Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / fp-bit.c
blob4c637cb70aeb300a370e5f9039041f5c507a8801
1 /* This is a software floating point library which can be used
2 for targets without hardware floating point.
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003,
4 2004, 2005 Free Software Foundation, Inc.
6 This file is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 In addition to the permissions in the GNU General Public License, the
12 Free Software Foundation gives you unlimited permission to link the
13 compiled version of this file with other programs, and to distribute
14 those programs without any restriction coming from the use of this
15 file. (The General Public License restrictions do apply in other
16 respects; for example, they cover modification of the file, and
17 distribution when not linked into another program.)
19 This file is distributed in the hope that it will be useful, but
20 WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; see the file COPYING. If not, write to
26 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
27 Boston, MA 02110-1301, USA. */
29 /* As a special exception, if you link this library with other files,
30 some of which are compiled with GCC, to produce an executable,
31 this library does not by itself cause the resulting executable
32 to be covered by the GNU General Public License.
33 This exception does not however invalidate any other reasons why
34 the executable file might be covered by the GNU General Public License. */
36 /* This implements IEEE 754 format arithmetic, but does not provide a
37 mechanism for setting the rounding mode, or for generating or handling
38 exceptions.
40 The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
41 Wilson, all of Cygnus Support. */
43 /* The intended way to use this file is to make two copies, add `#define FLOAT'
44 to one copy, then compile both copies and add them to libgcc.a. */
46 #include "tconfig.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "config/fp-bit.h"
51 /* The following macros can be defined to change the behavior of this file:
52 FLOAT: Implement a `float', aka SFmode, fp library. If this is not
53 defined, then this file implements a `double', aka DFmode, fp library.
54 FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
55 don't include float->double conversion which requires the double library.
56 This is useful only for machines which can't support doubles, e.g. some
57 8-bit processors.
58 CMPtype: Specify the type that floating point compares should return.
59 This defaults to SItype, aka int.
60 US_SOFTWARE_GOFAST: This makes all entry points use the same names as the
61 US Software goFast library.
62 _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
63 two integers to the FLO_union_type.
64 NO_DENORMALS: Disable handling of denormals.
65 NO_NANS: Disable nan and infinity handling
66 SMALL_MACHINE: Useful when operations on QIs and HIs are faster
67 than on an SI */
69 /* We don't currently support extended floats (long doubles) on machines
70 without hardware to deal with them.
72 These stubs are just to keep the linker from complaining about unresolved
73 references which can be pulled in from libio & libstdc++, even if the
74 user isn't using long doubles. However, they may generate an unresolved
75 external to abort if abort is not used by the function, and the stubs
76 are referenced from within libc, since libgcc goes before and after the
77 system library. */
79 #ifdef DECLARE_LIBRARY_RENAMES
80 DECLARE_LIBRARY_RENAMES
81 #endif
83 #ifdef EXTENDED_FLOAT_STUBS
84 extern void abort (void);
85 void __extendsfxf2 (void) { abort(); }
86 void __extenddfxf2 (void) { abort(); }
87 void __truncxfdf2 (void) { abort(); }
88 void __truncxfsf2 (void) { abort(); }
89 void __fixxfsi (void) { abort(); }
90 void __floatsixf (void) { abort(); }
91 void __addxf3 (void) { abort(); }
92 void __subxf3 (void) { abort(); }
93 void __mulxf3 (void) { abort(); }
94 void __divxf3 (void) { abort(); }
95 void __negxf2 (void) { abort(); }
96 void __eqxf2 (void) { abort(); }
97 void __nexf2 (void) { abort(); }
98 void __gtxf2 (void) { abort(); }
99 void __gexf2 (void) { abort(); }
100 void __lexf2 (void) { abort(); }
101 void __ltxf2 (void) { abort(); }
103 void __extendsftf2 (void) { abort(); }
104 void __extenddftf2 (void) { abort(); }
105 void __trunctfdf2 (void) { abort(); }
106 void __trunctfsf2 (void) { abort(); }
107 void __fixtfsi (void) { abort(); }
108 void __floatsitf (void) { abort(); }
109 void __addtf3 (void) { abort(); }
110 void __subtf3 (void) { abort(); }
111 void __multf3 (void) { abort(); }
112 void __divtf3 (void) { abort(); }
113 void __negtf2 (void) { abort(); }
114 void __eqtf2 (void) { abort(); }
115 void __netf2 (void) { abort(); }
116 void __gttf2 (void) { abort(); }
117 void __getf2 (void) { abort(); }
118 void __letf2 (void) { abort(); }
119 void __lttf2 (void) { abort(); }
