1 ;; ARM 1020E & ARM 1022E Pipeline Description
2 ;; Copyright (C) 2005 Free Software Foundation, Inc.
3 ;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
5 ;; This file is part of GCC.
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 2, or (at your option)
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING. If not, write to the Free
19 ;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 ;; 02110-1301, USA. */
22 ;; These descriptions are based on the information contained in the
23 ;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
27 ;; This automaton provides a pipeline description for the ARM
30 ;; The model given here assumes that the condition for all conditional
31 ;; instructions is "true", i.e., that all of the instructions are
34 (define_automaton "arm1020e")
36 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
40 ;; There are two pipelines:
42 ;; - An Arithmetic Logic Unit (ALU) pipeline.
44 ;; The ALU pipeline has fetch, issue, decode, execute, memory, and
45 ;; write stages. We only need to model the execute, memory and write
48 ;; - A Load-Store Unit (LSU) pipeline.
50 ;; The LSU pipeline has decode, execute, memory, and write stages.
51 ;; We only model the execute, memory and write stages.
53 (define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
54 (define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
56 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
60 ;; ALU instructions require three cycles to execute, and use the ALU
61 ;; pipeline in each of the three stages. The results are available
62 ;; after the execute stage stage has finished.
64 ;; If the destination register is the PC, the pipelines are stalled
65 ;; for several cycles. That case is not modeled here.
67 ;; ALU operations with no shifted operand
68 (define_insn_reservation "1020alu_op" 1
69 (and (eq_attr "tune" "arm1020e,arm1022e")
70 (eq_attr "type" "alu"))
71 "1020a_e,1020a_m,1020a_w")
73 ;; ALU operations with a shift-by-constant operand
74 (define_insn_reservation "1020alu_shift_op" 1
75 (and (eq_attr "tune" "arm1020e,arm1022e")
76 (eq_attr "type" "alu_shift"))
77 "1020a_e,1020a_m,1020a_w")
79 ;; ALU operations with a shift-by-register operand
80 ;; These really stall in the decoder, in order to read
81 ;; the shift value in a second cycle. Pretend we take two cycles in
83 (define_insn_reservation "1020alu_shift_reg_op" 2
84 (and (eq_attr "tune" "arm1020e,arm1022e")
85 (eq_attr "type" "alu_shift_reg"))
86 "1020a_e*2,1020a_m,1020a_w")
88 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
89 ;; Multiplication Instructions
90 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
92 ;; Multiplication instructions loop in the execute stage until the
93 ;; instruction has been passed through the multiplier array enough
96 ;; The result of the "smul" and "smulw" instructions is not available
97 ;; until after the memory stage.
98 (define_insn_reservation "1020mult1" 2
99 (and (eq_attr "tune" "arm1020e,arm1022e")
100 (eq_attr "insn" "smulxy,smulwy"))
101 "1020a_e,1020a_m,1020a_w")
103 ;; The "smlaxy" and "smlawx" instructions require two iterations through
104 ;; the execute stage; the result is available immediately following
105 ;; the execute stage.
106 (define_insn_reservation "1020mult2" 2
107 (and (eq_attr "tune" "arm1020e,arm1022e")
108 (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
109 "1020a_e*2,1020a_m,1020a_w")
111 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
112 ;; through the execute stage; the result is not available until after
114 (define_insn_reservation "1020mult3" 3
115 (and (eq_attr "tune" "arm1020e,arm1022e")
116 (eq_attr "insn" "smlalxy,mul,mla"))
117 "1020a_e*2,1020a_m,1020a_w")
119 ;; The "muls" and "mlas" instructions loop in the execute stage for
120 ;; four iterations in order to set the flags. The value result is
121 ;; available after three iterations.
122 (define_insn_reservation "1020mult4" 3
123 (and (eq_attr "tune" "arm1020e,arm1022e")
124 (eq_attr "insn" "muls,mlas"))
125 "1020a_e*4,1020a_m,1020a_w")
127 ;; Long multiply instructions that produce two registers of
128 ;; output (such as umull) make their results available in two cycles;
129 ;; the least significant word is available before the most significant
130 ;; word. That fact is not modeled; instead, the instructions are
131 ;; described.as if the entire result was available at the end of the
132 ;; cycle in which both words are available.
134 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
135 ;; three iterations through the execute cycle, and make their results
136 ;; available after the memory cycle.
