;
795 mutex_exit(&tq->tq_lock);
797 rw_exit(&tq->tq_threadlock);
801 taskq_member(taskq_t *tq, kthread_t *thread)
803 if (tq->tq_nthreads == 1)
804 return (tq->tq_thread == thread);
805 else {
806 int i, found = 0;
808 mutex_enter(&tq->tq_lock);
809 for (i = 0; i < tq->tq_nthreads; i++) {
810 if (tq->tq_threadlist[i] == thread) {
811 found = 1;
812 break;
815 mutex_exit(&tq->tq_lock);
816 return (found);
821 * Worker thread for processing task queue.
823 static void
824 taskq_thread(void *arg)
826 taskq_t *tq = arg;
827 taskq_ent_t *tqe;
828 callb_cpr_t cprinfo;
829 hrtime_t start, end;
831 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, tq->tq_name);
833 mutex_enter(&tq->tq_lock);
834 while (tq->tq_flags & TASKQ_ACTIVE) {
835 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
836 if (--tq->tq_active == 0)
837 cv_broadcast(&tq->tq_wait_cv);
838 if (tq->tq_flags & TASKQ_CPR_SAFE) {
839 cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
840 } else {
841 CALLB_CPR_SAFE_BEGIN(&cprinfo);
842 cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
843 CALLB_CPR_SAFE_END(&cprinfo, &tq->tq_lock);
845 tq->tq_active++;
846 continue;
848 tqe->tqent_prev->tqent_next = tqe->tqent_next;
849 tqe->tqent_next->tqent_prev = tqe->tqent_prev;
850 mutex_exit(&tq->tq_lock);
852 rw_enter(&tq->tq_threadlock, RW_READER);
853 start = gethrtime();
854 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
855 taskq_ent_t *, tqe);
856 tqe->tqent_func(tqe->tqent_arg);
857 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
858 taskq_ent_t *, tqe);
859 end = gethrtime();
860 rw_exit(&tq->tq_threadlock);
862 mutex_enter(&tq->tq_lock);
863 tq->tq_totaltime += end - start;
864 tq->tq_executed++;
866 taskq_ent_free(tq, tqe);
868 tq->tq_nthreads--;
869 cv_broadcast(&tq->tq_wait_cv);
870 ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
871 CALLB_CPR_EXIT(&cprinfo);
872 thread_exit();
876 * Taskq creation. May sleep for memory.
877 * Always use automatically generated instances to avoid kstat name space
878 * collisions.
881 taskq_t *
882 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
883 int maxalloc, uint_t flags)
885 return taskq_create_common(name, 0, nthreads, pri, minalloc,
886 maxalloc, flags | TASKQ_NOINSTANCE);
889 static taskq_t *
890 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
891 int minalloc, int maxalloc, uint_t flags)
893 taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_NOSLEEP);
894 uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
895 uint_t bsize; /* # of buckets - always power of 2 */
897 ASSERT(instance == 0);
898 ASSERT(flags == TASKQ_PREPOPULATE | TASKQ_NOINSTANCE);
901 * TASKQ_CPR_SAFE and TASKQ_DYNAMIC flags are mutually exclusive.
903 ASSERT((flags & (TASKQ_DYNAMIC | TASKQ_CPR_SAFE)) !=
904 ((TASKQ_DYNAMIC | TASKQ_CPR_SAFE)));
906 ASSERT(tq->tq_buckets == NULL);
908 bsize = 1 << (highbit(ncpus) - 1);
909 ASSERT(bsize >= 1);
910 bsize = MIN(bsize, taskq_maxbuckets);
912 tq->tq_maxsize = nthreads;
914 (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
915 tq->tq_name[TASKQ_NAMELEN] = '\0';
916 /* Make sure the name conforms to the rules for C indentifiers */
917 strident_canon(tq->tq_name, TASKQ_NAMELEN);
919 tq->tq_flags = flags | TASKQ_ACTIVE;
920 tq->tq_active = nthreads;
921 tq->tq_nthreads = nthreads;
922 tq->tq_minalloc = minalloc;
923 tq->tq_maxalloc = maxalloc;
924 tq->tq_nbuckets = bsize;
925 tq->tq_pri = pri;
927 if (flags & TASKQ_PREPOPULATE) {
928 mutex_enter(&tq->tq_lock);
929 while (minalloc-- > 0)
930 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
931 mutex_exit(&tq->tq_lock);
934 if (nthreads == 1) {
935 tq->tq_thread = thread_create(NULL, 0, taskq_thread, tq,
936 0, NULL, TS_RUN, pri);
937 } else {
938 kthread_t **tpp = kmem_alloc(sizeof (kthread_t *) * nthreads,
939 KM_SLEEP);
941 tq->tq_threadlist = tpp;
943 mutex_enter(&tq->tq_lock);
944 while (nthreads-- > 0) {
945 *tpp = thread_create(NULL, 0, taskq_thread, tq,
946 0, NULL, TS_RUN, pri);
947 tpp++;
949 mutex_exit(&tq->tq_lock);
952 return (tq);
956 * taskq_destroy().
958 * Assumes: by the time taskq_destroy is called no one will use this task queue
959 * in any way and no one will try to dispatch entries in it.
961 void
962 taskq_destroy(taskq_t *tq)
964 taskq_bucket_t *b = tq->tq_buckets;
965 int bid = 0;
967 ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
970 * Wait for any pending entries to complete.
972 taskq_wait(tq);
974 mutex_enter(&tq->tq_lock);
975 ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
976 (tq->tq_active == 0));
978 if ((tq->tq_nthreads > 1) && (tq->tq_threadlist != NULL))
979 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
980 tq->tq_nthreads);
982 tq->tq_flags &= ~TASKQ_ACTIVE;
983 cv_broadcast(&tq->tq_dispatch_cv);
984 while (tq->tq_nthreads != 0)
985 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
987 tq->tq_minalloc = 0;
988 while (tq->tq_nalloc != 0)
989 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
991 mutex_exit(&tq->tq_lock);
994 * Mark each bucket as closing and wakeup all sleeping threads.
996 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
997 taskq_ent_t *tqe;
999 mutex_enter(&b->tqbucket_lock);
1001 b->tqbucket_flags |= TQBUCKET_CLOSE;
1002 /* Wakeup all sleeping threads */
1004 for (tqe = b->tqbucket_freelist.tqent_next;
1005 tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
1006 cv_signal(&tqe->tqent_cv);
1008 ASSERT(b->tqbucket_nalloc == 0);
1011 * At this point we waited for all pending jobs to complete (in
1012 * both the task queue and the bucket and no new jobs should
1013 * arrive. Wait for all threads to die.
1015 while (b->tqbucket_nfree > 0)
1016 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1017 mutex_exit(&b->tqbucket_lock);
1018 mutex_destroy(&b->tqbucket_lock);
1019 cv_destroy(&b->tqbucket_cv);
1022 if (tq->tq_buckets != NULL) {
1023 ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
1024 kmem_free(tq->tq_buckets,
1025 sizeof (taskq_bucket_t) * tq->tq_nbuckets);
1027 /* Cleanup fields before returning tq to the cache */
1028 tq->tq_buckets = NULL;
1029 tq->tq_tcreates = 0;
1030 tq->tq_tdeaths = 0;
1031 } else {
1032 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1035 tq->tq_totaltime = 0;
1036 tq->tq_tasks = 0;
1037 tq->tq_maxtasks = 0;
1038 tq->tq_executed = 0;
1039 kmem_cache_free(taskq_cache, tq);