120 #else /* !EXTENDED_FLOAT_STUBS, rest of file */
122 /* IEEE "special" number predicates */
124 #ifdef NO_NANS
126 #define nan() 0
127 #define isnan(x) 0
128 #define isinf(x) 0
129 #else
131 #if defined L_thenan_sf
132 const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
133 #elif defined L_thenan_df
134 const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
135 #elif defined L_thenan_tf
136 const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
137 #elif defined TFLOAT
138 extern const fp_number_type __thenan_tf;
139 #elif defined FLOAT
140 extern const fp_number_type __thenan_sf;
141 #else
142 extern const fp_number_type __thenan_df;
143 #endif
145 INLINE
146 static fp_number_type *
147 nan (void)
149 /* Discard the const qualifier... */
150 #ifdef TFLOAT
151 return (fp_number_type *) (& __thenan_tf);
152 #elif defined FLOAT
153 return (fp_number_type *) (& __thenan_sf);
154 #else
155 return (fp_number_type *) (& __thenan_df);
156 #endif
159 INLINE
160 static int
161 isnan ( fp_number_type * x)
163 return x->class == CLASS_SNAN || x->class == CLASS_QNAN;
166 INLINE
167 static int
168 isinf ( fp_number_type * x)
170 return x->class == CLASS_INFINITY;
173 #endif /* NO_NANS */
175 INLINE
176 static int
177 iszero ( fp_number_type * x)
179 return x->class == CLASS_ZERO;
182 INLINE
183 static void
184 flip_sign ( fp_number_type * x)
186 x->sign = !x->sign;
189 extern FLO_type pack_d ( fp_number_type * );
191 #if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
192 FLO_type
193 pack_d ( fp_number_type * src)
195 FLO_union_type dst;
196 fractype fraction = src->fraction.ll; /* wasn't unsigned before? */
197 int sign = src->sign;
198 int exp = 0;
200 if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && (isnan (src) || isinf (src)))
202 /* We can't represent these values accurately. By using the
203 largest possible magnitude, we guarantee that the conversion
204 of infinity is at least as big as any finite number. */
205 exp = EXPMAX;
206 fraction = ((fractype) 1 << FRACBITS) - 1;
208 else if (isnan (src))
210 exp = EXPMAX;
211 if (src->class == CLASS_QNAN || 1)
213 #ifdef QUIET_NAN_NEGATED
214 fraction |= QUIET_NAN - 1;
215 #else
216 fraction |= QUIET_NAN;
217 #endif
220 else if (isinf (src))
222 exp = EXPMAX;
223 fraction = 0;
225 else if (iszero (src))
227 exp = 0;
228 fraction = 0;
230 else if (fraction == 0)
232 exp = 0;
234 else
236 if (src->normal_exp < NORMAL_EXPMIN)
238 #ifdef NO_DENORMALS
239 /* Go straight to a zero representation if denormals are not
240 supported. The denormal handling would be harmless but
241 isn't unnecessary. */
242 exp = 0;
243 fraction = 0;
244 #else /* NO_DENORMALS */
245 /* This number's exponent is too low to fit into the bits
246 available in the number, so we'll store 0 in the exponent and
247 shift the fraction to the right to make up for it. */
249 int shift = NORMAL_EXPMIN - src->normal_exp;
251 exp = 0;
253 if (shift > FRAC_NBITS - NGARDS)
255 /* No point shifting, since it's more that 64 out. */
256 fraction = 0;
258 else
260 int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
261 fraction = (fraction >> shift) | lowbit;
263 if ((fraction & GARDMASK) == GARDMSB)
265 if ((fraction & (1 << NGARDS)))
266 fraction += GARDROUND + 1;
268 else
270 /* Add to the guards to round up. */
271 fraction += GARDROUND;
273 /* Perhaps the rounding means we now need to change the
274 exponent, because the fraction is no longer denormal. */
275 if (fraction >= IMPLICIT_1)
277 exp += 1;
279 fraction >>= NGARDS;
280 #endif /* NO_DENORMALS */
282 else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS)
283 && src->normal_exp > EXPBIAS)
285 exp = EXPMAX;
286 fraction = 0;
288 else
290 exp = src->normal_exp + EXPBIAS;
291 if (!ROUND_TOWARDS_ZERO)
293 /* IF the gard bits are the all zero, but the first, then we're
294 half way between two numbers, choose the one which makes the
295 lsb of the answer 0. */
296 if ((fraction & GARDMASK) == GARDMSB)
298 if (fraction & (1 << NGARDS))
299 fraction += GARDROUND + 1;
301 else
303 /* Add a one to the guards to round up */
304 fraction += GARDROUND;
306 if (fraction >= IMPLICIT_2)
308 fraction >>= 1;
309 exp += 1;
312 fraction >>= NGARDS;
314 if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp > EXPMAX)
316 /* Saturate on overflow. */
317 exp = EXPMAX;
318 fraction = ((fractype) 1 << FRACBITS) - 1;
323 /* We previously used bitfields to store the number, but this doesn't
324 handle little/big endian systems conveniently, so use shifts and
325 masks */
326 #ifdef FLOAT_BIT_ORDER_MISMATCH
327 dst.bits.fraction = fraction;
328 dst.bits.exp = exp;
329 dst.bits.sign = sign;
330 #else
331 # if defined TFLOAT && defined HALFFRACBITS
333 halffractype high, low, unity;
334 int lowsign, lowexp;
336 unity = (halffractype) 1 << HALFFRACBITS;
338 /* Set HIGH to the high double's significand, masking out the implicit 1.