137 (define_insn_reservation "1020mult5" 4
138 (and (eq_attr "tune" "arm1020e,arm1022e")
139 (eq_attr "insn" "umull,umlal,smull,smlal"))
140 "1020a_e*3,1020a_m,1020a_w")
142 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
143 ;; the execute stage for five iterations in order to set the flags.
144 ;; The value result is available after four iterations.
145 (define_insn_reservation "1020mult6" 4
146 (and (eq_attr "tune" "arm1020e,arm1022e")
147 (eq_attr "insn" "umulls,umlals,smulls,smlals"))
148 "1020a_e*5,1020a_m,1020a_w")
150 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
151 ;; Load/Store Instructions
152 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
154 ;; The models for load/store instructions do not accurately describe
155 ;; the difference between operations with a base register writeback
156 ;; (such as "ldm!"). These models assume that all memory references
159 ;; LSU instructions require six cycles to execute. They use the ALU
160 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
161 ;; three through six.
162 ;; Loads and stores which use a scaled register offset or scaled
163 ;; register pre-indexed addressing mode take three cycles EXCEPT for
164 ;; those that are base + offset with LSL of 0 or 2, or base - offset
165 ;; with LSL of zero. The remainder take 1 cycle to execute.
166 ;; For 4byte loads there is a bypass from the load stage
168 (define_insn_reservation "1020load1_op" 2
169 (and (eq_attr "tune" "arm1020e,arm1022e")
170 (eq_attr "type" "load_byte,load1"))
171 "1020a_e+1020l_e,1020l_m,1020l_w")
173 (define_insn_reservation "1020store1_op" 0
174 (and (eq_attr "tune" "arm1020e,arm1022e")
175 (eq_attr "type" "store1"))
176 "1020a_e+1020l_e,1020l_m,1020l_w")
178 ;; A load's result can be stored by an immediately following store
179 (define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
181 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
182 ;; registers have been processed.
184 ;; The time it takes to load the data depends on whether or not the
185 ;; base address is 64-bit aligned; if it is not, an additional cycle
186 ;; is required. This model assumes that the address is always 64-bit
187 ;; aligned. Because the processor can load two registers per cycle,
188 ;; that assumption means that we use the same instruction reservations
189 ;; for loading 2k and 2k - 1 registers.
191 ;; The ALU pipeline is decoupled after the first cycle unless there is
192 ;; a register dependency; the dependency is cleared as soon as the LDM/STM
193 ;; has dealt with the corresponding register. So for example,
196 ;; will have one fewer stalls than
200 ;; As with ALU operations, if one of the destination registers is the
201 ;; PC, there are additional stalls; that is not modeled.
203 (define_insn_reservation "1020load2_op" 2
204 (and (eq_attr "tune" "arm1020e,arm1022e")
205 (eq_attr "type" "load2"))
206 "1020a_e+1020l_e,1020l_m,1020l_w")
208 (define_insn_reservation "1020store2_op" 0
209 (and (eq_attr "tune" "arm1020e,arm1022e")
210 (eq_attr "type" "store2"))
211 "1020a_e+1020l_e,1020l_m,1020l_w")
213 (define_insn_reservation "1020load34_op" 3
214 (and (eq_attr "tune" "arm1020e,arm1022e")
215 (eq_attr "type" "load3,load4"))
216 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
218 (define_insn_reservation "1020store34_op" 0
219 (and (eq_attr "tune" "arm1020e,arm1022e")
220 (eq_attr "type" "store3,store4"))
221 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
223 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
224 ;; Branch and Call Instructions
225 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
227 ;; Branch instructions are difficult to model accurately. The ARM
228 ;; core can predict most branches. If the branch is predicted
229 ;; correctly, and predicted early enough, the branch can be completely
230 ;; eliminated from the instruction stream. Some branches can
231 ;; therefore appear to require zero cycles to execute. We assume that
232 ;; all branches are predicted correctly, and that the latency is
233 ;; therefore the minimum value.
235 (define_insn_reservation "1020branch_op" 0
236 (and (eq_attr "tune" "arm1020e,arm1022e")
237 (eq_attr "type" "branch"))
240 ;; The latency for a call is not predictable. Therefore, we use 32 as
241 ;; roughly equivalent to positive infinity.
243 (define_insn_reservation "1020call_op" 32
244 (and (eq_attr "tune" "arm1020e,arm1022e")
245 (eq_attr "type" "call"))
248 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
250 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
252 (define_cpu_unit "v10_fmac" "arm1020e")
254 (define_cpu_unit "v10_ds" "arm1020e")
256 (define_cpu_unit "v10_fmstat" "arm1020e")
258 (define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
260 ;; fmstat is a serializing instruction. It will stall the core until
261 ;; the mac and ds units have completed.