339 Set LOW to the low double's full significand. */
340 high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
341 low = fraction & (unity * 2 - 1);
343 /* Get the initial sign and exponent of the low double. */
344 lowexp = exp - HALFFRACBITS - 1;
345 lowsign = sign;
347 /* HIGH should be rounded like a normal double, making |LOW| <=
348 0.5 ULP of HIGH. Assume round-to-nearest. */
349 if (exp < EXPMAX)
350 if (low > unity || (low == unity && (high & 1) == 1))
352 /* Round HIGH up and adjust LOW to match. */
353 high++;
354 if (high == unity)
356 /* May make it infinite, but that's OK. */
357 high = 0;
358 exp++;
360 low = unity * 2 - low;
361 lowsign ^= 1;
364 high |= (halffractype) exp << HALFFRACBITS;
365 high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);
367 if (exp == EXPMAX || exp == 0 || low == 0)
368 low = 0;
369 else
371 while (lowexp > 0 && low < unity)
373 low <<= 1;
374 lowexp--;
377 if (lowexp <= 0)
379 halffractype roundmsb, round;
380 int shift;
382 shift = 1 - lowexp;
383 roundmsb = (1 << (shift - 1));
384 round = low & ((roundmsb << 1) - 1);
386 low >>= shift;
387 lowexp = 0;
389 if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
391 low++;
392 if (low == unity)
393 /* LOW rounds up to the smallest normal number. */
394 lowexp++;
398 low &= unity - 1;
399 low |= (halffractype) lowexp << HALFFRACBITS;
400 low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
402 dst.value_raw = ((fractype) high << HALFSHIFT) | low;
404 # else
405 dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
406 dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
407 dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
408 # endif
409 #endif
411 #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
412 #ifdef TFLOAT
414 qrtrfractype tmp1 = dst.words[0];
415 qrtrfractype tmp2 = dst.words[1];
416 dst.words[0] = dst.words[3];
417 dst.words[1] = dst.words[2];
418 dst.words[2] = tmp2;
419 dst.words[3] = tmp1;
421 #else
423 halffractype tmp = dst.words[0];
424 dst.words[0] = dst.words[1];
425 dst.words[1] = tmp;
427 #endif
428 #endif
430 return dst.value;
432 #endif
434 #if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
435 void
436 unpack_d (FLO_union_type * src, fp_number_type * dst)
438 /* We previously used bitfields to store the number, but this doesn't
439 handle little/big endian systems conveniently, so use shifts and
440 masks */
441 fractype fraction;
442 int exp;
443 int sign;
445 #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
446 FLO_union_type swapped;
448 #ifdef TFLOAT
449 swapped.words[0] = src->words[3];
450 swapped.words[1] = src->words[2];
451 swapped.words[2] = src->words[1];
452 swapped.words[3] = src->words[0];
453 #else
454 swapped.words[0] = src->words[1];
455 swapped.words[1] = src->words[0];
456 #endif
457 src = &swapped;
458 #endif
460 #ifdef FLOAT_BIT_ORDER_MISMATCH
461 fraction = src->bits.fraction;
462 exp = src->bits.exp;
463 sign = src->bits.sign;
464 #else
465 # if defined TFLOAT && defined HALFFRACBITS
467 halffractype high, low;
469 high = src->value_raw >> HALFSHIFT;
470 low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);
472 fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
473 fraction <<= FRACBITS - HALFFRACBITS;
474 exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
475 sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;
477 if (exp != EXPMAX && exp != 0 && low != 0)
479 int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
480 int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
481 int shift;
482 fractype xlow;
484 xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
485 if (lowexp)
486 xlow |= (((halffractype)1) << HALFFRACBITS);
487 else
488 lowexp = 1;
489 shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
490 if (shift > 0)
491 xlow <<= shift;
492 else if (shift < 0)
493 xlow >>= -shift;
494 if (sign == lowsign)
495 fraction += xlow;
496 else if (fraction >= xlow)
497 fraction -= xlow;
498 else
500 /* The high part is a power of two but the full number is lower.
501 This code will leave the implicit 1 in FRACTION, but we'd
502 have added that below anyway. */
503 fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
504 exp--;
508 # else
509 fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
510 exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
511 sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
512 # endif
513 #endif
515 dst->sign = sign;
516 if (exp == 0)
518 /* Hmm. Looks like 0 */
519 if (fraction == 0
520 #ifdef NO_DENORMALS
521 || 1
522 #endif
525 /* tastes like zero */
526 dst->class = CLASS_ZERO;
528 else
530 /* Zero exponent with nonzero fraction - it's denormalized,
531 so there isn't a leading implicit one - we'll shift it so
532 it gets one. */
533 dst->normal_exp = exp - EXPBIAS + 1;
534 fraction <<= NGARDS;
536 dst->class = CLASS_NUMBER;
537 #if 1
538 while (fraction < IMPLICIT_1)
540 fraction <<= 1;
541 dst->normal_exp--;
543 #endif
544 dst->fraction.ll = fraction;
547 else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp == EXPMAX)
549 /* Huge exponent*/
550 if (fraction == 0)
552 /* Attached to a zero fraction - means infinity */
553 dst->class = CLASS_INFINITY;
555 else
557 /* Nonzero fraction, means nan */
558 #ifdef QUIET_NAN_NEGATED
559 if ((fraction & QUIET_NAN) == 0)
560 #else
561 if (fraction & QUIET_NAN)
562 #endif
564 dst->class = CLASS_QNAN;
566 else
568 dst->class = CLASS_SNAN;
570 /* Keep the fraction part as the nan number */
571 dst->fraction.ll = fraction;
574 else
576 /* Nothing strange about this number */
577 dst->normal_exp = exp - EXPBIAS;
578 dst->class = CLASS_NUMBER;
579 dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
582 #endif /* L_unpack_df || L_unpack_sf */
584 #if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
585 static fp_number_type *
586 _fpadd_parts (fp_number_type * a,
587 fp_number_type * b,
588 fp_number_type * tmp)
590 intfrac tfraction;
592 /* Put commonly used fields in local variables. */
593 int a_normal_exp;
594 int b_normal_exp;
595 fractype a_fraction;
596 fractype b_fraction;
598 if (isnan (a))
600 return a;
602 if (isnan (b))
604 return b;
606 if (isinf (a))
608 /* Adding infinities with opposite signs yields a NaN. */
609 if (isinf (b) && a->sign != b->sign)
610 return nan ();
611 return a;
613 if (isinf (b))
615 return b;
617 if (iszero (b))
619 if (iszero (a))
621 *tmp = *a;
622 tmp->sign = a->sign & b->sign;
623 return tmp;
625 return a;
627 if (iszero (a))
629 return b;
632 /* Got two numbers. shift the smaller and increment the exponent till
633 they're the same */
635 int diff;
637 a_normal_exp = a->normal_exp;
638 b_normal_exp = b->normal_exp;
639 a_fraction = a->fraction.ll;
640 b_fraction = b->fraction.ll;
642 diff = a_normal_exp - b_normal_exp;
644 if (diff < 0)
645 diff = -diff;
646 if (diff < FRAC_NBITS)
648 /* ??? This does shifts one bit at a time. Optimize. */
649 while (a_normal_exp > b_normal_exp)
651 b_normal_exp++;
652 LSHIFT (b_fraction);
654 while (b_normal_exp > a_normal_exp)
656 a_normal_exp++;
657 LSHIFT (a_fraction);
660 else
662 /* Somethings's up.. choose the biggest */
663 if (a_normal_exp > b_normal_exp)
665 b_normal_exp = a_normal_exp;
666 b_fraction = 0;
668 else
670 a_normal_exp = b_normal_exp;
671 a_fraction = 0;
676 if (a->sign != b->sign)
678 if (a->sign)
680 tfraction = -a_fraction + b_fraction;
682 else
684 tfraction = a_fraction - b_fraction;
686 if (tfraction >= 0)
688 tmp->sign = 0;
689 tmp->normal_exp = a_normal_exp;
690 tmp->fraction.ll = tfraction;
692 else
694 tmp->sign = 1;
695 tmp->normal_exp = a_normal_exp;
696 tmp->fraction.ll = -tfraction;
698 /* and renormalize it */
700 while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
702 tmp->fraction.ll <<= 1;
703 tmp->normal_exp--;
706 else
708 tmp->sign = a->sign;
709 tmp->normal_exp = a_normal_exp;
710 tmp->fraction.ll = a_fraction + b_fraction;
712 tmp->class = CLASS_NUMBER;
713 /* Now the fraction is added, we have to shift down to renormalize the
714 number */
716 if (tmp->fraction.ll >= IMPLICIT_2)
718 LSHIFT (tmp->fraction.ll);
719 tmp->normal_exp++;
721 return tmp;
725 FLO_type
726 add (FLO_type arg_a, FLO_type arg_b)
728 fp_number_type a;
729 fp_number_type b;
730 fp_number_type tmp;
731 fp_number_type *res;
732 FLO_union_type au, bu;
734 au.value = arg_a;
735 bu.value = arg_b;
737 unpack_d (&au, &a);
738 unpack_d (&bu, &b);
740 res = _fpadd_parts (&a, &b, &tmp);
742 return pack_d (res);
745 FLO_type
746 sub (FLO_type arg_a, FLO_type arg_b)
748 fp_number_type a;
749 fp_number_type b;
750 fp_number_type tmp;
751 fp_number_type *res;
752 FLO_union_type au, bu;
754 au.value = arg_a;
755 bu.value = arg_b;
757 unpack_d (&au, &a);
758 unpack_d (&bu, &b);
760 b.sign ^= 1;
762 res = _fpadd_parts (&a, &b, &tmp);
764 return pack_d (res);
766 #endif /* L_addsub_sf || L_addsub_df */
768 #if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
769 static inline __attribute__ ((__always_inline__)) fp_number_type *
770 _fpmul_parts ( fp_number_type * a,
771 fp_number_type * b,
772 fp_number_type * tmp)
774 fractype low = 0;
775 fractype high = 0;
777 if (isnan (a))
779 a->sign = a->sign != b->sign;
780 return a;
782 if (isnan (b))
784 b->sign = a->sign != b->sign;
785 return b;
787 if (isinf (a))
789 if (iszero (b))
790 return nan ();
791 a->sign = a->sign != b->sign;
792 return a;
794 if (isinf (b))
796 if (iszero (a))
798 return nan ();
800 b->sign = a->sign != b->sign;
801 return b;
803 if (iszero (a))
805 a->sign = a->sign != b->sign;
806 return a;
808 if (iszero (b))
810 b->sign = a->sign != b->sign;
811 return b;
814 /* Calculate the mantissa by multiplying both numbers to get a
815 twice-as-wide number. */
817 #if defined(NO_DI_MODE) || defined(TFLOAT)
819 fractype x = a->fraction.ll;
820 fractype ylow = b->fraction.ll;
821 fractype yhigh = 0;
822 int bit;
824 /* ??? This does multiplies one bit at a time. Optimize. */
825 for (bit = 0; bit < FRAC_NBITS; bit++)
827 int carry;
829 if (x & 1)
831 carry = (low += ylow) < ylow;
832 high += yhigh + carry;
834 yhigh <<= 1;
835 if (ylow & FRACHIGH)
837 yhigh |= 1;
839 ylow <<= 1;
840 x >>= 1;
843 #elif defined(FLOAT)
844 /* Multiplying two USIs to get a UDI, we're safe. */
846 UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
848 high = answer >> BITS_PER_SI;
849 low = answer;
851 #else
852 /* fractype is DImode, but we need the result to be twice as wide.