262 (exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
264 (define_attr "vfp10" "yes,no"
265 (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
266 (eq_attr "fpu" "vfp"))
267 (const_string "yes") (const_string "no"))))
269 ;; The VFP "type" attributes differ from those used in the FPA model.
270 ;; ffarith Fast floating point insns, e.g. abs, neg, cpy, cmp.
271 ;; farith Most arithmetic insns.
272 ;; fmul Double precision multiply.
273 ;; fdivs Single precision sqrt or division.
274 ;; fdivd Double precision sqrt or division.
275 ;; f_flag fmstat operation
276 ;; f_load Floating point load from memory.
277 ;; f_store Floating point store to memory.
278 ;; f_2_r Transfer vfp to arm reg.
279 ;; r_2_f Transfer arm to vfp reg.
281 ;; Note, no instruction can issue to the VFP if the core is stalled in the
282 ;; first execute state. We model this by using 1020a_e in the first cycle.
283 (define_insn_reservation "v10_ffarith" 5
284 (and (eq_attr "vfp10" "yes")
285 (eq_attr "type" "ffarith"))
288 (define_insn_reservation "v10_farith" 5
289 (and (eq_attr "vfp10" "yes")
290 (eq_attr "type" "farith"))
293 (define_insn_reservation "v10_cvt" 5
294 (and (eq_attr "vfp10" "yes")
295 (eq_attr "type" "f_cvt"))
298 (define_insn_reservation "v10_fmul" 6
299 (and (eq_attr "vfp10" "yes")
300 (eq_attr "type" "fmul"))
301 "1020a_e+v10_fmac*2")
303 (define_insn_reservation "v10_fdivs" 18
304 (and (eq_attr "vfp10" "yes")
305 (eq_attr "type" "fdivs"))
308 (define_insn_reservation "v10_fdivd" 32
309 (and (eq_attr "vfp10" "yes")
310 (eq_attr "type" "fdivd"))
311 "1020a_e+v10_fmac+v10_ds*28")
313 (define_insn_reservation "v10_floads" 4
314 (and (eq_attr "vfp10" "yes")
315 (eq_attr "type" "f_loads"))
316 "1020a_e+1020l_e+v10_ls1,v10_ls2")
318 ;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
319 ;; This gives the correct mix between single-and double loads where a flds
320 ;; followed by and fldd will stall for one cycle, but two back-to-back fldd
321 ;; insns stall for two cycles.
322 (define_insn_reservation "v10_floadd" 5
323 (and (eq_attr "vfp10" "yes")
324 (eq_attr "type" "f_loadd"))
325 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
327 ;; Moves to/from arm regs also use the load/store pipeline.
329 (define_insn_reservation "v10_c2v" 4
330 (and (eq_attr "vfp10" "yes")
331 (eq_attr "type" "r_2_f"))
332 "1020a_e+1020l_e+v10_ls1,v10_ls2")
334 (define_insn_reservation "v10_fstores" 1
335 (and (eq_attr "vfp10" "yes")
336 (eq_attr "type" "f_stores"))
337 "1020a_e+1020l_e+v10_ls1,v10_ls2")
339 (define_insn_reservation "v10_fstored" 1
340 (and (eq_attr "vfp10" "yes")
341 (eq_attr "type" "f_stored"))
342 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
344 (define_insn_reservation "v10_v2c" 1
345 (and (eq_attr "vfp10" "yes")
346 (eq_attr "type" "f_2_r"))
347 "1020a_e+1020l_e,1020l_m,1020l_w")
349 (define_insn_reservation "v10_to_cpsr" 2
350 (and (eq_attr "vfp10" "yes")
351 (eq_attr "type" "f_flag"))
352 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
356 ;; There are bypasses for most operations other than store
360 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
364 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
366 ;; Arithmetic to other arithmetic saves a cycle due to forwarding
368 "v10_ffarith,v10_farith"
369 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
373 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
377 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
381 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
383 ;; VFP anti-dependencies.
385 ;; There is one anti-dependence in the following case (not yet modelled):
386 ;; - After a store: one extra cycle for both fsts and fstd
387 ;; Note, back-to-back fstd instructions will overload the load/store datapath
388 ;; causing a two-cycle stall.