853 Assuming a widening multiply from DImode to TImode is not
854 available, build one by hand. */
856 USItype nl = a->fraction.ll;
857 USItype nh = a->fraction.ll >> BITS_PER_SI;
858 USItype ml = b->fraction.ll;
859 USItype mh = b->fraction.ll >> BITS_PER_SI;
860 UDItype pp_ll = (UDItype) ml * nl;
861 UDItype pp_hl = (UDItype) mh * nl;
862 UDItype pp_lh = (UDItype) ml * nh;
863 UDItype pp_hh = (UDItype) mh * nh;
864 UDItype res2 = 0;
865 UDItype res0 = 0;
866 UDItype ps_hh__ = pp_hl + pp_lh;
867 if (ps_hh__ < pp_hl)
868 res2 += (UDItype)1 << BITS_PER_SI;
869 pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
870 res0 = pp_ll + pp_hl;
871 if (res0 < pp_ll)
872 res2++;
873 res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
874 high = res2;
875 low = res0;
877 #endif
880 tmp->normal_exp = a->normal_exp + b->normal_exp
881 + FRAC_NBITS - (FRACBITS + NGARDS);
882 tmp->sign = a->sign != b->sign;
883 while (high >= IMPLICIT_2)
885 tmp->normal_exp++;
886 if (high & 1)
888 low >>= 1;
889 low |= FRACHIGH;
891 high >>= 1;
893 while (high < IMPLICIT_1)
895 tmp->normal_exp--;
897 high <<= 1;
898 if (low & FRACHIGH)
899 high |= 1;
900 low <<= 1;
903 if (!ROUND_TOWARDS_ZERO && (high & GARDMASK) == GARDMSB)
905 if (high & (1 << NGARDS))
907 /* Because we're half way, we would round to even by adding
908 GARDROUND + 1, except that's also done in the packing
909 function, and rounding twice will lose precision and cause
910 the result to be too far off. Example: 32-bit floats with
911 bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
912 off), not 0x1000 (more than 0.5ulp off). */
914 else if (low)
916 /* We're a further than half way by a small amount corresponding
917 to the bits set in "low". Knowing that, we round here and
918 not in pack_d, because there we don't have "low" available
919 anymore. */
920 high += GARDROUND + 1;
922 /* Avoid further rounding in pack_d. */
923 high &= ~(fractype) GARDMASK;
926 tmp->fraction.ll = high;
927 tmp->class = CLASS_NUMBER;
928 return tmp;
931 FLO_type
932 multiply (FLO_type arg_a, FLO_type arg_b)
934 fp_number_type a;
935 fp_number_type b;
936 fp_number_type tmp;
937 fp_number_type *res;
938 FLO_union_type au, bu;
940 au.value = arg_a;
941 bu.value = arg_b;
943 unpack_d (&au, &a);
944 unpack_d (&bu, &b);
946 res = _fpmul_parts (&a, &b, &tmp);
948 return pack_d (res);
950 #endif /* L_mul_sf || L_mul_df || L_mul_tf */
952 #if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
953 static inline __attribute__ ((__always_inline__)) fp_number_type *
954 _fpdiv_parts (fp_number_type * a,
955 fp_number_type * b)
957 fractype bit;
958 fractype numerator;
959 fractype denominator;
960 fractype quotient;
962 if (isnan (a))
964 return a;
966 if (isnan (b))
968 return b;
971 a->sign = a->sign ^ b->sign;
973 if (isinf (a) || iszero (a))
975 if (a->class == b->class)
976 return nan ();
977 return a;
980 if (isinf (b))
982 a->fraction.ll = 0;
983 a->normal_exp = 0;
984 return a;
986 if (iszero (b))
988 a->class = CLASS_INFINITY;
989 return a;
992 /* Calculate the mantissa by multiplying both 64bit numbers to get a
993 128 bit number */
995 /* quotient =
996 ( numerator / denominator) * 2^(numerator exponent - denominator exponent)
999 a->normal_exp = a->normal_exp - b->normal_exp;
1000 numerator = a->fraction.ll;
1001 denominator = b->fraction.ll;
1003 if (numerator < denominator)
1005 /* Fraction will be less than 1.0 */
1006 numerator *= 2;
1007 a->normal_exp--;
1009 bit = IMPLICIT_1;
1010 quotient = 0;
1011 /* ??? Does divide one bit at a time. Optimize. */
1012 while (bit)
1014 if (numerator >= denominator)
1016 quotient |= bit;
1017 numerator -= denominator;
1019 bit >>= 1;
1020 numerator *= 2;
1023 if (!ROUND_TOWARDS_ZERO && (quotient & GARDMASK) == GARDMSB)
1025 if (quotient & (1 << NGARDS))
1027 /* Because we're half way, we would round to even by adding
1028 GARDROUND + 1, except that's also done in the packing
1029 function, and rounding twice will lose precision and cause
1030 the result to be too far off. */
1032 else if (numerator)
1034 /* We're a further than half way by the small amount
1035 corresponding to the bits set in "numerator". Knowing
1036 that, we round here and not in pack_d, because there we
1037 don't have "numerator" available anymore. */
1038 quotient += GARDROUND + 1;
1040 /* Avoid further rounding in pack_d. */
1041 quotient &= ~(fractype) GARDMASK;
1045 a->fraction.ll = quotient;
1046 return (a);
1050 FLO_type
1051 divide (FLO_type arg_a, FLO_type arg_b)
1053 fp_number_type a;
1054 fp_number_type b;
1055 fp_number_type *res;
1056 FLO_union_type au, bu;
1058 au.value = arg_a;
1059 bu.value = arg_b;
1061 unpack_d (&au, &a);
1062 unpack_d (&bu, &b);
1064 res = _fpdiv_parts (&a, &b);
1066 return pack_d (res);
1068 #endif /* L_div_sf || L_div_df */
1070 #if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
1071 || defined(L_fpcmp_parts_tf)
1072 /* according to the demo, fpcmp returns a comparison with 0... thus
1073 a<b -> -1
1074 a==b -> 0
1075 a>b -> +1
1079 __fpcmp_parts (fp_number_type * a, fp_number_type * b)
1081 #if 0
1082 /* either nan -> unordered. Must be checked outside of this routine. */
1083 if (isnan (a) && isnan (b))
1085 return 1; /* still unordered! */
1087 #endif
1089 if (isnan (a) || isnan (b))
1091 return 1; /* how to indicate unordered compare? */
1093 if (isinf (a) && isinf (b))
1095 /* +inf > -inf, but +inf != +inf */
1096 /* b \a| +inf(0)| -inf(1)
1097 ______\+--------+--------
1098 +inf(0)| a==b(0)| a<b(-1)
1099 -------+--------+--------
1100 -inf(1)| a>b(1) | a==b(0)
1101 -------+--------+--------
1102 So since unordered must be nonzero, just line up the columns...
1104 return b->sign - a->sign;
1106 /* but not both... */
1107 if (isinf (a))
1109 return a->sign ? -1 : 1;
1111 if (isinf (b))
1113 return b->sign ? 1 : -1;
1115 if (iszero (a) && iszero (b))
1117 return 0;
1119 if (iszero (a))
1121 return b->sign ? 1 : -1;
1123 if (iszero (b))
1125 return a->sign ? -1 : 1;
1127 /* now both are "normal". */
1128 if (a->sign != b->sign)
1130 /* opposite signs */
1131 return a->sign ? -1 : 1;
1133 /* same sign; exponents? */
1134 if (a->normal_exp > b->normal_exp)
1136 return a->sign ? -1 : 1;
1138 if (a->normal_exp < b->normal_exp)
1140 return a->sign ? 1 : -1;
1142 /* same exponents; check size. */
1143 if (a->fraction.ll > b->fraction.ll)
1145 return a->sign ? -1 : 1;
1147 if (a->fraction.ll < b->fraction.ll)
1149 return a->sign ? 1 : -1;
1151 /* after all that, they're equal. */
1152 return 0;
1154 #endif
1156 #if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
1157 CMPtype
1158 compare (FLO_type arg_a, FLO_type arg_b)
1160 fp_number_type a;
1161 fp_number_type b;
1162 FLO_union_type au, bu;
1164 au.value = arg_a;
1165 bu.value = arg_b;
1167 unpack_d (&au, &a);
1168 unpack_d (&bu, &b);
1170 return __fpcmp_parts (&a, &b);
1172 #endif /* L_compare_sf || L_compare_df */
1174 #ifndef US_SOFTWARE_GOFAST
1176 /* These should be optimized for their specific tasks someday. */
1178 #if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
1179 CMPtype
1180 _eq_f2 (FLO_type arg_a, FLO_type arg_b)
1182 fp_number_type a;
1183 fp_number_type b;
1184 FLO_union_type au, bu;
1186 au.value = arg_a;
1187 bu.value = arg_b;
1189 unpack_d (&au, &a);
1190 unpack_d (&bu, &b);
1192 if (isnan (&a) || isnan (&b))
1193 return 1; /* false, truth == 0 */
1195 return __fpcmp_parts (&a, &b) ;
1197 #endif /* L_eq_sf || L_eq_df */
1199 #if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
1200 CMPtype
1201 _ne_f2 (FLO_type arg_a, FLO_type arg_b)
1203 fp_number_type a;
1204 fp_number_type b;
1205 FLO_union_type au, bu;
1207 au.value = arg_a;
1208 bu.value = arg_b;
1210 unpack_d (&au, &a);
1211 unpack_d (&bu, &b);
1213 if (isnan (&a) || isnan (&b))
1214 return 1; /* true, truth != 0 */
1216 return __fpcmp_parts (&a, &b) ;
1218 #endif /* L_ne_sf || L_ne_df */
1220 #if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
1221 CMPtype
1222 _gt_f2 (FLO_type arg_a, FLO_type arg_b)
1224 fp_number_type a;
1225 fp_number_type b;
1226 FLO_union_type au, bu;
1228 au.value = arg_a;
1229 bu.value = arg_b;
1231 unpack_d (&au, &a);
1232 unpack_d (&bu, &b);
1234 if (isnan (&a) || isnan (&b))
1235 return -1; /* false, truth > 0 */
1237 return __fpcmp_parts (&a, &b);
1239 #endif /* L_gt_sf || L_gt_df */
1241 #if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
1242 CMPtype
1243 _ge_f2 (FLO_type arg_a, FLO_type arg_b)
1245 fp_number_type a;
1246 fp_number_type b;
1247 FLO_union_type au, bu;
1249 au.value = arg_a;
1250 bu.value = arg_b;
1252 unpack_d (&au, &a);
1253 unpack_d (&bu, &b);
1255 if (isnan (&a) || isnan (&b))
1256 return -1; /* false, truth >= 0 */
1257 return __fpcmp_parts (&a, &b) ;
1259 #endif /* L_ge_sf || L_ge_df */
1261 #if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
1262 CMPtype
1263 _lt_f2 (FLO_type arg_a, FLO_type arg_b)
1265 fp_number_type a;
1266 fp_number_type b;
1267 FLO_union_type au, bu;
1269 au.value = arg_a;
1270 bu.value = arg_b;
1272 unpack_d (&au, &a);
1273 unpack_d (&bu, &b);
1275 if (isnan (&a) || isnan (&b))
1276 return 1; /* false, truth < 0 */
1278 return __fpcmp_parts (&a, &b);
1280 #endif /* L_lt_sf || L_lt_df */
1282 #if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
1283 CMPtype
1284 _le_f2 (FLO_type arg_a, FLO_type arg_b)
1286 fp_number_type a;
1287 fp_number_type b;
1288 FLO_union_type au, bu;
1290 au.value = arg_a;
1291 bu.value = arg_b;
1293 unpack_d (&au, &a);
1294 unpack_d (&bu, &b);
1296 if (isnan (&a) || isnan (&b))
1297 return 1; /* false, truth <= 0 */
1299 return __fpcmp_parts (&a, &b) ;
1301 #endif /* L_le_sf || L_le_df */
1303 #endif /* ! US_SOFTWARE_GOFAST */
1305 #if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
1306 CMPtype
1307 _unord_f2 (FLO_type arg_a, FLO_type arg_b)
1309 fp_number_type a;
1310 fp_number_type b;
1311 FLO_union_type au, bu;
1313 au.value = arg_a;
1314 bu.value = arg_b;
1316 unpack_d (&au, &a);
1317 unpack_d (&bu, &b);
1319 return (isnan (&a) || isnan (&b));
1321 #endif /* L_unord_sf || L_unord_df */
1323 #if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
1324 FLO_type
1325 si_to_float (SItype arg_a)
1327 fp_number_type in;
1329 in.class = CLASS_NUMBER;
1330 in.sign = arg_a < 0;
1331 if (!arg_a)
1333 in.class = CLASS_ZERO;
1335 else
1337 in.normal_exp = FRACBITS + NGARDS;
1338 if (in.sign)
1340 /* Special case for minint, since there is no +ve integer
1341 representation for it */
1342 if (arg_a == (- MAX_SI_INT - 1))
1344 return (FLO_type)(- MAX_SI_INT - 1);
1346 in.fraction.ll = (-arg_a);
1348 else
1349 in.fraction.ll = arg_a;
1351 while (in.fraction.ll < ((fractype)1 << (FRACBITS + NGARDS)))
1353 in.fraction.ll <<= 1;
1354 in.normal_exp -= 1;
1357 return pack_d (&in);
1359 #endif /* L_si_to_sf || L_si_to_df */
1361 #if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
1362 FLO_type
1363 usi_to_float (USItype arg_a)
1365 fp_number_type in;
1367 in.sign = 0;
1368 if (!arg_a)
1370 in.class = CLASS_ZERO;
1372 else
1374 in.class = CLASS_NUMBER;
1375 in.normal_exp = FRACBITS + NGARDS;
1376 in.fraction.ll = arg_a;
1378 while (in.fraction.ll > ((fractype)1 << (FRACBITS + NGARDS)))
1380 in.fraction.ll >>= 1;
1381 in.normal_exp += 1;
1383 while (in.fraction.ll < ((fractype)1 << (FRACBITS + NGARDS)))
1385 in.fraction.ll <<= 1;
1386 in.normal_exp -= 1;
1389 return pack_d (&in);
1391 #endif
1393 #if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
1394 SItype
1395 float_to_si (FLO_type arg_a)
1397 fp_number_type a;
1398 SItype tmp;
1399 FLO_union_type au;
1401 au.value = arg_a;
1402 unpack_d (&au, &a);
1404 if (iszero (&a))
1405 return 0;
1406 if (isnan (&a))
1407 return 0;
1408 /* get reasonable MAX_SI_INT... */
1409 if (isinf (&a))
1410 return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
1411 /* it is a number, but a small one */
1412 if (a.normal_exp < 0)
1413 return 0;
1414 if (a.normal_exp > BITS_PER_SI - 2)
1415 return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
1416 tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
1417 return a.sign ? (-tmp) : (tmp);
1419 #endif /* L_sf_to_si || L_df_to_si */
1421 #if defined(L_sf_to_usi) || defined(L_df_to_usi) || defined(L_tf_to_usi)
1422 #if defined US_SOFTWARE_GOFAST || defined(L_tf_to_usi)
1423 /* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines,
1424 we also define them for GOFAST because the ones in libgcc2.c have the
1425 wrong names and I'd rather define these here and keep GOFAST CYG-LOC's
1426 out of libgcc2.c. We can't define these here if not GOFAST because then
1427 there'd be duplicate copies. */
1429 USItype
1430 float_to_usi (FLO_type arg_a)
1432 fp_number_type a;
1433 FLO_union_type au;
1435 au.value = arg_a;
1436 unpack_d (&au, &a);
1438 if (iszero (&a))
1439 return 0;
1440 if (isnan (&a))
1441 return 0;
1442 /* it is a negative number */
1443 if (a.sign)
1444 return 0;
1445 /* get reasonable MAX_USI_INT... */
1446 if (isinf (&a))
1447 return MAX_USI_INT;
1448 /* it is a number, but a small one */
1449 if (a.normal_exp < 0)
1450 return 0;
1451 if (a.normal_exp > BITS_PER_SI - 1)
1452 return MAX_USI_INT;
1453 else if (a.normal_exp > (FRACBITS + NGARDS))
1454 return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
1455 else
1456 return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
1458 #endif /* US_SOFTWARE_GOFAST */
1459 #endif /* L_sf_to_usi || L_df_to_usi */
1461 #if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
1462 FLO_type
1463 negate (FLO_type arg_a)
1465 fp_number_type a;
1466 FLO_union_type au;
1468 au.value = arg_a;
1469 unpack_d (&au, &a);
1471 flip_sign (&a);
1472 return pack_d (&a);
1474 #endif /* L_negate_sf || L_negate_df */
1476 #ifdef FLOAT
1478 #if defined(L_make_sf)
1479 SFtype
1480 __make_fp(fp_class_type class,
1481 unsigned int sign,
1482 int exp,
1483 USItype frac)
1485 fp_number_type in;
1487 in.class = class;
1488 in.sign = sign;
1489 in.normal_exp = exp;
1490 in.fraction.ll = frac;
1491 return pack_d (&in);
1493 #endif /* L_make_sf */
1495 #ifndef FLOAT_ONLY
1497 /* This enables one to build an fp library that supports float but not double.
1498 Otherwise, we would get an undefined reference to __make_dp.
1499 This is needed for some 8-bit ports that can't handle well values that
1500 are 8-bytes in size, so we just don't support double for them at all. */
1502 #if defined(L_sf_to_df)
1503 DFtype
1504 sf_to_df (SFtype arg_a)
1506 fp_number_type in;
1507 FLO_union_type au;
1509 au.value = arg_a;
1510 unpack_d (&au, &in);
1512 return __make_dp (in.class, in.sign, in.normal_exp,
1513 ((UDItype) in.fraction.ll) << F_D_BITOFF);
1515 #endif /* L_sf_to_df */
1517 #if defined(L_sf_to_tf) && defined(TMODES)
1518 TFtype
1519 sf_to_tf (SFtype arg_a)
1521 fp_number_type in;
1522 FLO_union_type au;
1524 au.value = arg_a;
1525 unpack_d (&au, &in);
1527 return __make_tp (in.class, in.sign, in.normal_exp,
1528 ((UTItype) in.fraction.ll) << F_T_BITOFF);
1530 #endif /* L_sf_to_df */
1532 #endif /* ! FLOAT_ONLY */
1533 #endif /* FLOAT */
1535 #ifndef FLOAT
1537 extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
1539 #if defined(L_make_df)
1540 DFtype
1541 __make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
1543 fp_number_type in;
1545 in.class = class;
1546 in.sign = sign;
1547 in.normal_exp = exp;
1548 in.fraction.ll = frac;
1549 return pack_d (&in);
1551 #endif /* L_make_df */
1553 #if defined(L_df_to_sf)
1554 SFtype
1555 df_to_sf (DFtype arg_a)
1557 fp_number_type in;
1558 USItype sffrac;
1559 FLO_union_type au;
1561 au.value = arg_a;
1562 unpack_d (&au, &in);
1564 sffrac = in.fraction.ll >> F_D_BITOFF;
1566 /* We set the lowest guard bit in SFFRAC if we discarded any non
1567 zero bits. */
1568 if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
1569 sffrac |= 1;
1571 return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
1573 #endif /* L_df_to_sf */
1575 #if defined(L_df_to_tf) && defined(TMODES) \
1576 && !defined(FLOAT) && !defined(TFLOAT)
1577 TFtype
1578 df_to_tf (DFtype arg_a)
1580 fp_number_type in;
1581 FLO_union_type au;
1583 au.value = arg_a;
1584 unpack_d (&au, &in);
1586 return __make_tp (in.class, in.sign, in.normal_exp,
1587 ((UTItype) in.fraction.ll) << D_T_BITOFF);
1589 #endif /* L_sf_to_df */
1591 #ifdef TFLOAT
1592 #if defined(L_make_tf)
1593 TFtype
1594 __make_tp(fp_class_type class,
1595 unsigned int sign,
1596 int exp,
1597 UTItype frac)
1599 fp_number_type in;
1601 in.class = class;
1602 in.sign = sign;
1603 in.normal_exp = exp;
1604 in.fraction.ll = frac;
1605 return pack_d (&in);
1607 #endif /* L_make_tf */
1609 #if defined(L_tf_to_df)
1610 DFtype
1611 tf_to_df (TFtype arg_a)
1613 fp_number_type in;
1614 UDItype sffrac;
1615 FLO_union_type au;
1617 au.value = arg_a;
1618 unpack_d (&au, &in);
1620 sffrac = in.fraction.ll >> D_T_BITOFF;
1622 /* We set the lowest guard bit in SFFRAC if we discarded any non
1623 zero bits. */
1624 if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
1625 sffrac |= 1;
1627 return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
1629 #endif /* L_tf_to_df */
1631 #if defined(L_tf_to_sf)
1632 SFtype
1633 tf_to_sf (TFtype arg_a)
1635 fp_number_type in;
1636 USItype sffrac;
1637 FLO_union_type au;
1639 au.value = arg_a;
1640 unpack_d (&au, &in);
1642 sffrac = in.fraction.ll >> F_T_BITOFF;
1644 /* We set the lowest guard bit in SFFRAC if we discarded any non
1645 zero bits. */
1646 if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
1647 sffrac |= 1;
1649 return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
1651 #endif /* L_tf_to_sf */
1652 #endif /* TFLOAT */
1654 #endif /* ! FLOAT */
1655 #endif /* !EXTENDED_FLOAT_STUBS */